xref: /openbmc/linux/block/blk-wbt.c (revision a8a45941)
1 /*
2  * buffered writeback throttling. loosely based on CoDel. We can't drop
3  * packets for IO scheduling, so the logic is something like this:
4  *
5  * - Monitor latencies in a defined window of time.
6  * - If the minimum latency in the above window exceeds some target, increment
7  *   scaling step and scale down queue depth by a factor of 2x. The monitoring
8  *   window is then shrunk to 100 / sqrt(scaling step + 1).
9  * - For any window where we don't have solid data on what the latencies
10  *   look like, retain status quo.
11  * - If latencies look good, decrement scaling step.
12  * - If we're only doing writes, allow the scaling step to go negative. This
13  *   will temporarily boost write performance, snapping back to a stable
14  *   scaling step of 0 if reads show up or the heavy writers finish. Unlike
15  *   positive scaling steps where we shrink the monitoring window, a negative
16  *   scaling step retains the default step==0 window size.
17  *
18  * Copyright (C) 2016 Jens Axboe
19  *
20  */
21 #include <linux/kernel.h>
22 #include <linux/blk_types.h>
23 #include <linux/slab.h>
24 #include <linux/backing-dev.h>
25 #include <linux/swap.h>
26 
27 #include "blk-wbt.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/wbt.h>
31 
32 static inline void wbt_clear_state(struct request *rq)
33 {
34 	rq->issue_stat.stat &= ~BLK_STAT_RES_MASK;
35 }
36 
37 static inline enum wbt_flags wbt_flags(struct request *rq)
38 {
39 	return (rq->issue_stat.stat & BLK_STAT_RES_MASK) >> BLK_STAT_RES_SHIFT;
40 }
41 
42 static inline bool wbt_is_tracked(struct request *rq)
43 {
44 	return (rq->issue_stat.stat >> BLK_STAT_RES_SHIFT) & WBT_TRACKED;
45 }
46 
47 static inline bool wbt_is_read(struct request *rq)
48 {
49 	return (rq->issue_stat.stat >> BLK_STAT_RES_SHIFT) & WBT_READ;
50 }
51 
52 enum {
53 	/*
54 	 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
55 	 * from here depending on device stats
56 	 */
57 	RWB_DEF_DEPTH	= 16,
58 
59 	/*
60 	 * 100msec window
61 	 */
62 	RWB_WINDOW_NSEC		= 100 * 1000 * 1000ULL,
63 
64 	/*
65 	 * Disregard stats, if we don't meet this minimum
66 	 */
67 	RWB_MIN_WRITE_SAMPLES	= 3,
68 
69 	/*
70 	 * If we have this number of consecutive windows with not enough
71 	 * information to scale up or down, scale up.
72 	 */
73 	RWB_UNKNOWN_BUMP	= 5,
74 };
75 
76 static inline bool rwb_enabled(struct rq_wb *rwb)
77 {
78 	return rwb && rwb->wb_normal != 0;
79 }
80 
81 /*
82  * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
83  * false if 'v' + 1 would be bigger than 'below'.
84  */
85 static bool atomic_inc_below(atomic_t *v, int below)
86 {
87 	int cur = atomic_read(v);
88 
89 	for (;;) {
90 		int old;
91 
92 		if (cur >= below)
93 			return false;
94 		old = atomic_cmpxchg(v, cur, cur + 1);
95 		if (old == cur)
96 			break;
97 		cur = old;
98 	}
99 
100 	return true;
101 }
102 
103 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
104 {
105 	if (rwb_enabled(rwb)) {
106 		const unsigned long cur = jiffies;
107 
108 		if (cur != *var)
109 			*var = cur;
110 	}
111 }
112 
113 /*
114  * If a task was rate throttled in balance_dirty_pages() within the last
115  * second or so, use that to indicate a higher cleaning rate.
