1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * buffered writeback throttling. loosely based on CoDel. We can't drop
4 * packets for IO scheduling, so the logic is something like this:
5 *
6 * - Monitor latencies in a defined window of time.
7 * - If the minimum latency in the above window exceeds some target, increment
8 * scaling step and scale down queue depth by a factor of 2x. The monitoring
9 * window is then shrunk to 100 / sqrt(scaling step + 1).
10 * - For any window where we don't have solid data on what the latencies
11 * look like, retain status quo.
12 * - If latencies look good, decrement scaling step.
13 * - If we're only doing writes, allow the scaling step to go negative. This
14 * will temporarily boost write performance, snapping back to a stable
15 * scaling step of 0 if reads show up or the heavy writers finish. Unlike
16 * positive scaling steps where we shrink the monitoring window, a negative
17 * scaling step retains the default step==0 window size.
18 *
19 * Copyright (C) 2016 Jens Axboe
20 *
21 */
22 #include <linux/kernel.h>
23 #include <linux/blk_types.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/swap.h>
27
28 #include "blk-stat.h"
29 #include "blk-wbt.h"
30 #include "blk-rq-qos.h"
31 #include "elevator.h"
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/wbt.h>
35
36 enum wbt_flags {
37 WBT_TRACKED = 1, /* write, tracked for throttling */
38 WBT_READ = 2, /* read */
39 WBT_KSWAPD = 4, /* write, from kswapd */
40 WBT_DISCARD = 8, /* discard */
41
42 WBT_NR_BITS = 4, /* number of bits */
43 };
44
45 enum {
46 WBT_RWQ_BG = 0,
47 WBT_RWQ_KSWAPD,
48 WBT_RWQ_DISCARD,
49 WBT_NUM_RWQ,
50 };
51
52 /*
53 * If current state is WBT_STATE_ON/OFF_DEFAULT, it can be covered to any other
54 * state, if current state is WBT_STATE_ON/OFF_MANUAL, it can only be covered
55 * to WBT_STATE_OFF/ON_MANUAL.
56 */
57 enum {
58 WBT_STATE_ON_DEFAULT = 1, /* on by default */
59 WBT_STATE_ON_MANUAL = 2, /* on manually by sysfs */
60 WBT_STATE_OFF_DEFAULT = 3, /* off by default */
61 WBT_STATE_OFF_MANUAL = 4, /* off manually by sysfs */
62 };
63
64 struct rq_wb {
65 /*
66 * Settings that govern how we throttle
67 */
68 unsigned int wb_background; /* background writeback */
69 unsigned int wb_normal; /* normal writeback */
70
71 short enable_state; /* WBT_STATE_* */
72
73 /*
74 * Number of consecutive periods where we don't have enough
75 * information to make a firm scale up/down decision.
76 */
77 unsigned int unknown_cnt;
78
79 u64 win_nsec; /* default window size */
80 u64 cur_win_nsec; /* current window size */
81
82 struct blk_stat_callback *cb;
83
84 u64 sync_issue;
85 void *sync_cookie;
86
87 unsigned int wc;
88
89 unsigned long last_issue; /* last non-throttled issue */
90 unsigned long last_comp; /* last non-throttled comp */
91 unsigned long min_lat_nsec;
92 struct rq_qos rqos;
93 struct rq_wait rq_wait[WBT_NUM_RWQ];
94 struct rq_depth rq_depth;
95 };
96
RQWB(struct rq_qos * rqos)97 static inline struct rq_wb *RQWB(struct rq_qos *rqos)
98 {
99 return container_of(rqos, struct rq_wb, rqos);
100 }
101
wbt_clear_state(struct request * rq)102 static inline void wbt_clear_state(struct request *rq)
103 {
104 rq->wbt_flags = 0;
105 }
106
wbt_flags(struct request * rq)107 static inline enum wbt_flags wbt_flags(struct request *rq)
108 {
109 return rq->wbt_flags;
110 }
111
wbt_is_tracked(struct request * rq)112 static inline bool wbt_is_tracked(struct request *rq)
113 {
114 return rq->wbt_flags & WBT_TRACKED;
115 }
116
wbt_is_read(struct request * rq)117 static inline bool wbt_is_read(struct request *rq)
118 {
119 return rq->wbt_flags & WBT_READ;
120 }
121
122 enum {
123 /*
124 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
125 * from here depending on device stats
126 */
127 RWB_DEF_DEPTH = 16,
128
129 /*
130 * 100msec window
131 */
132 RWB_WINDOW_NSEC = 100 * 1000 * 1000ULL,
133
134 /*
135 * Disregard stats, if we don't meet this minimum
136 */
137 RWB_MIN_WRITE_SAMPLES = 3,
138
139 /*
140 * If we have this number of consecutive windows with not enough
141 * information to scale up or down, scale up.
