xref: /openbmc/linux/block/blk-wbt.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  * buffered writeback throttling. loosely based on CoDel. We can't drop
3  * packets for IO scheduling, so the logic is something like this:
4  *
5  * - Monitor latencies in a defined window of time.
6  * - If the minimum latency in the above window exceeds some target, increment
7  *   scaling step and scale down queue depth by a factor of 2x. The monitoring
8  *   window is then shrunk to 100 / sqrt(scaling step + 1).
9  * - For any window where we don't have solid data on what the latencies
10  *   look like, retain status quo.
11  * - If latencies look good, decrement scaling step.
12  * - If we're only doing writes, allow the scaling step to go negative. This
13  *   will temporarily boost write performance, snapping back to a stable
14  *   scaling step of 0 if reads show up or the heavy writers finish. Unlike
15  *   positive scaling steps where we shrink the monitoring window, a negative
16  *   scaling step retains the default step==0 window size.
17  *
18  * Copyright (C) 2016 Jens Axboe
19  *
20  */
21 #include <linux/kernel.h>
22 #include <linux/blk_types.h>
23 #include <linux/slab.h>
24 #include <linux/backing-dev.h>
25 #include <linux/swap.h>
26 
27 #include "blk-wbt.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/wbt.h>
31 
32 enum {
33 	/*
34 	 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
35 	 * from here depending on device stats
36 	 */
37 	RWB_DEF_DEPTH	= 16,
38 
39 	/*
40 	 * 100msec window
41 	 */
42 	RWB_WINDOW_NSEC		= 100 * 1000 * 1000ULL,
43 
44 	/*
45 	 * Disregard stats, if we don't meet this minimum
46 	 */
47 	RWB_MIN_WRITE_SAMPLES	= 3,
48 
49 	/*
50 	 * If we have this number of consecutive windows with not enough
51 	 * information to scale up or down, scale up.
52 	 */
53 	RWB_UNKNOWN_BUMP	= 5,
54 };
55 
56 static inline bool rwb_enabled(struct rq_wb *rwb)
57 {
58 	return rwb && rwb->wb_normal != 0;
59 }
60 
61 /*
62  * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
63  * false if 'v' + 1 would be bigger than 'below'.
64  */
65 static bool atomic_inc_below(atomic_t *v, int below)
66 {
67 	int cur = atomic_read(v);
68 
69 	for (;;) {
70 		int old;
71 
72 		if (cur >= below)
73 			return false;
74 		old = atomic_cmpxchg(v, cur, cur + 1);
75 		if (old == cur)
76 			break;
77 		cur = old;
78 	}
79 
80 	return true;
81 }
82 
83 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
84 {
85 	if (rwb_enabled(rwb)) {
86 		const unsigned long cur = jiffies;
87 
88 		if (cur != *var)
89 			*var = cur;
90 	}
91 }
92 
93 /*
94  * If a task was rate throttled in balance_dirty_pages() within the last
95  * second or so, use that to indicate a higher cleaning rate.
96  */
97 static bool wb_recent_wait(struct rq_wb *rwb)
98 {
99 	struct bdi_writeback *wb = &rwb->queue->backing_dev_info->wb;
100 
101 	return time_before(jiffies, wb->dirty_sleep + HZ);
102 }
103 
104 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb, bool is_kswapd)
105 {
106 	return &rwb->rq_wait[is_kswapd];
107 }
108 
109 static void rwb_wake_all(struct rq_wb *rwb)
110 {
111 	int i;
112 
113 	for (i = 0; i < WBT_NUM_RWQ; i++) {
114 		struct rq_wait *rqw = &rwb->rq_wait[i];
115 
116 		if (waitqueue_active(&rqw->wait))
117 			wake_up_all(&rqw->wait);
118 	}
119 }
120 
121 void __wbt_done(struct rq_wb *rwb, enum wbt_flags wb_acct)
122 {
123 	struct rq_wait *rqw;
124 	int inflight, limit;
125 
126 	if (!(wb_acct & WBT_TRACKED))
127 		return;
128 
129 	rqw = get_rq_wait(rwb, wb_acct & WBT_KSWAPD);
130 	inflight = atomic_dec_return(&rqw->inflight);
131 
132 	/*
133 	 * wbt got disabled with IO in flight. Wake up any potential
134 	 * waiters, we don't have to do more than that.
