xref: /openbmc/linux/block/blk-wbt.c (revision ae213c44)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * buffered writeback throttling. loosely based on CoDel. We can't drop
4  * packets for IO scheduling, so the logic is something like this:
5  *
6  * - Monitor latencies in a defined window of time.
7  * - If the minimum latency in the above window exceeds some target, increment
8  *   scaling step and scale down queue depth by a factor of 2x. The monitoring
9  *   window is then shrunk to 100 / sqrt(scaling step + 1).
10  * - For any window where we don't have solid data on what the latencies
11  *   look like, retain status quo.
12  * - If latencies look good, decrement scaling step.
13  * - If we're only doing writes, allow the scaling step to go negative. This
14  *   will temporarily boost write performance, snapping back to a stable
15  *   scaling step of 0 if reads show up or the heavy writers finish. Unlike
16  *   positive scaling steps where we shrink the monitoring window, a negative
17  *   scaling step retains the default step==0 window size.
18  *
19  * Copyright (C) 2016 Jens Axboe
20  *
21  */
22 #include <linux/kernel.h>
23 #include <linux/blk_types.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/swap.h>
27 
28 #include "blk-wbt.h"
29 #include "blk-rq-qos.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/wbt.h>
33 
34 static inline void wbt_clear_state(struct request *rq)
35 {
36 	rq->wbt_flags = 0;
37 }
38 
39 static inline enum wbt_flags wbt_flags(struct request *rq)
40 {
41 	return rq->wbt_flags;
42 }
43 
44 static inline bool wbt_is_tracked(struct request *rq)
45 {
46 	return rq->wbt_flags & WBT_TRACKED;
47 }
48 
49 static inline bool wbt_is_read(struct request *rq)
50 {
51 	return rq->wbt_flags & WBT_READ;
52 }
53 
54 enum {
55 	/*
56 	 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
57 	 * from here depending on device stats
58 	 */
59 	RWB_DEF_DEPTH	= 16,
60 
61 	/*
62 	 * 100msec window
63 	 */
64 	RWB_WINDOW_NSEC		= 100 * 1000 * 1000ULL,
65 
66 	/*
67 	 * Disregard stats, if we don't meet this minimum
68 	 */
69 	RWB_MIN_WRITE_SAMPLES	= 3,
70 
71 	/*
72 	 * If we have this number of consecutive windows with not enough
73 	 * information to scale up or down, scale up.
74 	 */
75 	RWB_UNKNOWN_BUMP	= 5,
76 };
77 
78 static inline bool rwb_enabled(struct rq_wb *rwb)
79 {
80 	return rwb && rwb->wb_normal != 0;
81 }
82 
83 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
84 {
85 	if (rwb_enabled(rwb)) {
86 		const unsigned long cur = jiffies;
87 
88 		if (cur != *var)
89 			*var = cur;
90 	}
91 }
92 
93 /*
94  * If a task was rate throttled in balance_dirty_pages() within the last
95  * second or so, use that to indicate a higher cleaning rate.
96  */
97 static bool wb_recent_wait(struct rq_wb *rwb)
98 {
99 	struct bdi_writeback *wb = &rwb->rqos.q->backing_dev_info->wb;
100 
101 	return time_before(jiffies, wb->dirty_sleep + HZ);
102 }
103 
104 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
105 					  enum wbt_flags wb_acct)
106 {
107 	if (wb_acct & WBT_KSWAPD)
108 		return &rwb->rq_wait[WBT_RWQ_KSWAPD];
109 	else if (wb_acct & WBT_DISCARD)
110 		return &rwb->rq_wait[WBT_RWQ_DISCARD];
111 
112 	return &rwb->rq_wait[WBT_RWQ_BG];
113 }
114 
115 static void rwb_wake_all(struct rq_wb *rwb)
116 {
117 	int i;
118 
119 	for (i = 0; i < WBT_NUM_RWQ; i++) {
120 		struct rq_wait *rqw = &rwb->rq_wait[i];
121 
122 		if (wq_has_sleeper(&rqw->wait))
123 			wake_up_all(&rqw->wait);
124 	}
125 }
126 
127 static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw,
128 			 enum wbt_flags wb_acct)
129 {
130 	int inflight, limit;
131 
132 	inflight = atomic_dec_return(&rqw->inflight);
133 
134 	/*
135 	 * wbt got disabled with IO in flight. Wake up any potential
136 	 * waiters, we don't have to do more than that.
