xref: /openbmc/linux/block/blk-throttle.c (revision f9834f18)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include "blk.h"
15 #include "blk-cgroup-rwstat.h"
16 
17 /* Max dispatch from a group in 1 round */
18 static int throtl_grp_quantum = 8;
19 
20 /* Total max dispatch from all groups in one round */
21 static int throtl_quantum = 32;
22 
23 /* Throttling is performed over a slice and after that slice is renewed */
24 #define DFL_THROTL_SLICE_HD (HZ / 10)
25 #define DFL_THROTL_SLICE_SSD (HZ / 50)
26 #define MAX_THROTL_SLICE (HZ)
27 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
28 #define MIN_THROTL_BPS (320 * 1024)
29 #define MIN_THROTL_IOPS (10)
30 #define DFL_LATENCY_TARGET (-1L)
31 #define DFL_IDLE_THRESHOLD (0)
32 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
33 #define LATENCY_FILTERED_SSD (0)
34 /*
35  * For HD, very small latency comes from sequential IO. Such IO is helpless to
36  * help determine if its IO is impacted by others, hence we ignore the IO
37  */
38 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
39 
40 static struct blkcg_policy blkcg_policy_throtl;
41 
42 /* A workqueue to queue throttle related work */
43 static struct workqueue_struct *kthrotld_workqueue;
44 
45 /*
46  * To implement hierarchical throttling, throtl_grps form a tree and bios
47  * are dispatched upwards level by level until they reach the top and get
48  * issued.  When dispatching bios from the children and local group at each
49  * level, if the bios are dispatched into a single bio_list, there's a risk
50  * of a local or child group which can queue many bios at once filling up
51  * the list starving others.
52  *
53  * To avoid such starvation, dispatched bios are queued separately
54  * according to where they came from.  When they are again dispatched to
55  * the parent, they're popped in round-robin order so that no single source
56  * hogs the dispatch window.
57  *
58  * throtl_qnode is used to keep the queued bios separated by their sources.
59  * Bios are queued to throtl_qnode which in turn is queued to
60  * throtl_service_queue and then dispatched in round-robin order.
61  *
62  * It's also used to track the reference counts on blkg's.  A qnode always
63  * belongs to a throtl_grp and gets queued on itself or the parent, so
64  * incrementing the reference of the associated throtl_grp when a qnode is
65  * queued and decrementing when dequeued is enough to keep the whole blkg
66  * tree pinned while bios are in flight.
67  */
68 struct throtl_qnode {
69 	struct list_head	node;		/* service_queue->queued[] */
70 	struct bio_list		bios;		/* queued bios */
71 	struct throtl_grp	*tg;		/* tg this qnode belongs to */
72 };
73 
74 struct throtl_service_queue {
75 	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
76 
77 	/*
78 	 * Bios queued directly to this service_queue or dispatched from
79 	 * children throtl_grp's.
80 	 */
81 	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
82 	unsigned int		nr_queued[2];	/* number of queued bios */
83 
84 	/*
85 	 * RB tree of active children throtl_grp's, which are sorted by
86 	 * their ->disptime.
87 	 */
88 	struct rb_root_cached	pending_tree;	/* RB tree of active tgs */
89 	unsigned int		nr_pending;	/* # queued in the tree */
90 	unsigned long		first_pending_disptime;	/* disptime of the first tg */
91 	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
92 };
93 
94 enum tg_state_flags {
95 	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
96 	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
97 };
98 
99 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
100 
101 enum {
102 	LIMIT_LOW,
103 	LIMIT_MAX,
104 	LIMIT_CNT,
105 };
106 
107 struct throtl_grp {
108 	/* must be the first member */
109 	struct blkg_policy_data pd;
110 
111 	/* active throtl group service_queue member */
112 	struct rb_node rb_node;
113 
114 	/* throtl_data this group belongs to */
115 	struct throtl_data *td;
116 
117 	/* this group's service queue */
118 	struct throtl_service_queue service_queue;
119 
120 	/*
121 	 * qnode_on_self is used when bios are directly queued to this
122 	 * throtl_grp so that local bios compete fairly with bios
123 	 * dispatched from children.  qnode_on_parent is used when bios are
124 	 * dispatched from this throtl_grp into its parent and will compete
125 	 * with the sibling qnode_on_parents and the parent's
126 	 * qnode_on_self.
