xref: /openbmc/linux/block/blk-wbt.c (revision 657c45b3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * buffered writeback throttling. loosely based on CoDel. We can't drop
4  * packets for IO scheduling, so the logic is something like this:
5  *
6  * - Monitor latencies in a defined window of time.
7  * - If the minimum latency in the above window exceeds some target, increment
8  *   scaling step and scale down queue depth by a factor of 2x. The monitoring
9  *   window is then shrunk to 100 / sqrt(scaling step + 1).
10  * - For any window where we don't have solid data on what the latencies
11  *   look like, retain status quo.
12  * - If latencies look good, decrement scaling step.
13  * - If we're only doing writes, allow the scaling step to go negative. This
14  *   will temporarily boost write performance, snapping back to a stable
15  *   scaling step of 0 if reads show up or the heavy writers finish. Unlike
16  *   positive scaling steps where we shrink the monitoring window, a negative
17  *   scaling step retains the default step==0 window size.
18  *
19  * Copyright (C) 2016 Jens Axboe
20  *
21  */
22 #include <linux/kernel.h>
23 #include <linux/blk_types.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/swap.h>
27 
28 #include "blk-stat.h"
29 #include "blk-wbt.h"
30 #include "blk-rq-qos.h"
31 #include "elevator.h"
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/wbt.h>
35 
36 enum wbt_flags {
37 	WBT_TRACKED		= 1,	/* write, tracked for throttling */
38 	WBT_READ		= 2,	/* read */
39 	WBT_KSWAPD		= 4,	/* write, from kswapd */
40 	WBT_DISCARD		= 8,	/* discard */
41 
42 	WBT_NR_BITS		= 4,	/* number of bits */
43 };
44 
45 enum {
46 	WBT_RWQ_BG		= 0,
47 	WBT_RWQ_KSWAPD,
48 	WBT_RWQ_DISCARD,
49 	WBT_NUM_RWQ,
50 };
51 
52 /*
53  * If current state is WBT_STATE_ON/OFF_DEFAULT, it can be covered to any other
54  * state, if current state is WBT_STATE_ON/OFF_MANUAL, it can only be covered
55  * to WBT_STATE_OFF/ON_MANUAL.
56  */
57 enum {
58 	WBT_STATE_ON_DEFAULT	= 1,	/* on by default */
59 	WBT_STATE_ON_MANUAL	= 2,	/* on manually by sysfs */
60 	WBT_STATE_OFF_DEFAULT	= 3,	/* off by default */
61 	WBT_STATE_OFF_MANUAL	= 4,	/* off manually by sysfs */
62 };
63 
64 struct rq_wb {
65 	/*
66 	 * Settings that govern how we throttle
67 	 */
68 	unsigned int wb_background;		/* background writeback */
69 	unsigned int wb_normal;			/* normal writeback */
70 
71 	short enable_state;			/* WBT_STATE_* */
72 
73 	/*
74 	 * Number of consecutive periods where we don't have enough
75 	 * information to make a firm scale up/down decision.
76 	 */
77 	unsigned int unknown_cnt;
78 
79 	u64 win_nsec;				/* default window size */
80 	u64 cur_win_nsec;			/* current window size */
81 
82 	struct blk_stat_callback *cb;
83 
84 	u64 sync_issue;
85 	void *sync_cookie;
86 
87 	unsigned int wc;
88 
89 	unsigned long last_issue;		/* last non-throttled issue */
90 	unsigned long last_comp;		/* last non-throttled comp */
91 	unsigned long min_lat_nsec;
92 	struct rq_qos rqos;
93 	struct rq_wait rq_wait[WBT_NUM_RWQ];
94 	struct rq_depth rq_depth;
95 };
96 
97 static inline struct rq_wb *RQWB(struct rq_qos *rqos)
98 {
99 	return container_of(rqos, struct rq_wb, rqos);
100 }
101 
102 static inline void wbt_clear_state(struct request *rq)
103 {
104 	rq->wbt_flags = 0;
105 }
106 
107 static inline enum wbt_flags wbt_flags(struct request *rq)
108 {
109 	return rq->wbt_flags;
110 }
111 
112 static inline bool wbt_is_tracked(struct request *rq)
113 {
114 	return rq->wbt_flags & WBT_TRACKED;
115 }
116 
117 static inline bool wbt_is_read(struct request *rq)
118 {
119 	return rq->wbt_flags & WBT_READ;
120 }
121 
122 enum {
123 	/*
124 	 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
125 	 * from here depending on device stats
126 	 */
127 	RWB_DEF_DEPTH	= 16,
128 
129 	/*
130 	 * 100msec window
131 	 */
132 	RWB_WINDOW_NSEC		= 100 * 1000 * 1000ULL,
133 
134 	/*
135 	 * Disregard stats, if we don't meet this minimum
136 	 */
137 	RWB_MIN_WRITE_SAMPLES	= 3,
138 
139 	/*
140 	 * If we have this number of consecutive windows with not enough
141 	 * information to scale up or down, scale up.