137 	 */
138 	if (unlikely(!rwb_enabled(rwb))) {
139 		rwb_wake_all(rwb);
140 		return;
141 	}
142 
143 	/*
144 	 * For discards, our limit is always the background. For writes, if
145 	 * the device does write back caching, drop further down before we
146 	 * wake people up.
147 	 */
148 	if (wb_acct & WBT_DISCARD)
149 		limit = rwb->wb_background;
150 	else if (rwb->wc && !wb_recent_wait(rwb))
151 		limit = 0;
152 	else
153 		limit = rwb->wb_normal;
154 
155 	/*
156 	 * Don't wake anyone up if we are above the normal limit.
157 	 */
158 	if (inflight && inflight >= limit)
159 		return;
160 
161 	if (wq_has_sleeper(&rqw->wait)) {
162 		int diff = limit - inflight;
163 
164 		if (!inflight || diff >= rwb->wb_background / 2)
165 			wake_up_all(&rqw->wait);
166 	}
167 }
168 
169 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct)
170 {
171 	struct rq_wb *rwb = RQWB(rqos);
172 	struct rq_wait *rqw;
173 
174 	if (!(wb_acct & WBT_TRACKED))
175 		return;
176 
177 	rqw = get_rq_wait(rwb, wb_acct);
178 	wbt_rqw_done(rwb, rqw, wb_acct);
179 }
180 
181 /*
182  * Called on completion of a request. Note that it's also called when
183  * a request is merged, when the request gets freed.
184  */
185 static void wbt_done(struct rq_qos *rqos, struct request *rq)
186 {
187 	struct rq_wb *rwb = RQWB(rqos);
188 
189 	if (!wbt_is_tracked(rq)) {
190 		if (rwb->sync_cookie == rq) {
191 			rwb->sync_issue = 0;
192 			rwb->sync_cookie = NULL;
193 		}
194 
195 		if (wbt_is_read(rq))
196 			wb_timestamp(rwb, &rwb->last_comp);
197 	} else {
198 		WARN_ON_ONCE(rq == rwb->sync_cookie);
199 		__wbt_done(rqos, wbt_flags(rq));
200 	}
201 	wbt_clear_state(rq);
202 }
203 
204 static inline bool stat_sample_valid(struct blk_rq_stat *stat)
205 {
206 	/*
207 	 * We need at least one read sample, and a minimum of
208 	 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
209 	 * that it's writes impacting us, and not just some sole read on
210 	 * a device that is in a lower power state.
211 	 */
212 	return (stat[READ].nr_samples >= 1 &&
213 		stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
214 }
215 
216 static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
217 {
218 	u64 now, issue = READ_ONCE(rwb->sync_issue);
219 
220 	if (!issue || !rwb->sync_cookie)
221 		return 0;
222 
223 	now = ktime_to_ns(ktime_get());
224 	return now - issue;
225 }
226 
227 enum {
228 	LAT_OK = 1,
229 	LAT_UNKNOWN,
230 	LAT_UNKNOWN_WRITES,
231 	LAT_EXCEEDED,
232 };
233 
234 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
235 {
236 	struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info;
237 	struct rq_depth *rqd = &rwb->rq_depth;
238 	u64 thislat;
239 
240 	/*
241 	 * If our stored sync issue exceeds the window size, or it
242 	 * exceeds our min target AND we haven't logged any entries,
243 	 * flag the latency as exceeded. wbt works off completion latencies,
244 	 * but for a flooded device, a single sync IO can take a long time
245 	 * to complete after being issued. If this time exceeds our
246 	 * monitoring window AND we didn't see any other completions in that
247 	 * window, then count that sync IO as a violation of the latency.
