1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * buffered writeback throttling. loosely based on CoDel. We can't drop 4 * packets for IO scheduling, so the logic is something like this: 5 * 6 * - Monitor latencies in a defined window of time. 7 * - If the minimum latency in the above window exceeds some target, increment 8 * scaling step and scale down queue depth by a factor of 2x. The monitoring 9 * window is then shrunk to 100 / sqrt(scaling step + 1). 10 * - For any window where we don't have solid data on what the latencies 11 * look like, retain status quo. 12 * - If latencies look good, decrement scaling step. 13 * - If we're only doing writes, allow the scaling step to go negative. This 14 * will temporarily boost write performance, snapping back to a stable 15 * scaling step of 0 if reads show up or the heavy writers finish. Unlike 16 * positive scaling steps where we shrink the monitoring window, a negative 17 * scaling step retains the default step==0 window size. 18 * 19 * Copyright (C) 2016 Jens Axboe 20 * 21 */ 22 #include <linux/kernel.h> 23 #include <linux/blk_types.h> 24 #include <linux/slab.h> 25 #include <linux/backing-dev.h> 26 #include <linux/swap.h> 27 28 #include "blk-wbt.h" 29 #include "blk-rq-qos.h" 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/wbt.h> 33 34 static inline void wbt_clear_state(struct request *rq) 35 { 36 rq->wbt_flags = 0; 37 } 38 39 static inline enum wbt_flags wbt_flags(struct request *rq) 40 { 41 return rq->wbt_flags; 42 } 43 44 static inline bool wbt_is_tracked(struct request *rq) 45 { 46 return rq->wbt_flags & WBT_TRACKED; 47 } 48 49 static inline bool wbt_is_read(struct request *rq) 50 { 51 return rq->wbt_flags & WBT_READ; 52 } 53 54 enum { 55 /* 56 * Default setting, we'll scale up (to 75% of QD max) or down (min 1) 57 * from here depending on device stats 58 */ 59 RWB_DEF_DEPTH = 16, 60 61 /* 62 * 100msec window 63 */ 64 RWB_WINDOW_NSEC = 100 * 1000 * 1000ULL, 65 66 /* 67 * Disregard stats, if we don't meet this minimum 68 */ 69 RWB_MIN_WRITE_SAMPLES = 3, 70 71 /* 72 * If we have this number of consecutive windows with not enough 73 * information to scale up or down, scale up. 74 */ 75 RWB_UNKNOWN_BUMP = 5, 76 }; 77 78 static inline bool rwb_enabled(struct rq_wb *rwb) 79 { 80 return rwb && rwb->wb_normal != 0; 81 } 82 83 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var) 84 { 85 if (rwb_enabled(rwb)) { 86 const unsigned long cur = jiffies; 87 88 if (cur != *var) 89 *var = cur; 90 } 91 } 92 93 /* 94 * If a task was rate throttled in balance_dirty_pages() within the last 95 * second or so, use that to indicate a higher cleaning rate. 96 */ 97 static bool wb_recent_wait(struct rq_wb *rwb) 98 { 99 struct bdi_writeback *wb = &rwb->rqos.q->backing_dev_info->wb; 100 101 return time_before(jiffies, wb->dirty_sleep + HZ); 102 } 103 104 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb, 105 enum wbt_flags wb_acct) 106 { 107 if (wb_acct & WBT_KSWAPD) 108 return &rwb->rq_wait[WBT_RWQ_KSWAPD]; 109 else if (wb_acct & WBT_DISCARD) 110 return &rwb->rq_wait[WBT_RWQ_DISCARD]; 111 112 return &rwb->rq_wait[WBT_RWQ_BG]; 113 } 114 115 static void rwb_wake_all(struct rq_wb *rwb) 116 { 117 int i; 118 119 for (i = 0; i < WBT_NUM_RWQ; i++) { 