1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * buffered writeback throttling. loosely based on CoDel. We can't drop 4 * packets for IO scheduling, so the logic is something like this: 5 * 6 * - Monitor latencies in a defined window of time. 7 * - If the minimum latency in the above window exceeds some target, increment 8 * scaling step and scale down queue depth by a factor of 2x. The monitoring 9 * window is then shrunk to 100 / sqrt(scaling step + 1). 10 * - For any window where we don't have solid data on what the latencies 11 * look like, retain status quo. 12 * - If latencies look good, decrement scaling step. 13 * - If we're only doing writes, allow the scaling step to go negative. This 14 * will temporarily boost write performance, snapping back to a stable 15 * scaling step of 0 if reads show up or the heavy writers finish. Unlike 16 * positive scaling steps where we shrink the monitoring window, a negative 17 * scaling step retains the default step==0 window size. 18 * 19 * Copyright (C) 2016 Jens Axboe 20 * 21 */ 22 #include <linux/kernel.h> 23 #include <linux/blk_types.h> 24 #include <linux/slab.h> 25 #include <linux/backing-dev.h> 26 #include <linux/swap.h> 27 28 #include "blk-stat.h" 29 #include "blk-wbt.h" 30 #include "blk-rq-qos.h" 31 #include "elevator.h" 32 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/wbt.h> 35 36 enum wbt_flags { 37 WBT_TRACKED = 1, /* write, tracked for throttling */ 38 WBT_READ = 2, /* read */ 39 WBT_KSWAPD = 4, /* write, from kswapd */ 40 WBT_DISCARD = 8, /* discard */ 41 42 WBT_NR_BITS = 4, /* number of bits */ 43 }; 44 45 enum { 46 WBT_RWQ_BG = 0, 47 WBT_RWQ_KSWAPD, 48 WBT_RWQ_DISCARD, 49 WBT_NUM_RWQ, 50 }; 51 52 /* 53 * If current state is WBT_STATE_ON/OFF_DEFAULT, it can be covered to any other 54 * state, if current state is WBT_STATE_ON/OFF_MANUAL, it can only be covered 55 * to WBT_STATE_OFF/ON_MANUAL. 56 */ 57 enum { 58 WBT_STATE_ON_DEFAULT = 1, /* on by default */ 59 WBT_STATE_ON_MANUAL = 2, /* on manually by sysfs */ 60 WBT_STATE_OFF_DEFAULT = 3, /* off by default */ 61 WBT_STATE_OFF_MANUAL = 4, /* off manually by sysfs */ 62 }; 63 64 struct rq_wb { 65 /* 66 * Settings that govern how we throttle 67 */ 68 unsigned int wb_background; /* background writeback */ 69 unsigned int wb_normal; /* normal writeback */ 70 71 short enable_state; /* WBT_STATE_* */ 72 73 /* 74 * Number of consecutive periods where we don't have enough 75 * information to make a firm scale up/down decision. 76 */ 77 unsigned int unknown_cnt; 78 79 u64 win_nsec; /* default window size */ 80 u64 cur_win_nsec; /* current window size */ 81 82 struct blk_stat_callback *cb; 83 84 u64 sync_issue; 85 void *sync_cookie; 86 87 unsigned int wc; 88 89 unsigned long last_issue; /* last non-throttled issue */ 90 unsigned long last_comp; /* last non-throttled comp */ 91 unsigned long min_lat_nsec; 92 struct rq_qos rqos; 93 struct rq_wait rq_wait[WBT_NUM_RWQ]; 94 struct rq_depth rq_depth; 95 }; 96 97 static inline struct rq_wb *RQWB(struct rq_qos *rqos) 98 { 99 return container_of(rqos, struct rq_wb, rqos); 100 } 101 102 static inline void