248 	 */
249 	thislat = rwb_sync_issue_lat(rwb);
250 	if (thislat > rwb->cur_win_nsec ||
251 	    (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
252 		trace_wbt_lat(bdi, thislat);
253 		return LAT_EXCEEDED;
254 	}
255 
256 	/*
257 	 * No read/write mix, if stat isn't valid
258 	 */
259 	if (!stat_sample_valid(stat)) {
260 		/*
261 		 * If we had writes in this stat window and the window is
262 		 * current, we're only doing writes. If a task recently
263 		 * waited or still has writes in flights, consider us doing
264 		 * just writes as well.
265 		 */
266 		if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
267 		    wbt_inflight(rwb))
268 			return LAT_UNKNOWN_WRITES;
269 		return LAT_UNKNOWN;
270 	}
271 
272 	/*
273 	 * If the 'min' latency exceeds our target, step down.
274 	 */
275 	if (stat[READ].min > rwb->min_lat_nsec) {
276 		trace_wbt_lat(bdi, stat[READ].min);
277 		trace_wbt_stat(bdi, stat);
278 		return LAT_EXCEEDED;
279 	}
280 
281 	if (rqd->scale_step)
282 		trace_wbt_stat(bdi, stat);
283 
284 	return LAT_OK;
285 }
286 
287 static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
288 {
289 	struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info;
290 	struct rq_depth *rqd = &rwb->rq_depth;
291 
292 	trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec,
293 			rwb->wb_background, rwb->wb_normal, rqd->max_depth);
294 }
295 
296 static void calc_wb_limits(struct rq_wb *rwb)
297 {
298 	if (rwb->min_lat_nsec == 0) {
299 		rwb->wb_normal = rwb->wb_background = 0;
300 	} else if (rwb->rq_depth.max_depth <= 2) {
301 		rwb->wb_normal = rwb->rq_depth.max_depth;
302 		rwb->wb_background = 1;
303 	} else {
304 		rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2;
305 		rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4;
306 	}
307 }
308 
309 static void scale_up(struct rq_wb *rwb)
310 {
311 	rq_depth_scale_up(&rwb->rq_depth);
312 	calc_wb_limits(rwb);
313 	rwb->unknown_cnt = 0;
314 	rwb_wake_all(rwb);
315 	rwb_trace_step(rwb, "scale up");
316 }
317 
318 static void scale_down(struct rq_wb *rwb, bool hard_throttle)
319 {
320 	rq_depth_scale_down(&rwb->rq_depth, hard_throttle);
321 	calc_wb_limits(rwb);
322 	rwb->unknown_cnt = 0;
323 	rwb_trace_step(rwb, "scale down");
324 }
325 
326 static void rwb_arm_timer(struct rq_wb *rwb)
327 {
328 	struct rq_depth *rqd = &rwb->rq_depth;
329 
330 	if (rqd->scale_step > 0) {
331 		/*
332 		 * We should speed this up, using some variant of a fast
333 		 * integer inverse square root calculation. Since we only do
334 		 * this for every window expiration, it's not a huge deal,
335 		 * though.
336 		 */
337 		rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
338 					int_sqrt((rqd->scale_step + 1) << 8));
339 	} else {
340 		/*
341 		 * For step < 0, we don't want to increase/decrease the
342 		 * window size.
343 		 */
344 		rwb->cur_win_nsec = rwb->win_nsec;
345 	}
346 
347 	blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
348 }
349 
350 static void wb_timer_fn(struct blk_stat_callback *cb)
351 {
352 	struct rq_wb *rwb = cb->data;
353 	struct rq_depth *rqd = &rwb->rq_depth;
354 	unsigned int inflight = wbt_inflight(rwb);
355 	int status;
356 
357 	status = latency_exceeded(rwb, cb->stat);
358 
359 	trace_wbt_timer(rwb->rqos.q->backing_dev_info, status, rqd->scale_step,
360 			inflight);
361 
362 	/*
363 	 * If we exceeded the latency target, step down. If we did not,
364 	 * step one level up. If we don't know enough to say either exceeded
365 	 * or ok, then don't do anything.
366 	 */
367 	switch (status) {
368 	case LAT_EXCEEDED:
369 		scale_down(rwb, true);
370 		break;
371 	case LAT_OK:
372 		scale_up(rwb);
373 		break;
374 	case LAT_UNKNOWN_WRITES:
375 		/*
376 		 * We started a the center step, but don't have a valid
377 		 * read/write sample, but we do have writes going on.
