xref: /openbmc/linux/block/blk-wbt.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * buffered writeback throttling. loosely based on CoDel. We can't drop
4  * packets for IO scheduling, so the logic is something like this:
5  *
6  * - Monitor latencies in a defined window of time.
7  * - If the minimum latency in the above window exceeds some target, increment
8  *   scaling step and scale down queue depth by a factor of 2x. The monitoring
9  *   window is then shrunk to 100 / sqrt(scaling step + 1).
10  * - For any window where we don't have solid data on what the latencies
11  *   look like, retain status quo.
12  * - If latencies look good, decrement scaling step.
13  * - If we're only doing writes, allow the scaling step to go negative. This
14  *   will temporarily boost write performance, snapping back to a stable
15  *   scaling step of 0 if reads show up or the heavy writers finish. Unlike
16  *   positive scaling steps where we shrink the monitoring window, a negative
17  *   scaling step retains the default step==0 window size.
18  *
19  * Copyright (C) 2016 Jens Axboe
20  *
21  */
22 #include <linux/kernel.h>
23 #include <linux/blk_types.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/swap.h>
27 
28 #include "blk-wbt.h"
29 #include "blk-rq-qos.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/wbt.h>
33 
34 static inline void wbt_clear_state(struct request *rq)
35 {
36 	rq->wbt_flags = 0;
37 }
38 
39 static inline enum wbt_flags wbt_flags(struct request *rq)
40 {
41 	return rq->wbt_flags;
42 }
43 
44 static inline bool wbt_is_tracked(struct request *rq)
45 {
46 	return rq->wbt_flags & WBT_TRACKED;
47 }
48 
49 static inline bool wbt_is_read(struct request *rq)
50 {
51 	return rq->wbt_flags & WBT_READ;
52 }
53 
54 enum {
55 	/*
56 	 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
57 	 * from here depending on device stats
58 	 */
59 	RWB_DEF_DEPTH	= 16,
60 
61 	/*
62 	 * 100msec window
63 	 */
64 	RWB_WINDOW_NSEC		= 100 * 1000 * 1000ULL,
65 
66 	/*
67 	 * Disregard stats, if we don't meet this minimum
68 	 */
69 	RWB_MIN_WRITE_SAMPLES	= 3,
70 
71 	/*
72 	 * If we have this number of consecutive windows with not enough
73 	 * information to scale up or down, scale up.
74 	 */
75 	RWB_UNKNOWN_BUMP	= 5,
76 };
77 
78 static inline bool rwb_enabled(struct rq_wb *rwb)
79 {
80 	return rwb && rwb->enable_state != WBT_STATE_OFF_DEFAULT &&
81 		      rwb->wb_normal != 0;
82 }
83 
84 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
85 {
86 	if (rwb_enabled(rwb)) {
87 		const unsigned long cur = jiffies;
88 
89 		if (cur != *var)
90 			*var = cur;
91 	}
92 }
93 
94 /*
95  * If a task was rate throttled in balance_dirty_pages() within the last
96  * second or so, use that to indicate a higher cleaning rate.
97  */
98 static bool wb_recent_wait(struct rq_wb *rwb)
99 {
100 	struct bdi_writeback *wb = &rwb->rqos.q->backing_dev_info->wb;
101 
102 	return time_before(jiffies, wb->dirty_sleep + HZ);
103 }
104 
105 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
106 					  enum wbt_flags wb_acct)
107 {
108 	if (wb_acct & WBT_KSWAPD)
109 		return &rwb->rq_wait[WBT_RWQ_KSWAPD];
110 	else if (wb_acct & WBT_DISCARD)
111 		return &rwb->rq_wait[WBT_RWQ_DISCARD];
112 
113 	return &rwb->rq_wait[WBT_RWQ_BG];
114 }
115 
116 static void rwb_wake_all(struct rq_wb *rwb)
117 {
118 	int i;
119 
120 	for (i = 0; i < WBT_NUM_RWQ; i++) {
121 		struct rq_wait *rqw = &rwb->rq_wait[i];
122 
123 		if (wq_has_sleeper(&rqw->wait))
124 			wake_up_all(&rqw->wait);
125 	}
126 }
127 
128 static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw,
129 			 enum wbt_flags wb_acct)
130 {
131 	int inflight, limit;
132 
133 	inflight = atomic_dec_return(&rqw->inflight);
134 
135 	/*
136 	 * wbt got disabled with IO in flight. Wake up any potential
137 	 * waiters, we don't have to do more than that.