116  */
117 static bool wb_recent_wait(struct rq_wb *rwb)
118 {
119 	struct bdi_writeback *wb = &rwb->queue->backing_dev_info->wb;
120 
121 	return time_before(jiffies, wb->dirty_sleep + HZ);
122 }
123 
124 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
125 					  enum wbt_flags wb_acct)
126 {
127 	if (wb_acct & WBT_KSWAPD)
128 		return &rwb->rq_wait[WBT_RWQ_KSWAPD];
129 	else if (wb_acct & WBT_DISCARD)
130 		return &rwb->rq_wait[WBT_RWQ_DISCARD];
131 
132 	return &rwb->rq_wait[WBT_RWQ_BG];
133 }
134 
135 static void rwb_wake_all(struct rq_wb *rwb)
136 {
137 	int i;
138 
139 	for (i = 0; i < WBT_NUM_RWQ; i++) {
140 		struct rq_wait *rqw = &rwb->rq_wait[i];
141 
142 		if (waitqueue_active(&rqw->wait))
143 			wake_up_all(&rqw->wait);
144 	}
145 }
146 
147 void __wbt_done(struct rq_wb *rwb, enum wbt_flags wb_acct)
148 {
149 	struct rq_wait *rqw;
150 	int inflight, limit;
151 
152 	if (!(wb_acct & WBT_TRACKED))
153 		return;
154 
155 	rqw = get_rq_wait(rwb, wb_acct);
156 	inflight = atomic_dec_return(&rqw->inflight);
157 
158 	/*
159 	 * wbt got disabled with IO in flight. Wake up any potential
160 	 * waiters, we don't have to do more than that.
161 	 */
162 	if (unlikely(!rwb_enabled(rwb))) {
163 		rwb_wake_all(rwb);
164 		return;
165 	}
166 
167 	/*
168 	 * For discards, our limit is always the background. For writes, if
169 	 * the device does write back caching, drop further down before we
170 	 * wake people up.
171 	 */
172 	if (wb_acct & WBT_DISCARD)
173 		limit = rwb->wb_background;
174 	else if (rwb->wc && !wb_recent_wait(rwb))
175 		limit = 0;
176 	else
177 		limit = rwb->wb_normal;
178 
179 	/*
180 	 * Don't wake anyone up if we are above the normal limit.
181 	 */
182 	if (inflight && inflight >= limit)
183 		return;
184 
185 	if (waitqueue_active(&rqw->wait)) {
186 		int diff = limit - inflight;
187 
188 		if (!inflight || diff >= rwb->wb_background / 2)
189 			wake_up_all(&rqw->wait);
190 	}
191 }
192 
193 /*
194  * Called on completion of a request. Note that it's also called when
195  * a request is merged, when the request gets freed.
196  */
197 void wbt_done(struct rq_wb *rwb, struct request *rq)
198 {
199 	if (!rwb)
200 		return;
201 
202 	if (!wbt_is_tracked(rq)) {
203 		if (rwb->sync_cookie == rq) {
204 			rwb->sync_issue = 0;
205 			rwb->sync_cookie = NULL;
206 		}
207 
208 		if (wbt_is_read(rq))
209 			wb_timestamp(rwb, &rwb->last_comp);
210 	} else {
211 		WARN_ON_ONCE(rq == rwb->sync_cookie);
212 		__wbt_done(rwb, wbt_flags(rq));
213 	}
214 	wbt_clear_state(rq);
215 }
216 
217 /*
218  * Return true, if we can't increase the depth further by scaling
219  */
220 static bool calc_wb_limits(struct rq_wb *rwb)
221 {
222 	unsigned int depth;
223 	bool ret = false;
224 
225 	if (!rwb->min_lat_nsec) {
226 		rwb->wb_max = rwb->wb_normal = rwb->wb_background = 0;
227 		return false;
228 	}
229 
230 	/*
231 	 * For QD=1 devices, this is a special case. It's important for those
232 	 * to have one request ready when one completes, so force a depth of
233 	 * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
234 	 * since the device can't have more than that in flight. If we're
235 	 * scaling down, then keep a setting of 1/1/1.
236 	 */
237 	if (rwb->queue_depth == 1) {
238 		if (rwb->scale_step > 0)
239 			rwb->wb_max = rwb->wb_normal = 1;
240 		else {
241 			rwb->wb_max = rwb->wb_normal = 2;
242 			ret = true;
243 		}
244 		rwb->wb_background = 1;
245 	} else {
246 		/*
247 		 * scale_step == 0 is our default state. If we have suffered
248 		 * latency spikes, step will be > 0, and we shrink the
249 		 * allowed write depths. If step is < 0, we're only doing
250 		 * writes, and we allow a temporarily higher depth to
251 		 * increase performance.