378 		 * Allow step to go negative, to increase write perf.
379 		 */
380 		scale_up(rwb);
381 		break;
382 	case LAT_UNKNOWN:
383 		if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
384 			break;
385 		/*
386 		 * We get here when previously scaled reduced depth, and we
387 		 * currently don't have a valid read/write sample. For that
388 		 * case, slowly return to center state (step == 0).
389 		 */
390 		if (rqd->scale_step > 0)
391 			scale_up(rwb);
392 		else if (rqd->scale_step < 0)
393 			scale_down(rwb, false);
394 		break;
395 	default:
396 		break;
397 	}
398 
399 	/*
400 	 * Re-arm timer, if we have IO in flight
401 	 */
402 	if (rqd->scale_step || inflight)
403 		rwb_arm_timer(rwb);
404 }
405 
406 static void __wbt_update_limits(struct rq_wb *rwb)
407 {
408 	struct rq_depth *rqd = &rwb->rq_depth;
409 
410 	rqd->scale_step = 0;
411 	rqd->scaled_max = false;
412 
413 	rq_depth_calc_max_depth(rqd);
414 	calc_wb_limits(rwb);
415 
416 	rwb_wake_all(rwb);
417 }
418 
419 void wbt_update_limits(struct request_queue *q)
420 {
421 	struct rq_qos *rqos = wbt_rq_qos(q);
422 	if (!rqos)
423 		return;
424 	__wbt_update_limits(RQWB(rqos));
425 }
426 
427 u64 wbt_get_min_lat(struct request_queue *q)
428 {
429 	struct rq_qos *rqos = wbt_rq_qos(q);
430 	if (!rqos)
431 		return 0;
432 	return RQWB(rqos)->min_lat_nsec;
433 }
434 
435 void wbt_set_min_lat(struct request_queue *q, u64 val)
436 {
437 	struct rq_qos *rqos = wbt_rq_qos(q);
438 	if (!rqos)
439 		return;
440 	RQWB(rqos)->min_lat_nsec = val;
441 	RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL;
442 	__wbt_update_limits(RQWB(rqos));
443 }
444 
445 
446 static bool close_io(struct rq_wb *rwb)
447 {
448 	const unsigned long now = jiffies;
449 
450 	return time_before(now, rwb->last_issue + HZ / 10) ||
451 		time_before(now, rwb->last_comp + HZ / 10);
452 }
453 
454 #define REQ_HIPRIO	(REQ_SYNC | REQ_META | REQ_PRIO)
455 
456 static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
457 {
458 	unsigned int limit;
459 
460 	/*
461 	 * If we got disabled, just return UINT_MAX. This ensures that
462 	 * we'll properly inc a new IO, and dec+wakeup at the end.
463 	 */
464 	if (!rwb_enabled(rwb))
465 		return UINT_MAX;
466 
467 	if ((rw & REQ_OP_MASK) == REQ_OP_DISCARD)
468 		return rwb->wb_background;
469 
470 	/*
471 	 * At this point we know it's a buffered write. If this is
472 	 * kswapd trying to free memory, or REQ_SYNC is set, then
473 	 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
474 	 * that. If the write is marked as a background write, then use
475 	 * the idle limit, or go to normal if we haven't had competing
476 	 * IO for a bit.
477 	 */
478 	if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
479 		limit = rwb->rq_depth.max_depth;
480 	else if ((rw & REQ_BACKGROUND) || close_io(rwb)) {
481 		/*
482 		 * If less than 100ms since we completed unrelated IO,
483 		 * limit us to half the depth for background writeback.
484 		 */
485 		limit = rwb->wb_background;
486 	} else
487 		limit = rwb->wb_normal;
488 
489 	return limit;
490 }
491 
492 struct wbt_wait_data {
493 	struct rq_wb *rwb;
494 	enum wbt_flags wb_acct;
495 	unsigned long rw;
496 };
497 
498 static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data)
499 {
500 	struct wbt_wait_data *data = private_data;
501 	return rq_wait_inc_below(rqw, get_limit(data->rwb, data->rw));
502 }
503 
504 static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data)
505 {
506 	struct wbt_wait_data *data = private_data;
507 	wbt_rqw_done(data->rwb, rqw, data->wb_acct);
508 }
509 
510 /*
511  * Block if we will exceed our limit, or if we are currently waiting for
512  * the timer to kick off queuing again.