135 	 */
136 	if (unlikely(!rwb_enabled(rwb))) {
137 		rwb_wake_all(rwb);
138 		return;
139 	}
140 
141 	/*
142 	 * If the device does write back caching, drop further down
143 	 * before we wake people up.
144 	 */
145 	if (rwb->wc && !wb_recent_wait(rwb))
146 		limit = 0;
147 	else
148 		limit = rwb->wb_normal;
149 
150 	/*
151 	 * Don't wake anyone up if we are above the normal limit.
152 	 */
153 	if (inflight && inflight >= limit)
154 		return;
155 
156 	if (waitqueue_active(&rqw->wait)) {
157 		int diff = limit - inflight;
158 
159 		if (!inflight || diff >= rwb->wb_background / 2)
160 			wake_up_all(&rqw->wait);
161 	}
162 }
163 
164 /*
165  * Called on completion of a request. Note that it's also called when
166  * a request is merged, when the request gets freed.
167  */
168 void wbt_done(struct rq_wb *rwb, struct blk_issue_stat *stat)
169 {
170 	if (!rwb)
171 		return;
172 
173 	if (!wbt_is_tracked(stat)) {
174 		if (rwb->sync_cookie == stat) {
175 			rwb->sync_issue = 0;
176 			rwb->sync_cookie = NULL;
177 		}
178 
179 		if (wbt_is_read(stat))
180 			wb_timestamp(rwb, &rwb->last_comp);
181 		wbt_clear_state(stat);
182 	} else {
183 		WARN_ON_ONCE(stat == rwb->sync_cookie);
184 		__wbt_done(rwb, wbt_stat_to_mask(stat));
185 		wbt_clear_state(stat);
186 	}
187 }
188 
189 /*
190  * Return true, if we can't increase the depth further by scaling
191  */
192 static bool calc_wb_limits(struct rq_wb *rwb)
193 {
194 	unsigned int depth;
195 	bool ret = false;
196 
197 	if (!rwb->min_lat_nsec) {
198 		rwb->wb_max = rwb->wb_normal = rwb->wb_background = 0;
199 		return false;
200 	}
201 
202 	/*
203 	 * For QD=1 devices, this is a special case. It's important for those
204 	 * to have one request ready when one completes, so force a depth of
205 	 * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
206 	 * since the device can't have more than that in flight. If we're
207 	 * scaling down, then keep a setting of 1/1/1.
208 	 */
209 	if (rwb->queue_depth == 1) {
210 		if (rwb->scale_step > 0)
211 			rwb->wb_max = rwb->wb_normal = 1;
212 		else {
213 			rwb->wb_max = rwb->wb_normal = 2;
214 			ret = true;
215 		}
216 		rwb->wb_background = 1;
217 	} else {
218 		/*
219 		 * scale_step == 0 is our default state. If we have suffered
220 		 * latency spikes, step will be > 0, and we shrink the
221 		 * allowed write depths. If step is < 0, we're only doing
222 		 * writes, and we allow a temporarily higher depth to
223 		 * increase performance.
224 		 */
225 		depth = min_t(unsigned int, RWB_DEF_DEPTH, rwb->queue_depth);
226 		if (rwb->scale_step > 0)
227 			depth = 1 + ((depth - 1) >> min(31, rwb->scale_step));
228 		else if (rwb->scale_step < 0) {
229 			unsigned int maxd = 3 * rwb->queue_depth / 4;
230 
231 			depth = 1 + ((depth - 1) << -rwb->scale_step);
232 			if (depth > maxd) {
233 				depth = maxd;
234 				ret = true;
235 			}
236 		}
237 
238 		/*
239 		 * Set our max/normal/bg queue depths based on how far
240 		 * we have scaled down (->scale_step).
241 		 */
242 		rwb->wb_max = depth;
243 		rwb->wb_normal = (rwb->wb_max + 1) / 2;
244 		rwb->wb_background = (rwb->wb_max + 3) / 4;
245 	}
246 
247 	return ret;
248 }
249 
250 static inline bool stat_sample_valid(struct blk_rq_stat *stat)
251 {
252 	/*
253 	 * We need at least one read sample, and a minimum of
254 	 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
255 	 * that it's writes impacting us, and not just some sole read on
256 	 * a device that is in a lower power state.