wbt_clear_state(struct request *rq) 103 { 104 rq->wbt_flags = 0; 105 } 106 107 static inline enum wbt_flags wbt_flags(struct request *rq) 108 { 109 return rq->wbt_flags; 110 } 111 112 static inline bool wbt_is_tracked(struct request *rq) 113 { 114 return rq->wbt_flags & WBT_TRACKED; 115 } 116 117 static inline bool wbt_is_read(struct request *rq) 118 { 119 return rq->wbt_flags & WBT_READ; 120 } 121 122 enum { 123 /* 124 * Default setting, we'll scale up (to 75% of QD max) or down (min 1) 125 * from here depending on device stats 126 */ 127 RWB_DEF_DEPTH = 16, 128 129 /* 130 * 100msec window 131 */ 132 RWB_WINDOW_NSEC = 100 * 1000 * 1000ULL, 133 134 /* 135 * Disregard stats, if we don't meet this minimum 136 */ 137 RWB_MIN_WRITE_SAMPLES = 3, 138 139 /* 140 * If we have this number of consecutive windows with not enough 141 * information to scale up or down, scale up. 142 */ 143 RWB_UNKNOWN_BUMP = 5, 144 }; 145 146 static inline bool rwb_enabled(struct rq_wb *rwb) 147 { 148 return rwb && rwb->enable_state != WBT_STATE_OFF_DEFAULT && 149 rwb->enable_state != WBT_STATE_OFF_MANUAL; 150 } 151 152 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var) 153 { 154 if (rwb_enabled(rwb)) { 155 const unsigned long cur = jiffies; 156 157 if (cur != *var) 158 *var = cur; 159 } 160 } 161 162 /* 163 * If a task was rate throttled in balance_dirty_pages() within the last 164 * second or so, use that to indicate a higher cleaning rate. 165 */ 166 static bool wb_recent_wait(struct rq_wb *rwb) 167 { 168 struct backing_dev_info *bdi = rwb->rqos.disk->bdi; 169 170 return time_before(jiffies, bdi->last_bdp_sleep + HZ); 171 } 172 173 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb, 174 enum wbt_flags wb_acct) 175 { 176 if (wb_acct & WBT_KSWAPD) 177 return &rwb->rq_wait[WBT_RWQ_KSWAPD]; 178 else if (wb_acct & WBT_DISCARD) 179 return &rwb->rq_wait[WBT_RWQ_DISCARD]; 180 181 return &rwb->rq_wait[WBT_RWQ_BG]; 182 } 183 184 static void rwb_wake_all(struct rq_wb *rwb) 185 { 186 int i; 187 188 for (i = 0; i < WBT_NUM_RWQ; i++) { 189 struct rq_wait *rqw = &rwb->rq_wait[i]; 190 191 if (wq_has_sleeper(&rqw->wait)) 192 wake_up_all(&rqw->wait); 193 } 194 } 195 196 static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw, 197 enum wbt_flags wb_acct) 198 { 199 int inflight, limit; 200 201 inflight = atomic_dec_return(&rqw->inflight); 202 203 /* 204 * For discards, our limit is always the background. For writes, if 205 * the device does write back caching, drop further down before we 206 * wake people up. 207 */ 208 if (wb_acct & WBT_DISCARD) 209 limit = rwb->wb_background; 210 else if (rwb->wc && !wb_recent_wait(rwb)) 211 limit = 0; 212 else 213 limit = rwb->wb_normal; 214 215 /* 216 * Don't wake anyone up if we are above the normal limit. 217 */ 218 if (inflight && inflight >= limit) 219 return; 220 221 if (wq_has_sleeper(&rqw->wait)) { 222 int diff = limit - inflight; 223 224 if (!inflight || diff >= rwb->wb_background / 2) 225 wake_up_all(&rqw->wait); 226 } 227 } 228 229 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct) 230 { 231 struct rq_wb *rwb = RQWB(rqos); 232 struct rq_wait *rqw; 233 234 if (!