513  */
514 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
515 		       unsigned long rw)
516 {
517 	struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
518 	struct wbt_wait_data data = {
519 		.rwb = rwb,
520 		.wb_acct = wb_acct,
521 		.rw = rw,
522 	};
523 
524 	rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb);
525 }
526 
527 static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio)
528 {
529 	switch (bio_op(bio)) {
530 	case REQ_OP_WRITE:
531 		/*
532 		 * Don't throttle WRITE_ODIRECT
533 		 */
534 		if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) ==
535 		    (REQ_SYNC | REQ_IDLE))
536 			return false;
537 		/* fallthrough */
538 	case REQ_OP_DISCARD:
539 		return true;
540 	default:
541 		return false;
542 	}
543 }
544 
545 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio)
546 {
547 	enum wbt_flags flags = 0;
548 
549 	if (!rwb_enabled(rwb))
550 		return 0;
551 
552 	if (bio_op(bio) == REQ_OP_READ) {
553 		flags = WBT_READ;
554 	} else if (wbt_should_throttle(rwb, bio)) {
555 		if (current_is_kswapd())
556 			flags |= WBT_KSWAPD;
557 		if (bio_op(bio) == REQ_OP_DISCARD)
558 			flags |= WBT_DISCARD;
559 		flags |= WBT_TRACKED;
560 	}
561 	return flags;
562 }
563 
564 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio)
565 {
566 	struct rq_wb *rwb = RQWB(rqos);
567 	enum wbt_flags flags = bio_to_wbt_flags(rwb, bio);
568 	__wbt_done(rqos, flags);
569 }
570 
571 /*
572  * Returns true if the IO request should be accounted, false if not.
573  * May sleep, if we have exceeded the writeback limits. Caller can pass
574  * in an irq held spinlock, if it holds one when calling this function.
575  * If we do sleep, we'll release and re-grab it.
576  */
577 static void wbt_wait(struct rq_qos *rqos, struct bio *bio)
578 {
579 	struct rq_wb *rwb = RQWB(rqos);
580 	enum wbt_flags flags;
581 
582 	flags = bio_to_wbt_flags(rwb, bio);
583 	if (!(flags & WBT_TRACKED)) {
584 		if (flags & WBT_READ)
585 			wb_timestamp(rwb, &rwb->last_issue);
586 		return;
587 	}
588 
589 	__wbt_wait(rwb, flags, bio->bi_opf);
590 
591 	if (!blk_stat_is_active(rwb->cb))
592 		rwb_arm_timer(rwb);
593 }
594 
595 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
596 {
597 	struct rq_wb *rwb = RQWB(rqos);
598 	rq->wbt_flags |= bio_to_wbt_flags(rwb, bio);
599 }
600 
601 static void wbt_issue(struct rq_qos *rqos, struct request *rq)
602 {
603 	struct rq_wb *rwb = RQWB(rqos);
604 
605 	if (!rwb_enabled(rwb))
606 		return;
607 
608 	/*
609 	 * Track sync issue, in case it takes a long time to complete. Allows us
610 	 * to react quicker, if a sync IO takes a long time to complete. Note
611 	 * that this is just a hint. The request can go away when it completes,
612 	 * so it's important we never dereference it. We only use the address to
613 	 * compare with, which is why we store the sync_issue time locally.
