xref: /openbmc/linux/block/blk-wbt.c (revision 0545810f7edaf0c2869eccdd97a3694b5a292e1d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * buffered writeback throttling. loosely based on CoDel. We can't drop
4  * packets for IO scheduling, so the logic is something like this:
5  *
6  * - Monitor latencies in a defined window of time.
7  * - If the minimum latency in the above window exceeds some target, increment
8  *   scaling step and scale down queue depth by a factor of 2x. The monitoring
9  *   window is then shrunk to 100 / sqrt(scaling step + 1).
10  * - For any window where we don't have solid data on what the latencies
11  *   look like, retain status quo.
12  * - If latencies look good, decrement scaling step.
13  * - If we're only doing writes, allow the scaling step to go negative. This
14  *   will temporarily boost write performance, snapping back to a stable
15  *   scaling step of 0 if reads show up or the heavy writers finish. Unlike
16  *   positive scaling steps where we shrink the monitoring window, a negative
17  *   scaling step retains the default step==0 window size.
18  *
19  * Copyright (C) 2016 Jens Axboe
20  *
21  */
22 #include <linux/kernel.h>
23 #include <linux/blk_types.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/swap.h>
27 
28 #include "blk-stat.h"
29 #include "blk-wbt.h"
30 #include "blk-rq-qos.h"
31 #include "elevator.h"
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/wbt.h>
35 
36 enum wbt_flags {
37 	WBT_TRACKED		= 1,	/* write, tracked for throttling */
38 	WBT_READ		= 2,	/* read */
39 	WBT_KSWAPD		= 4,	/* write, from kswapd */
40 	WBT_DISCARD		= 8,	/* discard */
41 
42 	WBT_NR_BITS		= 4,	/* number of bits */
43 };
44 
45 enum {
46 	WBT_RWQ_BG		= 0,
47 	WBT_RWQ_KSWAPD,
48 	WBT_RWQ_DISCARD,
49 	WBT_NUM_RWQ,
50 };
51 
52 /*
53  * If current state is WBT_STATE_ON/OFF_DEFAULT, it can be covered to any other
54  * state, if current state is WBT_STATE_ON/OFF_MANUAL, it can only be covered
55  * to WBT_STATE_OFF/ON_MANUAL.
56  */
57 enum {
58 	WBT_STATE_ON_DEFAULT	= 1,	/* on by default */
59 	WBT_STATE_ON_MANUAL	= 2,	/* on manually by sysfs */
60 	WBT_STATE_OFF_DEFAULT	= 3,	/* off by default */
61 	WBT_STATE_OFF_MANUAL	= 4,	/* off manually by sysfs */
62 };
63 
64 struct rq_wb {
65 	/*
66 	 * Settings that govern how we throttle
67 	 */
68 	unsigned int wb_background;		/* background writeback */
69 	unsigned int wb_normal;			/* normal writeback */
70 
71 	short enable_state;			/* WBT_STATE_* */
72 
73 	/*
74 	 * Number of consecutive periods where we don't have enough
75 	 * information to make a firm scale up/down decision.
76 	 */
77 	unsigned int unknown_cnt;
78 
79 	u64 win_nsec;				/* default window size */
80 	u64 cur_win_nsec;			/* current window size */
81 
82 	struct blk_stat_callback *cb;
83 
84 	u64 sync_issue;
85 	void *sync_cookie;
86 
87 	unsigned int wc;
88 
89 	unsigned long last_issue;		/* last non-throttled issue */
90 	unsigned long last_comp;		/* last non-throttled comp */
91 	unsigned long min_lat_nsec;
92 	struct rq_qos rqos;
93 	struct rq_wait rq_wait[WBT_NUM_RWQ];
94 	struct rq_depth rq_depth;
95 };
96 
97 static inline struct rq_wb *RQWB(struct rq_qos *rqos)
98 {
99 	return container_of(rqos, struct rq_wb, rqos);
100 }
101 
102 static inline void wbt_clear_state(struct request *rq)
103 {
104 	rq->wbt_flags = 0;
105 }
106 
107 static inline enum wbt_flags wbt_flags(struct request *rq)
108 {
109 	return rq->wbt_flags;
110 }
111 
112 static inline bool wbt_is_tracked(struct request *rq)
113 {
114 	return rq->wbt_flags & WBT_TRACKED;
115 }
116 
117 static inline bool wbt_is_read(struct request *rq)
118 {
119 	return rq->wbt_flags & WBT_READ;
120 }
121 
122 enum {
123 	/*
124 	 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
125 	 * from here depending on device stats
126 	 */
127 	RWB_DEF_DEPTH	= 16,
128 
129 	/*
130 	 * 100msec window
131 	 */
132 	RWB_WINDOW_NSEC		= 100 * 1000 * 1000ULL,
133 
134 	/*
135 	 * Disregard stats, if we don't meet this minimum
136 	 */
137 	RWB_MIN_WRITE_SAMPLES	= 3,
138 
139 	/*
140 	 * If we have this number of consecutive windows with not enough
141 	 * information to scale up or down, scale up.