142 */
143 RWB_UNKNOWN_BUMP = 5,
144 };
145
rwb_enabled(struct rq_wb * rwb)146 static inline bool rwb_enabled(struct rq_wb *rwb)
147 {
148 return rwb && rwb->enable_state != WBT_STATE_OFF_DEFAULT &&
149 rwb->enable_state != WBT_STATE_OFF_MANUAL;
150 }
151
wb_timestamp(struct rq_wb * rwb,unsigned long * var)152 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
153 {
154 if (rwb_enabled(rwb)) {
155 const unsigned long cur = jiffies;
156
157 if (cur != *var)
158 *var = cur;
159 }
160 }
161
162 /*
163 * If a task was rate throttled in balance_dirty_pages() within the last
164 * second or so, use that to indicate a higher cleaning rate.
165 */
wb_recent_wait(struct rq_wb * rwb)166 static bool wb_recent_wait(struct rq_wb *rwb)
167 {
168 struct backing_dev_info *bdi = rwb->rqos.disk->bdi;
169
170 return time_before(jiffies, bdi->last_bdp_sleep + HZ);
171 }
172
get_rq_wait(struct rq_wb * rwb,enum wbt_flags wb_acct)173 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
174 enum wbt_flags wb_acct)
175 {
176 if (wb_acct & WBT_KSWAPD)
177 return &rwb->rq_wait[WBT_RWQ_KSWAPD];
178 else if (wb_acct & WBT_DISCARD)
179 return &rwb->rq_wait[WBT_RWQ_DISCARD];
180
181 return &rwb->rq_wait[WBT_RWQ_BG];
182 }
183
rwb_wake_all(struct rq_wb * rwb)184 static void rwb_wake_all(struct rq_wb *rwb)
185 {
186 int i;
187
188 for (i = 0; i < WBT_NUM_RWQ; i++) {
189 struct rq_wait *rqw = &rwb->rq_wait[i];
190
191 if (wq_has_sleeper(&rqw->wait))
192 wake_up_all(&rqw->wait);
193 }
194 }
195
wbt_rqw_done(struct rq_wb * rwb,struct rq_wait * rqw,enum wbt_flags wb_acct)196 static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw,
197 enum wbt_flags wb_acct)
198 {
199 int inflight, limit;
200
201 inflight = atomic_dec_return(&rqw->inflight);
202
203 /*
204 * For discards, our limit is always the background. For writes, if
205 * the device does write back caching, drop further down before we
206 * wake people up.
207 */
208 if (wb_acct & WBT_DISCARD)
209 limit = rwb->wb_background;
210 else if (rwb->wc && !wb_recent_wait(rwb))
211 limit = 0;
212 else
213 limit = rwb->wb_normal;
214
215 /*
216 * Don't wake anyone up if we are above the normal limit.
217 */
218 if (inflight && inflight >= limit)
219 return;
220
221 if (wq_has_sleeper(&rqw->wait)) {
222 int diff = limit - inflight;
223
224 if (!inflight || diff >= rwb->wb_background / 2)
225 wake_up_all(&rqw->wait);
226 }
227 }
228
__wbt_done(struct rq_qos * rqos,enum wbt_flags wb_acct)229 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct)
230 {
231 struct rq_wb *rwb = RQWB(rqos);
232 struct rq_wait *rqw;
233
234 if (!(wb_acct & WBT_TRACKED))
235 return;
236
237 rqw = get_rq_wait(rwb, wb_acct);
238 wbt_rqw_done(rwb, rqw, wb_acct);
239 }
240
241 /*
242 * Called on completion of a request. Note that it's also called when
243 * a request is merged, when the request gets freed.