120 struct rq_wait *rqw = &rwb->rq_wait[i]; 121 122 if (wq_has_sleeper(&rqw->wait)) 123 wake_up_all(&rqw->wait); 124 } 125 } 126 127 static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw, 128 enum wbt_flags wb_acct) 129 { 130 int inflight, limit; 131 132 inflight = atomic_dec_return(&rqw->inflight); 133 134 /* 135 * wbt got disabled with IO in flight. Wake up any potential 136 * waiters, we don't have to do more than that. 137 */ 138 if (unlikely(!rwb_enabled(rwb))) { 139 rwb_wake_all(rwb); 140 return; 141 } 142 143 /* 144 * For discards, our limit is always the background. For writes, if 145 * the device does write back caching, drop further down before we 146 * wake people up. 147 */ 148 if (wb_acct & WBT_DISCARD) 149 limit = rwb->wb_background; 150 else if (rwb->wc && !wb_recent_wait(rwb)) 151 limit = 0; 152 else 153 limit = rwb->wb_normal; 154 155 /* 156 * Don't wake anyone up if we are above the normal limit. 157 */ 158 if (inflight && inflight >= limit) 159 return; 160 161 if (wq_has_sleeper(&rqw->wait)) { 162 int diff = limit - inflight; 163 164 if (!inflight || diff >= rwb->wb_background / 2) 165 wake_up_all(&rqw->wait); 166 } 167 } 168 169 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct) 170 { 171 struct rq_wb *rwb = RQWB(rqos); 172 struct rq_wait *rqw; 173 174 if (!(wb_acct & WBT_TRACKED)) 175 return; 176 177 rqw = get_rq_wait(rwb, wb_acct); 178 wbt_rqw_done(rwb, rqw, wb_acct); 179 } 180 181 /* 182 * Called on completion of a request. Note that it's also called when 183 * a request is merged, when the request gets freed. 184 */ 185 static void wbt_done(struct rq_qos *rqos, struct request *rq) 186 { 187 struct rq_wb *rwb = RQWB(rqos); 188 189 if (!wbt_is_tracked(rq)) { 190 if (rwb->sync_cookie == rq) { 191 rwb->sync_issue = 0; 192 rwb->sync_cookie = NULL; 193 } 194 195 if (wbt_is_read(rq)) 196 wb_timestamp(rwb, &rwb->last_comp); 197 } else { 198 WARN_ON_ONCE(rq == rwb->sync_cookie); 199 __wbt_done(rqos, wbt_flags(rq)); 200 } 201 wbt_clear_state(rq); 202 } 203 204 static inline bool stat_sample_valid(struct blk_rq_stat *stat) 205 { 206 /* 207 * We need at least one read sample, and a minimum of 208 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know 209 * that it's writes impacting us, and not just some sole read on 210 * a device that is in a lower power state. 211 */ 212 return (stat[READ].nr_samples >= 1 && 213 stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES); 214 } 215 216 static u64 rwb_sync_issue_lat(struct rq_wb *rwb) 217 { 218 u64 now, issue = READ_ONCE(rwb->sync_issue); 219 220 if (!issue || !rwb->sync_cookie) 221 return 0; 222 223 now = ktime_to_ns(ktime_get()); 224 return now - issue; 225 } 226 227 enum { 228 LAT_OK = 1, 229 LAT_UNKNOWN, 230 LAT_UNKNOWN_WRITES, 231 LAT_EXCEEDED, 232 }; 233 234 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat) 235 { 236 struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info; 237 struct rq_depth *rqd = &rwb->rq_depth; 238 u64 thislat; 239 240 /* 241 * If our stored sync issue exceeds the window size, or it 242 * exceeds our min target AND we haven't logged any entries, 243 * flag the latency as exceeded. wbt works off completion latencies, 244 * but for a flooded device, a single sync IO can take a long time 245 * to complete after being issued. If this time exceeds our 246 * monitoring window AND we didn't see any other completions in that 247 * window, then count that sync IO as a violation of the latency. 