xref: /openbmc/linux/block/blk-wbt.c (revision 061a5427)
1 /*
2  * buffered writeback throttling. loosely based on CoDel. We can't drop
3  * packets for IO scheduling, so the logic is something like this:
4  *
5  * - Monitor latencies in a defined window of time.
6  * - If the minimum latency in the above window exceeds some target, increment
7  *   scaling step and scale down queue depth by a factor of 2x. The monitoring
8  *   window is then shrunk to 100 / sqrt(scaling step + 1).
9  * - For any window where we don't have solid data on what the latencies
10  *   look like, retain status quo.
11  * - If latencies look good, decrement scaling step.
12  * - If we're only doing writes, allow the scaling step to go negative. This
13  *   will temporarily boost write performance, snapping back to a stable
14  *   scaling step of 0 if reads show up or the heavy writers finish. Unlike
15  *   positive scaling steps where we shrink the monitoring window, a negative
16  *   scaling step retains the default step==0 window size.
17  *
18  * Copyright (C) 2016 Jens Axboe
19  *
20  */
21 #include <linux/kernel.h>
22 #include <linux/blk_types.h>
23 #include <linux/slab.h>
24 #include <linux/backing-dev.h>
25 #include <linux/swap.h>
26 
27 #include "blk-wbt.h"
28 #include "blk-rq-qos.h"
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/wbt.h>
32 
33 static inline void wbt_clear_state(struct request *rq)
34 {
35 	rq->wbt_flags = 0;
36 }
37 
38 static inline enum wbt_flags wbt_flags(struct request *rq)
39 {
40 	return rq->wbt_flags;
41 }
42 
43 static inline bool wbt_is_tracked(struct request *rq)
44 {
45 	return rq->wbt_flags & WBT_TRACKED;
46 }
47 
48 static inline bool wbt_is_read(struct request *rq)
49 {
50 	return rq->wbt_flags & WBT_READ;
51 }
52 
53 enum {
54 	/*
55 	 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
56 	 * from here depending on device stats
57 	 */
58 	RWB_DEF_DEPTH	= 16,
59 
60 	/*
61 	 * 100msec window
62 	 */
63 	RWB_WINDOW_NSEC		= 100 * 1000 * 1000ULL,
64 
65 	/*
66 	 * Disregard stats, if we don't meet this minimum
67 	 */
68 	RWB_MIN_WRITE_SAMPLES	= 3,
69 
70 	/*
71 	 * If we have this number of consecutive windows with not enough
72 	 * information to scale up or down, scale up.
73 	 */
74 	RWB_UNKNOWN_BUMP	= 5,
75 };
76 
77 static inline bool rwb_enabled(struct rq_wb *rwb)
78 {
79 	return rwb && rwb->wb_normal != 0;
80 }
81 
82 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
83 {
84 	if (rwb_enabled(rwb)) {
85 		const unsigned long cur = jiffies;
86 
87 		if (cur != *var)
88 			*var = cur;
89 	}
90 }
91 
92 /*
93  * If a task was rate throttled in balance_dirty_pages() within the last
94  * second or so, use that to indicate a higher cleaning rate.
95  */
96 static bool wb_recent_wait(struct rq_wb *rwb)
97 {
98 	struct bdi_writeback *wb = &rwb->rqos.q->backing_dev_info->wb;
99 
100 	return time_before(jiffies, wb->dirty_sleep + HZ);
101 }
102 
103 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
104 					  enum wbt_flags wb_acct)
105 {
106 	if (wb_acct & WBT_KSWAPD)
107 		return &rwb->rq_wait[WBT_RWQ_KSWAPD];
108 	else if (wb_acct & WBT_DISCARD)
109 		return &rwb->rq_wait[WBT_RWQ_DISCARD];
110 
111 	return &rwb->rq_wait[WBT_RWQ_BG];
112 }
113 
114 static void rwb_wake_all(struct rq_wb *rwb)
115 {
116 	int i;
117 
118 	for (i = 0; i < WBT_NUM_RWQ; i++) {
119 		struct rq_wait *rqw = &rwb->rq_wait[i];
120 
121 		if (wq_has_sleeper(&rqw->wait))
122 			wake_up_all(&rqw->wait);
123 	}
124 }
125 
126 static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw,
127 			 enum wbt_flags wb_acct)
128 {
129 	int inflight, limit;
130 
131 	inflight = atomic_dec_return(&rqw->inflight);
132 
133 	/*
134 	 * wbt got disabled with IO in flight. Wake up any potential
135 	 * waiters, we don't have to do more than that.