138 	 */
139 	if (unlikely(!rwb_enabled(rwb))) {
140 		rwb_wake_all(rwb);
141 		return;
142 	}
143 
144 	/*
145 	 * For discards, our limit is always the background. For writes, if
146 	 * the device does write back caching, drop further down before we
147 	 * wake people up.
148 	 */
149 	if (wb_acct & WBT_DISCARD)
150 		limit = rwb->wb_background;
151 	else if (rwb->wc && !wb_recent_wait(rwb))
152 		limit = 0;
153 	else
154 		limit = rwb->wb_normal;
155 
156 	/*
157 	 * Don't wake anyone up if we are above the normal limit.
158 	 */
159 	if (inflight && inflight >= limit)
160 		return;
161 
162 	if (wq_has_sleeper(&rqw->wait)) {
163 		int diff = limit - inflight;
164 
165 		if (!inflight || diff >= rwb->wb_background / 2)
166 			wake_up_all(&rqw->wait);
167 	}
168 }
169 
170 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct)
171 {
172 	struct rq_wb *rwb = RQWB(rqos);
173 	struct rq_wait *rqw;
174 
175 	if (!(wb_acct & WBT_TRACKED))
176 		return;
177 
178 	rqw = get_rq_wait(rwb, wb_acct);
179 	wbt_rqw_done(rwb, rqw, wb_acct);
180 }
181 
182 /*
183  * Called on completion of a request. Note that it's also called when
184  * a request is merged, when the request gets freed.
185  */
186 static void wbt_done(struct rq_qos *rqos, struct request *rq)
187 {
188 	struct rq_wb *rwb = RQWB(rqos);
189 
190 	if (!wbt_is_tracked(rq)) {
191 		if (rwb->sync_cookie == rq) {
192 			rwb->sync_issue = 0;
193 			rwb->sync_cookie = NULL;
194 		}
195 
196 		if (wbt_is_read(rq))
197 			wb_timestamp(rwb, &rwb->last_comp);
198 	} else {
199 		WARN_ON_ONCE(rq == rwb->sync_cookie);
200 		__wbt_done(rqos, wbt_flags(rq));
201 	}
202 	wbt_clear_state(rq);
203 }
204 
205 static inline bool stat_sample_valid(struct blk_rq_stat *stat)
206 {
207 	/*
208 	 * We need at least one read sample, and a minimum of
209 	 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
210 	 * that it's writes impacting us, and not just some sole read on
211 	 * a device that is in a lower power state.
212 	 */
213 	return (stat[READ].nr_samples >= 1 &&
214 		stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
215 }
216 
217 static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
218 {
219 	u64 now, issue = READ_ONCE(rwb->sync_issue);
220 
221 	if (!issue || !rwb->sync_cookie)
222 		return 0;
223 
224 	now = ktime_to_ns(ktime_get());
225 	return now - issue;
226 }
227 
228 enum {
229 	LAT_OK = 1,
230 	LAT_UNKNOWN,
231 	LAT_UNKNOWN_WRITES,
232 	LAT_EXCEEDED,
233 };
234 
235 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
236 {
237 	struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info;
238 	struct rq_depth *rqd = &rwb->rq_depth;
239 	u64 thislat;
240 
241 	/*
242 	 * If our stored sync issue exceeds the window size, or it
243 	 * exceeds our min target AND we haven't logged any entries,
244 	 * flag the latency as exceeded. wbt works off completion latencies,
245 	 * but for a flooded device, a single sync IO can take a long time
246 	 * to complete after being issued. If this time exceeds our
247 	 * monitoring window AND we didn't see any other completions in that
248 	 * window, then count that sync IO as a violation of the latency.