248 */ 249 thislat = rwb_sync_issue_lat(rwb); 250 if (thislat > rwb->cur_win_nsec || 251 (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) { 252 trace_wbt_lat(bdi, thislat); 253 return LAT_EXCEEDED; 254 } 255 256 /* 257 * No read/write mix, if stat isn't valid 258 */ 259 if (!stat_sample_valid(stat)) { 260 /* 261 * If we had writes in this stat window and the window is 262 * current, we're only doing writes. If a task recently 263 * waited or still has writes in flights, consider us doing 264 * just writes as well. 265 */ 266 if (stat[WRITE].nr_samples || wb_recent_wait(rwb) || 267 wbt_inflight(rwb)) 268 return LAT_UNKNOWN_WRITES; 269 return LAT_UNKNOWN; 270 } 271 272 /* 273 * If the 'min' latency exceeds our target, step down. 274 */ 275 if (stat[READ].min > rwb->min_lat_nsec) { 276 trace_wbt_lat(bdi, stat[READ].min); 277 trace_wbt_stat(bdi, stat); 278 return LAT_EXCEEDED; 279 } 280 281 if (rqd->scale_step) 282 trace_wbt_stat(bdi, stat); 283 284 return LAT_OK; 285 } 286 287 static void rwb_trace_step(struct rq_wb *rwb, const char *msg) 288 { 289 struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info; 290 struct rq_depth *rqd = &rwb->rq_depth; 291 292 trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec, 293 rwb->wb_background, rwb->wb_normal, rqd->max_depth); 294 } 295 296 static void calc_wb_limits(struct rq_wb *rwb) 297 { 298 if (rwb->min_lat_nsec == 0) { 299 rwb->wb_normal = rwb->wb_background = 0; 300 } else if (rwb->rq_depth.max_depth <= 2) { 301 rwb->wb_normal = rwb->rq_depth.max_depth; 302 rwb->wb_background = 1; 303 } else { 304 rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2; 305 rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4; 306 } 307 } 308 309 static void scale_up(struct rq_wb *rwb) 310 { 311 if (!rq_depth_scale_up(&rwb->rq_depth)) 312 return; 313 calc_wb_limits(rwb); 314 rwb->unknown_cnt = 0; 315 rwb_wake_all(rwb); 316 rwb_trace_step(rwb, tracepoint_string("scale up")); 317 } 318 319 static void scale_down(struct rq_wb *rwb, bool hard_throttle) 320 { 321 if (!rq_depth_scale_down(&rwb->rq_depth, hard_throttle)) 322 return; 323 calc_wb_limits(rwb); 324 rwb->unknown_cnt = 0; 325 rwb_trace_step(rwb, tracepoint_string("scale down")); 326 } 327 328 static void rwb_arm_timer(struct rq_wb *rwb) 329 { 330 struct rq_depth *rqd = &rwb->rq_depth; 331 332 if (rqd->scale_step > 0) { 333 /* 334 * We should speed this up, using some variant of a fast 335 * integer inverse square root calculation. Since we only do 336 * this for every window expiration, it's not a huge deal, 337 * though. 338 */ 339 rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4, 340 int_sqrt((rqd->scale_step + 1) << 8)); 341 } else { 342 /* 343 * For step < 0, we don't want to increase/decrease the 344 * window size. 345 */ 346 rwb->cur_win_nsec = rwb->win_nsec; 347 } 348 349 blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec); 350 } 351 352 static void wb_timer_fn(struct blk_stat_callback *cb) 353 { 354 struct rq_wb *rwb = cb->data; 355 struct rq_depth *rqd = &rwb->rq_depth; 356 unsigned int inflight = wbt_inflight(rwb); 357 int status; 358 359 status = latency_exceeded(rwb, cb->stat); 360 361 trace_wbt_timer(rwb->rqos.q->backing_dev_info, status, rqd->scale_step, 362 inflight); 363 364 /* 365 * If we exceeded the latency target, step down. If we did not, 366 * step one level up. If we don't know enough to say either exceeded 367 * or ok, then don't do anything. 