244 */
wbt_done(struct rq_qos * rqos,struct request * rq)245 static void wbt_done(struct rq_qos *rqos, struct request *rq)
246 {
247 struct rq_wb *rwb = RQWB(rqos);
248
249 if (!wbt_is_tracked(rq)) {
250 if (rwb->sync_cookie == rq) {
251 rwb->sync_issue = 0;
252 rwb->sync_cookie = NULL;
253 }
254
255 if (wbt_is_read(rq))
256 wb_timestamp(rwb, &rwb->last_comp);
257 } else {
258 WARN_ON_ONCE(rq == rwb->sync_cookie);
259 __wbt_done(rqos, wbt_flags(rq));
260 }
261 wbt_clear_state(rq);
262 }
263
stat_sample_valid(struct blk_rq_stat * stat)264 static inline bool stat_sample_valid(struct blk_rq_stat *stat)
265 {
266 /*
267 * We need at least one read sample, and a minimum of
268 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
269 * that it's writes impacting us, and not just some sole read on
270 * a device that is in a lower power state.
271 */
272 return (stat[READ].nr_samples >= 1 &&
273 stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
274 }
275
rwb_sync_issue_lat(struct rq_wb * rwb)276 static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
277 {
278 u64 now, issue = READ_ONCE(rwb->sync_issue);
279
280 if (!issue || !rwb->sync_cookie)
281 return 0;
282
283 now = ktime_to_ns(ktime_get());
284 return now - issue;
285 }
286
wbt_inflight(struct rq_wb * rwb)287 static inline unsigned int wbt_inflight(struct rq_wb *rwb)
288 {
289 unsigned int i, ret = 0;
290
291 for (i = 0; i < WBT_NUM_RWQ; i++)
292 ret += atomic_read(&rwb->rq_wait[i].inflight);
293
294 return ret;
295 }
296
297 enum {
298 LAT_OK = 1,
299 LAT_UNKNOWN,
300 LAT_UNKNOWN_WRITES,
301 LAT_EXCEEDED,
302 };
303
latency_exceeded(struct rq_wb * rwb,struct blk_rq_stat * stat)304 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
305 {
306 struct backing_dev_info *bdi = rwb->rqos.disk->bdi;
307 struct rq_depth *rqd = &rwb->rq_depth;
308 u64 thislat;
309
310 /*
311 * If our stored sync issue exceeds the window size, or it
312 * exceeds our min target AND we haven't logged any entries,
313 * flag the latency as exceeded. wbt works off completion latencies,
314 * but for a flooded device, a single sync IO can take a long time
315 * to complete after being issued. If this time exceeds our
316 * monitoring window AND we didn't see any other completions in that
317 * window, then count that sync IO as a violation of the latency.
318 */
319 thislat = rwb_sync_issue_lat(rwb);
320 if (thislat > rwb->cur_win_nsec ||
321 (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
322 trace_wbt_lat(bdi, thislat);
323 return LAT_EXCEEDED;
324 }
325
326 /*
327 * No read/write mix, if stat isn't valid
328 */
329 if (!stat_sample_valid(stat)) {
330 /*
331 * If we had writes in this stat window and the window is
332 * current, we're only doing writes. If a task recently
333 * waited or still has writes in flights, consider us doing
334 * just writes as well.
335 */
336 if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
337 wbt_inflight(rwb))
338 return LAT_UNKNOWN_WRITES;
339 return LAT_UNKNOWN;
340 }
341
342 /*
343 * If the 'min' latency exceeds our target, step down.