142 	 */
143 	RWB_UNKNOWN_BUMP	= 5,
144 };
145 
146 static inline bool rwb_enabled(struct rq_wb *rwb)
147 {
148 	return rwb && rwb->enable_state != WBT_STATE_OFF_DEFAULT &&
149 		      rwb->wb_normal != 0;
150 }
151 
152 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
153 {
154 	if (rwb_enabled(rwb)) {
155 		const unsigned long cur = jiffies;
156 
157 		if (cur != *var)
158 			*var = cur;
159 	}
160 }
161 
162 /*
163  * If a task was rate throttled in balance_dirty_pages() within the last
164  * second or so, use that to indicate a higher cleaning rate.
165  */
166 static bool wb_recent_wait(struct rq_wb *rwb)
167 {
168 	struct bdi_writeback *wb = &rwb->rqos.disk->bdi->wb;
169 
170 	return time_before(jiffies, wb->dirty_sleep + HZ);
171 }
172 
173 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
174 					  enum wbt_flags wb_acct)
175 {
176 	if (wb_acct & WBT_KSWAPD)
177 		return &rwb->rq_wait[WBT_RWQ_KSWAPD];
178 	else if (wb_acct & WBT_DISCARD)
179 		return &rwb->rq_wait[WBT_RWQ_DISCARD];
180 
181 	return &rwb->rq_wait[WBT_RWQ_BG];
182 }
183 
184 static void rwb_wake_all(struct rq_wb *rwb)
185 {
186 	int i;
187 
188 	for (i = 0; i < WBT_NUM_RWQ; i++) {
189 		struct rq_wait *rqw = &rwb->rq_wait[i];
190 
191 		if (wq_has_sleeper(&rqw->wait))
192 			wake_up_all(&rqw->wait);
193 	}
194 }
195 
196 static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw,
197 			 enum wbt_flags wb_acct)
198 {
199 	int inflight, limit;
200 
201 	inflight = atomic_dec_return(&rqw->inflight);
202 
203 	/*
204 	 * wbt got disabled with IO in flight. Wake up any potential
205 	 * waiters, we don't have to do more than that.
206 	 */
207 	if (unlikely(!rwb_enabled(rwb))) {
208 		rwb_wake_all(rwb);
209 		return;
210 	}
211 
212 	/*
213 	 * For discards, our limit is always the background. For writes, if
214 	 * the device does write back caching, drop further down before we
215 	 * wake people up.
216 	 */
217 	if (wb_acct & WBT_DISCARD)
218 		limit = rwb->wb_background;
219 	else if (rwb->wc && !wb_recent_wait(rwb))
220 		limit = 0;
221 	else
222 		limit = rwb->wb_normal;
223 
224 	/*
225 	 * Don't wake anyone up if we are above the normal limit.
226 	 */
227 	if (inflight && inflight >= limit)
228 		return;
229 
230 	if (wq_has_sleeper(&rqw->wait)) {
231 		int diff = limit - inflight;
232 
233 		if (!inflight || diff >= rwb->wb_background / 2)
234 			wake_up_all(&rqw->wait);
235 	}
236 }
237 
238 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct)
239 {
240 	struct rq_wb *rwb = RQWB(rqos);
241 	struct rq_wait *rqw;
242 
243 	if (!(wb_acct & WBT_TRACKED))
244 		return;
245 
246 	rqw = get_rq_wait(rwb, wb_acct);
247 	wbt_rqw_done(rwb, rqw, wb_acct);
248 }
249 
250 /*
251  * Called on completion of a request. Note that it's also called when
252  * a request is merged, when the request gets freed.