368 */ 369 switch (status) { 370 case LAT_EXCEEDED: 371 scale_down(rwb, true); 372 break; 373 case LAT_OK: 374 scale_up(rwb); 375 break; 376 case LAT_UNKNOWN_WRITES: 377 /* 378 * We started a the center step, but don't have a valid 379 * read/write sample, but we do have writes going on. 380 * Allow step to go negative, to increase write perf. 381 */ 382 scale_up(rwb); 383 break; 384 case LAT_UNKNOWN: 385 if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP) 386 break; 387 /* 388 * We get here when previously scaled reduced depth, and we 389 * currently don't have a valid read/write sample. For that 390 * case, slowly return to center state (step == 0). 391 */ 392 if (rqd->scale_step > 0) 393 scale_up(rwb); 394 else if (rqd->scale_step < 0) 395 scale_down(rwb, false); 396 break; 397 default: 398 break; 399 } 400 401 /* 402 * Re-arm timer, if we have IO in flight 403 */ 404 if (rqd->scale_step || inflight) 405 rwb_arm_timer(rwb); 406 } 407 408 static void __wbt_update_limits(struct rq_wb *rwb) 409 { 410 struct rq_depth *rqd = &rwb->rq_depth; 411 412 rqd->scale_step = 0; 413 rqd->scaled_max = false; 414 415 rq_depth_calc_max_depth(rqd); 416 calc_wb_limits(rwb); 417 418 rwb_wake_all(rwb); 419 } 420 421 void wbt_update_limits(struct request_queue *q) 422 { 423 struct rq_qos *rqos = wbt_rq_qos(q); 424 if (!rqos) 425 return; 426 __wbt_update_limits(RQWB(rqos)); 427 } 428 429 u64 wbt_get_min_lat(struct request_queue *q) 430 { 431 struct rq_qos *rqos = wbt_rq_qos(q); 432 if (!rqos) 433 return 0; 434 return RQWB(rqos)->min_lat_nsec; 435 } 436 437 void wbt_set_min_lat(struct request_queue *q, u64 val) 438 { 439 struct rq_qos *rqos = wbt_rq_qos(q); 440 if (!rqos) 441 return; 442 RQWB(rqos)->min_lat_nsec = val; 443 RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL; 444 __wbt_update_limits(RQWB(rqos)); 445 } 446 447 448 static bool close_io(struct rq_wb *rwb) 449 { 450 const unsigned long now = jiffies; 451 452 return time_before(now, rwb->last_issue + HZ / 10) || 453 time_before(now, rwb->last_comp + HZ / 10); 454 } 455 456 #define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO) 457 458 static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw) 459 { 460 unsigned int limit; 461 462 /* 463 * If we got disabled, just return UINT_MAX. This ensures that 464 * we'll properly inc a new IO, and dec+wakeup at the end. 465 */ 466 if (!rwb_enabled(rwb)) 467 return UINT_MAX; 468 469 if ((rw & REQ_OP_MASK) == REQ_OP_DISCARD) 470 return rwb->wb_background; 471 472 /* 473 * At this point we know it's a buffered write. If this is 474 * kswapd trying to free memory, or REQ_SYNC is set, then 475 * it's WB_SYNC_ALL writeback, and we'll use the max limit for 476 * that. If the write is marked as a background write, then use 477 * the idle limit, or go to normal if we haven't had competing 478 * IO for a bit. 479 */ 480 if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd()) 481 limit = rwb->rq_depth.max_depth; 482 else if ((rw & REQ_BACKGROUND) || close_io(rwb)) { 483 /* 484 * If less than 100ms since we completed unrelated IO, 485 * limit us to half the depth for background writeback. 