xref: /openbmc/linux/block/blk-wbt.c (revision 58efe9f6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * buffered writeback throttling. loosely based on CoDel. We can't drop
4  * packets for IO scheduling, so the logic is something like this:
5  *
6  * - Monitor latencies in a defined window of time.
7  * - If the minimum latency in the above window exceeds some target, increment
8  *   scaling step and scale down queue depth by a factor of 2x. The monitoring
9  *   window is then shrunk to 100 / sqrt(scaling step + 1).
10  * - For any window where we don't have solid data on what the latencies
11  *   look like, retain status quo.
12  * - If latencies look good, decrement scaling step.
13  * - If we're only doing writes, allow the scaling step to go negative. This
14  *   will temporarily boost write performance, snapping back to a stable
15  *   scaling step of 0 if reads show up or the heavy writers finish. Unlike
16  *   positive scaling steps where we shrink the monitoring window, a negative
17  *   scaling step retains the default step==0 window size.
18  *
19  * Copyright (C) 2016 Jens Axboe
20  *
21  */
22 #include <linux/kernel.h>
23 #include <linux/blk_types.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/swap.h>
27 
28 #include "blk-wbt.h"
29 #include "blk-rq-qos.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/wbt.h>
33 
34 static inline void wbt_clear_state(struct request *rq)
35 {
36 	rq->wbt_flags = 0;
37 }
38 
39 static inline enum wbt_flags wbt_flags(struct request *rq)
40 {
41 	return rq->wbt_flags;
42 }
43 
44 static inline bool wbt_is_tracked(struct request *rq)
45 {
46 	return rq->wbt_flags & WBT_TRACKED;
47 }
48 
49 static inline bool wbt_is_read(struct request *rq)
50 {
51 	return rq->wbt_flags & WBT_READ;
52 }
53 
54 enum {
55 	/*
56 	 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
57 	 * from here depending on device stats
58 	 */
59 	RWB_DEF_DEPTH	= 16,
60 
61 	/*
62 	 * 100msec window
63 	 */
64 	RWB_WINDOW_NSEC		= 100 * 1000 * 1000ULL,
65 
66 	/*
67 	 * Disregard stats, if we don't meet this minimum
68 	 */
69 	RWB_MIN_WRITE_SAMPLES	= 3,
70 
71 	/*
72 	 * If we have this number of consecutive windows with not enough
73 	 * information to scale up or down, scale up.
74 	 */
75 	RWB_UNKNOWN_BUMP	= 5,
76 };
77 
78 static inline bool rwb_enabled(struct rq_wb *rwb)
79 {
80 	return rwb && rwb->wb_normal != 0;
81 }
82 
83 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
84 {
85 	if (rwb_enabled(rwb)) {
86 		const unsigned long cur = jiffies;
87 
88 		if (cur != *var)
89 			*var = cur;
90 	}
91 }
92 
93 /*
94  * If a task was rate throttled in balance_dirty_pages() within the last
95  * second or so, use that to indicate a higher cleaning rate.
96  */
97 static bool wb_recent_wait(struct rq_wb *rwb)
98 {
99 	struct bdi_writeback *wb = &rwb->rqos.q->backing_dev_info->wb;
100 
101 	return time_before(jiffies, wb->dirty_sleep + HZ);
102 }
103 
104 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
105 					  enum wbt_flags wb_acct)
106 {
107 	if (wb_acct & WBT_KSWAPD)
108 		return &rwb->rq_wait[WBT_RWQ_KSWAPD];
109 	else if (wb_acct & WBT_DISCARD)
110 		return &rwb->rq_wait[WBT_RWQ_DISCARD];
111 
112 	return &rwb->rq_wait[WBT_RWQ_BG];
113 }
114 
115 static void rwb_wake_all(struct rq_wb *rwb)
116 {
117 	int i;
118 
119 	for (i = 0; i < WBT_NUM_RWQ; i++) {
120 		struct rq_wait *rqw = &rwb->rq_wait[i];
121 
122 		if (wq_has_sleeper(&rqw->wait))
123 			wake_up_all(&rqw->wait);
124 	}
125 }
126 
127 static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw,
128 			 enum wbt_flags wb_acct)
129 {
130 	int inflight, limit;
131 
132 	inflight = atomic_dec_return(&rqw->inflight);
133 
134 	/*
135 	 * wbt got disabled with IO in flight. Wake up any potential
136 	 * waiters, we don't have to do more than that.
