1 /* 2 * buffered writeback throttling. loosely based on CoDel. We can't drop 3 * packets for IO scheduling, so the logic is something like this: 4 * 5 * - Monitor latencies in a defined window of time. 6 * - If the minimum latency in the above window exceeds some target, increment 7 * scaling step and scale down queue depth by a factor of 2x. The monitoring 8 * window is then shrunk to 100 / sqrt(scaling step + 1). 9 * - For any window where we don't have solid data on what the latencies 10 * look like, retain status quo. 11 * - If latencies look good, decrement scaling step. 12 * - If we're only doing writes, allow the scaling step to go negative. This 13 * will temporarily boost write performance, snapping back to a stable 14 * scaling step of 0 if reads show up or the heavy writers finish. Unlike 15 * positive scaling steps where we shrink the monitoring window, a negative 16 * scaling step retains the default step==0 window size. 17 * 18 * Copyright (C) 2016 Jens Axboe 19 * 20 */ 21 #include <linux/kernel.h> 22 #include <linux/blk_types.h> 23 #include <linux/slab.h> 24 #include <linux/backing-dev.h> 25 #include <linux/swap.h> 26 27 #include "blk-wbt.h" 28 #include "blk-rq-qos.h" 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/wbt.h> 32 33 static inline void wbt_clear_state(struct request *rq) 34 { 35 rq->wbt_flags = 0; 36 } 37 38 static inline enum wbt_flags wbt_flags(struct request *rq) 39 { 40 return rq->wbt_flags; 41 } 42 43 static inline bool wbt_is_tracked(struct request *rq) 44 { 45 return rq->wbt_flags & WBT_TRACKED; 46 } 47 48 static inline bool wbt_is_read(struct request *rq) 49 { 50 return rq->wbt_flags & WBT_READ; 51 } 52 53 enum { 54 /* 55 * Default setting, we'll scale up (to 75% of QD max) or down (min 1) 56 * from here depending on device stats 57 */ 58 RWB_DEF_DEPTH = 16, 59 60 /* 61 * 100msec window 62 */ 63 RWB_WINDOW_NSEC = 100 * 1000 * 1000ULL, 64 65 /* 66 * Disregard stats, if we don't meet this minimum 67 */ 68 RWB_MIN_WRITE_SAMPLES = 3, 69 70 /* 71 * If we have this number of consecutive windows with not enough 72 * information to scale up or down, scale up. 73 */ 74 RWB_UNKNOWN_BUMP = 5, 75 }; 76 77 static inline bool rwb_enabled(struct rq_wb *rwb) 78 { 79 return rwb && rwb->wb_normal != 0; 80 } 81 82 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var) 83 { 84 if (rwb_enabled(rwb)) { 85 const unsigned long cur = jiffies; 86 87 if (cur != *var) 88 *var = cur; 89 } 90 } 91 92 /* 93 * If a task was rate throttled in balance_dirty_pages() within the last 94 * second or so, use that to indicate a higher cleaning rate. 95 */ 96 static bool wb_recent_wait(struct rq_wb *rwb) 97 { 98 struct bdi_writeback *wb = &rwb->rqos.q->backing_dev_info->wb; 99 100 return time_before(jiffies, wb->dirty_sleep + HZ); 101 } 102 103 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb, 104 enum wbt_flags wb_acct) 105 { 106 if (wb_acct & WBT_KSWAPD) 107 return &rwb->rq_wait[WBT_RWQ_KSWAPD]; 108 else if (wb_acct & WBT_DISCARD) 109 return &rwb->rq_wait[WBT_RWQ_DISCARD]; 110 111 return &rwb->rq_wait[WBT_RWQ_BG]; 112 } 113 114 static void rwb_wake_all(struct rq_wb *rwb) 115 { 116 int i; 117 118 for (i = 0; i < WBT_NUM_RWQ; i++) { 119 struct rq_wait *rqw = &rwb->rq_wait[i]; 120 121 if (wq_has_sleeper(&rqw->wait)) 122 wake_up_all(&rqw->wait); 123 } 124 } 125 126 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct) 127 { 128 struct rq_wb *rwb = RQWB(rqos); 129 struct rq_wait *rqw; 130 int inflight, limit; 131 132 if (!