614 	 */
615 	if (wbt_is_read(rq) && !rwb->sync_issue) {
616 		rwb->sync_cookie = rq;
617 		rwb->sync_issue = rq->io_start_time_ns;
618 	}
619 }
620 
621 static void wbt_requeue(struct rq_qos *rqos, struct request *rq)
622 {
623 	struct rq_wb *rwb = RQWB(rqos);
624 	if (!rwb_enabled(rwb))
625 		return;
626 	if (rq == rwb->sync_cookie) {
627 		rwb->sync_issue = 0;
628 		rwb->sync_cookie = NULL;
629 	}
630 }
631 
632 void wbt_set_queue_depth(struct request_queue *q, unsigned int depth)
633 {
634 	struct rq_qos *rqos = wbt_rq_qos(q);
635 	if (rqos) {
636 		RQWB(rqos)->rq_depth.queue_depth = depth;
637 		__wbt_update_limits(RQWB(rqos));
638 	}
639 }
640 
641 void wbt_set_write_cache(struct request_queue *q, bool write_cache_on)
642 {
643 	struct rq_qos *rqos = wbt_rq_qos(q);
644 	if (rqos)
645 		RQWB(rqos)->wc = write_cache_on;
646 }
647 
648 /*
649  * Enable wbt if defaults are configured that way
650  */
651 void wbt_enable_default(struct request_queue *q)
652 {
653 	struct rq_qos *rqos = wbt_rq_qos(q);
654 	/* Throttling already enabled? */
655 	if (rqos)
656 		return;
657 
658 	/* Queue not registered? Maybe shutting down... */
659 	if (!test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
660 		return;
661 
662 	if (queue_is_mq(q) && IS_ENABLED(CONFIG_BLK_WBT_MQ))
663 		wbt_init(q);
664 }
665 EXPORT_SYMBOL_GPL(wbt_enable_default);
666 
667 u64 wbt_default_latency_nsec(struct request_queue *q)
668 {
669 	/*
670 	 * We default to 2msec for non-rotational storage, and 75msec
671 	 * for rotational storage.
672 	 */
673 	if (blk_queue_nonrot(q))
674 		return 2000000ULL;
675 	else
676 		return 75000000ULL;
677 }
678 
679 static int wbt_data_dir(const struct request *rq)
680 {
681 	const int op = req_op(rq);
682 
683 	if (op == REQ_OP_READ)
684 		return READ;
685 	else if (op_is_write(op))
686 		return WRITE;
687 
688 	/* don't account */
689 	return -1;
690 }
691 
692 static void wbt_exit(struct rq_qos *rqos)
693 {
694 	struct rq_wb *rwb = RQWB(rqos);
695 	struct request_queue *q = rqos->q;
696 
697 	blk_stat_remove_callback(q, rwb->cb);
698 	blk_stat_free_callback(rwb->cb);
699 	kfree(rwb);
700 }
701 
702 /*
703  * Disable wbt, if enabled by default.
704  */
705 void wbt_disable_default(struct request_queue *q)
706 {
707 	struct rq_qos *rqos = wbt_rq_qos(q);
708 	struct rq_wb *rwb;
709 	if (!rqos)
710 		return;
711 	rwb = RQWB(rqos);
712 	if (rwb->enable_state == WBT_STATE_ON_DEFAULT) {
713 		blk_stat_deactivate(rwb->cb);
714 		rwb->wb_normal = 0;
715 	}
716 }
717 EXPORT_SYMBOL_GPL(wbt_disable_default);
718 
719 #ifdef CONFIG_BLK_DEBUG_FS
720 static int wbt_curr_win_nsec_show(void *data, struct seq_file *m)
721 {
722 	struct rq_qos *rqos = data;
723 	struct rq_wb *rwb = RQWB(rqos);
724 
725 	seq_printf(m, "%llu\n", rwb->cur_win_nsec);
726 	return 0;
727 }
728 
729 static int wbt_enabled_show(void *data, struct seq_file *m)
730 {
731 	struct rq_qos *rqos = data;
732 	struct rq_wb *rwb = RQWB(rqos);
733 
734 	seq_printf(m, "%d\n", rwb->enable_state);
735 	return 0;
736 }
737 
738 static int wbt_id_show(void *data, struct seq_file *m)
739 {
740 	struct rq_qos *rqos = data;