249 	 */
250 	thislat = rwb_sync_issue_lat(rwb);
251 	if (thislat > rwb->cur_win_nsec ||
252 	    (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
253 		trace_wbt_lat(bdi, thislat);
254 		return LAT_EXCEEDED;
255 	}
256 
257 	/*
258 	 * No read/write mix, if stat isn't valid
259 	 */
260 	if (!stat_sample_valid(stat)) {
261 		/*
262 		 * If we had writes in this stat window and the window is
263 		 * current, we're only doing writes. If a task recently
264 		 * waited or still has writes in flights, consider us doing
265 		 * just writes as well.
266 		 */
267 		if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
268 		    wbt_inflight(rwb))
269 			return LAT_UNKNOWN_WRITES;
270 		return LAT_UNKNOWN;
271 	}
272 
273 	/*
274 	 * If the 'min' latency exceeds our target, step down.
275 	 */
276 	if (stat[READ].min > rwb->min_lat_nsec) {
277 		trace_wbt_lat(bdi, stat[READ].min);
278 		trace_wbt_stat(bdi, stat);
279 		return LAT_EXCEEDED;
280 	}
281 
282 	if (rqd->scale_step)
283 		trace_wbt_stat(bdi, stat);
284 
285 	return LAT_OK;
286 }
287 
288 static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
289 {
290 	struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info;
291 	struct rq_depth *rqd = &rwb->rq_depth;
292 
293 	trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec,
294 			rwb->wb_background, rwb->wb_normal, rqd->max_depth);
295 }
296 
297 static void calc_wb_limits(struct rq_wb *rwb)
298 {
299 	if (rwb->min_lat_nsec == 0) {
300 		rwb->wb_normal = rwb->wb_background = 0;
301 	} else if (rwb->rq_depth.max_depth <= 2) {
302 		rwb->wb_normal = rwb->rq_depth.max_depth;
303 		rwb->wb_background = 1;
304 	} else {
305 		rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2;
306 		rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4;
307 	}
308 }
309 
310 static void scale_up(struct rq_wb *rwb)
311 {
312 	if (!rq_depth_scale_up(&rwb->rq_depth))
313 		return;
314 	calc_wb_limits(rwb);
315 	rwb->unknown_cnt = 0;
316 	rwb_wake_all(rwb);
317 	rwb_trace_step(rwb, tracepoint_string("scale up"));
318 }
319 
320 static void scale_down(struct rq_wb *rwb, bool hard_throttle)
321 {
322 	if (!rq_depth_scale_down(&rwb->rq_depth, hard_throttle))
323 		return;
324 	calc_wb_limits(rwb);
325 	rwb->unknown_cnt = 0;
326 	rwb_trace_step(rwb, tracepoint_string("scale down"));
327 }
328 
329 static void rwb_arm_timer(struct rq_wb *rwb)
330 {
331 	struct rq_depth *rqd = &rwb->rq_depth;
332 
333 	if (rqd->scale_step > 0) {
334 		/*
335 		 * We should speed this up, using some variant of a fast
336 		 * integer inverse square root calculation. Since we only do
337 		 * this for every window expiration, it's not a huge deal,
338 		 * though.
339 		 */
340 		rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
341 					int_sqrt((rqd->scale_step + 1) << 8));
342 	} else {
343 		/*
344 		 * For step < 0, we don't want to increase/decrease the
345 		 * window size.
346 		 */
347 		rwb->cur_win_nsec = rwb->win_nsec;
348 	}
349 
350 	blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
351 }
352 
353 static void wb_timer_fn(struct blk_stat_callback *cb)
354 {
355 	struct rq_wb *rwb = cb->data;
356 	struct rq_depth *rqd = &rwb->rq_depth;
357 	unsigned int inflight = wbt_inflight(rwb);
358 	int status;
359 
360 	status = latency_exceeded(rwb, cb->stat);
361 
362 	trace_wbt_timer(rwb->rqos.q->backing_dev_info, status, rqd->scale_step,
363 			inflight);
364 
365 	/*
366 	 * If we exceeded the latency target, step down. If we did not,
367 	 * step one level up. If we don't know enough to say either exceeded
368 	 * or ok, then don't do anything.