142 	 */
143 	RWB_UNKNOWN_BUMP	= 5,
144 };
145 
146 static inline bool rwb_enabled(struct rq_wb *rwb)
147 {
148 	return rwb && rwb->enable_state != WBT_STATE_OFF_DEFAULT &&
149 		      rwb->enable_state != WBT_STATE_OFF_MANUAL;
150 }
151 
152 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
153 {
154 	if (rwb_enabled(rwb)) {
155 		const unsigned long cur = jiffies;
156 
157 		if (cur != *var)
158 			*var = cur;
159 	}
160 }
161 
162 /*
163  * If a task was rate throttled in balance_dirty_pages() within the last
164  * second or so, use that to indicate a higher cleaning rate.
165  */
166 static bool wb_recent_wait(struct rq_wb *rwb)
167 {
168 	struct bdi_writeback *wb = &rwb->rqos.disk->bdi->wb;
169 
170 	return time_before(jiffies, wb->dirty_sleep + HZ);
171 }
172 
173 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
174 					  enum wbt_flags wb_acct)
175 {
176 	if (wb_acct & WBT_KSWAPD)
177 		return &rwb->rq_wait[WBT_RWQ_KSWAPD];
178 	else if (wb_acct & WBT_DISCARD)
179 		return &rwb->rq_wait[WBT_RWQ_DISCARD];
180 
181 	return &rwb->rq_wait[WBT_RWQ_BG];
182 }
183 
184 static void rwb_wake_all(struct rq_wb *rwb)
185 {
186 	int i;
187 
188 	for (i = 0; i < WBT_NUM_RWQ; i++) {
189 		struct rq_wait *rqw = &rwb->rq_wait[i];
190 
191 		if (wq_has_sleeper(&rqw->wait))
192 			wake_up_all(&rqw->wait);
193 	}
194 }
195 
196 static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw,
197 			 enum wbt_flags wb_acct)
198 {
199 	int inflight, limit;
200 
201 	inflight = atomic_dec_return(&rqw->inflight);
202 
203 	/*
204 	 * For discards, our limit is always the background. For writes, if
205 	 * the device does write back caching, drop further down before we
206 	 * wake people up.
207 	 */
208 	if (wb_acct & WBT_DISCARD)
209 		limit = rwb->wb_background;
210 	else if (rwb->wc && !wb_recent_wait(rwb))
211 		limit = 0;
212 	else
213 		limit = rwb->wb_normal;
214 
215 	/*
216 	 * Don't wake anyone up if we are above the normal limit.
217 	 */
218 	if (inflight && inflight >= limit)
219 		return;
220 
221 	if (wq_has_sleeper(&rqw->wait)) {
222 		int diff = limit - inflight;
223 
224 		if (!inflight || diff >= rwb->wb_background / 2)
225 			wake_up_all(&rqw->wait);
226 	}
227 }
228 
229 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct)
230 {
231 	struct rq_wb *rwb = RQWB(rqos);
232 	struct rq_wait *rqw;
233 
234 	if (!(wb_acct & WBT_TRACKED))
235 		return;
236 
237 	rqw = get_rq_wait(rwb, wb_acct);
238 	wbt_rqw_done(rwb, rqw, wb_acct);
239 }
240 
241 /*
242  * Called on completion of a request. Note that it's also called when
243  * a request is merged, when the request gets freed.