257 	 */
258 	return (stat[READ].nr_samples >= 1 &&
259 		stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
260 }
261 
262 static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
263 {
264 	u64 now, issue = ACCESS_ONCE(rwb->sync_issue);
265 
266 	if (!issue || !rwb->sync_cookie)
267 		return 0;
268 
269 	now = ktime_to_ns(ktime_get());
270 	return now - issue;
271 }
272 
273 enum {
274 	LAT_OK = 1,
275 	LAT_UNKNOWN,
276 	LAT_UNKNOWN_WRITES,
277 	LAT_EXCEEDED,
278 };
279 
280 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
281 {
282 	struct backing_dev_info *bdi = rwb->queue->backing_dev_info;
283 	u64 thislat;
284 
285 	/*
286 	 * If our stored sync issue exceeds the window size, or it
287 	 * exceeds our min target AND we haven't logged any entries,
288 	 * flag the latency as exceeded. wbt works off completion latencies,
289 	 * but for a flooded device, a single sync IO can take a long time
290 	 * to complete after being issued. If this time exceeds our
291 	 * monitoring window AND we didn't see any other completions in that
292 	 * window, then count that sync IO as a violation of the latency.
293 	 */
294 	thislat = rwb_sync_issue_lat(rwb);
295 	if (thislat > rwb->cur_win_nsec ||
296 	    (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
297 		trace_wbt_lat(bdi, thislat);
298 		return LAT_EXCEEDED;
299 	}
300 
301 	/*
302 	 * No read/write mix, if stat isn't valid
303 	 */
304 	if (!stat_sample_valid(stat)) {
305 		/*
306 		 * If we had writes in this stat window and the window is
307 		 * current, we're only doing writes. If a task recently
308 		 * waited or still has writes in flights, consider us doing
309 		 * just writes as well.
310 		 */
311 		if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
312 		    wbt_inflight(rwb))
313 			return LAT_UNKNOWN_WRITES;
314 		return LAT_UNKNOWN;
315 	}
316 
317 	/*
318 	 * If the 'min' latency exceeds our target, step down.
319 	 */
320 	if (stat[READ].min > rwb->min_lat_nsec) {
321 		trace_wbt_lat(bdi, stat[READ].min);
322 		trace_wbt_stat(bdi, stat);
323 		return LAT_EXCEEDED;
324 	}
325 
326 	if (rwb->scale_step)
327 		trace_wbt_stat(bdi, stat);
328 
329 	return LAT_OK;
330 }
331 
332 static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
333 {
334 	struct backing_dev_info *bdi = rwb->queue->backing_dev_info;
335 
336 	trace_wbt_step(bdi, msg, rwb->scale_step, rwb->cur_win_nsec,
337 			rwb->wb_background, rwb->wb_normal, rwb->wb_max);
338 }
339 
340 static void scale_up(struct rq_wb *rwb)
341 {
342 	/*
343 	 * Hit max in previous round, stop here
344 	 */
345 	if (rwb->scaled_max)
346 		return;
347 
348 	rwb->scale_step--;
349 	rwb->unknown_cnt = 0;
350 
351 	rwb->scaled_max = calc_wb_limits(rwb);
352 
353 	rwb_wake_all(rwb);
354 
355 	rwb_trace_step(rwb, "step up");
356 }
357 
358 /*
359  * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
360  * had a latency violation.
361  */
362 static void scale_down(struct rq_wb *rwb, bool hard_throttle)
363 {
364 	/*
365 	 * Stop scaling down when we've hit the limit. This also prevents
366 	 * ->scale_step from going to crazy values, if the device can't
367 	 * keep up.
368 	 */
369 	if (rwb->wb_max == 1)
370 		return;
371 
372 	if (rwb->scale_step < 0 && hard_throttle)
373 		rwb->scale_step = 0;
374 	else
375 		rwb->scale_step++;
376 
377 	rwb->scaled_max = false;
378 	rwb->unknown_cnt = 0;
379 	calc_wb_limits(rwb);
380 	rwb_trace_step(rwb, "step down");
381 }
382 
383 static void rwb_arm_timer(struct rq_wb *rwb)
384 {
385 	if (rwb->scale_step > 0) {
386 		/*
387 		 * We should speed this up, using some variant of a fast
388 		 * integer inverse square root calculation. Since we only do
389 		 * this for every window expiration, it's not a huge deal,
390 		 * though.