(wb_acct & WBT_TRACKED)) 235 return; 236 237 rqw = get_rq_wait(rwb, wb_acct); 238 wbt_rqw_done(rwb, rqw, wb_acct); 239 } 240 241 /* 242 * Called on completion of a request. Note that it's also called when 243 * a request is merged, when the request gets freed. 244 */ 245 static void wbt_done(struct rq_qos *rqos, struct request *rq) 246 { 247 struct rq_wb *rwb = RQWB(rqos); 248 249 if (!wbt_is_tracked(rq)) { 250 if (rwb->sync_cookie == rq) { 251 rwb->sync_issue = 0; 252 rwb->sync_cookie = NULL; 253 } 254 255 if (wbt_is_read(rq)) 256 wb_timestamp(rwb, &rwb->last_comp); 257 } else { 258 WARN_ON_ONCE(rq == rwb->sync_cookie); 259 __wbt_done(rqos, wbt_flags(rq)); 260 } 261 wbt_clear_state(rq); 262 } 263 264 static inline bool stat_sample_valid(struct blk_rq_stat *stat) 265 { 266 /* 267 * We need at least one read sample, and a minimum of 268 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know 269 * that it's writes impacting us, and not just some sole read on 270 * a device that is in a lower power state. 271 */ 272 return (stat[READ].nr_samples >= 1 && 273 stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES); 274 } 275 276 static u64 rwb_sync_issue_lat(struct rq_wb *rwb) 277 { 278 u64 now, issue = READ_ONCE(rwb->sync_issue); 279 280 if (!issue || !rwb->sync_cookie) 281 return 0; 282 283 now = ktime_to_ns(ktime_get()); 284 return now - issue; 285 } 286 287 static inline unsigned int wbt_inflight(struct rq_wb *rwb) 288 { 289 unsigned int i, ret = 0; 290 291 for (i = 0; i < WBT_NUM_RWQ; i++) 292 ret += atomic_read(&rwb->rq_wait[i].inflight); 293 294 return ret; 295 } 296 297 enum { 298 LAT_OK = 1, 299 LAT_UNKNOWN, 300 LAT_UNKNOWN_WRITES, 301 LAT_EXCEEDED, 302 }; 303 304 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat) 305 { 306 struct backing_dev_info *bdi = rwb->rqos.disk->bdi; 307 struct rq_depth *rqd = &rwb->rq_depth; 308 u64 thislat; 309 310 /* 311 * If our stored sync issue exceeds the window size, or it 312 * exceeds our min target AND we haven't logged any entries, 313 * flag the latency as exceeded. wbt works off completion latencies, 314 * but for a flooded device, a single sync IO can take a long time 315 * to complete after being issued. If this time exceeds our 316 * monitoring window AND we didn't see any other completions in that 317 * window, then count that sync IO as a violation of the latency. 318 */ 319 thislat = rwb_sync_issue_lat(rwb); 320 if (thislat > rwb->cur_win_nsec || 321 (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) { 322 trace_wbt_lat(bdi, thislat); 323 return LAT_EXCEEDED; 324 } 325 326 /* 327 * No read/write mix, if stat isn't valid 328 */ 329 if (!stat_sample_valid(stat)) { 330 /* 331 * If we had writes in this stat window and the window is 332 * current, we're only doing writes. If a task recently 333 * waited or still has writes in flights, consider us doing 334 * just writes as well. 335 */ 336 if (stat[WRITE].nr_samples || wb_recent_wait(rwb) || 337 wbt_inflight(rwb)) 338 return LAT_UNKNOWN_WRITES; 339 return LAT_UNKNOWN; 340 } 341 342 /* 343 * If the 'min' latency exceeds our target, step down. 344 */ 