486 */ 487 limit = rwb->wb_background; 488 } else 489 limit = rwb->wb_normal; 490 491 return limit; 492 } 493 494 struct wbt_wait_data { 495 struct rq_wb *rwb; 496 enum wbt_flags wb_acct; 497 unsigned long rw; 498 }; 499 500 static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data) 501 { 502 struct wbt_wait_data *data = private_data; 503 return rq_wait_inc_below(rqw, get_limit(data->rwb, data->rw)); 504 } 505 506 static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data) 507 { 508 struct wbt_wait_data *data = private_data; 509 wbt_rqw_done(data->rwb, rqw, data->wb_acct); 510 } 511 512 /* 513 * Block if we will exceed our limit, or if we are currently waiting for 514 * the timer to kick off queuing again. 515 */ 516 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct, 517 unsigned long rw) 518 { 519 struct rq_wait *rqw = get_rq_wait(rwb, wb_acct); 520 struct wbt_wait_data data = { 521 .rwb = rwb, 522 .wb_acct = wb_acct, 523 .rw = rw, 524 }; 525 526 rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb); 527 } 528 529 static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio) 530 { 531 switch (bio_op(bio)) { 532 case REQ_OP_WRITE: 533 /* 534 * Don't throttle WRITE_ODIRECT 535 */ 536 if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) == 537 (REQ_SYNC | REQ_IDLE)) 538 return false; 539 /* fallthrough */ 540 case REQ_OP_DISCARD: 541 return true; 542 default: 543 return false; 544 } 545 } 546 547 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio) 548 { 549 enum wbt_flags flags = 0; 550 551 if (!rwb_enabled(rwb)) 552 return 0; 553 554 if (bio_op(bio) == REQ_OP_READ) { 555 flags = WBT_READ; 556 } else if (wbt_should_throttle(rwb, bio)) { 557 if (current_is_kswapd()) 558 flags |= WBT_KSWAPD; 559 if (bio_op(bio) == REQ_OP_DISCARD) 560 flags |= WBT_DISCARD; 561 flags |= WBT_TRACKED; 562 } 563 return flags; 564 } 565 566 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio) 567 { 568 struct rq_wb *rwb = RQWB(rqos); 569 enum wbt_flags flags = bio_to_wbt_flags(rwb, bio); 570 __wbt_done(rqos, flags); 571 } 572 573 /* 574 * Returns true if the IO request should be accounted, false if not. 575 * May sleep, if we have exceeded the writeback limits. Caller can pass 576 * in an irq held spinlock, if it holds one when calling this function. 577 * If we do sleep, we'll release and re-grab it. 578 */ 579 static void wbt_wait(struct rq_qos *rqos, struct bio *bio) 580 { 581 struct rq_wb *rwb = RQWB(rqos); 582 enum wbt_flags flags; 583 584 flags = bio_to_wbt_flags(rwb, bio); 585 if (!