(wb_acct & WBT_TRACKED)) 133 return; 134 135 rqw = get_rq_wait(rwb, wb_acct); 136 inflight = atomic_dec_return(&rqw->inflight); 137 138 /* 139 * wbt got disabled with IO in flight. Wake up any potential 140 * waiters, we don't have to do more than that. 141 */ 142 if (unlikely(!rwb_enabled(rwb))) { 143 rwb_wake_all(rwb); 144 return; 145 } 146 147 /* 148 * For discards, our limit is always the background. For writes, if 149 * the device does write back caching, drop further down before we 150 * wake people up. 151 */ 152 if (wb_acct & WBT_DISCARD) 153 limit = rwb->wb_background; 154 else if (rwb->wc && !wb_recent_wait(rwb)) 155 limit = 0; 156 else 157 limit = rwb->wb_normal; 158 159 /* 160 * Don't wake anyone up if we are above the normal limit. 161 */ 162 if (inflight && inflight >= limit) 163 return; 164 165 if (wq_has_sleeper(&rqw->wait)) { 166 int diff = limit - inflight; 167 168 if (!inflight || diff >= rwb->wb_background / 2) 169 wake_up(&rqw->wait); 170 } 171 } 172 173 /* 174 * Called on completion of a request. Note that it's also called when 175 * a request is merged, when the request gets freed. 176 */ 177 static void wbt_done(struct rq_qos *rqos, struct request *rq) 178 { 179 struct rq_wb *rwb = RQWB(rqos); 180 181 if (!wbt_is_tracked(rq)) { 182 if (rwb->sync_cookie == rq) { 183 rwb->sync_issue = 0; 184 rwb->sync_cookie = NULL; 185 } 186 187 if (wbt_is_read(rq)) 188 wb_timestamp(rwb, &rwb->last_comp); 189 } else { 190 WARN_ON_ONCE(rq == rwb->sync_cookie); 191 __wbt_done(rqos, wbt_flags(rq)); 192 } 193 wbt_clear_state(rq); 194 } 195 196 static inline bool stat_sample_valid(struct blk_rq_stat *stat) 197 { 198 /* 199 * We need at least one read sample, and a minimum of 200 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know 201 * that it's writes impacting us, and not just some sole read on 202 * a device that is in a lower power state. 203 */ 204 return (stat[READ].nr_samples >= 1 && 205 stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES); 206 } 207 208 static u64 rwb_sync_issue_lat(struct rq_wb *rwb) 209 { 210 u64 now, issue = READ_ONCE(rwb->sync_issue); 211 212 if (!issue || !rwb->sync_cookie) 213 return 0; 214 215 now = ktime_to_ns(ktime_get()); 216 return now - issue; 217 } 218 219 enum { 220 LAT_OK = 1, 221 LAT_UNKNOWN, 222 LAT_UNKNOWN_WRITES, 223 LAT_EXCEEDED, 224 }; 225 226 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat) 227 { 228 struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info; 229 struct rq_depth *rqd = &rwb->rq_depth; 230 u64 thislat; 231 232 /* 233 * If our stored sync issue exceeds the window size, or it 234 * exceeds our min target AND we haven't logged any entries, 235 * flag the latency as exceeded. wbt works off completion latencies, 236 * but for a flooded device, a single sync IO can take a long time 237 * to complete after being issued. If this time exceeds our 238 * monitoring window AND we didn't see any other completions in that 239 * window, then count that sync IO as a violation of the latency. 