345 if (stat[READ].min > rwb->min_lat_nsec) { 346 trace_wbt_lat(bdi, stat[READ].min); 347 trace_wbt_stat(bdi, stat); 348 return LAT_EXCEEDED; 349 } 350 351 if (rqd->scale_step) 352 trace_wbt_stat(bdi, stat); 353 354 return LAT_OK; 355 } 356 357 static void rwb_trace_step(struct rq_wb *rwb, const char *msg) 358 { 359 struct backing_dev_info *bdi = rwb->rqos.disk->bdi; 360 struct rq_depth *rqd = &rwb->rq_depth; 361 362 trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec, 363 rwb->wb_background, rwb->wb_normal, rqd->max_depth); 364 } 365 366 static void calc_wb_limits(struct rq_wb *rwb) 367 { 368 if (rwb->min_lat_nsec == 0) { 369 rwb->wb_normal = rwb->wb_background = 0; 370 } else if (rwb->rq_depth.max_depth <= 2) { 371 rwb->wb_normal = rwb->rq_depth.max_depth; 372 rwb->wb_background = 1; 373 } else { 374 rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2; 375 rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4; 376 } 377 } 378 379 static void scale_up(struct rq_wb *rwb) 380 { 381 if (!rq_depth_scale_up(&rwb->rq_depth)) 382 return; 383 calc_wb_limits(rwb); 384 rwb->unknown_cnt = 0; 385 rwb_wake_all(rwb); 386 rwb_trace_step(rwb, tracepoint_string("scale up")); 387 } 388 389 static void scale_down(struct rq_wb *rwb, bool hard_throttle) 390 { 391 if (!rq_depth_scale_down(&rwb->rq_depth, hard_throttle)) 392 return; 393 calc_wb_limits(rwb); 394 rwb->unknown_cnt = 0; 395 rwb_trace_step(rwb, tracepoint_string("scale down")); 396 } 397 398 static void rwb_arm_timer(struct rq_wb *rwb) 399 { 400 struct rq_depth *rqd = &rwb->rq_depth; 401 402 if (rqd->scale_step > 0) { 403 /* 404 * We should speed this up, using some variant of a fast 405 * integer inverse square root calculation. Since we only do 406 * this for every window expiration, it's not a huge deal, 407 * though. 408 */ 409 rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4, 410 int_sqrt((rqd->scale_step + 1) << 8)); 411 } else { 412 /* 413 * For step < 0, we don't want to increase/decrease the 414 * window size. 415 */ 416 rwb->cur_win_nsec = rwb->win_nsec; 417 } 418 419 blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec); 420 } 421 422 static void wb_timer_fn(struct blk_stat_callback *cb) 423 { 424 struct rq_wb *rwb = cb->data; 425 struct rq_depth *rqd = &rwb->rq_depth; 426 unsigned int inflight = wbt_inflight(rwb); 427 int status; 428 429 if (!rwb->rqos.disk) 430 return; 431 432 status = latency_exceeded(rwb, cb->stat); 433 434 trace_wbt_timer(rwb->rqos.disk->bdi, status, rqd->scale_step, inflight); 435 436 /* 437 * If we exceeded the latency target, step down. If we did not, 438 * step one level up. If we don't know enough to say either exceeded 439 * or ok, then don't do anything. 440 */ 441 switch (status) { 442 case LAT_EXCEEDED: 443 scale_down(rwb, true); 444 break; 445 case LAT_OK: 446 scale_up(rwb); 447 break; 448 case LAT_UNKNOWN_WRITES: 449 /* 450 * We started a the center step, but don't have a valid 451 * read/write sample, but we do have writes going on. 452 * Allow step to go negative, to increase write perf. 453 */ 454 scale_up(rwb); 455 break; 456 case LAT_UNKNOWN: 457 if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP) 458 break; 459 /* 460 * We get here when previously scaled reduced depth, and we 461 * currently don't have a valid read/write sample. For that 462 * case, slowly return to center state (step == 0). 