244  */
245 static void wbt_done(struct rq_qos *rqos, struct request *rq)
246 {
247 	struct rq_wb *rwb = RQWB(rqos);
248 
249 	if (!wbt_is_tracked(rq)) {
250 		if (rwb->sync_cookie == rq) {
251 			rwb->sync_issue = 0;
252 			rwb->sync_cookie = NULL;
253 		}
254 
255 		if (wbt_is_read(rq))
256 			wb_timestamp(rwb, &rwb->last_comp);
257 	} else {
258 		WARN_ON_ONCE(rq == rwb->sync_cookie);
259 		__wbt_done(rqos, wbt_flags(rq));
260 	}
261 	wbt_clear_state(rq);
262 }
263 
264 static inline bool stat_sample_valid(struct blk_rq_stat *stat)
265 {
266 	/*
267 	 * We need at least one read sample, and a minimum of
268 	 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
269 	 * that it's writes impacting us, and not just some sole read on
270 	 * a device that is in a lower power state.
271 	 */
272 	return (stat[READ].nr_samples >= 1 &&
273 		stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
274 }
275 
276 static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
277 {
278 	u64 now, issue = READ_ONCE(rwb->sync_issue);
279 
280 	if (!issue || !rwb->sync_cookie)
281 		return 0;
282 
283 	now = ktime_to_ns(ktime_get());
284 	return now - issue;
285 }
286 
287 static inline unsigned int wbt_inflight(struct rq_wb *rwb)
288 {
289 	unsigned int i, ret = 0;
290 
291 	for (i = 0; i < WBT_NUM_RWQ; i++)
292 		ret += atomic_read(&rwb->rq_wait[i].inflight);
293 
294 	return ret;
295 }
296 
297 enum {
298 	LAT_OK = 1,
299 	LAT_UNKNOWN,
300 	LAT_UNKNOWN_WRITES,
301 	LAT_EXCEEDED,
302 };
303 
304 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
305 {
306 	struct backing_dev_info *bdi = rwb->rqos.disk->bdi;
307 	struct rq_depth *rqd = &rwb->rq_depth;
308 	u64 thislat;
309 
310 	/*
311 	 * If our stored sync issue exceeds the window size, or it
312 	 * exceeds our min target AND we haven't logged any entries,
313 	 * flag the latency as exceeded. wbt works off completion latencies,
314 	 * but for a flooded device, a single sync IO can take a long time
315 	 * to complete after being issued. If this time exceeds our
316 	 * monitoring window AND we didn't see any other completions in that
317 	 * window, then count that sync IO as a violation of the latency.
318 	 */
319 	thislat = rwb_sync_issue_lat(rwb);
320 	if (thislat > rwb->cur_win_nsec ||
321 	    (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
322 		trace_wbt_lat(bdi, thislat);
323 		return LAT_EXCEEDED;
324 	}
325 
326 	/*
327 	 * No read/write mix, if stat isn't valid
328 	 */
329 	if (!stat_sample_valid(stat)) {
330 		/*
331 		 * If we had writes in this stat window and the window is
332 		 * current, we're only doing writes. If a task recently
333 		 * waited or still has writes in flights, consider us doing
334 		 * just writes as well.
335 		 */
336 		if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
337 		    wbt_inflight(rwb))
338 			return LAT_UNKNOWN_WRITES;
339 		return LAT_UNKNOWN;
340 	}
341 
342 	/*
343 	 * If the 'min' latency exceeds our target, step down.