137 	 */
138 	if (unlikely(!rwb_enabled(rwb))) {
139 		rwb_wake_all(rwb);
140 		return;
141 	}
142 
143 	/*
144 	 * For discards, our limit is always the background. For writes, if
145 	 * the device does write back caching, drop further down before we
146 	 * wake people up.
147 	 */
148 	if (wb_acct & WBT_DISCARD)
149 		limit = rwb->wb_background;
150 	else if (rwb->wc && !wb_recent_wait(rwb))
151 		limit = 0;
152 	else
153 		limit = rwb->wb_normal;
154 
155 	/*
156 	 * Don't wake anyone up if we are above the normal limit.
157 	 */
158 	if (inflight && inflight >= limit)
159 		return;
160 
161 	if (wq_has_sleeper(&rqw->wait)) {
162 		int diff = limit - inflight;
163 
164 		if (!inflight || diff >= rwb->wb_background / 2)
165 			wake_up_all(&rqw->wait);
166 	}
167 }
168 
169 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct)
170 {
171 	struct rq_wb *rwb = RQWB(rqos);
172 	struct rq_wait *rqw;
173 
174 	if (!(wb_acct & WBT_TRACKED))
175 		return;
176 
177 	rqw = get_rq_wait(rwb, wb_acct);
178 	wbt_rqw_done(rwb, rqw, wb_acct);
179 }
180 
181 /*
182  * Called on completion of a request. Note that it's also called when
183  * a request is merged, when the request gets freed.
184  */
185 static void wbt_done(struct rq_qos *rqos, struct request *rq)
186 {
187 	struct rq_wb *rwb = RQWB(rqos);
188 
189 	if (!wbt_is_tracked(rq)) {
190 		if (rwb->sync_cookie == rq) {
191 			rwb->sync_issue = 0;
192 			rwb->sync_cookie = NULL;
193 		}
194 
195 		if (wbt_is_read(rq))
196 			wb_timestamp(rwb, &rwb->last_comp);
197 	} else {
198 		WARN_ON_ONCE(rq == rwb->sync_cookie);
199 		__wbt_done(rqos, wbt_flags(rq));
200 	}
201 	wbt_clear_state(rq);
202 }
203 
204 static inline bool stat_sample_valid(struct blk_rq_stat *stat)
205 {
206 	/*
207 	 * We need at least one read sample, and a minimum of
208 	 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
209 	 * that it's writes impacting us, and not just some sole read on
210 	 * a device that is in a lower power state.
211 	 */
212 	return (stat[READ].nr_samples >= 1 &&
213 		stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
214 }
215 
216 static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
217 {
218 	u64 now, issue = READ_ONCE(rwb->sync_issue);
219 
220 	if (!issue || !rwb->sync_cookie)
221 		return 0;
222 
223 	now = ktime_to_ns(ktime_get());
224 	return now - issue;
225 }
226 
227 enum {
228 	LAT_OK = 1,
229 	LAT_UNKNOWN,
230 	LAT_UNKNOWN_WRITES,
231 	LAT_EXCEEDED,
232 };
233 
234 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
235 {
236 	struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info;
237 	struct rq_depth *rqd = &rwb->rq_depth;
238 	u64 thislat;
239 
240 	/*
241 	 * If our stored sync issue exceeds the window size, or it
242 	 * exceeds our min target AND we haven't logged any entries,
243 	 * flag the latency as exceeded. wbt works off completion latencies,
244 	 * but for a flooded device, a single sync IO can take a long time
245 	 * to complete after being issued. If this time exceeds our
246 	 * monitoring window AND we didn't see any other completions in that
247 	 * window, then count that sync IO as a violation of the latency.