463 */ 464 if (rqd->scale_step > 0) 465 scale_up(rwb); 466 else if (rqd->scale_step < 0) 467 scale_down(rwb, false); 468 break; 469 default: 470 break; 471 } 472 473 /* 474 * Re-arm timer, if we have IO in flight 475 */ 476 if (rqd->scale_step || inflight) 477 rwb_arm_timer(rwb); 478 } 479 480 static void wbt_update_limits(struct rq_wb *rwb) 481 { 482 struct rq_depth *rqd = &rwb->rq_depth; 483 484 rqd->scale_step = 0; 485 rqd->scaled_max = false; 486 487 rq_depth_calc_max_depth(rqd); 488 calc_wb_limits(rwb); 489 490 rwb_wake_all(rwb); 491 } 492 493 bool wbt_disabled(struct request_queue *q) 494 { 495 struct rq_qos *rqos = wbt_rq_qos(q); 496 497 return !rqos || !rwb_enabled(RQWB(rqos)); 498 } 499 500 u64 wbt_get_min_lat(struct request_queue *q) 501 { 502 struct rq_qos *rqos = wbt_rq_qos(q); 503 if (!rqos) 504 return 0; 505 return RQWB(rqos)->min_lat_nsec; 506 } 507 508 void wbt_set_min_lat(struct request_queue *q, u64 val) 509 { 510 struct rq_qos *rqos = wbt_rq_qos(q); 511 if (!rqos) 512 return; 513 514 RQWB(rqos)->min_lat_nsec = val; 515 if (val) 516 RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL; 517 else 518 RQWB(rqos)->enable_state = WBT_STATE_OFF_MANUAL; 519 520 wbt_update_limits(RQWB(rqos)); 521 } 522 523 524 static bool close_io(struct rq_wb *rwb) 525 { 526 const unsigned long now = jiffies; 527 528 return time_before(now, rwb->last_issue + HZ / 10) || 529 time_before(now, rwb->last_comp + HZ / 10); 530 } 531 532 #define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO) 533 534 static inline unsigned int get_limit(struct rq_wb *rwb, blk_opf_t opf) 535 { 536 unsigned int limit; 537 538 if ((opf & REQ_OP_MASK) == REQ_OP_DISCARD) 539 return rwb->wb_background; 540 541 /* 542 * At this point we know it's a buffered write. If this is 543 * kswapd trying to free memory, or REQ_SYNC is set, then 544 * it's WB_SYNC_ALL writeback, and we'll use the max limit for 545 * that. If the write is marked as a background write, then use 546 * the idle limit, or go to normal if we haven't had competing 547 * IO for a bit. 548 */ 549 if ((opf & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd()) 550 limit = rwb->rq_depth.max_depth; 551 else if ((opf & REQ_BACKGROUND) || close_io(rwb)) { 552 /* 553 * If less than 100ms since we completed unrelated IO, 554 * limit us to half the depth for background writeback. 555 */ 556 limit = rwb->wb_background; 557 } else 558 limit = rwb->wb_normal; 559 560 return limit; 561 } 562 563 struct wbt_wait_data { 564 struct rq_wb *rwb; 565 enum wbt_flags wb_acct; 566 blk_opf_t opf; 567 }; 568 569 static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data) 570 { 571 struct wbt_wait_data *data = private_data; 572 return rq_wait_inc_below(rqw, get_limit(data->rwb, data->opf)); 573 } 574 575 static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data) 576 { 577 struct wbt_wait_data *data = private_data; 578 wbt_rqw_done(data->rwb, rqw, data->wb_acct); 579 } 580 581 /* 582 * Block if we will exceed our limit, or if we are currently waiting for 583 * the timer to kick off queuing again. 