344 	 */
345 	if (stat[READ].min > rwb->min_lat_nsec) {
346 		trace_wbt_lat(bdi, stat[READ].min);
347 		trace_wbt_stat(bdi, stat);
348 		return LAT_EXCEEDED;
349 	}
350 
351 	if (rqd->scale_step)
352 		trace_wbt_stat(bdi, stat);
353 
354 	return LAT_OK;
355 }
356 
357 static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
358 {
359 	struct backing_dev_info *bdi = rwb->rqos.disk->bdi;
360 	struct rq_depth *rqd = &rwb->rq_depth;
361 
362 	trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec,
363 			rwb->wb_background, rwb->wb_normal, rqd->max_depth);
364 }
365 
366 static void calc_wb_limits(struct rq_wb *rwb)
367 {
368 	if (rwb->min_lat_nsec == 0) {
369 		rwb->wb_normal = rwb->wb_background = 0;
370 	} else if (rwb->rq_depth.max_depth <= 2) {
371 		rwb->wb_normal = rwb->rq_depth.max_depth;
372 		rwb->wb_background = 1;
373 	} else {
374 		rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2;
375 		rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4;
376 	}
377 }
378 
379 static void scale_up(struct rq_wb *rwb)
380 {
381 	if (!rq_depth_scale_up(&rwb->rq_depth))
382 		return;
383 	calc_wb_limits(rwb);
384 	rwb->unknown_cnt = 0;
385 	rwb_wake_all(rwb);
386 	rwb_trace_step(rwb, tracepoint_string("scale up"));
387 }
388 
389 static void scale_down(struct rq_wb *rwb, bool hard_throttle)
390 {
391 	if (!rq_depth_scale_down(&rwb->rq_depth, hard_throttle))
392 		return;
393 	calc_wb_limits(rwb);
394 	rwb->unknown_cnt = 0;
395 	rwb_trace_step(rwb, tracepoint_string("scale down"));
396 }
397 
398 static void rwb_arm_timer(struct rq_wb *rwb)
399 {
400 	struct rq_depth *rqd = &rwb->rq_depth;
401 
402 	if (rqd->scale_step > 0) {
403 		/*
404 		 * We should speed this up, using some variant of a fast
405 		 * integer inverse square root calculation. Since we only do
406 		 * this for every window expiration, it's not a huge deal,
407 		 * though.
408 		 */
409 		rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
410 					int_sqrt((rqd->scale_step + 1) << 8));
411 	} else {
412 		/*
413 		 * For step < 0, we don't want to increase/decrease the
414 		 * window size.
415 		 */
416 		rwb->cur_win_nsec = rwb->win_nsec;
417 	}
418 
419 	blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
420 }
421 
422 static void wb_timer_fn(struct blk_stat_callback *cb)
423 {
424 	struct rq_wb *rwb = cb->data;
425 	struct rq_depth *rqd = &rwb->rq_depth;
426 	unsigned int inflight = wbt_inflight(rwb);
427 	int status;
428 
429 	if (!rwb->rqos.disk)
430 		return;
431 
432 	status = latency_exceeded(rwb, cb->stat);
433 
434 	trace_wbt_timer(rwb->rqos.disk->bdi, status, rqd->scale_step, inflight);
435 
436 	/*
437 	 * If we exceeded the latency target, step down. If we did not,
438 	 * step one level up. If we don't know enough to say either exceeded
439 	 * or ok, then don't do anything.
440 	 */
441 	switch (status) {
442 	case LAT_EXCEEDED:
443 		scale_down(rwb, true);
444 		break;
445 	case LAT_OK:
446 		scale_up(rwb);
447 		break;
448 	case LAT_UNKNOWN_WRITES:
449 		/*
450 		 * We started a the center step, but don't have a valid
451 		 * read/write sample, but we do have writes going on.
452 		 * Allow step to go negative, to increase write perf.
453 		 */
454 		scale_up(rwb);
455 		break;
456 	case LAT_UNKNOWN:
457 		if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
458 			break;
459 		/*
460 		 * We get here when previously scaled reduced depth, and we
461 		 * currently don't have a valid read/write sample. For that
462 		 * case, slowly return to center state (step == 0).