248 	 */
249 	thislat = rwb_sync_issue_lat(rwb);
250 	if (thislat > rwb->cur_win_nsec ||
251 	    (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
252 		trace_wbt_lat(bdi, thislat);
253 		return LAT_EXCEEDED;
254 	}
255 
256 	/*
257 	 * No read/write mix, if stat isn't valid
258 	 */
259 	if (!stat_sample_valid(stat)) {
260 		/*
261 		 * If we had writes in this stat window and the window is
262 		 * current, we're only doing writes. If a task recently
263 		 * waited or still has writes in flights, consider us doing
264 		 * just writes as well.
265 		 */
266 		if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
267 		    wbt_inflight(rwb))
268 			return LAT_UNKNOWN_WRITES;
269 		return LAT_UNKNOWN;
270 	}
271 
272 	/*
273 	 * If the 'min' latency exceeds our target, step down.
274 	 */
275 	if (stat[READ].min > rwb->min_lat_nsec) {
276 		trace_wbt_lat(bdi, stat[READ].min);
277 		trace_wbt_stat(bdi, stat);
278 		return LAT_EXCEEDED;
279 	}
280 
281 	if (rqd->scale_step)
282 		trace_wbt_stat(bdi, stat);
283 
284 	return LAT_OK;
285 }
286 
287 static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
288 {
289 	struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info;
290 	struct rq_depth *rqd = &rwb->rq_depth;
291 
292 	trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec,
293 			rwb->wb_background, rwb->wb_normal, rqd->max_depth);
294 }
295 
296 static void calc_wb_limits(struct rq_wb *rwb)
297 {
298 	if (rwb->min_lat_nsec == 0) {
299 		rwb->wb_normal = rwb->wb_background = 0;
300 	} else if (rwb->rq_depth.max_depth <= 2) {
301 		rwb->wb_normal = rwb->rq_depth.max_depth;
302 		rwb->wb_background = 1;
303 	} else {
304 		rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2;
305 		rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4;
306 	}
307 }
308 
309 static void scale_up(struct rq_wb *rwb)
310 {
311 	if (!rq_depth_scale_up(&rwb->rq_depth))
312 		return;
313 	calc_wb_limits(rwb);
314 	rwb->unknown_cnt = 0;
315 	rwb_wake_all(rwb);
316 	rwb_trace_step(rwb, tracepoint_string("scale up"));
317 }
318 
319 static void scale_down(struct rq_wb *rwb, bool hard_throttle)
320 {
321 	if (!rq_depth_scale_down(&rwb->rq_depth, hard_throttle))
322 		return;
323 	calc_wb_limits(rwb);
324 	rwb->unknown_cnt = 0;
325 	rwb_trace_step(rwb, tracepoint_string("scale down"));
326 }
327 
328 static void rwb_arm_timer(struct rq_wb *rwb)
329 {
330 	struct rq_depth *rqd = &rwb->rq_depth;
331 
332 	if (rqd->scale_step > 0) {
333 		/*
334 		 * We should speed this up, using some variant of a fast
335 		 * integer inverse square root calculation. Since we only do
336 		 * this for every window expiration, it's not a huge deal,
337 		 * though.
338 		 */
339 		rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
340 					int_sqrt((rqd->scale_step + 1) << 8));
341 	} else {
342 		/*
343 		 * For step < 0, we don't want to increase/decrease the
344 		 * window size.
345 		 */
346 		rwb->cur_win_nsec = rwb->win_nsec;
347 	}
348 
349 	blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
350 }
351 
352 static void wb_timer_fn(struct blk_stat_callback *cb)
353 {
354 	struct rq_wb *rwb = cb->data;
355 	struct rq_depth *rqd = &rwb->rq_depth;
356 	unsigned int inflight = wbt_inflight(rwb);
357 	int status;
358 
359 	status = latency_exceeded(rwb, cb->stat);
360 
361 	trace_wbt_timer(rwb->rqos.q->backing_dev_info, status, rqd->scale_step,
362 			inflight);
363 
364 	/*
365 	 * If we exceeded the latency target, step down. If we did not,
366 	 * step one level up. If we don't know enough to say either exceeded
367 	 * or ok, then don't do anything.