584 */ 585 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct, 586 blk_opf_t opf) 587 { 588 struct rq_wait *rqw = get_rq_wait(rwb, wb_acct); 589 struct wbt_wait_data data = { 590 .rwb = rwb, 591 .wb_acct = wb_acct, 592 .opf = opf, 593 }; 594 595 rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb); 596 } 597 598 static inline bool wbt_should_throttle(struct bio *bio) 599 { 600 switch (bio_op(bio)) { 601 case REQ_OP_WRITE: 602 /* 603 * Don't throttle WRITE_ODIRECT 604 */ 605 if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) == 606 (REQ_SYNC | REQ_IDLE)) 607 return false; 608 fallthrough; 609 case REQ_OP_DISCARD: 610 return true; 611 default: 612 return false; 613 } 614 } 615 616 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio) 617 { 618 enum wbt_flags flags = 0; 619 620 if (!rwb_enabled(rwb)) 621 return 0; 622 623 if (bio_op(bio) == REQ_OP_READ) { 624 flags = WBT_READ; 625 } else if (wbt_should_throttle(bio)) { 626 if (current_is_kswapd()) 627 flags |= WBT_KSWAPD; 628 if (bio_op(bio) == REQ_OP_DISCARD) 629 flags |= WBT_DISCARD; 630 flags |= WBT_TRACKED; 631 } 632 return flags; 633 } 634 635 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio) 636 { 637 struct rq_wb *rwb = RQWB(rqos); 638 enum wbt_flags flags = bio_to_wbt_flags(rwb, bio); 639 __wbt_done(rqos, flags); 640 } 641 642 /* 643 * May sleep, if we have exceeded the writeback limits. Caller can pass 644 * in an irq held spinlock, if it holds one when calling this function. 645 * If we do sleep, we'll release and re-grab it. 646 */ 647 static void wbt_wait(struct rq_qos *rqos, struct bio *bio) 648 { 649 struct rq_wb *rwb = RQWB(rqos); 650 enum wbt_flags flags; 651 652 flags = bio_to_wbt_flags(rwb, bio); 653 if (!(flags & WBT_TRACKED)) { 654 if (flags & WBT_READ) 655 wb_timestamp(rwb, &rwb->last_issue); 656 return; 657 } 658 659 __wbt_wait(rwb, flags, bio->bi_opf); 660 661 if (!blk_stat_is_active(rwb->cb)) 662 rwb_arm_timer(rwb); 663 } 664 665 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio) 666 { 667 struct rq_wb *rwb = RQWB(rqos); 668 rq->wbt_flags |= bio_to_wbt_flags(rwb, bio); 669 } 670 671 static void wbt_issue(struct rq_qos *rqos, struct request *rq) 672 { 673 struct rq_wb *rwb = RQWB(rqos); 674 675 if (!rwb_enabled(rwb)) 676 return; 677 678 /* 679 * Track sync issue, in case it takes a long time to complete. Allows us 680 * to react quicker, if a sync IO takes a long time to complete. Note 681 * that this is just a hint. The request can go away when it completes, 682 * so it's important we never dereference it. We only use the address to 683 * compare with, which is why we store the sync_issue time locally. 