463 		 */
464 		if (rqd->scale_step > 0)
465 			scale_up(rwb);
466 		else if (rqd->scale_step < 0)
467 			scale_down(rwb, false);
468 		break;
469 	default:
470 		break;
471 	}
472 
473 	/*
474 	 * Re-arm timer, if we have IO in flight
475 	 */
476 	if (rqd->scale_step || inflight)
477 		rwb_arm_timer(rwb);
478 }
479 
480 static void wbt_update_limits(struct rq_wb *rwb)
481 {
482 	struct rq_depth *rqd = &rwb->rq_depth;
483 
484 	rqd->scale_step = 0;
485 	rqd->scaled_max = false;
486 
487 	rq_depth_calc_max_depth(rqd);
488 	calc_wb_limits(rwb);
489 
490 	rwb_wake_all(rwb);
491 }
492 
493 bool wbt_disabled(struct request_queue *q)
494 {
495 	struct rq_qos *rqos = wbt_rq_qos(q);
496 
497 	return !rqos || !rwb_enabled(RQWB(rqos));
498 }
499 
500 u64 wbt_get_min_lat(struct request_queue *q)
501 {
502 	struct rq_qos *rqos = wbt_rq_qos(q);
503 	if (!rqos)
504 		return 0;
505 	return RQWB(rqos)->min_lat_nsec;
506 }
507 
508 void wbt_set_min_lat(struct request_queue *q, u64 val)
509 {
510 	struct rq_qos *rqos = wbt_rq_qos(q);
511 	if (!rqos)
512 		return;
513 
514 	RQWB(rqos)->min_lat_nsec = val;
515 	if (val)
516 		RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL;
517 	else
518 		RQWB(rqos)->enable_state = WBT_STATE_OFF_MANUAL;
519 
520 	wbt_update_limits(RQWB(rqos));
521 }
522 
523 
524 static bool close_io(struct rq_wb *rwb)
525 {
526 	const unsigned long now = jiffies;
527 
528 	return time_before(now, rwb->last_issue + HZ / 10) ||
529 		time_before(now, rwb->last_comp + HZ / 10);
530 }
531 
532 #define REQ_HIPRIO	(REQ_SYNC | REQ_META | REQ_PRIO)
533 
534 static inline unsigned int get_limit(struct rq_wb *rwb, blk_opf_t opf)
535 {
536 	unsigned int limit;
537 
538 	if ((opf & REQ_OP_MASK) == REQ_OP_DISCARD)
539 		return rwb->wb_background;
540 
541 	/*
542 	 * At this point we know it's a buffered write. If this is
543 	 * kswapd trying to free memory, or REQ_SYNC is set, then
544 	 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
545 	 * that. If the write is marked as a background write, then use
546 	 * the idle limit, or go to normal if we haven't had competing
547 	 * IO for a bit.
548 	 */
549 	if ((opf & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
550 		limit = rwb->rq_depth.max_depth;
551 	else if ((opf & REQ_BACKGROUND) || close_io(rwb)) {
552 		/*
553 		 * If less than 100ms since we completed unrelated IO,
554 		 * limit us to half the depth for background writeback.
555 		 */
556 		limit = rwb->wb_background;
557 	} else
558 		limit = rwb->wb_normal;
559 
560 	return limit;
561 }
562 
563 struct wbt_wait_data {
564 	struct rq_wb *rwb;
565 	enum wbt_flags wb_acct;
566 	blk_opf_t opf;
567 };
568 
569 static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data)
570 {
571 	struct wbt_wait_data *data = private_data;
572 	return rq_wait_inc_below(rqw, get_limit(data->rwb, data->opf));
573 }
574 
575 static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data)
576 {
577 	struct wbt_wait_data *data = private_data;
578 	wbt_rqw_done(data->rwb, rqw, data->wb_acct);
579 }
580 
581 /*
582  * Block if we will exceed our limit, or if we are currently waiting for
583  * the timer to kick off queuing again.