741 
742 	seq_printf(m, "%u\n", rqos->id);
743 	return 0;
744 }
745 
746 static int wbt_inflight_show(void *data, struct seq_file *m)
747 {
748 	struct rq_qos *rqos = data;
749 	struct rq_wb *rwb = RQWB(rqos);
750 	int i;
751 
752 	for (i = 0; i < WBT_NUM_RWQ; i++)
753 		seq_printf(m, "%d: inflight %d\n", i,
754 			   atomic_read(&rwb->rq_wait[i].inflight));
755 	return 0;
756 }
757 
758 static int wbt_min_lat_nsec_show(void *data, struct seq_file *m)
759 {
760 	struct rq_qos *rqos = data;
761 	struct rq_wb *rwb = RQWB(rqos);
762 
763 	seq_printf(m, "%lu\n", rwb->min_lat_nsec);
764 	return 0;
765 }
766 
767 static int wbt_unknown_cnt_show(void *data, struct seq_file *m)
768 {
769 	struct rq_qos *rqos = data;
770 	struct rq_wb *rwb = RQWB(rqos);
771 
772 	seq_printf(m, "%u\n", rwb->unknown_cnt);
773 	return 0;
774 }
775 
776 static int wbt_normal_show(void *data, struct seq_file *m)
777 {
778 	struct rq_qos *rqos = data;
779 	struct rq_wb *rwb = RQWB(rqos);
780 
781 	seq_printf(m, "%u\n", rwb->wb_normal);
782 	return 0;
783 }
784 
785 static int wbt_background_show(void *data, struct seq_file *m)
786 {
787 	struct rq_qos *rqos = data;
788 	struct rq_wb *rwb = RQWB(rqos);
789 
790 	seq_printf(m, "%u\n", rwb->wb_background);
791 	return 0;
792 }
793 
794 static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = {
795 	{"curr_win_nsec", 0400, wbt_curr_win_nsec_show},
796 	{"enabled", 0400, wbt_enabled_show},
797 	{"id", 0400, wbt_id_show},
798 	{"inflight", 0400, wbt_inflight_show},
799 	{"min_lat_nsec", 0400, wbt_min_lat_nsec_show},
800 	{"unknown_cnt", 0400, wbt_unknown_cnt_show},
801 	{"wb_normal", 0400, wbt_normal_show},
802 	{"wb_background", 0400, wbt_background_show},
803 	{},
804 };
805 #endif
806 
807 static struct rq_qos_ops wbt_rqos_ops = {
808 	.throttle = wbt_wait,
809 	.issue = wbt_issue,
810 	.track = wbt_track,
811 	.requeue = wbt_requeue,
812 	.done = wbt_done,
813 	.cleanup = wbt_cleanup,
814 	.exit = wbt_exit,
815 #ifdef CONFIG_BLK_DEBUG_FS
816 	.debugfs_attrs = wbt_debugfs_attrs,
817 #endif
818 };
819 
820 int wbt_init(struct request_queue *q)
821 {
822 	struct rq_wb *rwb;
823 	int i;
824 
825 	rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
826 	if (!rwb)
827 		return -ENOMEM;
828 
829 	rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
830 	if (!rwb->cb) {
831 		kfree(rwb);
832 		return -ENOMEM;
833 	}
834 
835 	for (i = 0; i < WBT_NUM_RWQ; i++)
836 		rq_wait_init(&rwb->rq_wait[i]);
837 
838 	rwb->rqos.id = RQ_QOS_WBT;
839 	rwb->rqos.ops = &wbt_rqos_ops;
840 	rwb->rqos.q = q;
841 	rwb->last_comp = rwb->last_issue = jiffies;
842 	rwb->win_nsec = RWB_WINDOW_NSEC;
843 	rwb->enable_state = WBT_STATE_ON_DEFAULT;
844 	rwb->wc = 1;
845 	rwb->rq_depth.default_depth = RWB_DEF_DEPTH;
846 	__wbt_update_limits(rwb);
847 
848 	/*
849 	 * Assign rwb and add the stats callback.
850 	 */
851 	rq_qos_add(q, &rwb->rqos);
852 	blk_stat_add_callback(q, rwb->cb);
853 
854 	rwb->min_lat_nsec = wbt_default_latency_nsec(q);
855 
856 	wbt_set_queue_depth(q, blk_queue_depth(q));
857 	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
858 
859 	return 0;
860 }
861