252 		 */
253 		depth = min_t(unsigned int, RWB_DEF_DEPTH, rwb->queue_depth);
254 		if (rwb->scale_step > 0)
255 			depth = 1 + ((depth - 1) >> min(31, rwb->scale_step));
256 		else if (rwb->scale_step < 0) {
257 			unsigned int maxd = 3 * rwb->queue_depth / 4;
258 
259 			depth = 1 + ((depth - 1) << -rwb->scale_step);
260 			if (depth > maxd) {
261 				depth = maxd;
262 				ret = true;
263 			}
264 		}
265 
266 		/*
267 		 * Set our max/normal/bg queue depths based on how far
268 		 * we have scaled down (->scale_step).
269 		 */
270 		rwb->wb_max = depth;
271 		rwb->wb_normal = (rwb->wb_max + 1) / 2;
272 		rwb->wb_background = (rwb->wb_max + 3) / 4;
273 	}
274 
275 	return ret;
276 }
277 
278 static inline bool stat_sample_valid(struct blk_rq_stat *stat)
279 {
280 	/*
281 	 * We need at least one read sample, and a minimum of
282 	 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
283 	 * that it's writes impacting us, and not just some sole read on
284 	 * a device that is in a lower power state.
285 	 */
286 	return (stat[READ].nr_samples >= 1 &&
287 		stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
288 }
289 
290 static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
291 {
292 	u64 now, issue = READ_ONCE(rwb->sync_issue);
293 
294 	if (!issue || !rwb->sync_cookie)
295 		return 0;
296 
297 	now = ktime_to_ns(ktime_get());
298 	return now - issue;
299 }
300 
301 enum {
302 	LAT_OK = 1,
303 	LAT_UNKNOWN,
304 	LAT_UNKNOWN_WRITES,
305 	LAT_EXCEEDED,
306 };
307 
308 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
309 {
310 	struct backing_dev_info *bdi = rwb->queue->backing_dev_info;
311 	u64 thislat;
312 
313 	/*
314 	 * If our stored sync issue exceeds the window size, or it
315 	 * exceeds our min target AND we haven't logged any entries,
316 	 * flag the latency as exceeded. wbt works off completion latencies,
317 	 * but for a flooded device, a single sync IO can take a long time
318 	 * to complete after being issued. If this time exceeds our
319 	 * monitoring window AND we didn't see any other completions in that
320 	 * window, then count that sync IO as a violation of the latency.
321 	 */
322 	thislat = rwb_sync_issue_lat(rwb);
323 	if (thislat > rwb->cur_win_nsec ||
324 	    (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
325 		trace_wbt_lat(bdi, thislat);
326 		return LAT_EXCEEDED;
327 	}
328 
329 	/*
330 	 * No read/write mix, if stat isn't valid
331 	 */
332 	if (!stat_sample_valid(stat)) {
333 		/*
334 		 * If we had writes in this stat window and the window is
335 		 * current, we're only doing writes. If a task recently
336 		 * waited or still has writes in flights, consider us doing
337 		 * just writes as well.
338 		 */
339 		if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
340 		    wbt_inflight(rwb))
341 			return LAT_UNKNOWN_WRITES;
342 		return LAT_UNKNOWN;
343 	}
344 
345 	/*
346 	 * If the 'min' latency exceeds our target, step down.
347 	 */
348 	if (stat[READ].min > rwb->min_lat_nsec) {
349 		trace_wbt_lat(bdi, stat[READ].min);
350 		trace_wbt_stat(bdi, stat);
351 		return LAT_EXCEEDED;
352 	}
353 
354 	if (rwb->scale_step)
355 		trace_wbt_stat(bdi, stat);
356 
357 	return LAT_OK;
358 }
359 
360 static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
361 {
362 	struct backing_dev_info *bdi = rwb->queue->backing_dev_info;
363 
364 	trace_wbt_step(bdi, msg, rwb->scale_step, rwb->cur_win_nsec,
365 			rwb->wb_background, rwb->wb_normal, rwb->wb_max);
366 }
367 
368 static void scale_up(struct rq_wb *rwb)
369 {
370 	/*
371 	 * Hit max in previous round, stop here
372 	 */
373 	if (rwb->scaled_max)
374 		return;
375 
376 	rwb->scale_step--;
377 	rwb->unknown_cnt = 0;
378 
379 	rwb->scaled_max = calc_wb_limits(rwb);
380 
381 	rwb_wake_all(rwb);
382 
383 	rwb_trace_step(rwb, "step up");
384 }
385 
386 /*
387  * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
388  * had a latency violation.
389  */
390 static void scale_down(struct rq_wb *rwb, bool hard_throttle)
391 {
392 	/*
393 	 * Stop scaling down when we've hit the limit. This also prevents
394 	 * ->scale_step from going to crazy values, if the device can't
395 	 * keep up.