344 */
345 if (stat[READ].min > rwb->min_lat_nsec) {
346 trace_wbt_lat(bdi, stat[READ].min);
347 trace_wbt_stat(bdi, stat);
348 return LAT_EXCEEDED;
349 }
350
351 if (rqd->scale_step)
352 trace_wbt_stat(bdi, stat);
353
354 return LAT_OK;
355 }
356
rwb_trace_step(struct rq_wb * rwb,const char * msg)357 static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
358 {
359 struct backing_dev_info *bdi = rwb->rqos.disk->bdi;
360 struct rq_depth *rqd = &rwb->rq_depth;
361
362 trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec,
363 rwb->wb_background, rwb->wb_normal, rqd->max_depth);
364 }
365
calc_wb_limits(struct rq_wb * rwb)366 static void calc_wb_limits(struct rq_wb *rwb)
367 {
368 if (rwb->min_lat_nsec == 0) {
369 rwb->wb_normal = rwb->wb_background = 0;
370 } else if (rwb->rq_depth.max_depth <= 2) {
371 rwb->wb_normal = rwb->rq_depth.max_depth;
372 rwb->wb_background = 1;
373 } else {
374 rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2;
375 rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4;
376 }
377 }
378
scale_up(struct rq_wb * rwb)379 static void scale_up(struct rq_wb *rwb)
380 {
381 if (!rq_depth_scale_up(&rwb->rq_depth))
382 return;
383 calc_wb_limits(rwb);
384 rwb->unknown_cnt = 0;
385 rwb_wake_all(rwb);
386 rwb_trace_step(rwb, tracepoint_string("scale up"));
387 }
388
scale_down(struct rq_wb * rwb,bool hard_throttle)389 static void scale_down(struct rq_wb *rwb, bool hard_throttle)
390 {
391 if (!rq_depth_scale_down(&rwb->rq_depth, hard_throttle))
392 return;
393 calc_wb_limits(rwb);
394 rwb->unknown_cnt = 0;
395 rwb_trace_step(rwb, tracepoint_string("scale down"));
396 }
397
rwb_arm_timer(struct rq_wb * rwb)398 static void rwb_arm_timer(struct rq_wb *rwb)
399 {
400 struct rq_depth *rqd = &rwb->rq_depth;
401
402 if (rqd->scale_step > 0) {
403 /*
404 * We should speed this up, using some variant of a fast
405 * integer inverse square root calculation. Since we only do
406 * this for every window expiration, it's not a huge deal,
407 * though.
408 */
409 rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
410 int_sqrt((rqd->scale_step + 1) << 8));
411 } else {
412 /*
413 * For step < 0, we don't want to increase/decrease the
414 * window size.
415 */
416 rwb->cur_win_nsec = rwb->win_nsec;
417 }
418
419 blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
420 }
421
wb_timer_fn(struct blk_stat_callback * cb)422 static void wb_timer_fn(struct blk_stat_callback *cb)
423 {
424 struct rq_wb *rwb = cb->data;
425 struct rq_depth *rqd = &rwb->rq_depth;
426 unsigned int inflight = wbt_inflight(rwb);
427 int status;
428
429 if (!rwb->rqos.disk)
430 return;
431
432 status = latency_exceeded(rwb, cb->stat);
433
434 trace_wbt_timer(rwb->rqos.disk->bdi, status, rqd->scale_step, inflight);
435
436 /*
437 * If we exceeded the latency target, step down. If we did not,
438 * step one level up. If we don't know enough to say either exceeded
439 * or ok, then don't do anything.
440 */
441 switch (status) {
442 case LAT_EXCEEDED:
443 scale_down(rwb, true);
444 break;
445 case LAT_OK:
446 scale_up(rwb);
447 break;
448 case LAT_UNKNOWN_WRITES:
449 /*
450 * We started a the center step, but don't have a valid
451 * read/write sample, but we do have writes going on.
452 * Allow step to go negative, to increase write perf.
453 */
454 scale_up(rwb);
455 break;
456 case LAT_UNKNOWN:
457 if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
458 break;
459 /*
460 * We get here when previously scaled reduced depth, and we
461 * currently don't have a valid read/write sample. For that
462 * case, slowly return to center state (step == 0).