369 	 */
370 	switch (status) {
371 	case LAT_EXCEEDED:
372 		scale_down(rwb, true);
373 		break;
374 	case LAT_OK:
375 		scale_up(rwb);
376 		break;
377 	case LAT_UNKNOWN_WRITES:
378 		/*
379 		 * We started a the center step, but don't have a valid
380 		 * read/write sample, but we do have writes going on.
381 		 * Allow step to go negative, to increase write perf.
382 		 */
383 		scale_up(rwb);
384 		break;
385 	case LAT_UNKNOWN:
386 		if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
387 			break;
388 		/*
389 		 * We get here when previously scaled reduced depth, and we
390 		 * currently don't have a valid read/write sample. For that
391 		 * case, slowly return to center state (step == 0).
392 		 */
393 		if (rqd->scale_step > 0)
394 			scale_up(rwb);
395 		else if (rqd->scale_step < 0)
396 			scale_down(rwb, false);
397 		break;
398 	default:
399 		break;
400 	}
401 
402 	/*
403 	 * Re-arm timer, if we have IO in flight
404 	 */
405 	if (rqd->scale_step || inflight)
406 		rwb_arm_timer(rwb);
407 }
408 
409 static void wbt_update_limits(struct rq_wb *rwb)
410 {
411 	struct rq_depth *rqd = &rwb->rq_depth;
412 
413 	rqd->scale_step = 0;
414 	rqd->scaled_max = false;
415 
416 	rq_depth_calc_max_depth(rqd);
417 	calc_wb_limits(rwb);
418 
419 	rwb_wake_all(rwb);
420 }
421 
422 u64 wbt_get_min_lat(struct request_queue *q)
423 {
424 	struct rq_qos *rqos = wbt_rq_qos(q);
425 	if (!rqos)
426 		return 0;
427 	return RQWB(rqos)->min_lat_nsec;
428 }
429 
430 void wbt_set_min_lat(struct request_queue *q, u64 val)
431 {
432 	struct rq_qos *rqos = wbt_rq_qos(q);
433 	if (!rqos)
434 		return;
435 	RQWB(rqos)->min_lat_nsec = val;
436 	RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL;
437 	wbt_update_limits(RQWB(rqos));
438 }
439 
440 
441 static bool close_io(struct rq_wb *rwb)
442 {
443 	const unsigned long now = jiffies;
444 
445 	return time_before(now, rwb->last_issue + HZ / 10) ||
446 		time_before(now, rwb->last_comp + HZ / 10);
447 }
448 
449 #define REQ_HIPRIO	(REQ_SYNC | REQ_META | REQ_PRIO)
450 
451 static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
452 {
453 	unsigned int limit;
454 
455 	/*
456 	 * If we got disabled, just return UINT_MAX. This ensures that
457 	 * we'll properly inc a new IO, and dec+wakeup at the end.
458 	 */
459 	if (!rwb_enabled(rwb))
460 		return UINT_MAX;
461 
462 	if ((rw & REQ_OP_MASK) == REQ_OP_DISCARD)
463 		return rwb->wb_background;
464 
465 	/*
466 	 * At this point we know it's a buffered write. If this is
467 	 * kswapd trying to free memory, or REQ_SYNC is set, then
468 	 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
469 	 * that. If the write is marked as a background write, then use
470 	 * the idle limit, or go to normal if we haven't had competing
471 	 * IO for a bit.
472 	 */
473 	if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
474 		limit = rwb->rq_depth.max_depth;
475 	else if ((rw & REQ_BACKGROUND) || close_io(rwb)) {
476 		/*
477 		 * If less than 100ms since we completed unrelated IO,
478 		 * limit us to half the depth for background writeback.
479 		 */
480 		limit = rwb->wb_background;
481 	} else
482 		limit = rwb->wb_normal;
483 
484 	return limit;
485 }
486 
487 struct wbt_wait_data {
488 	struct rq_wb *rwb;
489 	enum wbt_flags wb_acct;
490 	unsigned long rw;
491 };
492 
493 static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data)
494 {
495 	struct wbt_wait_data *data = private_data;
496 	return rq_wait_inc_below(rqw, get_limit(data->rwb, data->rw));
497 }
498 
499 static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data)
500 {
501 	struct wbt_wait_data *data = private_data;
502 	wbt_rqw_done(data->rwb, rqw, data->wb_acct);
503 }
504 
505 /*
506  * Block if we will exceed our limit, or if we are currently waiting for
507  * the timer to kick off queuing again.