396 	 */
397 	if (rwb->wb_max == 1)
398 		return;
399 
400 	if (rwb->scale_step < 0 && hard_throttle)
401 		rwb->scale_step = 0;
402 	else
403 		rwb->scale_step++;
404 
405 	rwb->scaled_max = false;
406 	rwb->unknown_cnt = 0;
407 	calc_wb_limits(rwb);
408 	rwb_trace_step(rwb, "step down");
409 }
410 
411 static void rwb_arm_timer(struct rq_wb *rwb)
412 {
413 	if (rwb->scale_step > 0) {
414 		/*
415 		 * We should speed this up, using some variant of a fast
416 		 * integer inverse square root calculation. Since we only do
417 		 * this for every window expiration, it's not a huge deal,
418 		 * though.
419 		 */
420 		rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
421 					int_sqrt((rwb->scale_step + 1) << 8));
422 	} else {
423 		/*
424 		 * For step < 0, we don't want to increase/decrease the
425 		 * window size.
426 		 */
427 		rwb->cur_win_nsec = rwb->win_nsec;
428 	}
429 
430 	blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
431 }
432 
433 static void wb_timer_fn(struct blk_stat_callback *cb)
434 {
435 	struct rq_wb *rwb = cb->data;
436 	unsigned int inflight = wbt_inflight(rwb);
437 	int status;
438 
439 	status = latency_exceeded(rwb, cb->stat);
440 
441 	trace_wbt_timer(rwb->queue->backing_dev_info, status, rwb->scale_step,
442 			inflight);
443 
444 	/*
445 	 * If we exceeded the latency target, step down. If we did not,
446 	 * step one level up. If we don't know enough to say either exceeded
447 	 * or ok, then don't do anything.
448 	 */
449 	switch (status) {
450 	case LAT_EXCEEDED:
451 		scale_down(rwb, true);
452 		break;
453 	case LAT_OK:
454 		scale_up(rwb);
455 		break;
456 	case LAT_UNKNOWN_WRITES:
457 		/*
458 		 * We started a the center step, but don't have a valid
459 		 * read/write sample, but we do have writes going on.
460 		 * Allow step to go negative, to increase write perf.
461 		 */
462 		scale_up(rwb);
463 		break;
464 	case LAT_UNKNOWN:
465 		if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
466 			break;
467 		/*
468 		 * We get here when previously scaled reduced depth, and we
469 		 * currently don't have a valid read/write sample. For that
470 		 * case, slowly return to center state (step == 0).
471 		 */
472 		if (rwb->scale_step > 0)
473 			scale_up(rwb);
474 		else if (rwb->scale_step < 0)
475 			scale_down(rwb, false);
476 		break;
477 	default:
478 		break;
479 	}
480 
481 	/*
482 	 * Re-arm timer, if we have IO in flight
483 	 */
484 	if (rwb->scale_step || inflight)
485 		rwb_arm_timer(rwb);
486 }
487 
488 void wbt_update_limits(struct rq_wb *rwb)
489 {
490 	rwb->scale_step = 0;
491 	rwb->scaled_max = false;
492 	calc_wb_limits(rwb);
493 
494 	rwb_wake_all(rwb);
495 }
496 
497 static bool close_io(struct rq_wb *rwb)
498 {
499 	const unsigned long now = jiffies;
500 
501 	return time_before(now, rwb->last_issue + HZ / 10) ||
502 		time_before(now, rwb->last_comp + HZ / 10);
503 }
504 
505 #define REQ_HIPRIO	(REQ_SYNC | REQ_META | REQ_PRIO)
506 
507 static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
508 {
509 	unsigned int limit;
510 
511 	if ((rw & REQ_OP_MASK) == REQ_OP_DISCARD)
512 		return rwb->wb_background;
513 
514 	/*
515 	 * At this point we know it's a buffered write. If this is
516 	 * kswapd trying to free memory, or REQ_SYNC is set, then
517 	 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
518 	 * that. If the write is marked as a background write, then use
519 	 * the idle limit, or go to normal if we haven't had competing
520 	 * IO for a bit.
521 	 */
522 	if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
523 		limit = rwb->wb_max;
524 	else if ((rw & REQ_BACKGROUND) || close_io(rwb)) {
525 		/*
526 		 * If less than 100ms since we completed unrelated IO,
527 		 * limit us to half the depth for background writeback.