584  */
585 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
586 		       blk_opf_t opf)
587 {
588 	struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
589 	struct wbt_wait_data data = {
590 		.rwb = rwb,
591 		.wb_acct = wb_acct,
592 		.opf = opf,
593 	};
594 
595 	rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb);
596 }
597 
598 static inline bool wbt_should_throttle(struct bio *bio)
599 {
600 	switch (bio_op(bio)) {
601 	case REQ_OP_WRITE:
602 		/*
603 		 * Don't throttle WRITE_ODIRECT
604 		 */
605 		if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) ==
606 		    (REQ_SYNC | REQ_IDLE))
607 			return false;
608 		fallthrough;
609 	case REQ_OP_DISCARD:
610 		return true;
611 	default:
612 		return false;
613 	}
614 }
615 
616 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio)
617 {
618 	enum wbt_flags flags = 0;
619 
620 	if (!rwb_enabled(rwb))
621 		return 0;
622 
623 	if (bio_op(bio) == REQ_OP_READ) {
624 		flags = WBT_READ;
625 	} else if (wbt_should_throttle(bio)) {
626 		if (current_is_kswapd())
627 			flags |= WBT_KSWAPD;
628 		if (bio_op(bio) == REQ_OP_DISCARD)
629 			flags |= WBT_DISCARD;
630 		flags |= WBT_TRACKED;
631 	}
632 	return flags;
633 }
634 
635 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio)
636 {
637 	struct rq_wb *rwb = RQWB(rqos);
638 	enum wbt_flags flags = bio_to_wbt_flags(rwb, bio);
639 	__wbt_done(rqos, flags);
640 }
641 
642 /*
643  * May sleep, if we have exceeded the writeback limits. Caller can pass
644  * in an irq held spinlock, if it holds one when calling this function.
645  * If we do sleep, we'll release and re-grab it.
646  */
647 static void wbt_wait(struct rq_qos *rqos, struct bio *bio)
648 {
649 	struct rq_wb *rwb = RQWB(rqos);
650 	enum wbt_flags flags;
651 
652 	flags = bio_to_wbt_flags(rwb, bio);
653 	if (!(flags & WBT_TRACKED)) {
654 		if (flags & WBT_READ)
655 			wb_timestamp(rwb, &rwb->last_issue);
656 		return;
657 	}
658 
659 	__wbt_wait(rwb, flags, bio->bi_opf);
660 
661 	if (!blk_stat_is_active(rwb->cb))
662 		rwb_arm_timer(rwb);
663 }
664 
665 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
666 {
667 	struct rq_wb *rwb = RQWB(rqos);
668 	rq->wbt_flags |= bio_to_wbt_flags(rwb, bio);
669 }
670 
671 static void wbt_issue(struct rq_qos *rqos, struct request *rq)
672 {
673 	struct rq_wb *rwb = RQWB(rqos);
674 
675 	if (!rwb_enabled(rwb))
676 		return;
677 
678 	/*
679 	 * Track sync issue, in case it takes a long time to complete. Allows us
680 	 * to react quicker, if a sync IO takes a long time to complete. Note
681 	 * that this is just a hint. The request can go away when it completes,
682 	 * so it's important we never dereference it. We only use the address to
683 	 * compare with, which is why we store the sync_issue time locally.
684 	 */
685 	if (wbt_is_read(rq) && !rwb->sync_issue) {
686 		rwb->sync_cookie = rq;
687 		rwb->sync_issue = rq->io_start_time_ns;
688 	}
689 }
690 
691 static void wbt_requeue(struct rq_qos *rqos, struct request *rq)
692 {
693 	struct rq_wb *rwb = RQWB(rqos);
694 	if (!rwb_enabled(rwb))
695 		return;
696 	if (rq == rwb->sync_cookie) {
697 		rwb->sync_issue = 0;
698 		rwb->sync_cookie = NULL;
699 	}
700 }
701 
702 void wbt_set_write_cache(struct request_queue *q, bool write_cache_on)
703 {
704 	struct rq_qos *rqos = wbt_rq_qos(q);
705 	if (rqos)
706 		RQWB(rqos)->wc = write_cache_on;
707 }
708 
709 /*
710  * Enable wbt if defaults are configured that way
711  */
712 void wbt_enable_default(struct gendisk *disk)
713 {
714 	struct request_queue *q = disk->queue;
715 	struct rq_qos *rqos;
716 	bool enable = IS_ENABLED(CONFIG_BLK_WBT_MQ);
717 
718 	if (q->elevator &&
719 	    test_bit(ELEVATOR_FLAG_DISABLE_WBT, &q->elevator->flags))
720 		enable = false;
721 
722 	/* Throttling already enabled? */
723 	rqos = wbt_rq_qos(q);
724 	if (rqos) {
725 		if (enable && RQWB(rqos)->enable_state == WBT_STATE_OFF_DEFAULT)
726 			RQWB(rqos)->enable_state = WBT_STATE_ON_DEFAULT;
727 		return;
728 	}
729 
730 	/* Queue not registered? Maybe shutting down... */
731 	if (!blk_queue_registered(q))
732 		return;
733 
734 	if (queue_is_mq(q) && enable)
735 		wbt_init(disk);
736 }
737 EXPORT_SYMBOL_GPL(wbt_enable_default);
738 
739 u64 wbt_default_latency_nsec(struct request_queue *q)
740 {
741 	/*
742 	 * We default to 2msec for non-rotational storage, and 75msec
743 	 * for rotational storage.