136 	 */
137 	if (unlikely(!rwb_enabled(rwb))) {
138 		rwb_wake_all(rwb);
139 		return;
140 	}
141 
142 	/*
143 	 * For discards, our limit is always the background. For writes, if
144 	 * the device does write back caching, drop further down before we
145 	 * wake people up.
146 	 */
147 	if (wb_acct & WBT_DISCARD)
148 		limit = rwb->wb_background;
149 	else if (rwb->wc && !wb_recent_wait(rwb))
150 		limit = 0;
151 	else
152 		limit = rwb->wb_normal;
153 
154 	/*
155 	 * Don't wake anyone up if we are above the normal limit.
156 	 */
157 	if (inflight && inflight >= limit)
158 		return;
159 
160 	if (wq_has_sleeper(&rqw->wait)) {
161 		int diff = limit - inflight;
162 
163 		if (!inflight || diff >= rwb->wb_background / 2)
164 			wake_up(&rqw->wait);
165 	}
166 }
167 
168 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct)
169 {
170 	struct rq_wb *rwb = RQWB(rqos);
171 	struct rq_wait *rqw;
172 
173 	if (!(wb_acct & WBT_TRACKED))
174 		return;
175 
176 	rqw = get_rq_wait(rwb, wb_acct);
177 	wbt_rqw_done(rwb, rqw, wb_acct);
178 }
179 
180 /*
181  * Called on completion of a request. Note that it's also called when
182  * a request is merged, when the request gets freed.
183  */
184 static void wbt_done(struct rq_qos *rqos, struct request *rq)
185 {
186 	struct rq_wb *rwb = RQWB(rqos);
187 
188 	if (!wbt_is_tracked(rq)) {
189 		if (rwb->sync_cookie == rq) {
190 			rwb->sync_issue = 0;
191 			rwb->sync_cookie = NULL;
192 		}
193 
194 		if (wbt_is_read(rq))
195 			wb_timestamp(rwb, &rwb->last_comp);
196 	} else {
197 		WARN_ON_ONCE(rq == rwb->sync_cookie);
198 		__wbt_done(rqos, wbt_flags(rq));
199 	}
200 	wbt_clear_state(rq);
201 }
202 
203 static inline bool stat_sample_valid(struct blk_rq_stat *stat)
204 {
205 	/*
206 	 * We need at least one read sample, and a minimum of
207 	 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
208 	 * that it's writes impacting us, and not just some sole read on
209 	 * a device that is in a lower power state.
210 	 */
211 	return (stat[READ].nr_samples >= 1 &&
212 		stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
213 }
214 
215 static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
216 {
217 	u64 now, issue = READ_ONCE(rwb->sync_issue);
218 
219 	if (!issue || !rwb->sync_cookie)
220 		return 0;
221 
222 	now = ktime_to_ns(ktime_get());
223 	return now - issue;
224 }
225 
226 enum {
227 	LAT_OK = 1,
228 	LAT_UNKNOWN,
229 	LAT_UNKNOWN_WRITES,
230 	LAT_EXCEEDED,
231 };
232 
233 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
234 {
235 	struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info;
236 	struct rq_depth *rqd = &rwb->rq_depth;
237 	u64 thislat;
238 
239 	/*
240 	 * If our stored sync issue exceeds the window size, or it
241 	 * exceeds our min target AND we haven't logged any entries,
242 	 * flag the latency as exceeded. wbt works off completion latencies,
243 	 * but for a flooded device, a single sync IO can take a long time
244 	 * to complete after being issued. If this time exceeds our
245 	 * monitoring window AND we didn't see any other completions in that
246 	 * window, then count that sync IO as a violation of the latency.
247 	 */
248 	thislat = rwb_sync_issue_lat(rwb);
249 	if (thislat > rwb->cur_win_nsec ||
250 	    (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
251 		trace_wbt_lat(bdi, thislat);
252 		return LAT_EXCEEDED;
253 	}
254 
255 	/*
256 	 * No read/write mix, if stat isn't valid
257 	 */
258 	if (!stat_sample_valid(stat)) {
259 		/*
260 		 * If we had writes in this stat window and the window is
261 		 * current, we're only doing writes. If a task recently
262 		 * waited or still has writes in flights, consider us doing
263 		 * just writes as well.