508  */
509 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
510 		       unsigned long rw)
511 {
512 	struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
513 	struct wbt_wait_data data = {
514 		.rwb = rwb,
515 		.wb_acct = wb_acct,
516 		.rw = rw,
517 	};
518 
519 	rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb);
520 }
521 
522 static inline bool wbt_should_throttle(struct bio *bio)
523 {
524 	switch (bio_op(bio)) {
525 	case REQ_OP_WRITE:
526 		/*
527 		 * Don't throttle WRITE_ODIRECT
528 		 */
529 		if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) ==
530 		    (REQ_SYNC | REQ_IDLE))
531 			return false;
532 		fallthrough;
533 	case REQ_OP_DISCARD:
534 		return true;
535 	default:
536 		return false;
537 	}
538 }
539 
540 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio)
541 {
542 	enum wbt_flags flags = 0;
543 
544 	if (!rwb_enabled(rwb))
545 		return 0;
546 
547 	if (bio_op(bio) == REQ_OP_READ) {
548 		flags = WBT_READ;
549 	} else if (wbt_should_throttle(bio)) {
550 		if (current_is_kswapd())
551 			flags |= WBT_KSWAPD;
552 		if (bio_op(bio) == REQ_OP_DISCARD)
553 			flags |= WBT_DISCARD;
554 		flags |= WBT_TRACKED;
555 	}
556 	return flags;
557 }
558 
559 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio)
560 {
561 	struct rq_wb *rwb = RQWB(rqos);
562 	enum wbt_flags flags = bio_to_wbt_flags(rwb, bio);
563 	__wbt_done(rqos, flags);
564 }
565 
566 /*
567  * May sleep, if we have exceeded the writeback limits. Caller can pass
568  * in an irq held spinlock, if it holds one when calling this function.
569  * If we do sleep, we'll release and re-grab it.
570  */
571 static void wbt_wait(struct rq_qos *rqos, struct bio *bio)
572 {
573 	struct rq_wb *rwb = RQWB(rqos);
574 	enum wbt_flags flags;
575 
576 	flags = bio_to_wbt_flags(rwb, bio);
577 	if (!(flags & WBT_TRACKED)) {
578 		if (flags & WBT_READ)
579 			wb_timestamp(rwb, &rwb->last_issue);
580 		return;
581 	}
582 
583 	__wbt_wait(rwb, flags, bio->bi_opf);
584 
585 	if (!blk_stat_is_active(rwb->cb))
586 		rwb_arm_timer(rwb);
587 }
588 
589 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
590 {
591 	struct rq_wb *rwb = RQWB(rqos);
592 	rq->wbt_flags |= bio_to_wbt_flags(rwb, bio);
593 }
594 
595 static void wbt_issue(struct rq_qos *rqos, struct request *rq)
596 {
597 	struct rq_wb *rwb = RQWB(rqos);
598 
599 	if (!rwb_enabled(rwb))
600 		return;
601 
602 	/*
603 	 * Track sync issue, in case it takes a long time to complete. Allows us
604 	 * to react quicker, if a sync IO takes a long time to complete. Note
605 	 * that this is just a hint. The request can go away when it completes,
606 	 * so it's important we never dereference it. We only use the address to
607 	 * compare with, which is why we store the sync_issue time locally.