253  */
254 static void wbt_done(struct rq_qos *rqos, struct request *rq)
255 {
256 	struct rq_wb *rwb = RQWB(rqos);
257 
258 	if (!wbt_is_tracked(rq)) {
259 		if (rwb->sync_cookie == rq) {
260 			rwb->sync_issue = 0;
261 			rwb->sync_cookie = NULL;
262 		}
263 
264 		if (wbt_is_read(rq))
265 			wb_timestamp(rwb, &rwb->last_comp);
266 	} else {
267 		WARN_ON_ONCE(rq == rwb->sync_cookie);
268 		__wbt_done(rqos, wbt_flags(rq));
269 	}
270 	wbt_clear_state(rq);
271 }
272 
273 static inline bool stat_sample_valid(struct blk_rq_stat *stat)
274 {
275 	/*
276 	 * We need at least one read sample, and a minimum of
277 	 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
278 	 * that it's writes impacting us, and not just some sole read on
279 	 * a device that is in a lower power state.
280 	 */
281 	return (stat[READ].nr_samples >= 1 &&
282 		stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
283 }
284 
285 static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
286 {
287 	u64 now, issue = READ_ONCE(rwb->sync_issue);
288 
289 	if (!issue || !rwb->sync_cookie)
290 		return 0;
291 
292 	now = ktime_to_ns(ktime_get());
293 	return now - issue;
294 }
295 
296 static inline unsigned int wbt_inflight(struct rq_wb *rwb)
297 {
298 	unsigned int i, ret = 0;
299 
300 	for (i = 0; i < WBT_NUM_RWQ; i++)
301 		ret += atomic_read(&rwb->rq_wait[i].inflight);
302 
303 	return ret;
304 }
305 
306 enum {
307 	LAT_OK = 1,
308 	LAT_UNKNOWN,
309 	LAT_UNKNOWN_WRITES,
310 	LAT_EXCEEDED,
311 };
312 
313 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
314 {
315 	struct backing_dev_info *bdi = rwb->rqos.disk->bdi;
316 	struct rq_depth *rqd = &rwb->rq_depth;
317 	u64 thislat;
318 
319 	/*
320 	 * If our stored sync issue exceeds the window size, or it
321 	 * exceeds our min target AND we haven't logged any entries,
322 	 * flag the latency as exceeded. wbt works off completion latencies,
323 	 * but for a flooded device, a single sync IO can take a long time
324 	 * to complete after being issued. If this time exceeds our
325 	 * monitoring window AND we didn't see any other completions in that
326 	 * window, then count that sync IO as a violation of the latency.
327 	 */
328 	thislat = rwb_sync_issue_lat(rwb);
329 	if (thislat > rwb->cur_win_nsec ||
330 	    (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
331 		trace_wbt_lat(bdi, thislat);
332 		return LAT_EXCEEDED;
333 	}
334 
335 	/*
336 	 * No read/write mix, if stat isn't valid
337 	 */
338 	if (!stat_sample_valid(stat)) {
339 		/*
340 		 * If we had writes in this stat window and the window is
341 		 * current, we're only doing writes. If a task recently
342 		 * waited or still has writes in flights, consider us doing
343 		 * just writes as well.
344 		 */
345 		if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
346 		    wbt_inflight(rwb))
347 			return LAT_UNKNOWN_WRITES;
348 		return LAT_UNKNOWN;
349 	}
350 
351 	/*
352 	 * If the 'min' latency exceeds our target, step down.