368 	 */
369 	switch (status) {
370 	case LAT_EXCEEDED:
371 		scale_down(rwb, true);
372 		break;
373 	case LAT_OK:
374 		scale_up(rwb);
375 		break;
376 	case LAT_UNKNOWN_WRITES:
377 		/*
378 		 * We started a the center step, but don't have a valid
379 		 * read/write sample, but we do have writes going on.
380 		 * Allow step to go negative, to increase write perf.
381 		 */
382 		scale_up(rwb);
383 		break;
384 	case LAT_UNKNOWN:
385 		if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
386 			break;
387 		/*
388 		 * We get here when previously scaled reduced depth, and we
389 		 * currently don't have a valid read/write sample. For that
390 		 * case, slowly return to center state (step == 0).
391 		 */
392 		if (rqd->scale_step > 0)
393 			scale_up(rwb);
394 		else if (rqd->scale_step < 0)
395 			scale_down(rwb, false);
396 		break;
397 	default:
398 		break;
399 	}
400 
401 	/*
402 	 * Re-arm timer, if we have IO in flight
403 	 */
404 	if (rqd->scale_step || inflight)
405 		rwb_arm_timer(rwb);
406 }
407 
408 static void wbt_update_limits(struct rq_wb *rwb)
409 {
410 	struct rq_depth *rqd = &rwb->rq_depth;
411 
412 	rqd->scale_step = 0;
413 	rqd->scaled_max = false;
414 
415 	rq_depth_calc_max_depth(rqd);
416 	calc_wb_limits(rwb);
417 
418 	rwb_wake_all(rwb);
419 }
420 
421 u64 wbt_get_min_lat(struct request_queue *q)
422 {
423 	struct rq_qos *rqos = wbt_rq_qos(q);
424 	if (!rqos)
425 		return 0;
426 	return RQWB(rqos)->min_lat_nsec;
427 }
428 
429 void wbt_set_min_lat(struct request_queue *q, u64 val)
430 {
431 	struct rq_qos *rqos = wbt_rq_qos(q);
432 	if (!rqos)
433 		return;
434 	RQWB(rqos)->min_lat_nsec = val;
435 	RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL;
436 	wbt_update_limits(RQWB(rqos));
437 }
438 
439 
440 static bool close_io(struct rq_wb *rwb)
441 {
442 	const unsigned long now = jiffies;
443 
444 	return time_before(now, rwb->last_issue + HZ / 10) ||
445 		time_before(now, rwb->last_comp + HZ / 10);
446 }
447 
448 #define REQ_HIPRIO	(REQ_SYNC | REQ_META | REQ_PRIO)
449 
450 static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
451 {
452 	unsigned int limit;
453 
454 	/*
455 	 * If we got disabled, just return UINT_MAX. This ensures that
456 	 * we'll properly inc a new IO, and dec+wakeup at the end.
457 	 */
458 	if (!rwb_enabled(rwb))
459 		return UINT_MAX;
460 
461 	if ((rw & REQ_OP_MASK) == REQ_OP_DISCARD)
462 		return rwb->wb_background;
463 
464 	/*
465 	 * At this point we know it's a buffered write. If this is
466 	 * kswapd trying to free memory, or REQ_SYNC is set, then
467 	 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
468 	 * that. If the write is marked as a background write, then use
469 	 * the idle limit, or go to normal if we haven't had competing
470 	 * IO for a bit.
471 	 */
472 	if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
473 		limit = rwb->rq_depth.max_depth;
474 	else if ((rw & REQ_BACKGROUND) || close_io(rwb)) {
475 		/*
476 		 * If less than 100ms since we completed unrelated IO,
477 		 * limit us to half the depth for background writeback.
478 		 */
479 		limit = rwb->wb_background;
480 	} else
481 		limit = rwb->wb_normal;
482 
483 	return limit;
484 }
485 
486 struct wbt_wait_data {
487 	struct rq_wb *rwb;
488 	enum wbt_flags wb_acct;
489 	unsigned long rw;
490 };
491 
492 static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data)
493 {
494 	struct wbt_wait_data *data = private_data;
495 	return rq_wait_inc_below(rqw, get_limit(data->rwb, data->rw));
496 }
497 
498 static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data)
499 {
500 	struct wbt_wait_data *data = private_data;
501 	wbt_rqw_done(data->rwb, rqw, data->wb_acct);
502 }
503 
504 /*
505  * Block if we will exceed our limit, or if we are currently waiting for
506  * the timer to kick off queuing again.