608 	 */
609 	if (wbt_is_read(rq) && !rwb->sync_issue) {
610 		rwb->sync_cookie = rq;
611 		rwb->sync_issue = rq->io_start_time_ns;
612 	}
613 }
614 
615 static void wbt_requeue(struct rq_qos *rqos, struct request *rq)
616 {
617 	struct rq_wb *rwb = RQWB(rqos);
618 	if (!rwb_enabled(rwb))
619 		return;
620 	if (rq == rwb->sync_cookie) {
621 		rwb->sync_issue = 0;
622 		rwb->sync_cookie = NULL;
623 	}
624 }
625 
626 void wbt_set_write_cache(struct request_queue *q, bool write_cache_on)
627 {
628 	struct rq_qos *rqos = wbt_rq_qos(q);
629 	if (rqos)
630 		RQWB(rqos)->wc = write_cache_on;
631 }
632 
633 /*
634  * Enable wbt if defaults are configured that way
635  */
636 void wbt_enable_default(struct request_queue *q)
637 {
638 	struct rq_qos *rqos = wbt_rq_qos(q);
639 
640 	/* Throttling already enabled? */
641 	if (rqos) {
642 		if (RQWB(rqos)->enable_state == WBT_STATE_OFF_DEFAULT)
643 			RQWB(rqos)->enable_state = WBT_STATE_ON_DEFAULT;
644 		return;
645 	}
646 
647 	/* Queue not registered? Maybe shutting down... */
648 	if (!blk_queue_registered(q))
649 		return;
650 
651 	if (queue_is_mq(q) && IS_ENABLED(CONFIG_BLK_WBT_MQ))
652 		wbt_init(q);
653 }
654 EXPORT_SYMBOL_GPL(wbt_enable_default);
655 
656 u64 wbt_default_latency_nsec(struct request_queue *q)
657 {
658 	/*
659 	 * We default to 2msec for non-rotational storage, and 75msec
660 	 * for rotational storage.
661 	 */
662 	if (blk_queue_nonrot(q))
663 		return 2000000ULL;
664 	else
665 		return 75000000ULL;
666 }
667 
668 static int wbt_data_dir(const struct request *rq)
669 {
670 	const int op = req_op(rq);
671 
672 	if (op == REQ_OP_READ)
673 		return READ;
674 	else if (op_is_write(op))
675 		return WRITE;
676 
677 	/* don't account */
678 	return -1;
679 }
680 
681 static void wbt_queue_depth_changed(struct rq_qos *rqos)
682 {
683 	RQWB(rqos)->rq_depth.queue_depth = blk_queue_depth(rqos->q);
684 	wbt_update_limits(RQWB(rqos));
685 }
686 
687 static void wbt_exit(struct rq_qos *rqos)
688 {
689 	struct rq_wb *rwb = RQWB(rqos);
690 	struct request_queue *q = rqos->q;
691 
692 	blk_stat_remove_callback(q, rwb->cb);
693 	blk_stat_free_callback(rwb->cb);
694 	kfree(rwb);
695 }
696 
697 /*
698  * Disable wbt, if enabled by default.
699  */
700 void wbt_disable_default(struct request_queue *q)
701 {
702 	struct rq_qos *rqos = wbt_rq_qos(q);
703 	struct rq_wb *rwb;
704 	if (!rqos)
705 		return;
706 	rwb = RQWB(rqos);
707 	if (rwb->enable_state == WBT_STATE_ON_DEFAULT) {
708 		blk_stat_deactivate(rwb->cb);
709 		rwb->enable_state = WBT_STATE_OFF_DEFAULT;
710 	}
711 }
712 EXPORT_SYMBOL_GPL(wbt_disable_default);
713 
714 #ifdef CONFIG_BLK_DEBUG_FS
715 static int wbt_curr_win_nsec_show(void *data, struct seq_file *m)
716 {
717 	struct rq_qos *rqos = data;
718 	struct rq_wb *rwb = RQWB(rqos);
719 
720 	seq_printf(m, "%llu\n", rwb->cur_win_nsec);
721 	return 0;
722 }
723 
724 static int wbt_enabled_show(void *data, struct seq_file *m)
725 {
726 	struct rq_qos *rqos = data;
727 	struct rq_wb *rwb = RQWB(rqos);
728 
729 	seq_printf(m, "%d\n", rwb->enable_state);
730 	return 0;
731 }
732 
733 static int wbt_id_show(void *data, struct seq_file *m)
734 {