353 	 */
354 	if (stat[READ].min > rwb->min_lat_nsec) {
355 		trace_wbt_lat(bdi, stat[READ].min);
356 		trace_wbt_stat(bdi, stat);
357 		return LAT_EXCEEDED;
358 	}
359 
360 	if (rqd->scale_step)
361 		trace_wbt_stat(bdi, stat);
362 
363 	return LAT_OK;
364 }
365 
366 static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
367 {
368 	struct backing_dev_info *bdi = rwb->rqos.disk->bdi;
369 	struct rq_depth *rqd = &rwb->rq_depth;
370 
371 	trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec,
372 			rwb->wb_background, rwb->wb_normal, rqd->max_depth);
373 }
374 
375 static void calc_wb_limits(struct rq_wb *rwb)
376 {
377 	if (rwb->min_lat_nsec == 0) {
378 		rwb->wb_normal = rwb->wb_background = 0;
379 	} else if (rwb->rq_depth.max_depth <= 2) {
380 		rwb->wb_normal = rwb->rq_depth.max_depth;
381 		rwb->wb_background = 1;
382 	} else {
383 		rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2;
384 		rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4;
385 	}
386 }
387 
388 static void scale_up(struct rq_wb *rwb)
389 {
390 	if (!rq_depth_scale_up(&rwb->rq_depth))
391 		return;
392 	calc_wb_limits(rwb);
393 	rwb->unknown_cnt = 0;
394 	rwb_wake_all(rwb);
395 	rwb_trace_step(rwb, tracepoint_string("scale up"));
396 }
397 
398 static void scale_down(struct rq_wb *rwb, bool hard_throttle)
399 {
400 	if (!rq_depth_scale_down(&rwb->rq_depth, hard_throttle))
401 		return;
402 	calc_wb_limits(rwb);
403 	rwb->unknown_cnt = 0;
404 	rwb_trace_step(rwb, tracepoint_string("scale down"));
405 }
406 
407 static void rwb_arm_timer(struct rq_wb *rwb)
408 {
409 	struct rq_depth *rqd = &rwb->rq_depth;
410 
411 	if (rqd->scale_step > 0) {
412 		/*
413 		 * We should speed this up, using some variant of a fast
414 		 * integer inverse square root calculation. Since we only do
415 		 * this for every window expiration, it's not a huge deal,
416 		 * though.
417 		 */
418 		rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
419 					int_sqrt((rqd->scale_step + 1) << 8));
420 	} else {
421 		/*
422 		 * For step < 0, we don't want to increase/decrease the
423 		 * window size.
424 		 */
425 		rwb->cur_win_nsec = rwb->win_nsec;
426 	}
427 
428 	blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
429 }
430 
431 static void wb_timer_fn(struct blk_stat_callback *cb)
432 {
433 	struct rq_wb *rwb = cb->data;
434 	struct rq_depth *rqd = &rwb->rq_depth;
435 	unsigned int inflight = wbt_inflight(rwb);
436 	int status;
437 
438 	if (!rwb->rqos.disk)
439 		return;
440 
441 	status = latency_exceeded(rwb, cb->stat);
442 
443 	trace_wbt_timer(rwb->rqos.disk->bdi, status, rqd->scale_step, inflight);
444 
445 	/*
446 	 * If we exceeded the latency target, step down. If we did not,
447 	 * step one level up. If we don't know enough to say either exceeded
448 	 * or ok, then don't do anything.
449 	 */
450 	switch (status) {
451 	case LAT_EXCEEDED:
452 		scale_down(rwb, true);
453 		break;
454 	case LAT_OK:
455 		scale_up(rwb);
456 		break;
457 	case LAT_UNKNOWN_WRITES:
458 		/*
459 		 * We started a the center step, but don't have a valid
460 		 * read/write sample, but we do have writes going on.
461 		 * Allow step to go negative, to increase write perf.
462 		 */
463 		scale_up(rwb);
464 		break;
465 	case LAT_UNKNOWN:
466 		if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
467 			break;
468 		/*
469 		 * We get here when previously scaled reduced depth, and we
470 		 * currently don't have a valid read/write sample. For that
471 		 * case, slowly return to center state (step == 0).