507  */
508 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
509 		       unsigned long rw)
510 {
511 	struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
512 	struct wbt_wait_data data = {
513 		.rwb = rwb,
514 		.wb_acct = wb_acct,
515 		.rw = rw,
516 	};
517 
518 	rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb);
519 }
520 
521 static inline bool wbt_should_throttle(struct bio *bio)
522 {
523 	switch (bio_op(bio)) {
524 	case REQ_OP_WRITE:
525 		/*
526 		 * Don't throttle WRITE_ODIRECT
527 		 */
528 		if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) ==
529 		    (REQ_SYNC | REQ_IDLE))
530 			return false;
531 		fallthrough;
532 	case REQ_OP_DISCARD:
533 		return true;
534 	default:
535 		return false;
536 	}
537 }
538 
539 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio)
540 {
541 	enum wbt_flags flags = 0;
542 
543 	if (!rwb_enabled(rwb))
544 		return 0;
545 
546 	if (bio_op(bio) == REQ_OP_READ) {
547 		flags = WBT_READ;
548 	} else if (wbt_should_throttle(bio)) {
549 		if (current_is_kswapd())
550 			flags |= WBT_KSWAPD;
551 		if (bio_op(bio) == REQ_OP_DISCARD)
552 			flags |= WBT_DISCARD;
553 		flags |= WBT_TRACKED;
554 	}
555 	return flags;
556 }
557 
558 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio)
559 {
560 	struct rq_wb *rwb = RQWB(rqos);
561 	enum wbt_flags flags = bio_to_wbt_flags(rwb, bio);
562 	__wbt_done(rqos, flags);
563 }
564 
565 /*
566  * Returns true if the IO request should be accounted, false if not.
567  * May sleep, if we have exceeded the writeback limits. Caller can pass
568  * in an irq held spinlock, if it holds one when calling this function.
569  * If we do sleep, we'll release and re-grab it.
570  */
571 static void wbt_wait(struct rq_qos *rqos, struct bio *bio)
572 {
573 	struct rq_wb *rwb = RQWB(rqos);
574 	enum wbt_flags flags;
575 
576 	flags = bio_to_wbt_flags(rwb, bio);
577 	if (!(flags & WBT_TRACKED)) {
578 		if (flags & WBT_READ)
579 			wb_timestamp(rwb, &rwb->last_issue);
580 		return;
581 	}
582 
583 	__wbt_wait(rwb, flags, bio->bi_opf);
584 
585 	if (!blk_stat_is_active(rwb->cb))
586 		rwb_arm_timer(rwb);
587 }
588 
589 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
590 {
591 	struct rq_wb *rwb = RQWB(rqos);
592 	rq->wbt_flags |= bio_to_wbt_flags(rwb, bio);
593 }
594 
595 static void wbt_issue(struct rq_qos *rqos, struct request *rq)
596 {
597 	struct rq_wb *rwb = RQWB(rqos);
598 
599 	if (!rwb_enabled(rwb))
600 		return;
601 
602 	/*
603 	 * Track sync issue, in case it takes a long time to complete. Allows us
604 	 * to react quicker, if a sync IO takes a long time to complete. Note
605 	 * that this is just a hint. The request can go away when it completes,
606 	 * so it's important we never dereference it. We only use the address to
607 	 * compare with, which is why we store the sync_issue time locally.