735 	struct rq_qos *rqos = data;
736 
737 	seq_printf(m, "%u\n", rqos->id);
738 	return 0;
739 }
740 
741 static int wbt_inflight_show(void *data, struct seq_file *m)
742 {
743 	struct rq_qos *rqos = data;
744 	struct rq_wb *rwb = RQWB(rqos);
745 	int i;
746 
747 	for (i = 0; i < WBT_NUM_RWQ; i++)
748 		seq_printf(m, "%d: inflight %d\n", i,
749 			   atomic_read(&rwb->rq_wait[i].inflight));
750 	return 0;
751 }
752 
753 static int wbt_min_lat_nsec_show(void *data, struct seq_file *m)
754 {
755 	struct rq_qos *rqos = data;
756 	struct rq_wb *rwb = RQWB(rqos);
757 
758 	seq_printf(m, "%lu\n", rwb->min_lat_nsec);
759 	return 0;
760 }
761 
762 static int wbt_unknown_cnt_show(void *data, struct seq_file *m)
763 {
764 	struct rq_qos *rqos = data;
765 	struct rq_wb *rwb = RQWB(rqos);
766 
767 	seq_printf(m, "%u\n", rwb->unknown_cnt);
768 	return 0;
769 }
770 
771 static int wbt_normal_show(void *data, struct seq_file *m)
772 {
773 	struct rq_qos *rqos = data;
774 	struct rq_wb *rwb = RQWB(rqos);
775 
776 	seq_printf(m, "%u\n", rwb->wb_normal);
777 	return 0;
778 }
779 
780 static int wbt_background_show(void *data, struct seq_file *m)
781 {
782 	struct rq_qos *rqos = data;
783 	struct rq_wb *rwb = RQWB(rqos);
784 
785 	seq_printf(m, "%u\n", rwb->wb_background);
786 	return 0;
787 }
788 
789 static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = {
790 	{"curr_win_nsec", 0400, wbt_curr_win_nsec_show},
791 	{"enabled", 0400, wbt_enabled_show},
792 	{"id", 0400, wbt_id_show},
793 	{"inflight", 0400, wbt_inflight_show},
794 	{"min_lat_nsec", 0400, wbt_min_lat_nsec_show},
795 	{"unknown_cnt", 0400, wbt_unknown_cnt_show},
796 	{"wb_normal", 0400, wbt_normal_show},
797 	{"wb_background", 0400, wbt_background_show},
798 	{},
799 };
800 #endif
801 
802 static struct rq_qos_ops wbt_rqos_ops = {
803 	.throttle = wbt_wait,
804 	.issue = wbt_issue,
805 	.track = wbt_track,
806 	.requeue = wbt_requeue,
807 	.done = wbt_done,
808 	.cleanup = wbt_cleanup,
809 	.queue_depth_changed = wbt_queue_depth_changed,
810 	.exit = wbt_exit,
811 #ifdef CONFIG_BLK_DEBUG_FS
812 	.debugfs_attrs = wbt_debugfs_attrs,
813 #endif
814 };
815 
816 int wbt_init(struct request_queue *q)
817 {
818 	struct rq_wb *rwb;
819 	int i;
820 
821 	rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
822 	if (!rwb)
823 		return -ENOMEM;
824 
825 	rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
826 	if (!rwb->cb) {
827 		kfree(rwb);
828 		return -ENOMEM;
829 	}
830 
831 	for (i = 0; i < WBT_NUM_RWQ; i++)
832 		rq_wait_init(&rwb->rq_wait[i]);
833 
834 	rwb->rqos.id = RQ_QOS_WBT;
835 	rwb->rqos.ops = &wbt_rqos_ops;
836 	rwb->rqos.q = q;
837 	rwb->last_comp = rwb->last_issue = jiffies;
838 	rwb->win_nsec = RWB_WINDOW_NSEC;
839 	rwb->enable_state = WBT_STATE_ON_DEFAULT;
840 	rwb->wc = 1;
841 	rwb->rq_depth.default_depth = RWB_DEF_DEPTH;
842 
843 	/*
844 	 * Assign rwb and add the stats callback.
845 	 */
846 	rq_qos_add(q, &rwb->rqos);
847 	blk_stat_add_callback(q, rwb->cb);
848 
849 	rwb->min_lat_nsec = wbt_default_latency_nsec(q);
850 
851 	wbt_queue_depth_changed(&rwb->rqos);
852 	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
853 
854 	return 0;
855 }
856