391 		 */
392 		rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
393 					int_sqrt((rwb->scale_step + 1) << 8));
394 	} else {
395 		/*
396 		 * For step < 0, we don't want to increase/decrease the
397 		 * window size.
398 		 */
399 		rwb->cur_win_nsec = rwb->win_nsec;
400 	}
401 
402 	blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
403 }
404 
405 static void wb_timer_fn(struct blk_stat_callback *cb)
406 {
407 	struct rq_wb *rwb = cb->data;
408 	unsigned int inflight = wbt_inflight(rwb);
409 	int status;
410 
411 	status = latency_exceeded(rwb, cb->stat);
412 
413 	trace_wbt_timer(rwb->queue->backing_dev_info, status, rwb->scale_step,
414 			inflight);
415 
416 	/*
417 	 * If we exceeded the latency target, step down. If we did not,
418 	 * step one level up. If we don't know enough to say either exceeded
419 	 * or ok, then don't do anything.
420 	 */
421 	switch (status) {
422 	case LAT_EXCEEDED:
423 		scale_down(rwb, true);
424 		break;
425 	case LAT_OK:
426 		scale_up(rwb);
427 		break;
428 	case LAT_UNKNOWN_WRITES:
429 		/*
430 		 * We started a the center step, but don't have a valid
431 		 * read/write sample, but we do have writes going on.
432 		 * Allow step to go negative, to increase write perf.
433 		 */
434 		scale_up(rwb);
435 		break;
436 	case LAT_UNKNOWN:
437 		if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
438 			break;
439 		/*
440 		 * We get here when previously scaled reduced depth, and we
441 		 * currently don't have a valid read/write sample. For that
442 		 * case, slowly return to center state (step == 0).
443 		 */
444 		if (rwb->scale_step > 0)
445 			scale_up(rwb);
446 		else if (rwb->scale_step < 0)
447 			scale_down(rwb, false);
448 		break;
449 	default:
450 		break;
451 	}
452 
453 	/*
454 	 * Re-arm timer, if we have IO in flight
455 	 */
456 	if (rwb->scale_step || inflight)
457 		rwb_arm_timer(rwb);
458 }
459 
460 void wbt_update_limits(struct rq_wb *rwb)
461 {
462 	rwb->scale_step = 0;
463 	rwb->scaled_max = false;
464 	calc_wb_limits(rwb);
465 
466 	rwb_wake_all(rwb);
467 }
468 
469 static bool close_io(struct rq_wb *rwb)
470 {
471 	const unsigned long now = jiffies;
472 
473 	return time_before(now, rwb->last_issue + HZ / 10) ||
474 		time_before(now, rwb->last_comp + HZ / 10);
475 }
476 
477 #define REQ_HIPRIO	(REQ_SYNC | REQ_META | REQ_PRIO)
478 
479 static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
480 {
481 	unsigned int limit;
482 
483 	/*
484 	 * At this point we know it's a buffered write. If this is
485 	 * kswapd trying to free memory, or REQ_SYNC is set, set, then
486 	 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
487 	 * that. If the write is marked as a background write, then use
488 	 * the idle limit, or go to normal if we haven't had competing
489 	 * IO for a bit.
490 	 */
491 	if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
492 		limit = rwb->wb_max;
493 	else if ((rw & REQ_BACKGROUND) || close_io(rwb)) {
494 		/*
495 		 * If less than 100ms since we completed unrelated IO,
496 		 * limit us to half the depth for background writeback.
497 		 */
498 		limit = rwb->wb_background;
499 	} else
500 		limit = rwb->wb_normal;
501 
502 	return limit;
503 }
504 
505 static inline bool may_queue(struct rq_wb *rwb, struct rq_wait *rqw,
506 			     wait_queue_entry_t *wait, unsigned long rw)
507 {
508 	/*
509 	 * inc it here even if disabled, since we'll dec it at completion.