240 */ 241 thislat = rwb_sync_issue_lat(rwb); 242 if (thislat > rwb->cur_win_nsec || 243 (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) { 244 trace_wbt_lat(bdi, thislat); 245 return LAT_EXCEEDED; 246 } 247 248 /* 249 * No read/write mix, if stat isn't valid 250 */ 251 if (!stat_sample_valid(stat)) { 252 /* 253 * If we had writes in this stat window and the window is 254 * current, we're only doing writes. If a task recently 255 * waited or still has writes in flights, consider us doing 256 * just writes as well. 257 */ 258 if (stat[WRITE].nr_samples || wb_recent_wait(rwb) || 259 wbt_inflight(rwb)) 260 return LAT_UNKNOWN_WRITES; 261 return LAT_UNKNOWN; 262 } 263 264 /* 265 * If the 'min' latency exceeds our target, step down. 266 */ 267 if (stat[READ].min > rwb->min_lat_nsec) { 268 trace_wbt_lat(bdi, stat[READ].min); 269 trace_wbt_stat(bdi, stat); 270 return LAT_EXCEEDED; 271 } 272 273 if (rqd->scale_step) 274 trace_wbt_stat(bdi, stat); 275 276 return LAT_OK; 277 } 278 279 static void rwb_trace_step(struct rq_wb *rwb, const char *msg) 280 { 281 struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info; 282 struct rq_depth *rqd = &rwb->rq_depth; 283 284 trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec, 285 rwb->wb_background, rwb->wb_normal, rqd->max_depth); 286 } 287 288 static void calc_wb_limits(struct rq_wb *rwb) 289 { 290 if (rwb->min_lat_nsec == 0) { 291 rwb->wb_normal = rwb->wb_background = 0; 292 } else if (rwb->rq_depth.max_depth <= 2) { 293 rwb->wb_normal = rwb->rq_depth.max_depth; 294 rwb->wb_background = 1; 295 } else { 296 rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2; 297 rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4; 298 } 299 } 300 301 static void scale_up(struct rq_wb *rwb) 302 { 303 rq_depth_scale_up(&rwb->rq_depth); 304 calc_wb_limits(rwb); 305 rwb->unknown_cnt = 0; 306 rwb_trace_step(rwb, "scale up"); 307 } 308 309 static void scale_down(struct rq_wb *rwb, bool hard_throttle) 310 { 311 rq_depth_scale_down(&rwb->rq_depth, hard_throttle); 312 calc_wb_limits(rwb); 313 rwb->unknown_cnt = 0; 314 rwb_wake_all(rwb); 315 rwb_trace_step(rwb, "scale down"); 316 } 317 318 static void rwb_arm_timer(struct rq_wb *rwb) 319 { 320 struct rq_depth *rqd = &rwb->rq_depth; 321 322 if (rqd->scale_step > 0) { 323 /* 324 * We should speed this up, using some variant of a fast 325 * integer inverse square root calculation. Since we only do 326 * this for every window expiration, it's not a huge deal, 327 * though. 328 */ 329 rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4, 330 int_sqrt((rqd->scale_step + 1) << 8)); 331 } else { 332 /* 333 * For step < 0, we don't want to increase/decrease the 334 * window size. 335 */ 336 rwb->cur_win_nsec = rwb->win_nsec; 337 } 338 339 blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec); 340 } 341 342 static void wb_timer_fn(struct blk_stat_callback *cb) 343 { 344 struct rq_wb *rwb = cb->data; 345 struct rq_depth *rqd = &rwb->rq_depth; 346 unsigned int inflight = wbt_inflight(rwb); 347 int status; 348 349 status = latency_exceeded(rwb, cb->stat); 350 351 trace_wbt_timer(rwb->rqos.q->backing_dev_info, status, rqd->scale_step, 352 inflight); 353 354 /* 355 * If we exceeded the latency target, step down. If we did not, 356 * step one level up. If we don't know enough to say either exceeded 357 * or ok, then don't do anything. 