127 	 */
128 	struct throtl_qnode qnode_on_self[2];
129 	struct throtl_qnode qnode_on_parent[2];
130 
131 	/*
132 	 * Dispatch time in jiffies. This is the estimated time when group
133 	 * will unthrottle and is ready to dispatch more bio. It is used as
134 	 * key to sort active groups in service tree.
135 	 */
136 	unsigned long disptime;
137 
138 	unsigned int flags;
139 
140 	/* are there any throtl rules between this group and td? */
141 	bool has_rules[2];
142 
143 	/* internally used bytes per second rate limits */
144 	uint64_t bps[2][LIMIT_CNT];
145 	/* user configured bps limits */
146 	uint64_t bps_conf[2][LIMIT_CNT];
147 
148 	/* internally used IOPS limits */
149 	unsigned int iops[2][LIMIT_CNT];
150 	/* user configured IOPS limits */
151 	unsigned int iops_conf[2][LIMIT_CNT];
152 
153 	/* Number of bytes disptached in current slice */
154 	uint64_t bytes_disp[2];
155 	/* Number of bio's dispatched in current slice */
156 	unsigned int io_disp[2];
157 
158 	unsigned long last_low_overflow_time[2];
159 
160 	uint64_t last_bytes_disp[2];
161 	unsigned int last_io_disp[2];
162 
163 	unsigned long last_check_time;
164 
165 	unsigned long latency_target; /* us */
166 	unsigned long latency_target_conf; /* us */
167 	/* When did we start a new slice */
168 	unsigned long slice_start[2];
169 	unsigned long slice_end[2];
170 
171 	unsigned long last_finish_time; /* ns / 1024 */
172 	unsigned long checked_last_finish_time; /* ns / 1024 */
173 	unsigned long avg_idletime; /* ns / 1024 */
174 	unsigned long idletime_threshold; /* us */
175 	unsigned long idletime_threshold_conf; /* us */
176 
177 	unsigned int bio_cnt; /* total bios */
178 	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
179 	unsigned long bio_cnt_reset_time;
180 
181 	struct blkg_rwstat stat_bytes;
182 	struct blkg_rwstat stat_ios;
183 };
184 
185 /* We measure latency for request size from <= 4k to >= 1M */
186 #define LATENCY_BUCKET_SIZE 9
187 
188 struct latency_bucket {
189 	unsigned long total_latency; /* ns / 1024 */
190 	int samples;
191 };
192 
193 struct avg_latency_bucket {
194 	unsigned long latency; /* ns / 1024 */
195 	bool valid;
196 };
197 
198 struct throtl_data
199 {
200 	/* service tree for active throtl groups */
201 	struct throtl_service_queue service_queue;
202 
203 	struct request_queue *queue;
204 
205 	/* Total Number of queued bios on READ and WRITE lists */
206 	unsigned int nr_queued[2];
207 
208 	unsigned int throtl_slice;
209 
210 	/* Work for dispatching throttled bios */
211 	struct work_struct dispatch_work;
212 	unsigned int limit_index;
213 	bool limit_valid[LIMIT_CNT];
214 
215 	unsigned long low_upgrade_time;
216 	unsigned long low_downgrade_time;
217 
218 	unsigned int scale;
219 
220 	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
221 	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
222 	struct latency_bucket __percpu *latency_buckets[2];
223 	unsigned long last_calculate_time;
224 	unsigned long filtered_latency;
225 
226 	bool track_bio_latency;
227 };
228 
229 static void throtl_pending_timer_fn(struct timer_list *t);
230 
231 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
232 {
233 	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
234 }
235 
236 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
237 {
238 	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
239 }
240 
241 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
242 {
243 	return pd_to_blkg(&tg->pd);
244 }
245 
246 /**
247  * sq_to_tg - return the throl_grp the specified service queue belongs to
248  * @sq: the throtl_service_queue of interest
249  *
250  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
251  * embedded in throtl_data, %NULL is returned.
252  */
253 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
254 {
255 	if (sq && sq->parent_sq)
256 		return container_of(sq, struct throtl_grp, service_queue);
257 	else
258 		return NULL;
259 }
260 
261 /**
262  * sq_to_td - return throtl_data the specified service queue belongs to
263  * @sq: the throtl_service_queue of interest
264  *
265  * A service_queue can be embedded in either a throtl_grp or throtl_data.