472 		 */
473 		if (rqd->scale_step > 0)
474 			scale_up(rwb);
475 		else if (rqd->scale_step < 0)
476 			scale_down(rwb, false);
477 		break;
478 	default:
479 		break;
480 	}
481 
482 	/*
483 	 * Re-arm timer, if we have IO in flight
484 	 */
485 	if (rqd->scale_step || inflight)
486 		rwb_arm_timer(rwb);
487 }
488 
489 static void wbt_update_limits(struct rq_wb *rwb)
490 {
491 	struct rq_depth *rqd = &rwb->rq_depth;
492 
493 	rqd->scale_step = 0;
494 	rqd->scaled_max = false;
495 
496 	rq_depth_calc_max_depth(rqd);
497 	calc_wb_limits(rwb);
498 
499 	rwb_wake_all(rwb);
500 }
501 
502 bool wbt_disabled(struct request_queue *q)
503 {
504 	struct rq_qos *rqos = wbt_rq_qos(q);
505 
506 	return !rqos || RQWB(rqos)->enable_state == WBT_STATE_OFF_DEFAULT ||
507 	       RQWB(rqos)->enable_state == WBT_STATE_OFF_MANUAL;
508 }
509 
510 u64 wbt_get_min_lat(struct request_queue *q)
511 {
512 	struct rq_qos *rqos = wbt_rq_qos(q);
513 	if (!rqos)
514 		return 0;
515 	return RQWB(rqos)->min_lat_nsec;
516 }
517 
518 void wbt_set_min_lat(struct request_queue *q, u64 val)
519 {
520 	struct rq_qos *rqos = wbt_rq_qos(q);
521 	if (!rqos)
522 		return;
523 
524 	RQWB(rqos)->min_lat_nsec = val;
525 	if (val)
526 		RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL;
527 	else
528 		RQWB(rqos)->enable_state = WBT_STATE_OFF_MANUAL;
529 
530 	wbt_update_limits(RQWB(rqos));
531 }
532 
533 
534 static bool close_io(struct rq_wb *rwb)
535 {
536 	const unsigned long now = jiffies;
537 
538 	return time_before(now, rwb->last_issue + HZ / 10) ||
539 		time_before(now, rwb->last_comp + HZ / 10);
540 }
541 
542 #define REQ_HIPRIO	(REQ_SYNC | REQ_META | REQ_PRIO)
543 
544 static inline unsigned int get_limit(struct rq_wb *rwb, blk_opf_t opf)
545 {
546 	unsigned int limit;
547 
548 	/*
549 	 * If we got disabled, just return UINT_MAX. This ensures that
550 	 * we'll properly inc a new IO, and dec+wakeup at the end.
551 	 */
552 	if (!rwb_enabled(rwb))
553 		return UINT_MAX;
554 
555 	if ((opf & REQ_OP_MASK) == REQ_OP_DISCARD)
556 		return rwb->wb_background;
557 
558 	/*
559 	 * At this point we know it's a buffered write. If this is
560 	 * kswapd trying to free memory, or REQ_SYNC is set, then
561 	 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
562 	 * that. If the write is marked as a background write, then use
563 	 * the idle limit, or go to normal if we haven't had competing
564 	 * IO for a bit.
565 	 */
566 	if ((opf & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
567 		limit = rwb->rq_depth.max_depth;
568 	else if ((opf & REQ_BACKGROUND) || close_io(rwb)) {
569 		/*
570 		 * If less than 100ms since we completed unrelated IO,
571 		 * limit us to half the depth for background writeback.
572 		 */
573 		limit = rwb->wb_background;
574 	} else
575 		limit = rwb->wb_normal;
576 
577 	return limit;
578 }
579 
580 struct wbt_wait_data {
581 	struct rq_wb *rwb;
582 	enum wbt_flags wb_acct;
583 	blk_opf_t opf;
584 };
585 
586 static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data)
587 {
588 	struct wbt_wait_data *data = private_data;
589 	return rq_wait_inc_below(rqw, get_limit(data->rwb, data->opf));
590 }
591 
592 static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data)
593 {
594 	struct wbt_wait_data *data = private_data;
595 	wbt_rqw_done(data->rwb, rqw, data->wb_acct);
596 }
597 
598 /*
599  * Block if we will exceed our limit, or if we are currently waiting for
600  * the timer to kick off queuing again.