358 */ 359 switch (status) { 360 case LAT_EXCEEDED: 361 scale_down(rwb, true); 362 break; 363 case LAT_OK: 364 scale_up(rwb); 365 break; 366 case LAT_UNKNOWN_WRITES: 367 /* 368 * We started a the center step, but don't have a valid 369 * read/write sample, but we do have writes going on. 370 * Allow step to go negative, to increase write perf. 371 */ 372 scale_up(rwb); 373 break; 374 case LAT_UNKNOWN: 375 if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP) 376 break; 377 /* 378 * We get here when previously scaled reduced depth, and we 379 * currently don't have a valid read/write sample. For that 380 * case, slowly return to center state (step == 0). 381 */ 382 if (rqd->scale_step > 0) 383 scale_up(rwb); 384 else if (rqd->scale_step < 0) 385 scale_down(rwb, false); 386 break; 387 default: 388 break; 389 } 390 391 /* 392 * Re-arm timer, if we have IO in flight 393 */ 394 if (rqd->scale_step || inflight) 395 rwb_arm_timer(rwb); 396 } 397 398 static void __wbt_update_limits(struct rq_wb *rwb) 399 { 400 struct rq_depth *rqd = &rwb->rq_depth; 401 402 rqd->scale_step = 0; 403 rqd->scaled_max = false; 404 405 rq_depth_calc_max_depth(rqd); 406 calc_wb_limits(rwb); 407 408 rwb_wake_all(rwb); 409 } 410 411 void wbt_update_limits(struct request_queue *q) 412 { 413 struct rq_qos *rqos = wbt_rq_qos(q); 414 if (!rqos) 415 return; 416 __wbt_update_limits(RQWB(rqos)); 417 } 418 419 u64 wbt_get_min_lat(struct request_queue *q) 420 { 421 struct rq_qos *rqos = wbt_rq_qos(q); 422 if (!rqos) 423 return 0; 424 return RQWB(rqos)->min_lat_nsec; 425 } 426 427 void wbt_set_min_lat(struct request_queue *q, u64 val) 428 { 429 struct rq_qos *rqos = wbt_rq_qos(q); 430 if (!rqos) 431 return; 432 RQWB(rqos)->min_lat_nsec = val; 433 RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL; 434 __wbt_update_limits(RQWB(rqos)); 435 } 436 437 438 static bool close_io(struct rq_wb *rwb) 439 { 440 const unsigned long now = jiffies; 441 442 return time_before(now, rwb->last_issue + HZ / 10) || 443 time_before(now, rwb->last_comp + HZ / 10); 444 } 445 446 #define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO) 447 448 static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw) 449 { 450 unsigned int limit; 451 452 /* 453 * If we got disabled, just return UINT_MAX. This ensures that 454 * we'll properly inc a new IO, and dec+wakeup at the end. 455 */ 456 if (!rwb_enabled(rwb)) 457 return UINT_MAX; 458 459 if ((rw & REQ_OP_MASK) == REQ_OP_DISCARD) 460 return rwb->wb_background; 461 462 /* 463 * At this point we know it's a buffered write. If this is 464 * kswapd trying to free memory, or REQ_SYNC is set, then 465 * it's WB_SYNC_ALL writeback, and we'll use the max limit for 466 * that. If the write is marked as a background write, then use 467 * the idle limit, or go to normal if we haven't had competing 468 * IO for a bit. 469 */ 470 if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd()) 471 limit = rwb->rq_depth.max_depth; 472 else if ((rw & REQ_BACKGROUND) || close_io(rwb)) { 473 /* 474 * If less than 100ms since we completed unrelated IO, 475 * limit us to half the depth for background writeback. 476 */ 477 limit = rwb->wb_background; 478 } else 479 limit = rwb->wb_normal; 480 481 return limit; 482 } 483 484 /* 485 * Block if we will exceed our limit, or if we are currently waiting for 486 * the timer to kick off queuing again. 