608 	 */
609 	if (wbt_is_read(rq) && !rwb->sync_issue) {
610 		rwb->sync_cookie = rq;
611 		rwb->sync_issue = rq->io_start_time_ns;
612 	}
613 }
614 
615 static void wbt_requeue(struct rq_qos *rqos, struct request *rq)
616 {
617 	struct rq_wb *rwb = RQWB(rqos);
618 	if (!rwb_enabled(rwb))
619 		return;
620 	if (rq == rwb->sync_cookie) {
621 		rwb->sync_issue = 0;
622 		rwb->sync_cookie = NULL;
623 	}
624 }
625 
626 void wbt_set_write_cache(struct request_queue *q, bool write_cache_on)
627 {
628 	struct rq_qos *rqos = wbt_rq_qos(q);
629 	if (rqos)
630 		RQWB(rqos)->wc = write_cache_on;
631 }
632 
633 /*
634  * Enable wbt if defaults are configured that way
635  */
636 void wbt_enable_default(struct request_queue *q)
637 {
638 	struct rq_qos *rqos = wbt_rq_qos(q);
639 	/* Throttling already enabled? */
640 	if (rqos)
641 		return;
642 
643 	/* Queue not registered? Maybe shutting down... */
644 	if (!blk_queue_registered(q))
645 		return;
646 
647 	if (queue_is_mq(q) && IS_ENABLED(CONFIG_BLK_WBT_MQ))
648 		wbt_init(q);
649 }
650 EXPORT_SYMBOL_GPL(wbt_enable_default);
651 
652 u64 wbt_default_latency_nsec(struct request_queue *q)
653 {
654 	/*
655 	 * We default to 2msec for non-rotational storage, and 75msec
656 	 * for rotational storage.
657 	 */
658 	if (blk_queue_nonrot(q))
659 		return 2000000ULL;
660 	else
661 		return 75000000ULL;
662 }
663 
664 static int wbt_data_dir(const struct request *rq)
665 {
666 	const int op = req_op(rq);
667 
668 	if (op == REQ_OP_READ)
669 		return READ;
670 	else if (op_is_write(op))
671 		return WRITE;
672 
673 	/* don't account */
674 	return -1;
675 }
676 
677 static void wbt_queue_depth_changed(struct rq_qos *rqos)
678 {
679 	RQWB(rqos)->rq_depth.queue_depth = blk_queue_depth(rqos->q);
680 	wbt_update_limits(RQWB(rqos));
681 }
682 
683 static void wbt_exit(struct rq_qos *rqos)
684 {
685 	struct rq_wb *rwb = RQWB(rqos);
686 	struct request_queue *q = rqos->q;
687 
688 	blk_stat_remove_callback(q, rwb->cb);
689 	blk_stat_free_callback(rwb->cb);
690 	kfree(rwb);
691 }
692 
693 /*
694  * Disable wbt, if enabled by default.
695  */
696 void wbt_disable_default(struct request_queue *q)
697 {
698 	struct rq_qos *rqos = wbt_rq_qos(q);
699 	struct rq_wb *rwb;
700 	if (!rqos)
701 		return;
702 	rwb = RQWB(rqos);
703 	if (rwb->enable_state == WBT_STATE_ON_DEFAULT) {
704 		blk_stat_deactivate(rwb->cb);
705 		rwb->wb_normal = 0;
706 	}
707 }
708 EXPORT_SYMBOL_GPL(wbt_disable_default);
709 
710 #ifdef CONFIG_BLK_DEBUG_FS
711 static int wbt_curr_win_nsec_show(void *data, struct seq_file *m)
712 {
713 	struct rq_qos *rqos = data;
714 	struct rq_wb *rwb = RQWB(rqos);
715 
716 	seq_printf(m, "%llu\n", rwb->cur_win_nsec);
717 	return 0;
718 }
719 
720 static int wbt_enabled_show(void *data, struct seq_file *m)
721 {
722 	struct rq_qos *rqos = data;
723 	struct rq_wb *rwb = RQWB(rqos);
724 
725 	seq_printf(m, "%d\n", rwb->enable_state);
726 	return 0;
727 }
728 
729 static int wbt_id_show(void *data, struct seq_file *m)
730 {
731 	struct rq_qos *rqos = data;
732 
733 	seq_printf(m, "%u\n", rqos->id);
734 	return 0;