463 */
464 if (rqd->scale_step > 0)
465 scale_up(rwb);
466 else if (rqd->scale_step < 0)
467 scale_down(rwb, false);
468 break;
469 default:
470 break;
471 }
472
473 /*
474 * Re-arm timer, if we have IO in flight
475 */
476 if (rqd->scale_step || inflight)
477 rwb_arm_timer(rwb);
478 }
479
wbt_update_limits(struct rq_wb * rwb)480 static void wbt_update_limits(struct rq_wb *rwb)
481 {
482 struct rq_depth *rqd = &rwb->rq_depth;
483
484 rqd->scale_step = 0;
485 rqd->scaled_max = false;
486
487 rq_depth_calc_max_depth(rqd);
488 calc_wb_limits(rwb);
489
490 rwb_wake_all(rwb);
491 }
492
wbt_disabled(struct request_queue * q)493 bool wbt_disabled(struct request_queue *q)
494 {
495 struct rq_qos *rqos = wbt_rq_qos(q);
496
497 return !rqos || !rwb_enabled(RQWB(rqos));
498 }
499
wbt_get_min_lat(struct request_queue * q)500 u64 wbt_get_min_lat(struct request_queue *q)
501 {
502 struct rq_qos *rqos = wbt_rq_qos(q);
503 if (!rqos)
504 return 0;
505 return RQWB(rqos)->min_lat_nsec;
506 }
507
wbt_set_min_lat(struct request_queue * q,u64 val)508 void wbt_set_min_lat(struct request_queue *q, u64 val)
509 {
510 struct rq_qos *rqos = wbt_rq_qos(q);
511 if (!rqos)
512 return;
513
514 RQWB(rqos)->min_lat_nsec = val;
515 if (val)
516 RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL;
517 else
518 RQWB(rqos)->enable_state = WBT_STATE_OFF_MANUAL;
519
520 wbt_update_limits(RQWB(rqos));
521 }
522
523
close_io(struct rq_wb * rwb)524 static bool close_io(struct rq_wb *rwb)
525 {
526 const unsigned long now = jiffies;
527
528 return time_before(now, rwb->last_issue + HZ / 10) ||
529 time_before(now, rwb->last_comp + HZ / 10);
530 }
531
532 #define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO)
533
get_limit(struct rq_wb * rwb,blk_opf_t opf)534 static inline unsigned int get_limit(struct rq_wb *rwb, blk_opf_t opf)
535 {
536 unsigned int limit;
537
538 if ((opf & REQ_OP_MASK) == REQ_OP_DISCARD)
539 return rwb->wb_background;
540
541 /*
542 * At this point we know it's a buffered write. If this is
543 * kswapd trying to free memory, or REQ_SYNC is set, then
544 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
545 * that. If the write is marked as a background write, then use
546 * the idle limit, or go to normal if we haven't had competing
547 * IO for a bit.
548 */
549 if ((opf & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
550 limit = rwb->rq_depth.max_depth;
551 else if ((opf & REQ_BACKGROUND) || close_io(rwb)) {
552 /*
553 * If less than 100ms since we completed unrelated IO,
554 * limit us to half the depth for background writeback.
555 */
556 limit = rwb->wb_background;
557 } else
558 limit = rwb->wb_normal;
559
560 return limit;
561 }
562
563 struct wbt_wait_data {
564 struct rq_wb *rwb;
565 enum wbt_flags wb_acct;
566 blk_opf_t opf;
567 };
568
wbt_inflight_cb(struct rq_wait * rqw,void * private_data)569 static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data)
570 {
571 struct wbt_wait_data *data = private_data;
572 return rq_wait_inc_below(rqw, get_limit(data->rwb, data->opf));
573 }
574
wbt_cleanup_cb(struct rq_wait * rqw,void * private_data)575 static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data)
576 {
577 struct wbt_wait_data *data = private_data;
578 wbt_rqw_done(data->rwb, rqw, data->wb_acct);
579 }
580
581 /*
582 * Block if we will exceed our limit, or if we are currently waiting for
583 * the timer to kick off queuing again.