528 		 */
529 		limit = rwb->wb_background;
530 	} else
531 		limit = rwb->wb_normal;
532 
533 	return limit;
534 }
535 
536 static inline bool may_queue(struct rq_wb *rwb, struct rq_wait *rqw,
537 			     wait_queue_entry_t *wait, unsigned long rw)
538 {
539 	/*
540 	 * inc it here even if disabled, since we'll dec it at completion.
541 	 * this only happens if the task was sleeping in __wbt_wait(),
542 	 * and someone turned it off at the same time.
543 	 */
544 	if (!rwb_enabled(rwb)) {
545 		atomic_inc(&rqw->inflight);
546 		return true;
547 	}
548 
549 	/*
550 	 * If the waitqueue is already active and we are not the next
551 	 * in line to be woken up, wait for our turn.
552 	 */
553 	if (waitqueue_active(&rqw->wait) &&
554 	    rqw->wait.head.next != &wait->entry)
555 		return false;
556 
557 	return atomic_inc_below(&rqw->inflight, get_limit(rwb, rw));
558 }
559 
560 /*
561  * Block if we will exceed our limit, or if we are currently waiting for
562  * the timer to kick off queuing again.
563  */
564 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
565 		       unsigned long rw, spinlock_t *lock)
566 	__releases(lock)
567 	__acquires(lock)
568 {
569 	struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
570 	DEFINE_WAIT(wait);
571 
572 	if (may_queue(rwb, rqw, &wait, rw))
573 		return;
574 
575 	do {
576 		prepare_to_wait_exclusive(&rqw->wait, &wait,
577 						TASK_UNINTERRUPTIBLE);
578 
579 		if (may_queue(rwb, rqw, &wait, rw))
580 			break;
581 
582 		if (lock) {
583 			spin_unlock_irq(lock);
584 			io_schedule();
585 			spin_lock_irq(lock);
586 		} else
587 			io_schedule();
588 	} while (1);
589 
590 	finish_wait(&rqw->wait, &wait);
591 }
592 
593 static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio)
594 {
595 	switch (bio_op(bio)) {
596 	case REQ_OP_WRITE:
597 		/*
598 		 * Don't throttle WRITE_ODIRECT
599 		 */
600 		if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) ==
601 		    (REQ_SYNC | REQ_IDLE))
602 			return false;
603 		/* fallthrough */
604 	case REQ_OP_DISCARD:
605 		return true;
606 	default:
607 		return false;
608 	}
609 }
610 
611 /*
612  * Returns true if the IO request should be accounted, false if not.
613  * May sleep, if we have exceeded the writeback limits. Caller can pass
614  * in an irq held spinlock, if it holds one when calling this function.
615  * If we do sleep, we'll release and re-grab it.
616  */
617 enum wbt_flags wbt_wait(struct rq_wb *rwb, struct bio *bio, spinlock_t *lock)
618 {
619 	enum wbt_flags ret = 0;
620 
621 	if (!rwb_enabled(rwb))
622 		return 0;
623 
624 	if (bio_op(bio) == REQ_OP_READ)
625 		ret = WBT_READ;
626 
627 	if (!wbt_should_throttle(rwb, bio)) {
628 		if (ret & WBT_READ)
629 			wb_timestamp(rwb, &rwb->last_issue);
630 		return ret;
631 	}
632 
633 	if (current_is_kswapd())
634 		ret |= WBT_KSWAPD;
635 	if (bio_op(bio) == REQ_OP_DISCARD)
636 		ret |= WBT_DISCARD;
637 
638 	__wbt_wait(rwb, ret, bio->bi_opf, lock);
639 
640 	if (!blk_stat_is_active(rwb->cb))
641 		rwb_arm_timer(rwb);
642 
643 	return ret | WBT_TRACKED;
644 }
645 
646 void wbt_issue(struct rq_wb *rwb, struct request *rq)
647 {
648 	if (!rwb_enabled(rwb))
649 		return;
650 
651 	/*
652 	 * Track sync issue, in case it takes a long time to complete. Allows us
653 	 * to react quicker, if a sync IO takes a long time to complete. Note
654 	 * that this is just a hint. The request can go away when it completes,
655 	 * so it's important we never dereference it. We only use the address to
656 	 * compare with, which is why we store the sync_issue time locally.