744 	 */
745 	if (blk_queue_nonrot(q))
746 		return 2000000ULL;
747 	else
748 		return 75000000ULL;
749 }
750 
751 static int wbt_data_dir(const struct request *rq)
752 {
753 	const enum req_op op = req_op(rq);
754 
755 	if (op == REQ_OP_READ)
756 		return READ;
757 	else if (op_is_write(op))
758 		return WRITE;
759 
760 	/* don't account */
761 	return -1;
762 }
763 
764 static void wbt_queue_depth_changed(struct rq_qos *rqos)
765 {
766 	RQWB(rqos)->rq_depth.queue_depth = blk_queue_depth(rqos->disk->queue);
767 	wbt_update_limits(RQWB(rqos));
768 }
769 
770 static void wbt_exit(struct rq_qos *rqos)
771 {
772 	struct rq_wb *rwb = RQWB(rqos);
773 
774 	blk_stat_remove_callback(rqos->disk->queue, rwb->cb);
775 	blk_stat_free_callback(rwb->cb);
776 	kfree(rwb);
777 }
778 
779 /*
780  * Disable wbt, if enabled by default.
781  */
782 void wbt_disable_default(struct gendisk *disk)
783 {
784 	struct rq_qos *rqos = wbt_rq_qos(disk->queue);
785 	struct rq_wb *rwb;
786 	if (!rqos)
787 		return;
788 	rwb = RQWB(rqos);
789 	if (rwb->enable_state == WBT_STATE_ON_DEFAULT) {
790 		blk_stat_deactivate(rwb->cb);
791 		rwb->enable_state = WBT_STATE_OFF_DEFAULT;
792 	}
793 }
794 EXPORT_SYMBOL_GPL(wbt_disable_default);
795 
796 #ifdef CONFIG_BLK_DEBUG_FS
797 static int wbt_curr_win_nsec_show(void *data, struct seq_file *m)
798 {
799 	struct rq_qos *rqos = data;
800 	struct rq_wb *rwb = RQWB(rqos);
801 
802 	seq_printf(m, "%llu\n", rwb->cur_win_nsec);
803 	return 0;
804 }
805 
806 static int wbt_enabled_show(void *data, struct seq_file *m)
807 {
808 	struct rq_qos *rqos = data;
809 	struct rq_wb *rwb = RQWB(rqos);
810 
811 	seq_printf(m, "%d\n", rwb->enable_state);
812 	return 0;
813 }
814 
815 static int wbt_id_show(void *data, struct seq_file *m)
816 {
817 	struct rq_qos *rqos = data;
818 
819 	seq_printf(m, "%u\n", rqos->id);
820 	return 0;
821 }
822 
823 static int wbt_inflight_show(void *data, struct seq_file *m)
824 {
825 	struct rq_qos *rqos = data;
826 	struct rq_wb *rwb = RQWB(rqos);
827 	int i;
828 
829 	for (i = 0; i < WBT_NUM_RWQ; i++)
830 		seq_printf(m, "%d: inflight %d\n", i,
831 			   atomic_read(&rwb->rq_wait[i].inflight));
832 	return 0;
833 }
834 
835 static int wbt_min_lat_nsec_show(void *data, struct seq_file *m)
836 {
837 	struct rq_qos *rqos = data;
838 	struct rq_wb *rwb = RQWB(rqos);
839 
840 	seq_printf(m, "%lu\n", rwb->min_lat_nsec);
841 	return 0;
842 }
843 
844 static int wbt_unknown_cnt_show(void *data, struct seq_file *m)
845 {
846 	struct rq_qos *rqos = data;
847 	struct rq_wb *rwb = RQWB(rqos);
848 
849 	seq_printf(m, "%u\n", rwb->unknown_cnt);