584 */
__wbt_wait(struct rq_wb * rwb,enum wbt_flags wb_acct,blk_opf_t opf)585 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
586 blk_opf_t opf)
587 {
588 struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
589 struct wbt_wait_data data = {
590 .rwb = rwb,
591 .wb_acct = wb_acct,
592 .opf = opf,
593 };
594
595 rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb);
596 }
597
wbt_should_throttle(struct bio * bio)598 static inline bool wbt_should_throttle(struct bio *bio)
599 {
600 switch (bio_op(bio)) {
601 case REQ_OP_WRITE:
602 /*
603 * Don't throttle WRITE_ODIRECT
604 */
605 if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) ==
606 (REQ_SYNC | REQ_IDLE))
607 return false;
608 fallthrough;
609 case REQ_OP_DISCARD:
610 return true;
611 default:
612 return false;
613 }
614 }
615
bio_to_wbt_flags(struct rq_wb * rwb,struct bio * bio)616 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio)
617 {
618 enum wbt_flags flags = 0;
619
620 if (!rwb_enabled(rwb))
621 return 0;
622
623 if (bio_op(bio) == REQ_OP_READ) {
624 flags = WBT_READ;
625 } else if (wbt_should_throttle(bio)) {
626 if (current_is_kswapd())
627 flags |= WBT_KSWAPD;
628 if (bio_op(bio) == REQ_OP_DISCARD)
629 flags |= WBT_DISCARD;
630 flags |= WBT_TRACKED;
631 }
632 return flags;
633 }
634
wbt_cleanup(struct rq_qos * rqos,struct bio * bio)635 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio)
636 {
637 struct rq_wb *rwb = RQWB(rqos);
638 enum wbt_flags flags = bio_to_wbt_flags(rwb, bio);
639 __wbt_done(rqos, flags);
640 }
641
642 /*
643 * May sleep, if we have exceeded the writeback limits. Caller can pass
644 * in an irq held spinlock, if it holds one when calling this function.
645 * If we do sleep, we'll release and re-grab it.
646 */
wbt_wait(struct rq_qos * rqos,struct bio * bio)647 static void wbt_wait(struct rq_qos *rqos, struct bio *bio)
648 {
649 struct rq_wb *rwb = RQWB(rqos);
650 enum wbt_flags flags;
651
652 flags = bio_to_wbt_flags(rwb, bio);
653 if (!(flags & WBT_TRACKED)) {
654 if (flags & WBT_READ)
655 wb_timestamp(rwb, &rwb->last_issue);
656 return;
657 }
658
659 __wbt_wait(rwb, flags, bio->bi_opf);
660
661 if (!blk_stat_is_active(rwb->cb))
662 rwb_arm_timer(rwb);
663 }
664
wbt_track(struct rq_qos * rqos,struct request * rq,struct bio * bio)665 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
666 {
667 struct rq_wb *rwb = RQWB(rqos);
668 rq->wbt_flags |= bio_to_wbt_flags(rwb, bio);
669 }
670
wbt_issue(struct rq_qos * rqos,struct request * rq)671 static void wbt_issue(struct rq_qos *rqos, struct request *rq)
672 {
673 struct rq_wb *rwb = RQWB(rqos);
674
675 if (!rwb_enabled(rwb))
676 return;
677
678 /*
679 * Track sync issue, in case it takes a long time to complete. Allows us
680 * to react quicker, if a sync IO takes a long time to complete. Note
681 * that this is just a hint. The request can go away when it completes,
682 * so it's important we never dereference it. We only use the address to
683 * compare with, which is why we store the sync_issue time locally.
684 */
685 if (wbt_is_read(rq) && !rwb->sync_issue) {
686 rwb->sync_cookie = rq;
687 rwb->sync_issue = rq->io_start_time_ns;
688 }
689 }
690
wbt_requeue(struct rq_qos * rqos,struct request * rq)691 static void wbt_requeue(struct rq_qos *rqos, struct request *rq)
692 {
693 struct rq_wb *rwb = RQWB(rqos);
694 if (!rwb_enabled(rwb))
695 return;
696 if (rq == rwb->sync_cookie) {
697 rwb->sync_issue = 0;
698 rwb->sync_cookie = NULL;
699 }
700 }
701
wbt_set_write_cache(struct request_queue * q,bool write_cache_on)702 void wbt_set_write_cache(struct request_queue *q, bool write_cache_on)
703 {
704 struct rq_qos *rqos = wbt_rq_qos(q);
705 if (rqos)
706 RQWB(rqos)->wc = write_cache_on;
707 }
708
709 /*
710 * Enable wbt if defaults are configured that way
711 */
wbt_enable_default(struct gendisk * disk)712 void wbt_enable_default(struct gendisk *disk)
713 {
714 struct request_queue *q = disk->queue;
715 struct rq_qos *rqos;
716 bool enable = IS_ENABLED(CONFIG_BLK_WBT_MQ);
717
718 if (q->elevator &&
719 test_bit(ELEVATOR_FLAG_DISABLE_WBT, &q->elevator->flags))
720 enable = false;
721
722 /* Throttling already enabled? */
723 rqos = wbt_rq_qos(q);
724 if (rqos) {
725 if (enable && RQWB(rqos)->enable_state == WBT_STATE_OFF_DEFAULT)
726 RQWB(rqos)->enable_state = WBT_STATE_ON_DEFAULT;
727 return;
728 }
729
730 /* Queue not registered? Maybe shutting down... */
731 if (!blk_queue_registered(q))
732 return;
733
734 if (queue_is_mq(q) && enable)
735 wbt_init(disk);
736 }
737 EXPORT_SYMBOL_GPL(wbt_enable_default);
738
wbt_default_latency_nsec(struct request_queue * q)739 u64 wbt_default_latency_nsec(struct request_queue *q)
740 {
741 /*
742 * We default to 2msec for non-rotational storage, and 75msec
743 * for rotational storage.