487 */ 488 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct, 489 unsigned long rw, spinlock_t *lock) 490 __releases(lock) 491 __acquires(lock) 492 { 493 struct rq_wait *rqw = get_rq_wait(rwb, wb_acct); 494 DECLARE_WAITQUEUE(wait, current); 495 bool has_sleeper; 496 497 has_sleeper = wq_has_sleeper(&rqw->wait); 498 if (!has_sleeper && rq_wait_inc_below(rqw, get_limit(rwb, rw))) 499 return; 500 501 add_wait_queue_exclusive(&rqw->wait, &wait); 502 do { 503 set_current_state(TASK_UNINTERRUPTIBLE); 504 505 if (!has_sleeper && rq_wait_inc_below(rqw, get_limit(rwb, rw))) 506 break; 507 508 if (lock) { 509 spin_unlock_irq(lock); 510 io_schedule(); 511 spin_lock_irq(lock); 512 } else 513 io_schedule(); 514 has_sleeper = false; 515 } while (1); 516 517 __set_current_state(TASK_RUNNING); 518 remove_wait_queue(&rqw->wait, &wait); 519 } 520 521 static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio) 522 { 523 switch (bio_op(bio)) { 524 case REQ_OP_WRITE: 525 /* 526 * Don't throttle WRITE_ODIRECT 527 */ 528 if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) == 529 (REQ_SYNC | REQ_IDLE)) 530 return false; 531 /* fallthrough */ 532 case REQ_OP_DISCARD: 533 return true; 534 default: 535 return false; 536 } 537 } 538 539 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio) 540 { 541 enum wbt_flags flags = 0; 542 543 if (!rwb_enabled(rwb)) 544 return 0; 545 546 if (bio_op(bio) == REQ_OP_READ) { 547 flags = WBT_READ; 548 } else if (wbt_should_throttle(rwb, bio)) { 549 if (current_is_kswapd()) 550 flags |= WBT_KSWAPD; 551 if (bio_op(bio) == REQ_OP_DISCARD) 552 flags |= WBT_DISCARD; 553 flags |= WBT_TRACKED; 554 } 555 return flags; 556 } 557 558 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio) 559 { 560 struct rq_wb *rwb = RQWB(rqos); 561 enum wbt_flags flags = bio_to_wbt_flags(rwb, bio); 562 __wbt_done(rqos, flags); 563 } 564 565 /* 566 * Returns true if the IO request should be accounted, false if not. 567 * May sleep, if we have exceeded the writeback limits. Caller can pass 568 * in an irq held spinlock, if it holds one when calling this function. 569 * If we do sleep, we'll release and re-grab it. 570 */ 571 static void wbt_wait(struct rq_qos *rqos, struct bio *bio, spinlock_t *lock) 572 { 573 struct rq_wb *rwb = RQWB(rqos); 574 enum wbt_flags flags; 575 576 flags = bio_to_wbt_flags(rwb, bio); 577 if (!(flags & WBT_TRACKED)) { 578 if (flags & WBT_READ) 579 wb_timestamp(rwb, &rwb->last_issue); 580 return; 581 } 582 583 if (current_is_kswapd()) 584 flags |= WBT_KSWAPD; 585 if (bio_op(bio) == REQ_OP_DISCARD) 586 flags |= WBT_DISCARD; 587 588 __wbt_wait(rwb, flags, bio->bi_opf, lock); 589 590 if (!blk_stat_is_active(rwb->cb)) 591 rwb_arm_timer(rwb); 592 } 593 594 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio) 595 { 596 struct rq_wb *rwb = RQWB(rqos); 597 rq->wbt_flags |= bio_to_wbt_flags(rwb, bio); 598 } 599 600 void wbt_issue(struct rq_qos *rqos, struct request *rq) 601 { 602 struct rq_wb *rwb = RQWB(rqos); 603 604 if (!rwb_enabled(rwb)) 605 return; 606 607 /* 608 * Track sync issue, in case it takes a long time to complete. Allows us 609 * to react quicker, if a sync IO takes a long time to complete. Note 610 * that this is just a hint. The request can go away when it completes, 611 * so it's important we never dereference it. We only use the address to 612 * compare with, which is why we store the sync_issue time locally. 