601  */
602 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
603 		       blk_opf_t opf)
604 {
605 	struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
606 	struct wbt_wait_data data = {
607 		.rwb = rwb,
608 		.wb_acct = wb_acct,
609 		.opf = opf,
610 	};
611 
612 	rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb);
613 }
614 
615 static inline bool wbt_should_throttle(struct bio *bio)
616 {
617 	switch (bio_op(bio)) {
618 	case REQ_OP_WRITE:
619 		/*
620 		 * Don't throttle WRITE_ODIRECT
621 		 */
622 		if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) ==
623 		    (REQ_SYNC | REQ_IDLE))
624 			return false;
625 		fallthrough;
626 	case REQ_OP_DISCARD:
627 		return true;
628 	default:
629 		return false;
630 	}
631 }
632 
633 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio)
634 {
635 	enum wbt_flags flags = 0;
636 
637 	if (!rwb_enabled(rwb))
638 		return 0;
639 
640 	if (bio_op(bio) == REQ_OP_READ) {
641 		flags = WBT_READ;
642 	} else if (wbt_should_throttle(bio)) {
643 		if (current_is_kswapd())
644 			flags |= WBT_KSWAPD;
645 		if (bio_op(bio) == REQ_OP_DISCARD)
646 			flags |= WBT_DISCARD;
647 		flags |= WBT_TRACKED;
648 	}
649 	return flags;
650 }
651 
652 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio)
653 {
654 	struct rq_wb *rwb = RQWB(rqos);
655 	enum wbt_flags flags = bio_to_wbt_flags(rwb, bio);
656 	__wbt_done(rqos, flags);
657 }
658 
659 /*
660  * May sleep, if we have exceeded the writeback limits. Caller can pass
661  * in an irq held spinlock, if it holds one when calling this function.
662  * If we do sleep, we'll release and re-grab it.
663  */
664 static void wbt_wait(struct rq_qos *rqos, struct bio *bio)
665 {
666 	struct rq_wb *rwb = RQWB(rqos);
667 	enum wbt_flags flags;
668 
669 	flags = bio_to_wbt_flags(rwb, bio);
670 	if (!(flags & WBT_TRACKED)) {
671 		if (flags & WBT_READ)
672 			wb_timestamp(rwb, &rwb->last_issue);
673 		return;
674 	}
675 
676 	__wbt_wait(rwb, flags, bio->bi_opf);
677 
678 	if (!blk_stat_is_active(rwb->cb))
679 		rwb_arm_timer(rwb);
680 }
681 
682 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
683 {
684 	struct rq_wb *rwb = RQWB(rqos);
685 	rq->wbt_flags |= bio_to_wbt_flags(rwb, bio);
686 }
687 
688 static void wbt_issue(struct rq_qos *rqos, struct request *rq)
689 {
690 	struct rq_wb *rwb = RQWB(rqos);
691 
692 	if (!rwb_enabled(rwb))
693 		return;
694 
695 	/*
696 	 * Track sync issue, in case it takes a long time to complete. Allows us
697 	 * to react quicker, if a sync IO takes a long time to complete. Note
698 	 * that this is just a hint. The request can go away when it completes,
699 	 * so it's important we never dereference it. We only use the address to
700 	 * compare with, which is why we store the sync_issue time locally.