744 */
745 if (blk_queue_nonrot(q))
746 return 2000000ULL;
747 else
748 return 75000000ULL;
749 }
750
wbt_data_dir(const struct request * rq)751 static int wbt_data_dir(const struct request *rq)
752 {
753 const enum req_op op = req_op(rq);
754
755 if (op == REQ_OP_READ)
756 return READ;
757 else if (op_is_write(op))
758 return WRITE;
759
760 /* don't account */
761 return -1;
762 }
763
wbt_queue_depth_changed(struct rq_qos * rqos)764 static void wbt_queue_depth_changed(struct rq_qos *rqos)
765 {
766 RQWB(rqos)->rq_depth.queue_depth = blk_queue_depth(rqos->disk->queue);
767 wbt_update_limits(RQWB(rqos));
768 }
769
wbt_exit(struct rq_qos * rqos)770 static void wbt_exit(struct rq_qos *rqos)
771 {
772 struct rq_wb *rwb = RQWB(rqos);
773
774 blk_stat_remove_callback(rqos->disk->queue, rwb->cb);
775 blk_stat_free_callback(rwb->cb);
776 kfree(rwb);
777 }
778
779 /*
780 * Disable wbt, if enabled by default.
781 */
wbt_disable_default(struct gendisk * disk)782 void wbt_disable_default(struct gendisk *disk)
783 {
784 struct rq_qos *rqos = wbt_rq_qos(disk->queue);
785 struct rq_wb *rwb;
786 if (!rqos)
787 return;
788 rwb = RQWB(rqos);
789 if (rwb->enable_state == WBT_STATE_ON_DEFAULT) {
790 blk_stat_deactivate(rwb->cb);
791 rwb->enable_state = WBT_STATE_OFF_DEFAULT;
792 }
793 }
794 EXPORT_SYMBOL_GPL(wbt_disable_default);
795
796 #ifdef CONFIG_BLK_DEBUG_FS
wbt_curr_win_nsec_show(void * data,struct seq_file * m)797 static int wbt_curr_win_nsec_show(void *data, struct seq_file *m)
798 {
799 struct rq_qos *rqos = data;
800 struct rq_wb *rwb = RQWB(rqos);
801
802 seq_printf(m, "%llu\n", rwb->cur_win_nsec);
803 return 0;
804 }
805
wbt_enabled_show(void * data,struct seq_file * m)806 static int wbt_enabled_show(void *data, struct seq_file *m)
807 {
808 struct rq_qos *rqos = data;
809 struct rq_wb *rwb = RQWB(rqos);
810
811 seq_printf(m, "%d\n", rwb->enable_state);
812 return 0;
813 }
814
wbt_id_show(void * data,struct seq_file * m)815 static int wbt_id_show(void *data, struct seq_file *m)
816 {
817 struct rq_qos *rqos = data;
818
819 seq_printf(m, "%u\n", rqos->id);
820 return 0;
821 }
822
wbt_inflight_show(void * data,struct seq_file * m)823 static int wbt_inflight_show(void *data, struct seq_file *m)
824 {
825 struct rq_qos *rqos = data;
826 struct rq_wb *rwb = RQWB(rqos);
827 int i;
828
829 for (i = 0; i < WBT_NUM_RWQ; i++)
830 seq_printf(m, "%d: inflight %d\n", i,
831 atomic_read(&rwb->rq_wait[i].inflight));
832 return 0;
833 }
834
wbt_min_lat_nsec_show(void * data,struct seq_file * m)835 static int wbt_min_lat_nsec_show(void *data, struct seq_file *m)
836 {
837 struct rq_qos *rqos = data;
838 struct rq_wb *rwb = RQWB(rqos);
839
840 seq_printf(m, "%lu\n", rwb->min_lat_nsec);
841 return 0;
842 }
843