264 		 */
265 		if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
266 		    wbt_inflight(rwb))
267 			return LAT_UNKNOWN_WRITES;
268 		return LAT_UNKNOWN;
269 	}
270 
271 	/*
272 	 * If the 'min' latency exceeds our target, step down.
273 	 */
274 	if (stat[READ].min > rwb->min_lat_nsec) {
275 		trace_wbt_lat(bdi, stat[READ].min);
276 		trace_wbt_stat(bdi, stat);
277 		return LAT_EXCEEDED;
278 	}
279 
280 	if (rqd->scale_step)
281 		trace_wbt_stat(bdi, stat);
282 
283 	return LAT_OK;
284 }
285 
286 static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
287 {
288 	struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info;
289 	struct rq_depth *rqd = &rwb->rq_depth;
290 
291 	trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec,
292 			rwb->wb_background, rwb->wb_normal, rqd->max_depth);
293 }
294 
295 static void calc_wb_limits(struct rq_wb *rwb)
296 {
297 	if (rwb->min_lat_nsec == 0) {
298 		rwb->wb_normal = rwb->wb_background = 0;
299 	} else if (rwb->rq_depth.max_depth <= 2) {
300 		rwb->wb_normal = rwb->rq_depth.max_depth;
301 		rwb->wb_background = 1;
302 	} else {
303 		rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2;
304 		rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4;
305 	}
306 }
307 
308 static void scale_up(struct rq_wb *rwb)
309 {
310 	rq_depth_scale_up(&rwb->rq_depth);
311 	calc_wb_limits(rwb);
312 	rwb->unknown_cnt = 0;
313 	rwb_trace_step(rwb, "scale up");
314 }
315 
316 static void scale_down(struct rq_wb *rwb, bool hard_throttle)
317 {
318 	rq_depth_scale_down(&rwb->rq_depth, hard_throttle);
319 	calc_wb_limits(rwb);
320 	rwb->unknown_cnt = 0;
321 	rwb_wake_all(rwb);
322 	rwb_trace_step(rwb, "scale down");
323 }
324 
325 static void rwb_arm_timer(struct rq_wb *rwb)
326 {
327 	struct rq_depth *rqd = &rwb->rq_depth;
328 
329 	if (rqd->scale_step > 0) {
330 		/*
331 		 * We should speed this up, using some variant of a fast
332 		 * integer inverse square root calculation. Since we only do
333 		 * this for every window expiration, it's not a huge deal,
334 		 * though.
335 		 */
336 		rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
337 					int_sqrt((rqd->scale_step + 1) << 8));
338 	} else {
339 		/*
340 		 * For step < 0, we don't want to increase/decrease the
341 		 * window size.
342 		 */
343 		rwb->cur_win_nsec = rwb->win_nsec;
344 	}
345 
346 	blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
347 }
348 
349 static void wb_timer_fn(struct blk_stat_callback *cb)
350 {
351 	struct rq_wb *rwb = cb->data;
352 	struct rq_depth *rqd = &rwb->rq_depth;
353 	unsigned int inflight = wbt_inflight(rwb);
354 	int status;
355 
356 	status = latency_exceeded(rwb, cb->stat);
357 
358 	trace_wbt_timer(rwb->rqos.q->backing_dev_info, status, rqd->scale_step,
359 			inflight);
360 
361 	/*
362 	 * If we exceeded the latency target, step down. If we did not,
363 	 * step one level up. If we don't know enough to say either exceeded
364 	 * or ok, then don't do anything.
365 	 */
366 	switch (status) {
367 	case LAT_EXCEEDED:
368 		scale_down(rwb, true);
369 		break;
370 	case LAT_OK:
371 		scale_up(rwb);
372 		break;
373 	case LAT_UNKNOWN_WRITES:
374 		/*
375 		 * We started a the center step, but don't have a valid
376 		 * read/write sample, but we do have writes going on.
377 		 * Allow step to go negative, to increase write perf.
378 		 */
379 		scale_up(rwb);
380 		break;
381 	case LAT_UNKNOWN:
382 		if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
383 			break;
384 		/*
385 		 * We get here when previously scaled reduced depth, and we
386 		 * currently don't have a valid read/write sample. For that
387 		 * case, slowly return to center state (step == 0).