701 	 */
702 	if (wbt_is_read(rq) && !rwb->sync_issue) {
703 		rwb->sync_cookie = rq;
704 		rwb->sync_issue = rq->io_start_time_ns;
705 	}
706 }
707 
708 static void wbt_requeue(struct rq_qos *rqos, struct request *rq)
709 {
710 	struct rq_wb *rwb = RQWB(rqos);
711 	if (!rwb_enabled(rwb))
712 		return;
713 	if (rq == rwb->sync_cookie) {
714 		rwb->sync_issue = 0;
715 		rwb->sync_cookie = NULL;
716 	}
717 }
718 
719 void wbt_set_write_cache(struct request_queue *q, bool write_cache_on)
720 {
721 	struct rq_qos *rqos = wbt_rq_qos(q);
722 	if (rqos)
723 		RQWB(rqos)->wc = write_cache_on;
724 }
725 
726 /*
727  * Enable wbt if defaults are configured that way
728  */
729 void wbt_enable_default(struct gendisk *disk)
730 {
731 	struct request_queue *q = disk->queue;
732 	struct rq_qos *rqos;
733 	bool disable_flag = q->elevator &&
734 		    test_bit(ELEVATOR_FLAG_DISABLE_WBT, &q->elevator->flags);
735 
736 	/* Throttling already enabled? */
737 	rqos = wbt_rq_qos(q);
738 	if (rqos) {
739 		if (!disable_flag &&
740 		    RQWB(rqos)->enable_state == WBT_STATE_OFF_DEFAULT)
741 			RQWB(rqos)->enable_state = WBT_STATE_ON_DEFAULT;
742 		return;
743 	}
744 
745 	/* Queue not registered? Maybe shutting down... */
746 	if (!blk_queue_registered(q))
747 		return;
748 
749 	if (queue_is_mq(q) && !disable_flag)
750 		wbt_init(disk);
751 }
752 EXPORT_SYMBOL_GPL(wbt_enable_default);
753 
754 u64 wbt_default_latency_nsec(struct request_queue *q)
755 {
756 	/*
757 	 * We default to 2msec for non-rotational storage, and 75msec
758 	 * for rotational storage.
759 	 */
760 	if (blk_queue_nonrot(q))
761 		return 2000000ULL;
762 	else
763 		return 75000000ULL;
764 }
765 
766 static int wbt_data_dir(const struct request *rq)
767 {
768 	const enum req_op op = req_op(rq);
769 
770 	if (op == REQ_OP_READ)
771 		return READ;
772 	else if (op_is_write(op))
773 		return WRITE;
774 
775 	/* don't account */
776 	return -1;
777 }
778 
779 static void wbt_queue_depth_changed(struct rq_qos *rqos)
780 {
781 	RQWB(rqos)->rq_depth.queue_depth = blk_queue_depth(rqos->disk->queue);
782 	wbt_update_limits(RQWB(rqos));
783 }
784 
785 static void wbt_exit(struct rq_qos *rqos)
786 {
787 	struct rq_wb *rwb = RQWB(rqos);
788 
789 	blk_stat_remove_callback(rqos->disk->queue, rwb->cb);
790 	blk_stat_free_callback(rwb->cb);
791 	kfree(rwb);
792 }
793 
794 /*
795  * Disable wbt, if enabled by default.
796  */
797 void wbt_disable_default(struct gendisk *disk)
798 {
799 	struct rq_qos *rqos = wbt_rq_qos(disk->queue);
800 	struct rq_wb *rwb;
801 	if (!rqos)
802 		return;
803 	rwb = RQWB(rqos);
804 	if (rwb->enable_state == WBT_STATE_ON_DEFAULT) {
805 		blk_stat_deactivate(rwb->cb);
806 		rwb->enable_state = WBT_STATE_OFF_DEFAULT;
807 	}
808 }
809 EXPORT_SYMBOL_GPL(wbt_disable_default);
810 
811 #ifdef CONFIG_BLK_DEBUG_FS
812 static int wbt_curr_win_nsec_show(void *data, struct seq_file *m)
813 {
814 	struct rq_qos *rqos = data;
815 	struct rq_wb *rwb = RQWB(rqos);
816 
817 	seq_printf(m, "%llu\n", rwb->cur_win_nsec);
818 	return 0;
819 }
820 
821 static int wbt_enabled_show(void *data, struct seq_file *m)
822 {
823 	struct rq_qos *rqos = data;
824 	struct rq_wb *rwb = RQWB(rqos);
825 
826 	seq_printf(m, "%d\n", rwb->enable_state);
827 	return 0;
828 }
829 
830 static int wbt_id_show(void *data, struct seq_file *m)
831 {