684 */ 685 if (wbt_is_read(rq) && !rwb->sync_issue) { 686 rwb->sync_cookie = rq; 687 rwb->sync_issue = rq->io_start_time_ns; 688 } 689 } 690 691 static void wbt_requeue(struct rq_qos *rqos, struct request *rq) 692 { 693 struct rq_wb *rwb = RQWB(rqos); 694 if (!rwb_enabled(rwb)) 695 return; 696 if (rq == rwb->sync_cookie) { 697 rwb->sync_issue = 0; 698 rwb->sync_cookie = NULL; 699 } 700 } 701 702 void wbt_set_write_cache(struct request_queue *q, bool write_cache_on) 703 { 704 struct rq_qos *rqos = wbt_rq_qos(q); 705 if (rqos) 706 RQWB(rqos)->wc = write_cache_on; 707 } 708 709 /* 710 * Enable wbt if defaults are configured that way 711 */ 712 void wbt_enable_default(struct gendisk *disk) 713 { 714 struct request_queue *q = disk->queue; 715 struct rq_qos *rqos; 716 bool enable = IS_ENABLED(CONFIG_BLK_WBT_MQ); 717 718 if (q->elevator && 719 test_bit(ELEVATOR_FLAG_DISABLE_WBT, &q->elevator->flags)) 720 enable = false; 721 722 /* Throttling already enabled? */ 723 rqos = wbt_rq_qos(q); 724 if (rqos) { 725 if (enable && RQWB(rqos)->enable_state == WBT_STATE_OFF_DEFAULT) 726 RQWB(rqos)->enable_state = WBT_STATE_ON_DEFAULT; 727 return; 728 } 729 730 /* Queue not registered? Maybe shutting down... */ 731 if (!blk_queue_registered(q)) 732 return; 733 734 if (queue_is_mq(q) && enable) 735 wbt_init(disk); 736 } 737 EXPORT_SYMBOL_GPL(wbt_enable_default); 738 739 u64 wbt_default_latency_nsec(struct request_queue *q) 740 { 741 /* 742 * We default to 2msec for non-rotational storage, and 75msec 743 * for rotational storage. 744 */ 745 if (blk_queue_nonrot(q)) 746 return 2000000ULL; 747 else 748 return 75000000ULL; 749 } 750 751 static int wbt_data_dir(const struct request *rq) 752 { 753 const enum req_op op = req_op(rq); 754 755 if (op == REQ_OP_READ) 756 return READ; 757 else if (op_is_write(op)) 758 return WRITE; 759 760 /* don't account */ 761 return -1; 762 } 763 764 static void wbt_queue_depth_changed(struct rq_qos *rqos) 765 { 766 RQWB(rqos)->rq_depth.queue_depth = blk_queue_depth(rqos->disk->queue); 767 wbt_update_limits(RQWB(rqos)); 768 } 769 770 static void wbt_exit(struct rq_qos *rqos) 771 { 772 struct rq_wb *rwb = RQWB(rqos); 773 774 blk_stat_remove_callback(rqos->disk->queue, rwb->cb); 775 blk_stat_free_callback(rwb->cb); 776 kfree(rwb); 777 } 778 779 /* 780 * Disable wbt, if enabled by default. 781 */ 782 void wbt_disable_default(struct gendisk *disk) 783 { 784 struct rq_qos *rqos = wbt_rq_qos(disk->queue); 785 struct rq_wb *rwb; 786 if (!rqos) 787 return; 788 rwb = RQWB(rqos); 789 if (rwb->enable_state == WBT_STATE_ON_DEFAULT) { 790 blk_stat_deactivate(rwb->cb); 791 rwb->enable_state = WBT_STATE_OFF_DEFAULT; 792 } 793 } 794 EXPORT_SYMBOL_GPL(wbt_disable_default); 795 796 #ifdef CONFIG_BLK_DEBUG_FS 797 static int wbt_curr_win_nsec_show(void *data, struct seq_file *m) 798 { 799 struct rq_qos *rqos = data; 800 struct rq_wb *rwb = RQWB(rqos); 801 802 seq_printf(m, "%llu\n", rwb->cur_win_nsec); 803 return 0; 804 } 805 806 static int wbt_enabled_show(void *data, struct seq_file *m) 807 { 808 struct rq_qos *rqos = data; 809 struct rq_wb *rwb = RQWB(rqos); 810 811 seq_printf(m, "%d\n", rwb->enable_state); 812 return 0; 813 } 814 815 static int wbt_id_show(void *data, struct seq_file *m) 816 { 817 struct rq_qos *rqos = data; 818 819 seq_printf(m, "%u\n", rqos->id); 820 return 0; 821 } 822 823 static int wbt_inflight_show(void *data, struct