657 	 */
658 	if (wbt_is_read(rq) && !rwb->sync_issue) {
659 		rwb->sync_cookie = rq;
660 		rwb->sync_issue = blk_stat_time(&rq->issue_stat);
661 	}
662 }
663 
664 void wbt_requeue(struct rq_wb *rwb, struct request *rq)
665 {
666 	if (!rwb_enabled(rwb))
667 		return;
668 	if (rq == rwb->sync_cookie) {
669 		rwb->sync_issue = 0;
670 		rwb->sync_cookie = NULL;
671 	}
672 }
673 
674 void wbt_set_queue_depth(struct rq_wb *rwb, unsigned int depth)
675 {
676 	if (rwb) {
677 		rwb->queue_depth = depth;
678 		wbt_update_limits(rwb);
679 	}
680 }
681 
682 void wbt_set_write_cache(struct rq_wb *rwb, bool write_cache_on)
683 {
684 	if (rwb)
685 		rwb->wc = write_cache_on;
686 }
687 
688 /*
689  * Disable wbt, if enabled by default.
690  */
691 void wbt_disable_default(struct request_queue *q)
692 {
693 	struct rq_wb *rwb = q->rq_wb;
694 
695 	if (rwb && rwb->enable_state == WBT_STATE_ON_DEFAULT)
696 		wbt_exit(q);
697 }
698 EXPORT_SYMBOL_GPL(wbt_disable_default);
699 
700 /*
701  * Enable wbt if defaults are configured that way
702  */
703 void wbt_enable_default(struct request_queue *q)
704 {
705 	/* Throttling already enabled? */
706 	if (q->rq_wb)
707 		return;
708 
709 	/* Queue not registered? Maybe shutting down... */
710 	if (!test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
711 		return;
712 
713 	if ((q->mq_ops && IS_ENABLED(CONFIG_BLK_WBT_MQ)) ||
714 	    (q->request_fn && IS_ENABLED(CONFIG_BLK_WBT_SQ)))
715 		wbt_init(q);
716 }
717 EXPORT_SYMBOL_GPL(wbt_enable_default);
718 
719 u64 wbt_default_latency_nsec(struct request_queue *q)
720 {
721 	/*
722 	 * We default to 2msec for non-rotational storage, and 75msec
723 	 * for rotational storage.
724 	 */
725 	if (blk_queue_nonrot(q))
726 		return 2000000ULL;
727 	else
728 		return 75000000ULL;
729 }
730 
731 static int wbt_data_dir(const struct request *rq)
732 {
733 	const int op = req_op(rq);
734 
735 	if (op == REQ_OP_READ)
736 		return READ;
737 	else if (op_is_write(op))
738 		return WRITE;
739 
740 	/* don't account */
741 	return -1;
742 }
743 
744 int wbt_init(struct request_queue *q)
745 {
746 	struct rq_wb *rwb;
747 	int i;
748 
749 	BUILD_BUG_ON(WBT_NR_BITS > BLK_STAT_RES_BITS);
750 
751 	rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
752 	if (!rwb)
753 		return -ENOMEM;
754 
755 	rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
756 	if (!rwb->cb) {
757 		kfree(rwb);
758 		return -ENOMEM;
759 	}
760 
761 	for (i = 0; i < WBT_NUM_RWQ; i++) {
762 		atomic_set(&rwb->rq_wait[i].inflight, 0);
763 		init_waitqueue_head(&rwb->rq_wait[i].wait);
764 	}
765 
766 	rwb->last_comp = rwb->last_issue = jiffies;
767 	rwb->queue = q;
768 	rwb->win_nsec = RWB_WINDOW_NSEC;
769 	rwb->enable_state = WBT_STATE_ON_DEFAULT;
770 	wbt_update_limits(rwb);
771 
772 	/*
773 	 * Assign rwb and add the stats callback.
774 	 */
775 	q->rq_wb = rwb;
776 	blk_stat_add_callback(q, rwb->cb);
777 
778 	rwb->min_lat_nsec = wbt_default_latency_nsec(q);
779 
780 	wbt_set_queue_depth(rwb, blk_queue_depth(q));
781 	wbt_set_write_cache(rwb, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
782 
783 	return 0;
784 }
785 
786 void wbt_exit(struct request_queue *q)
787 {
788 	struct rq_wb *rwb = q->rq_wb;
789 
790 	if (rwb) {
791 		blk_stat_remove_callback(q, rwb->cb);
792 		blk_stat_free_callback(rwb->cb);
793 		q->rq_wb = NULL;
794 		kfree(rwb);
795 	}
796 }
797