510 	 * this only happens if the task was sleeping in __wbt_wait(),
511 	 * and someone turned it off at the same time.
512 	 */
513 	if (!rwb_enabled(rwb)) {
514 		atomic_inc(&rqw->inflight);
515 		return true;
516 	}
517 
518 	/*
519 	 * If the waitqueue is already active and we are not the next
520 	 * in line to be woken up, wait for our turn.
521 	 */
522 	if (waitqueue_active(&rqw->wait) &&
523 	    rqw->wait.head.next != &wait->entry)
524 		return false;
525 
526 	return atomic_inc_below(&rqw->inflight, get_limit(rwb, rw));
527 }
528 
529 /*
530  * Block if we will exceed our limit, or if we are currently waiting for
531  * the timer to kick off queuing again.
532  */
533 static void __wbt_wait(struct rq_wb *rwb, unsigned long rw, spinlock_t *lock)
534 	__releases(lock)
535 	__acquires(lock)
536 {
537 	struct rq_wait *rqw = get_rq_wait(rwb, current_is_kswapd());
538 	DEFINE_WAIT(wait);
539 
540 	if (may_queue(rwb, rqw, &wait, rw))
541 		return;
542 
543 	do {
544 		prepare_to_wait_exclusive(&rqw->wait, &wait,
545 						TASK_UNINTERRUPTIBLE);
546 
547 		if (may_queue(rwb, rqw, &wait, rw))
548 			break;
549 
550 		if (lock) {
551 			spin_unlock_irq(lock);
552 			io_schedule();
553 			spin_lock_irq(lock);
554 		} else
555 			io_schedule();
556 	} while (1);
557 
558 	finish_wait(&rqw->wait, &wait);
559 }
560 
561 static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio)
562 {
563 	const int op = bio_op(bio);
564 
565 	/*
566 	 * If not a WRITE, do nothing
567 	 */
568 	if (op != REQ_OP_WRITE)
569 		return false;
570 
571 	/*
572 	 * Don't throttle WRITE_ODIRECT
573 	 */
574 	if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) == (REQ_SYNC | REQ_IDLE))
575 		return false;
576 
577 	return true;
578 }
579 
580 /*
581  * Returns true if the IO request should be accounted, false if not.
582  * May sleep, if we have exceeded the writeback limits. Caller can pass
583  * in an irq held spinlock, if it holds one when calling this function.
584  * If we do sleep, we'll release and re-grab it.
585  */
586 enum wbt_flags wbt_wait(struct rq_wb *rwb, struct bio *bio, spinlock_t *lock)
587 {
588 	unsigned int ret = 0;
589 
590 	if (!rwb_enabled(rwb))
591 		return 0;
592 
593 	if (bio_op(bio) == REQ_OP_READ)
594 		ret = WBT_READ;
595 
596 	if (!wbt_should_throttle(rwb, bio)) {
597 		if (ret & WBT_READ)
598 			wb_timestamp(rwb, &rwb->last_issue);
599 		return ret;
600 	}
601 
602 	__wbt_wait(rwb, bio->bi_opf, lock);
603 
604 	if (!blk_stat_is_active(rwb->cb))
605 		rwb_arm_timer(rwb);
606 
607 	if (current_is_kswapd())
608 		ret |= WBT_KSWAPD;
609 
610 	return ret | WBT_TRACKED;
611 }
612 
613 void wbt_issue(struct rq_wb *rwb, struct blk_issue_stat *stat)
614 {
615 	if (!rwb_enabled(rwb))
616 		return;
617 
618 	/*
619 	 * Track sync issue, in case it takes a long time to complete. Allows
620 	 * us to react quicker, if a sync IO takes a long time to complete.
621 	 * Note that this is just a hint. 'stat' can go away when the
622 	 * request completes, so it's important we never dereference it. We
623 	 * only use the address to compare with, which is why we store the
624 	 * sync_issue time locally.