(flags & WBT_TRACKED)) { 586 if (flags & WBT_READ) 587 wb_timestamp(rwb, &rwb->last_issue); 588 return; 589 } 590 591 __wbt_wait(rwb, flags, bio->bi_opf); 592 593 if (!blk_stat_is_active(rwb->cb)) 594 rwb_arm_timer(rwb); 595 } 596 597 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio) 598 { 599 struct rq_wb *rwb = RQWB(rqos); 600 rq->wbt_flags |= bio_to_wbt_flags(rwb, bio); 601 } 602 603 static void wbt_issue(struct rq_qos *rqos, struct request *rq) 604 { 605 struct rq_wb *rwb = RQWB(rqos); 606 607 if (!rwb_enabled(rwb)) 608 return; 609 610 /* 611 * Track sync issue, in case it takes a long time to complete. Allows us 612 * to react quicker, if a sync IO takes a long time to complete. Note 613 * that this is just a hint. The request can go away when it completes, 614 * so it's important we never dereference it. We only use the address to 615 * compare with, which is why we store the sync_issue time locally. 616 */ 617 if (wbt_is_read(rq) && !rwb->sync_issue) { 618 rwb->sync_cookie = rq; 619 rwb->sync_issue = rq->io_start_time_ns; 620 } 621 } 622 623 static void wbt_requeue(struct rq_qos *rqos, struct request *rq) 624 { 625 struct rq_wb *rwb = RQWB(rqos); 626 if (!rwb_enabled(rwb)) 627 return; 628 if (rq == rwb->sync_cookie) { 629 rwb->sync_issue = 0; 630 rwb->sync_cookie = NULL; 631 } 632 } 633 634 void wbt_set_write_cache(struct request_queue *q, bool write_cache_on) 635 { 636 struct rq_qos *rqos = wbt_rq_qos(q); 637 if (rqos) 638 RQWB(rqos)->wc = write_cache_on; 639 } 640 641 /* 642 * Enable wbt if defaults are configured that way 643 */ 644 void wbt_enable_default(struct request_queue *q) 645 { 646 struct rq_qos *rqos = wbt_rq_qos(q); 647 /* Throttling already enabled? */ 648 if (rqos) 649 return; 650 651 /* Queue not registered? Maybe shutting down... */ 652 if (!blk_queue_registered(q)) 653 return; 654 655 if (queue_is_mq(q) && IS_ENABLED(CONFIG_BLK_WBT_MQ)) 656 wbt_init(q); 657 } 658 EXPORT_SYMBOL_GPL(wbt_enable_default); 659 660 u64 wbt_default_latency_nsec(struct request_queue *q) 661 { 662 /* 663 * We default to 2msec for non-rotational storage, and 75msec 664 * for rotational storage. 665 */ 666 if (blk_queue_nonrot(q)) 667 return 2000000ULL; 668 else 669 return 75000000ULL; 670 } 671 672 static int wbt_data_dir(const struct request *rq) 673 { 674 const int op = req_op(rq); 675 676 if (op == REQ_OP_READ) 677 return READ; 678 else if (op_is_write(op)) 679 return WRITE; 680 681 /* don't account */ 682 return -1; 683 } 684 685 static void wbt_queue_depth_changed(struct rq_qos *rqos) 686 { 687 RQWB(rqos)->rq_depth.queue_depth = blk_queue_depth(rqos->q); 688 __wbt_update_limits(RQWB(rqos)); 689 } 690 691 static void wbt_exit(struct rq_qos *rqos) 692 { 693 struct rq_wb *rwb = RQWB(rqos); 694 struct request_queue *q = rqos->q; 695 696 blk_stat_remove_callback(q, rwb->cb); 697 blk_stat_free_callback(rwb->cb); 698 kfree(rwb); 699 } 700 701 /* 702 * Disable wbt, if enabled by default. 703 */ 704 void wbt_disable_default(struct request_queue *q) 705 { 706 struct rq_qos *rqos = wbt_rq_qos(q); 707 struct rq_wb *rwb; 708 if (!rqos) 709 return; 710 rwb = RQWB(rqos); 711 if (rwb->enable_state == WBT_STATE_ON_DEFAULT) { 712 blk_stat_deactivate(rwb->cb); 713 rwb->wb_normal = 0; 714 } 715 } 716 EXPORT_SYMBOL_GPL(wbt_disable_default); 717 718 #ifdef CONFIG_BLK_DEBUG_FS 719 static int wbt_curr_win_nsec_show(void *data, struct seq_file *m) 720 { 721 struct rq_qos *rqos = data; 722 struct rq_wb *rwb = RQWB(rqos); 723 724 seq_printf(m, "%llu\n", rwb->cur_win_nsec); 725 return 0; 726 } 727 728 static int wbt_enabled_show(void *data, struct seq_file *m) 729 { 730 struct rq_qos *rqos = data; 731 struct rq_wb *rwb = RQWB(rqos); 732 733 seq_printf(m, "%d\n", rwb->enable_state); 734 return 0; 735 } 736 737 static int wbt_id_show(void *data, struct seq_file *m) 738 { 739 struct rq_qos *rqos = data; 740 741 seq_printf(m, "%u\n", rqos->id); 742 return 0; 743 } 744 745 static int wbt_inflight_show(void *data, struct seq_file *m) 746 { 747 struct rq_qos *rqos = data; 748 struct rq_wb *rwb = RQWB(rqos); 749 int i; 750 751 for (i = 0; i < WBT_NUM_RWQ; i++) 752 seq_printf(m, "%d: inflight %d\n", i, 753 atomic_read(&rwb->rq_wait[i].inflight)); 754 return 0; 755 } 756 757 static int wbt_min_lat_nsec_show(void *data, struct seq_file *m) 758 { 759 struct rq_qos *rqos = data; 760 struct rq_wb *rwb = RQWB(rqos); 761 762 seq_printf(m, "%lu\n", rwb->min_lat_nsec); 763 return 0; 764 } 765 766 static int wbt_unknown_cnt_show(void *data, struct seq_file *m) 767 { 768 struct rq_qos *rqos = data; 769 struct rq_wb *rwb = RQWB(rqos); 770 771 seq_printf(m, "%u\n", rwb->unknown_cnt); 772 return 0; 773 } 774 775 static int wbt_normal_show(void *data, struct seq_file *m) 776 { 777 struct rq_qos *rqos = data; 778 struct rq_wb *rwb = RQWB(rqos); 779 780 seq_printf(m, "%u\n", rwb->wb_normal); 781 return 0; 782 } 783 784 static int wbt_background_show(void *data, struct seq_file *m) 785 { 786 struct rq_qos *rqos = data; 787 struct rq_wb *rwb = RQWB(rqos); 788 789 seq_printf(m, "%u\n", rwb->wb_background); 790 return 0; 791 } 792 793 static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = { 794 {"curr_win_nsec", 0400, wbt_curr_win_nsec_show}, 795 {"enabled", 0400, wbt_enabled_show}, 796 {"id", 0400, wbt_id_show}, 797 {"inflight", 0400, wbt_inflight_show}, 798 {"min_lat_nsec", 0400, wbt_min_lat_nsec_show}, 799 {"unknown_cnt", 0400, wbt_unknown_cnt_show}, 800 {"wb_normal", 0400, wbt_normal_show}, 801 {"wb_background", 0400, wbt_background_show}, 802 {}, 803 }; 804 #endif 805 806 static struct rq_qos_ops wbt_rqos_ops = { 807 .throttle = wbt_wait, 808 .issue = wbt_issue, 809 .track = wbt_track, 810 .requeue = wbt_requeue, 811 .done = wbt_done, 812 .cleanup = wbt_cleanup, 813 .queue_depth_changed = wbt_queue_depth_changed, 814 .exit = wbt_exit, 815 #ifdef CONFIG_BLK_DEBUG_FS 816 .debugfs_attrs = wbt_debugfs_attrs, 817 #endif 818 }; 819 820 int wbt_init(struct request_queue *q) 821 { 822 struct rq_wb *rwb; 823 int i; 824 825 rwb = kzalloc(sizeof(*rwb), GFP_KERNEL); 826 if (!rwb) 827 return -ENOMEM; 828 829 rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb); 830 if (!rwb->cb) { 831 kfree(rwb); 832 return -ENOMEM; 833 } 834 835 for (i = 0; i < WBT_NUM_RWQ; i++) 836 rq_wait_init(&rwb->rq_wait[i]); 837 838 rwb->rqos.id = RQ_QOS_WBT; 839 rwb->rqos.ops = &wbt_rqos_ops; 840 rwb->rqos.q = q; 841 rwb->last_comp = rwb->last_issue = jiffies; 842 rwb->win_nsec = RWB_WINDOW_NSEC; 843 rwb->enable_state = WBT_STATE_ON_DEFAULT; 844 rwb->wc = 1; 845 rwb->rq_depth.default_depth = RWB_DEF_DEPTH; 846 __wbt_update_limits(rwb); 847 848 /* 849 * Assign rwb and add the stats callback. 850 */ 851 rq_qos_add(q, &rwb->rqos); 852 blk_stat_add_callback(q, rwb->cb); 853 854 rwb->min_lat_nsec = wbt_default_latency_nsec(q); 855 856 wbt_queue_depth_changed(&rwb->rqos); 857 wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags)); 858 859 return 0; 860 } 861