388 		 */
389 		if (rqd->scale_step > 0)
390 			scale_up(rwb);
391 		else if (rqd->scale_step < 0)
392 			scale_down(rwb, false);
393 		break;
394 	default:
395 		break;
396 	}
397 
398 	/*
399 	 * Re-arm timer, if we have IO in flight
400 	 */
401 	if (rqd->scale_step || inflight)
402 		rwb_arm_timer(rwb);
403 }
404 
405 static void __wbt_update_limits(struct rq_wb *rwb)
406 {
407 	struct rq_depth *rqd = &rwb->rq_depth;
408 
409 	rqd->scale_step = 0;
410 	rqd->scaled_max = false;
411 
412 	rq_depth_calc_max_depth(rqd);
413 	calc_wb_limits(rwb);
414 
415 	rwb_wake_all(rwb);
416 }
417 
418 void wbt_update_limits(struct request_queue *q)
419 {
420 	struct rq_qos *rqos = wbt_rq_qos(q);
421 	if (!rqos)
422 		return;
423 	__wbt_update_limits(RQWB(rqos));
424 }
425 
426 u64 wbt_get_min_lat(struct request_queue *q)
427 {
428 	struct rq_qos *rqos = wbt_rq_qos(q);
429 	if (!rqos)
430 		return 0;
431 	return RQWB(rqos)->min_lat_nsec;
432 }
433 
434 void wbt_set_min_lat(struct request_queue *q, u64 val)
435 {
436 	struct rq_qos *rqos = wbt_rq_qos(q);
437 	if (!rqos)
438 		return;
439 	RQWB(rqos)->min_lat_nsec = val;
440 	RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL;
441 	__wbt_update_limits(RQWB(rqos));
442 }
443 
444 
445 static bool close_io(struct rq_wb *rwb)
446 {
447 	const unsigned long now = jiffies;
448 
449 	return time_before(now, rwb->last_issue + HZ / 10) ||
450 		time_before(now, rwb->last_comp + HZ / 10);
451 }
452 
453 #define REQ_HIPRIO	(REQ_SYNC | REQ_META | REQ_PRIO)
454 
455 static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
456 {
457 	unsigned int limit;
458 
459 	/*
460 	 * If we got disabled, just return UINT_MAX. This ensures that
461 	 * we'll properly inc a new IO, and dec+wakeup at the end.
462 	 */
463 	if (!rwb_enabled(rwb))
464 		return UINT_MAX;
465 
466 	if ((rw & REQ_OP_MASK) == REQ_OP_DISCARD)
467 		return rwb->wb_background;
468 
469 	/*
470 	 * At this point we know it's a buffered write. If this is
471 	 * kswapd trying to free memory, or REQ_SYNC is set, then
472 	 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
473 	 * that. If the write is marked as a background write, then use
474 	 * the idle limit, or go to normal if we haven't had competing
475 	 * IO for a bit.
476 	 */
477 	if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
478 		limit = rwb->rq_depth.max_depth;
479 	else if ((rw & REQ_BACKGROUND) || close_io(rwb)) {
480 		/*
481 		 * If less than 100ms since we completed unrelated IO,
482 		 * limit us to half the depth for background writeback.
483 		 */
484 		limit = rwb->wb_background;
485 	} else
486 		limit = rwb->wb_normal;
487 
488 	return limit;
489 }
490 
491 /*
492  * Block if we will exceed our limit, or if we are currently waiting for
493  * the timer to kick off queuing again.