625 	 */
626 	if (wbt_is_read(stat) && !rwb->sync_issue) {
627 		rwb->sync_cookie = stat;
628 		rwb->sync_issue = blk_stat_time(stat);
629 	}
630 }
631 
632 void wbt_requeue(struct rq_wb *rwb, struct blk_issue_stat *stat)
633 {
634 	if (!rwb_enabled(rwb))
635 		return;
636 	if (stat == rwb->sync_cookie) {
637 		rwb->sync_issue = 0;
638 		rwb->sync_cookie = NULL;
639 	}
640 }
641 
642 void wbt_set_queue_depth(struct rq_wb *rwb, unsigned int depth)
643 {
644 	if (rwb) {
645 		rwb->queue_depth = depth;
646 		wbt_update_limits(rwb);
647 	}
648 }
649 
650 void wbt_set_write_cache(struct rq_wb *rwb, bool write_cache_on)
651 {
652 	if (rwb)
653 		rwb->wc = write_cache_on;
654 }
655 
656 /*
657  * Disable wbt, if enabled by default. Only called from CFQ.
658  */
659 void wbt_disable_default(struct request_queue *q)
660 {
661 	struct rq_wb *rwb = q->rq_wb;
662 
663 	if (rwb && rwb->enable_state == WBT_STATE_ON_DEFAULT)
664 		wbt_exit(q);
665 }
666 EXPORT_SYMBOL_GPL(wbt_disable_default);
667 
668 /*
669  * Enable wbt if defaults are configured that way
670  */
671 void wbt_enable_default(struct request_queue *q)
672 {
673 	/* Throttling already enabled? */
674 	if (q->rq_wb)
675 		return;
676 
677 	/* Queue not registered? Maybe shutting down... */
678 	if (!test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
679 		return;
680 
681 	if ((q->mq_ops && IS_ENABLED(CONFIG_BLK_WBT_MQ)) ||
682 	    (q->request_fn && IS_ENABLED(CONFIG_BLK_WBT_SQ)))
683 		wbt_init(q);
684 }
685 EXPORT_SYMBOL_GPL(wbt_enable_default);
686 
687 u64 wbt_default_latency_nsec(struct request_queue *q)
688 {
689 	/*
690 	 * We default to 2msec for non-rotational storage, and 75msec
691 	 * for rotational storage.
692 	 */
693 	if (blk_queue_nonrot(q))
694 		return 2000000ULL;
695 	else
696 		return 75000000ULL;
697 }
698 
699 static int wbt_data_dir(const struct request *rq)
700 {
701 	return rq_data_dir(rq);
702 }
703 
704 int wbt_init(struct request_queue *q)
705 {
706 	struct rq_wb *rwb;
707 	int i;
708 
709 	BUILD_BUG_ON(WBT_NR_BITS > BLK_STAT_RES_BITS);
710 
711 	rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
712 	if (!rwb)
713 		return -ENOMEM;
714 
715 	rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
716 	if (!rwb->cb) {
717 		kfree(rwb);
718 		return -ENOMEM;
719 	}
720 
721 	for (i = 0; i < WBT_NUM_RWQ; i++) {
722 		atomic_set(&rwb->rq_wait[i].inflight, 0);
723 		init_waitqueue_head(&rwb->rq_wait[i].wait);
724 	}
725 
726 	rwb->wc = 1;
727 	rwb->queue_depth = RWB_DEF_DEPTH;
728 	rwb->last_comp = rwb->last_issue = jiffies;
729 	rwb->queue = q;
730 	rwb->win_nsec = RWB_WINDOW_NSEC;
731 	rwb->enable_state = WBT_STATE_ON_DEFAULT;
732 	wbt_update_limits(rwb);
733 
734 	/*
735 	 * Assign rwb and add the stats callback.
736 	 */
737 	q->rq_wb = rwb;
738 	blk_stat_add_callback(q, rwb->cb);
739 
740 	rwb->min_lat_nsec = wbt_default_latency_nsec(q);
741 
742 	wbt_set_queue_depth(rwb, blk_queue_depth(q));
743 	wbt_set_write_cache(rwb, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
744 
745 	return 0;
746 }
747 
748 void wbt_exit(struct request_queue *q)
749 {
750 	struct rq_wb *rwb = q->rq_wb;
751 
752 	if (rwb) {
753 		blk_stat_remove_callback(q, rwb->cb);
754 		blk_stat_free_callback(rwb->cb);
755 		q->rq_wb = NULL;
756 		kfree(rwb);
757 	}
758 }
759