wbt_unknown_cnt_show(void * data,struct seq_file * m)844 static int wbt_unknown_cnt_show(void *data, struct seq_file *m)
845 {
846 struct rq_qos *rqos = data;
847 struct rq_wb *rwb = RQWB(rqos);
848
849 seq_printf(m, "%u\n", rwb->unknown_cnt);
850 return 0;
851 }
852
wbt_normal_show(void * data,struct seq_file * m)853 static int wbt_normal_show(void *data, struct seq_file *m)
854 {
855 struct rq_qos *rqos = data;
856 struct rq_wb *rwb = RQWB(rqos);
857
858 seq_printf(m, "%u\n", rwb->wb_normal);
859 return 0;
860 }
861
wbt_background_show(void * data,struct seq_file * m)862 static int wbt_background_show(void *data, struct seq_file *m)
863 {
864 struct rq_qos *rqos = data;
865 struct rq_wb *rwb = RQWB(rqos);
866
867 seq_printf(m, "%u\n", rwb->wb_background);
868 return 0;
869 }
870
871 static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = {
872 {"curr_win_nsec", 0400, wbt_curr_win_nsec_show},
873 {"enabled", 0400, wbt_enabled_show},
874 {"id", 0400, wbt_id_show},
875 {"inflight", 0400, wbt_inflight_show},
876 {"min_lat_nsec", 0400, wbt_min_lat_nsec_show},
877 {"unknown_cnt", 0400, wbt_unknown_cnt_show},
878 {"wb_normal", 0400, wbt_normal_show},
879 {"wb_background", 0400, wbt_background_show},
880 {},
881 };
882 #endif
883
884 static const struct rq_qos_ops wbt_rqos_ops = {
885 .throttle = wbt_wait,
886 .issue = wbt_issue,
887 .track = wbt_track,
888 .requeue = wbt_requeue,
889 .done = wbt_done,
890 .cleanup = wbt_cleanup,
891 .queue_depth_changed = wbt_queue_depth_changed,
892 .exit = wbt_exit,
893 #ifdef CONFIG_BLK_DEBUG_FS
894 .debugfs_attrs = wbt_debugfs_attrs,
895 #endif
896 };
897
wbt_init(struct gendisk * disk)898 int wbt_init(struct gendisk *disk)
899 {
900 struct request_queue *q = disk->queue;
901 struct rq_wb *rwb;
902 int i;
903 int ret;
904
905 rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
906 if (!rwb)
907 return -ENOMEM;
908
909 rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
910 if (!rwb->cb) {
911 kfree(rwb);
912 return -ENOMEM;
913 }
914
915 for (i = 0; i < WBT_NUM_RWQ; i++)
916 rq_wait_init(&rwb->rq_wait[i]);
917
918 rwb->last_comp = rwb->last_issue = jiffies;
919 rwb->win_nsec = RWB_WINDOW_NSEC;
920 rwb->enable_state = WBT_STATE_ON_DEFAULT;
921 rwb->wc = test_bit(QUEUE_FLAG_WC, &q->queue_flags);
922 rwb->rq_depth.default_depth = RWB_DEF_DEPTH;
923 rwb->min_lat_nsec = wbt_default_latency_nsec(q);
924 rwb->rq_depth.queue_depth = blk_queue_depth(q);
925 wbt_update_limits(rwb);
926
927 /*
928 * Assign rwb and add the stats callback.
929 */
930 mutex_lock(&q->rq_qos_mutex);
931 ret = rq_qos_add(&rwb->rqos, disk, RQ_QOS_WBT, &wbt_rqos_ops);
932 mutex_unlock(&q->rq_qos_mutex);
933 if (ret)
934 goto err_free;
935
936 blk_stat_add_callback(q, rwb->cb);
937
938 return 0;
939
940 err_free:
941 blk_stat_free_callback(rwb->cb);
942 kfree(rwb);
943 return ret;
944
945 }
946