494  */
495 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
496 		       unsigned long rw, spinlock_t *lock)
497 	__releases(lock)
498 	__acquires(lock)
499 {
500 	struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
501 	DECLARE_WAITQUEUE(wait, current);
502 	bool has_sleeper;
503 
504 	has_sleeper = wq_has_sleeper(&rqw->wait);
505 	if (!has_sleeper && rq_wait_inc_below(rqw, get_limit(rwb, rw)))
506 		return;
507 
508 	add_wait_queue_exclusive(&rqw->wait, &wait);
509 	do {
510 		set_current_state(TASK_UNINTERRUPTIBLE);
511 
512 		if (!has_sleeper && rq_wait_inc_below(rqw, get_limit(rwb, rw)))
513 			break;
514 
515 		if (lock) {
516 			spin_unlock_irq(lock);
517 			io_schedule();
518 			spin_lock_irq(lock);
519 		} else
520 			io_schedule();
521 		has_sleeper = false;
522 	} while (1);
523 
524 	__set_current_state(TASK_RUNNING);
525 	remove_wait_queue(&rqw->wait, &wait);
526 }
527 
528 static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio)
529 {
530 	switch (bio_op(bio)) {
531 	case REQ_OP_WRITE:
532 		/*
533 		 * Don't throttle WRITE_ODIRECT
534 		 */
535 		if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) ==
536 		    (REQ_SYNC | REQ_IDLE))
537 			return false;
538 		/* fallthrough */
539 	case REQ_OP_DISCARD:
540 		return true;
541 	default:
542 		return false;
543 	}
544 }
545 
546 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio)
547 {
548 	enum wbt_flags flags = 0;
549 
550 	if (!rwb_enabled(rwb))
551 		return 0;
552 
553 	if (bio_op(bio) == REQ_OP_READ) {
554 		flags = WBT_READ;
555 	} else if (wbt_should_throttle(rwb, bio)) {
556 		if (current_is_kswapd())
557 			flags |= WBT_KSWAPD;
558 		if (bio_op(bio) == REQ_OP_DISCARD)
559 			flags |= WBT_DISCARD;
560 		flags |= WBT_TRACKED;
561 	}
562 	return flags;
563 }
564 
565 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio)
566 {
567 	struct rq_wb *rwb = RQWB(rqos);
568 	enum wbt_flags flags = bio_to_wbt_flags(rwb, bio);
569 	__wbt_done(rqos, flags);
570 }
571 
572 /*
573  * Returns true if the IO request should be accounted, false if not.
574  * May sleep, if we have exceeded the writeback limits. Caller can pass
575  * in an irq held spinlock, if it holds one when calling this function.
576  * If we do sleep, we'll release and re-grab it.
577  */
578 static void wbt_wait(struct rq_qos *rqos, struct bio *bio, spinlock_t *lock)
579 {
580 	struct rq_wb *rwb = RQWB(rqos);
581 	enum wbt_flags flags;
582 
583 	flags = bio_to_wbt_flags(rwb, bio);
584 	if (!(flags & WBT_TRACKED)) {
585 		if (flags & WBT_READ)
586 			wb_timestamp(rwb, &rwb->last_issue);
587 		return;
588 	}
589 
590 	if (current_is_kswapd())
591 		flags |= WBT_KSWAPD;
592 	if (bio_op(bio) == REQ_OP_DISCARD)
593 		flags |= WBT_DISCARD;
594 
595 	__wbt_wait(rwb, flags, bio->bi_opf, lock);
596 
597 	if (!blk_stat_is_active(rwb->cb))
598 		rwb_arm_timer(rwb);
599 }
600 
601 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
602 {
603 	struct rq_wb *rwb = RQWB(rqos);
604 	rq->wbt_flags |= bio_to_wbt_flags(rwb, bio);
605 }
606 
607 void wbt_issue(struct rq_qos *rqos, struct request *rq)
608 {
609 	struct rq_wb *rwb = RQWB(rqos);
610 
611 	if (!rwb_enabled(rwb))
612 		return;
613 
614 	/*
615 	 * Track sync issue, in case it takes a long time to complete. Allows us
616 	 * to react quicker, if a sync IO takes a long time to complete. Note
617 	 * that this is just a hint. The request can go away when it completes,
618 	 * so it's important we never dereference it. We only use the address to
619 	 * compare with, which is why we store the sync_issue time locally.