832 	struct rq_qos *rqos = data;
833 
834 	seq_printf(m, "%u\n", rqos->id);
835 	return 0;
836 }
837 
838 static int wbt_inflight_show(void *data, struct seq_file *m)
839 {
840 	struct rq_qos *rqos = data;
841 	struct rq_wb *rwb = RQWB(rqos);
842 	int i;
843 
844 	for (i = 0; i < WBT_NUM_RWQ; i++)
845 		seq_printf(m, "%d: inflight %d\n", i,
846 			   atomic_read(&rwb->rq_wait[i].inflight));
847 	return 0;
848 }
849 
850 static int wbt_min_lat_nsec_show(void *data, struct seq_file *m)
851 {
852 	struct rq_qos *rqos = data;
853 	struct rq_wb *rwb = RQWB(rqos);
854 
855 	seq_printf(m, "%lu\n", rwb->min_lat_nsec);
856 	return 0;
857 }
858 
859 static int wbt_unknown_cnt_show(void *data, struct seq_file *m)
860 {
861 	struct rq_qos *rqos = data;
862 	struct rq_wb *rwb = RQWB(rqos);
863 
864 	seq_printf(m, "%u\n", rwb->unknown_cnt);
865 	return 0;
866 }
867 
868 static int wbt_normal_show(void *data, struct seq_file *m)
869 {
870 	struct rq_qos *rqos = data;
871 	struct rq_wb *rwb = RQWB(rqos);
872 
873 	seq_printf(m, "%u\n", rwb->wb_normal);
874 	return 0;
875 }
876 
877 static int wbt_background_show(void *data, struct seq_file *m)
878 {
879 	struct rq_qos *rqos = data;
880 	struct rq_wb *rwb = RQWB(rqos);
881 
882 	seq_printf(m, "%u\n", rwb->wb_background);
883 	return 0;
884 }
885 
886 static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = {
887 	{"curr_win_nsec", 0400, wbt_curr_win_nsec_show},
888 	{"enabled", 0400, wbt_enabled_show},
889 	{"id", 0400, wbt_id_show},
890 	{"inflight", 0400, wbt_inflight_show},
891 	{"min_lat_nsec", 0400, wbt_min_lat_nsec_show},
892 	{"unknown_cnt", 0400, wbt_unknown_cnt_show},
893 	{"wb_normal", 0400, wbt_normal_show},
894 	{"wb_background", 0400, wbt_background_show},
895 	{},
896 };
897 #endif
898 
899 static const struct rq_qos_ops wbt_rqos_ops = {
900 	.throttle = wbt_wait,
901 	.issue = wbt_issue,
902 	.track = wbt_track,
903 	.requeue = wbt_requeue,
904 	.done = wbt_done,
905 	.cleanup = wbt_cleanup,
906 	.queue_depth_changed = wbt_queue_depth_changed,
907 	.exit = wbt_exit,
908 #ifdef CONFIG_BLK_DEBUG_FS
909 	.debugfs_attrs = wbt_debugfs_attrs,
910 #endif
911 };
912 
913 int wbt_init(struct gendisk *disk)
914 {
915 	struct request_queue *q = disk->queue;
916 	struct rq_wb *rwb;
917 	int i;
918 	int ret;
919 
920 	rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
921 	if (!rwb)
922 		return -ENOMEM;
923 
924 	rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
925 	if (!rwb->cb) {
926 		kfree(rwb);
927 		return -ENOMEM;
928 	}
929 
930 	for (i = 0; i < WBT_NUM_RWQ; i++)
931 		rq_wait_init(&rwb->rq_wait[i]);
932 
933 	rwb->last_comp = rwb->last_issue = jiffies;
934 	rwb->win_nsec = RWB_WINDOW_NSEC;
935 	rwb->enable_state = WBT_STATE_ON_DEFAULT;
936 	rwb->wc = test_bit(QUEUE_FLAG_WC, &q->queue_flags);
937 	rwb->rq_depth.default_depth = RWB_DEF_DEPTH;
938 	rwb->min_lat_nsec = wbt_default_latency_nsec(q);
939 	rwb->rq_depth.queue_depth = blk_queue_depth(q);
940 	wbt_update_limits(rwb);
941 
942 	/*
943 	 * Assign rwb and add the stats callback.
944 	 */
945 	ret = rq_qos_add(&rwb->rqos, disk, RQ_QOS_WBT, &wbt_rqos_ops);
946 	if (ret)
947 		goto err_free;
948 
949 	blk_stat_add_callback(q, rwb->cb);
950 
951 	return 0;
952 
953 err_free:
954 	blk_stat_free_callback(rwb->cb);
955 	kfree(rwb);
956 	return ret;
957 
958 }
959