613 */ 614 if (wbt_is_read(rq) && !rwb->sync_issue) { 615 rwb->sync_cookie = rq; 616 rwb->sync_issue = rq->io_start_time_ns; 617 } 618 } 619 620 void wbt_requeue(struct rq_qos *rqos, struct request *rq) 621 { 622 struct rq_wb *rwb = RQWB(rqos); 623 if (!rwb_enabled(rwb)) 624 return; 625 if (rq == rwb->sync_cookie) { 626 rwb->sync_issue = 0; 627 rwb->sync_cookie = NULL; 628 } 629 } 630 631 void wbt_set_queue_depth(struct request_queue *q, unsigned int depth) 632 { 633 struct rq_qos *rqos = wbt_rq_qos(q); 634 if (rqos) { 635 RQWB(rqos)->rq_depth.queue_depth = depth; 636 __wbt_update_limits(RQWB(rqos)); 637 } 638 } 639 640 void wbt_set_write_cache(struct request_queue *q, bool write_cache_on) 641 { 642 struct rq_qos *rqos = wbt_rq_qos(q); 643 if (rqos) 644 RQWB(rqos)->wc = write_cache_on; 645 } 646 647 /* 648 * Enable wbt if defaults are configured that way 649 */ 650 void wbt_enable_default(struct request_queue *q) 651 { 652 struct rq_qos *rqos = wbt_rq_qos(q); 653 /* Throttling already enabled? */ 654 if (rqos) 655 return; 656 657 /* Queue not registered? Maybe shutting down... */ 658 if (!test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags)) 659 return; 660 661 if ((q->mq_ops && IS_ENABLED(CONFIG_BLK_WBT_MQ)) || 662 (q->request_fn && IS_ENABLED(CONFIG_BLK_WBT_SQ))) 663 wbt_init(q); 664 } 665 EXPORT_SYMBOL_GPL(wbt_enable_default); 666 667 u64 wbt_default_latency_nsec(struct request_queue *q) 668 { 669 /* 670 * We default to 2msec for non-rotational storage, and 75msec 671 * for rotational storage. 672 */ 673 if (blk_queue_nonrot(q)) 674 return 2000000ULL; 675 else 676 return 75000000ULL; 677 } 678 679 static int wbt_data_dir(const struct request *rq) 680 { 681 const int op = req_op(rq); 682 683 if (op == REQ_OP_READ) 684 return READ; 685 else if (op_is_write(op)) 686 return WRITE; 687 688 /* don't account */ 689 return -1; 690 } 691 692 static void wbt_exit(struct rq_qos *rqos) 693 { 694 struct rq_wb *rwb = RQWB(rqos); 695 struct request_queue *q = rqos->q; 696 697 blk_stat_remove_callback(q, rwb->cb); 698 blk_stat_free_callback(rwb->cb); 699 kfree(rwb); 700 } 701 702 /* 703 * Disable wbt, if enabled by default. 704 */ 705 void wbt_disable_default(struct request_queue *q) 706 { 707 struct rq_qos *rqos = wbt_rq_qos(q); 708 struct rq_wb *rwb; 709 if (!rqos) 710 return; 711 rwb = RQWB(rqos); 712 if (rwb->enable_state == WBT_STATE_ON_DEFAULT) 713 rwb->wb_normal = 0; 714 } 715 EXPORT_SYMBOL_GPL(wbt_disable_default); 716 717 718 static struct rq_qos_ops wbt_rqos_ops = { 719 .throttle = wbt_wait, 720 .issue = wbt_issue, 721 .track = wbt_track, 722 .requeue = wbt_requeue, 723 .done = wbt_done, 724 .cleanup = wbt_cleanup, 725 .exit = wbt_exit, 726 }; 727 728 int wbt_init(struct request_queue *q) 729 { 730 struct rq_wb *rwb; 731 int i; 732 733 rwb = kzalloc(sizeof(*rwb), GFP_KERNEL); 734 if (!rwb) 735 return -ENOMEM; 736 737 rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb); 738 if (!rwb->cb) { 739 kfree(rwb); 740 return -ENOMEM; 741 } 742 743 for (i = 0; i < WBT_NUM_RWQ; i++) 744 rq_wait_init(&rwb->rq_wait[i]); 745 746 rwb->rqos.id = RQ_QOS_WBT; 747 rwb->rqos.ops = &wbt_rqos_ops; 748 rwb->rqos.q = q; 749 rwb->last_comp = rwb->last_issue = jiffies; 750 rwb->win_nsec = RWB_WINDOW_NSEC; 751 rwb->enable_state = WBT_STATE_ON_DEFAULT; 752 rwb->wc = 1; 753 rwb->rq_depth.default_depth = RWB_DEF_DEPTH; 754 __wbt_update_limits(rwb); 755 756 /* 757 * Assign rwb and add the stats callback. 758 */ 759 rq_qos_add(q, &rwb->rqos); 760 blk_stat_add_callback(q, rwb->cb); 761 762 rwb->min_lat_nsec = wbt_default_latency_nsec(q); 763 764 wbt_set_queue_depth(q, blk_queue_depth(q)); 765 wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags)); 766 767 return 0; 768 } 769