seq_file *m) 824 { 825 struct rq_qos *rqos = data; 826 struct rq_wb *rwb = RQWB(rqos); 827 int i; 828 829 for (i = 0; i < WBT_NUM_RWQ; i++) 830 seq_printf(m, "%d: inflight %d\n", i, 831 atomic_read(&rwb->rq_wait[i].inflight)); 832 return 0; 833 } 834 835 static int wbt_min_lat_nsec_show(void *data, struct seq_file *m) 836 { 837 struct rq_qos *rqos = data; 838 struct rq_wb *rwb = RQWB(rqos); 839 840 seq_printf(m, "%lu\n", rwb->min_lat_nsec); 841 return 0; 842 } 843 844 static int wbt_unknown_cnt_show(void *data, struct seq_file *m) 845 { 846 struct rq_qos *rqos = data; 847 struct rq_wb *rwb = RQWB(rqos); 848 849 seq_printf(m, "%u\n", rwb->unknown_cnt); 850 return 0; 851 } 852 853 static int wbt_normal_show(void *data, struct seq_file *m) 854 { 855 struct rq_qos *rqos = data; 856 struct rq_wb *rwb = RQWB(rqos); 857 858 seq_printf(m, "%u\n", rwb->wb_normal); 859 return 0; 860 } 861 862 static int wbt_background_show(void *data, struct seq_file *m) 863 { 864 struct rq_qos *rqos = data; 865 struct rq_wb *rwb = RQWB(rqos); 866 867 seq_printf(m, "%u\n", rwb->wb_background); 868 return 0; 869 } 870 871 static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = { 872 {"curr_win_nsec", 0400, wbt_curr_win_nsec_show}, 873 {"enabled", 0400, wbt_enabled_show}, 874 {"id", 0400, wbt_id_show}, 875 {"inflight", 0400, wbt_inflight_show}, 876 {"min_lat_nsec", 0400, wbt_min_lat_nsec_show}, 877 {"unknown_cnt", 0400, wbt_unknown_cnt_show}, 878 {"wb_normal", 0400, wbt_normal_show}, 879 {"wb_background", 0400, wbt_background_show}, 880 {}, 881 }; 882 #endif 883 884 static const struct rq_qos_ops wbt_rqos_ops = { 885 .throttle = wbt_wait, 886 .issue = wbt_issue, 887 .track = wbt_track, 888 .requeue = wbt_requeue, 889 .done = wbt_done, 890 .cleanup = wbt_cleanup, 891 .queue_depth_changed = wbt_queue_depth_changed, 892 .exit = wbt_exit, 893 #ifdef CONFIG_BLK_DEBUG_FS 894 .debugfs_attrs = wbt_debugfs_attrs, 895 #endif 896 }; 897 898 int wbt_init(struct gendisk *disk) 899 { 900 struct request_queue *q = disk->queue; 901 struct rq_wb *rwb; 902 int i; 903 int ret; 904 905 rwb = kzalloc(sizeof(*rwb), GFP_KERNEL); 906 if (!rwb) 907 return -ENOMEM; 908 909 rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb); 910 if (!rwb->cb) { 911 kfree(rwb); 912 return -ENOMEM; 913 } 914 915 for (i = 0; i < WBT_NUM_RWQ; i++) 916 rq_wait_init(&rwb->rq_wait[i]); 917 918 rwb->last_comp = rwb->last_issue = jiffies; 919 rwb->win_nsec = RWB_WINDOW_NSEC; 920 rwb->enable_state = WBT_STATE_ON_DEFAULT; 921 rwb->wc = test_bit(QUEUE_FLAG_WC, &q->queue_flags); 922 rwb->rq_depth.default_depth = RWB_DEF_DEPTH; 923 rwb->min_lat_nsec = wbt_default_latency_nsec(q); 924 rwb->rq_depth.queue_depth = blk_queue_depth(q); 925 wbt_update_limits(rwb); 926 927 /* 928 * Assign rwb and add the stats callback. 929 */ 930 mutex_lock(&q->rq_qos_mutex); 931 ret = rq_qos_add(&rwb->rqos, disk, RQ_QOS_WBT, &wbt_rqos_ops); 932 mutex_unlock(&q->rq_qos_mutex); 933 if (ret) 934 goto err_free; 935 936 blk_stat_add_callback(q, rwb->cb); 937 938 return 0; 939 940 err_free: 941 blk_stat_free_callback(rwb->cb); 942 kfree(rwb); 943 return ret; 944 945 } 946