735 }
736 
737 static int wbt_inflight_show(void *data, struct seq_file *m)
738 {
739 	struct rq_qos *rqos = data;
740 	struct rq_wb *rwb = RQWB(rqos);
741 	int i;
742 
743 	for (i = 0; i < WBT_NUM_RWQ; i++)
744 		seq_printf(m, "%d: inflight %d\n", i,
745 			   atomic_read(&rwb->rq_wait[i].inflight));
746 	return 0;
747 }
748 
749 static int wbt_min_lat_nsec_show(void *data, struct seq_file *m)
750 {
751 	struct rq_qos *rqos = data;
752 	struct rq_wb *rwb = RQWB(rqos);
753 
754 	seq_printf(m, "%lu\n", rwb->min_lat_nsec);
755 	return 0;
756 }
757 
758 static int wbt_unknown_cnt_show(void *data, struct seq_file *m)
759 {
760 	struct rq_qos *rqos = data;
761 	struct rq_wb *rwb = RQWB(rqos);
762 
763 	seq_printf(m, "%u\n", rwb->unknown_cnt);
764 	return 0;
765 }
766 
767 static int wbt_normal_show(void *data, struct seq_file *m)
768 {
769 	struct rq_qos *rqos = data;
770 	struct rq_wb *rwb = RQWB(rqos);
771 
772 	seq_printf(m, "%u\n", rwb->wb_normal);
773 	return 0;
774 }
775 
776 static int wbt_background_show(void *data, struct seq_file *m)
777 {
778 	struct rq_qos *rqos = data;
779 	struct rq_wb *rwb = RQWB(rqos);
780 
781 	seq_printf(m, "%u\n", rwb->wb_background);
782 	return 0;
783 }
784 
785 static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = {
786 	{"curr_win_nsec", 0400, wbt_curr_win_nsec_show},
787 	{"enabled", 0400, wbt_enabled_show},
788 	{"id", 0400, wbt_id_show},
789 	{"inflight", 0400, wbt_inflight_show},
790 	{"min_lat_nsec", 0400, wbt_min_lat_nsec_show},
791 	{"unknown_cnt", 0400, wbt_unknown_cnt_show},
792 	{"wb_normal", 0400, wbt_normal_show},
793 	{"wb_background", 0400, wbt_background_show},
794 	{},
795 };
796 #endif
797 
798 static struct rq_qos_ops wbt_rqos_ops = {
799 	.throttle = wbt_wait,
800 	.issue = wbt_issue,
801 	.track = wbt_track,
802 	.requeue = wbt_requeue,
803 	.done = wbt_done,
804 	.cleanup = wbt_cleanup,
805 	.queue_depth_changed = wbt_queue_depth_changed,
806 	.exit = wbt_exit,
807 #ifdef CONFIG_BLK_DEBUG_FS
808 	.debugfs_attrs = wbt_debugfs_attrs,
809 #endif
810 };
811 
812 int wbt_init(struct request_queue *q)
813 {
814 	struct rq_wb *rwb;
815 	int i;
816 
817 	rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
818 	if (!rwb)
819 		return -ENOMEM;
820 
821 	rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
822 	if (!rwb->cb) {
823 		kfree(rwb);
824 		return -ENOMEM;
825 	}
826 
827 	for (i = 0; i < WBT_NUM_RWQ; i++)
828 		rq_wait_init(&rwb->rq_wait[i]);
829 
830 	rwb->rqos.id = RQ_QOS_WBT;
831 	rwb->rqos.ops = &wbt_rqos_ops;
832 	rwb->rqos.q = q;
833 	rwb->last_comp = rwb->last_issue = jiffies;
834 	rwb->win_nsec = RWB_WINDOW_NSEC;
835 	rwb->enable_state = WBT_STATE_ON_DEFAULT;
836 	rwb->wc = 1;
837 	rwb->rq_depth.default_depth = RWB_DEF_DEPTH;
838 
839 	/*
840 	 * Assign rwb and add the stats callback.
841 	 */
842 	rq_qos_add(q, &rwb->rqos);
843 	blk_stat_add_callback(q, rwb->cb);
844 
845 	rwb->min_lat_nsec = wbt_default_latency_nsec(q);
846 
847 	wbt_queue_depth_changed(&rwb->rqos);
848 	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
849 
850 	return 0;
851 }
852