620 	 */
621 	if (wbt_is_read(rq) && !rwb->sync_issue) {
622 		rwb->sync_cookie = rq;
623 		rwb->sync_issue = rq->io_start_time_ns;
624 	}
625 }
626 
627 void wbt_requeue(struct rq_qos *rqos, struct request *rq)
628 {
629 	struct rq_wb *rwb = RQWB(rqos);
630 	if (!rwb_enabled(rwb))
631 		return;
632 	if (rq == rwb->sync_cookie) {
633 		rwb->sync_issue = 0;
634 		rwb->sync_cookie = NULL;
635 	}
636 }
637 
638 void wbt_set_queue_depth(struct request_queue *q, unsigned int depth)
639 {
640 	struct rq_qos *rqos = wbt_rq_qos(q);
641 	if (rqos) {
642 		RQWB(rqos)->rq_depth.queue_depth = depth;
643 		__wbt_update_limits(RQWB(rqos));
644 	}
645 }
646 
647 void wbt_set_write_cache(struct request_queue *q, bool write_cache_on)
648 {
649 	struct rq_qos *rqos = wbt_rq_qos(q);
650 	if (rqos)
651 		RQWB(rqos)->wc = write_cache_on;
652 }
653 
654 /*
655  * Enable wbt if defaults are configured that way
656  */
657 void wbt_enable_default(struct request_queue *q)
658 {
659 	struct rq_qos *rqos = wbt_rq_qos(q);
660 	/* Throttling already enabled? */
661 	if (rqos)
662 		return;
663 
664 	/* Queue not registered? Maybe shutting down... */
665 	if (!test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
666 		return;
667 
668 	if ((q->mq_ops && IS_ENABLED(CONFIG_BLK_WBT_MQ)) ||
669 	    (q->request_fn && IS_ENABLED(CONFIG_BLK_WBT_SQ)))
670 		wbt_init(q);
671 }
672 EXPORT_SYMBOL_GPL(wbt_enable_default);
673 
674 u64 wbt_default_latency_nsec(struct request_queue *q)
675 {
676 	/*
677 	 * We default to 2msec for non-rotational storage, and 75msec
678 	 * for rotational storage.
679 	 */
680 	if (blk_queue_nonrot(q))
681 		return 2000000ULL;
682 	else
683 		return 75000000ULL;
684 }
685 
686 static int wbt_data_dir(const struct request *rq)
687 {
688 	const int op = req_op(rq);
689 
690 	if (op == REQ_OP_READ)
691 		return READ;
692 	else if (op_is_write(op))
693 		return WRITE;
694 
695 	/* don't account */
696 	return -1;
697 }
698 
699 static void wbt_exit(struct rq_qos *rqos)
700 {
701 	struct rq_wb *rwb = RQWB(rqos);
702 	struct request_queue *q = rqos->q;
703 
704 	blk_stat_remove_callback(q, rwb->cb);
705 	blk_stat_free_callback(rwb->cb);
706 	kfree(rwb);
707 }
708 
709 /*
710  * Disable wbt, if enabled by default.
711  */
712 void wbt_disable_default(struct request_queue *q)
713 {
714 	struct rq_qos *rqos = wbt_rq_qos(q);
715 	struct rq_wb *rwb;
716 	if (!rqos)
717 		return;
718 	rwb = RQWB(rqos);
719 	if (rwb->enable_state == WBT_STATE_ON_DEFAULT)
720 		rwb->wb_normal = 0;
721 }
722 EXPORT_SYMBOL_GPL(wbt_disable_default);
723 
724 
725 static struct rq_qos_ops wbt_rqos_ops = {
726 	.throttle = wbt_wait,
727 	.issue = wbt_issue,
728 	.track = wbt_track,
729 	.requeue = wbt_requeue,
730 	.done = wbt_done,
731 	.cleanup = wbt_cleanup,
732 	.exit = wbt_exit,
733 };
734 
735 int wbt_init(struct request_queue *q)
736 {
737 	struct rq_wb *rwb;
738 	int i;
739 
740 	rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
741 	if (!rwb)
742 		return -ENOMEM;
743 
744 	rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
745 	if (!rwb->cb) {
746 		kfree(rwb);
747 		return -ENOMEM;
748 	}
749 
750 	for (i = 0; i < WBT_NUM_RWQ; i++)
751 		rq_wait_init(&rwb->rq_wait[i]);
752 
753 	rwb->rqos.id = RQ_QOS_WBT;
754 	rwb->rqos.ops = &wbt_rqos_ops;
755 	rwb->rqos.q = q;
756 	rwb->last_comp = rwb->last_issue = jiffies;
757 	rwb->win_nsec = RWB_WINDOW_NSEC;
758 	rwb->enable_state = WBT_STATE_ON_DEFAULT;
759 	rwb->wc = 1;
760 	rwb->rq_depth.default_depth = RWB_DEF_DEPTH;
761 	__wbt_update_limits(rwb);
762 
763 	/*
764 	 * Assign rwb and add the stats callback.
765 	 */
766 	rq_qos_add(q, &rwb->rqos);
767 	blk_stat_add_callback(q, rwb->cb);
768 
769 	rwb->min_lat_nsec = wbt_default_latency_nsec(q);
770 
771 	wbt_set_queue_depth(q, blk_queue_depth(q));
772 	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
773 
774 	return 0;
775 }
776