850 	return 0;
851 }
852 
853 static int wbt_normal_show(void *data, struct seq_file *m)
854 {
855 	struct rq_qos *rqos = data;
856 	struct rq_wb *rwb = RQWB(rqos);
857 
858 	seq_printf(m, "%u\n", rwb->wb_normal);
859 	return 0;
860 }
861 
862 static int wbt_background_show(void *data, struct seq_file *m)
863 {
864 	struct rq_qos *rqos = data;
865 	struct rq_wb *rwb = RQWB(rqos);
866 
867 	seq_printf(m, "%u\n", rwb->wb_background);
868 	return 0;
869 }
870 
871 static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = {
872 	{"curr_win_nsec", 0400, wbt_curr_win_nsec_show},
873 	{"enabled", 0400, wbt_enabled_show},
874 	{"id", 0400, wbt_id_show},
875 	{"inflight", 0400, wbt_inflight_show},
876 	{"min_lat_nsec", 0400, wbt_min_lat_nsec_show},
877 	{"unknown_cnt", 0400, wbt_unknown_cnt_show},
878 	{"wb_normal", 0400, wbt_normal_show},
879 	{"wb_background", 0400, wbt_background_show},
880 	{},
881 };
882 #endif
883 
884 static const struct rq_qos_ops wbt_rqos_ops = {
885 	.throttle = wbt_wait,
886 	.issue = wbt_issue,
887 	.track = wbt_track,
888 	.requeue = wbt_requeue,
889 	.done = wbt_done,
890 	.cleanup = wbt_cleanup,
891 	.queue_depth_changed = wbt_queue_depth_changed,
892 	.exit = wbt_exit,
893 #ifdef CONFIG_BLK_DEBUG_FS
894 	.debugfs_attrs = wbt_debugfs_attrs,
895 #endif
896 };
897 
898 int wbt_init(struct gendisk *disk)
899 {
900 	struct request_queue *q = disk->queue;
901 	struct rq_wb *rwb;
902 	int i;
903 	int ret;
904 
905 	rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
906 	if (!rwb)
907 		return -ENOMEM;
908 
909 	rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
910 	if (!rwb->cb) {
911 		kfree(rwb);
912 		return -ENOMEM;
913 	}
914 
915 	for (i = 0; i < WBT_NUM_RWQ; i++)
916 		rq_wait_init(&rwb->rq_wait[i]);
917 
918 	rwb->last_comp = rwb->last_issue = jiffies;
919 	rwb->win_nsec = RWB_WINDOW_NSEC;
920 	rwb->enable_state = WBT_STATE_ON_DEFAULT;
921 	rwb->wc = test_bit(QUEUE_FLAG_WC, &q->queue_flags);
922 	rwb->rq_depth.default_depth = RWB_DEF_DEPTH;
923 	rwb->min_lat_nsec = wbt_default_latency_nsec(q);
924 	rwb->rq_depth.queue_depth = blk_queue_depth(q);
925 	wbt_update_limits(rwb);
926 
927 	/*
928 	 * Assign rwb and add the stats callback.
929 	 */
930 	mutex_lock(&q->rq_qos_mutex);
931 	ret = rq_qos_add(&rwb->rqos, disk, RQ_QOS_WBT, &wbt_rqos_ops);
932 	mutex_unlock(&q->rq_qos_mutex);
933 	if (ret)
934 		goto err_free;
935 
936 	blk_stat_add_callback(q, rwb->cb);
937 
938 	return 0;
939 
940 err_free:
941 	blk_stat_free_callback(rwb->cb);
942 	kfree(rwb);
943 	return ret;
944 
945 }
946