266  * Determine the associated throtl_data accordingly and return it.
267  */
268 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
269 {
270 	struct throtl_grp *tg = sq_to_tg(sq);
271 
272 	if (tg)
273 		return tg->td;
274 	else
275 		return container_of(sq, struct throtl_data, service_queue);
276 }
277 
278 /*
279  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
280  * make the IO dispatch more smooth.
281  * Scale up: linearly scale up according to lapsed time since upgrade. For
282  *           every throtl_slice, the limit scales up 1/2 .low limit till the
283  *           limit hits .max limit
284  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
285  */
286 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
287 {
288 	/* arbitrary value to avoid too big scale */
289 	if (td->scale < 4096 && time_after_eq(jiffies,
290 	    td->low_upgrade_time + td->scale * td->throtl_slice))
291 		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
292 
293 	return low + (low >> 1) * td->scale;
294 }
295 
296 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
297 {
298 	struct blkcg_gq *blkg = tg_to_blkg(tg);
299 	struct throtl_data *td;
300 	uint64_t ret;
301 
302 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
303 		return U64_MAX;
304 
305 	td = tg->td;
306 	ret = tg->bps[rw][td->limit_index];
307 	if (ret == 0 && td->limit_index == LIMIT_LOW) {
308 		/* intermediate node or iops isn't 0 */
309 		if (!list_empty(&blkg->blkcg->css.children) ||
310 		    tg->iops[rw][td->limit_index])
311 			return U64_MAX;
312 		else
313 			return MIN_THROTL_BPS;
314 	}
315 
316 	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
317 	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
318 		uint64_t adjusted;
319 
320 		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
321 		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
322 	}
323 	return ret;
324 }
325 
326 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
327 {
328 	struct blkcg_gq *blkg = tg_to_blkg(tg);
329 	struct throtl_data *td;
330 	unsigned int ret;
331 
332 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
333 		return UINT_MAX;
334 
335 	td = tg->td;
336 	ret = tg->iops[rw][td->limit_index];
337 	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
338 		/* intermediate node or bps isn't 0 */
339 		if (!list_empty(&blkg->blkcg->css.children) ||
340 		    tg->bps[rw][td->limit_index])
341 			return UINT_MAX;
342 		else
343 			return MIN_THROTL_IOPS;
344 	}
345 
346 	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
347 	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
348 		uint64_t adjusted;
349 
350 		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
351 		if (adjusted > UINT_MAX)
352 			adjusted = UINT_MAX;
353 		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
354 	}
355 	return ret;
356 }
357 
358 #define request_bucket_index(sectors) \
359 	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
360 
361 /**
362  * throtl_log - log debug message via blktrace
363  * @sq: the service_queue being reported
364  * @fmt: printf format string
365  * @args: printf args
366  *
367  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
368  * throtl_grp; otherwise, just "throtl".
369  */
370 #define throtl_log(sq, fmt, args...)	do {				\
371 	struct throtl_grp *__tg = sq_to_tg((sq));			\
372 	struct throtl_data *__td = sq_to_td((sq));			\
373 									\
374 	(void)__td;							\
375 	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
376 		break;							\
377 	if ((__tg)) {							\
378 		blk_add_cgroup_trace_msg(__td->queue,			\
379 			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
380 	} else {							\
381 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
382 	}								\
383 } while (0)
384 
385 static inline unsigned int throtl_bio_data_size(struct bio *bio)
386 {
387 	/* assume it's one sector */
388 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
389 		return 512;
390 	return bio->bi_iter.bi_size;
391 }
392 
393 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
394 {
395 	INIT_LIST_HEAD(&qn->node);
396 	bio_list_init(&qn->bios);
397 	qn->tg = tg;
398 }
399 
400 /**
401  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
402  * @bio: bio being added
403  * @qn: qnode to add bio to
404  * @queued: the service_queue->queued[] list @qn belongs to
405  *
406  * Add @bio to @qn and put @qn on @queued if it's not already on.
407  * @qn->tg's reference count is bumped when @qn is activated.  See the
408  * comment on top of throtl_qnode definition for details.
409  */
410 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
411 				 struct list_head *queued)
412 {
413 	bio_list_add(&qn->bios, bio);
414 	if (list_empty(&qn->node)) {
415 		list_add_tail(&qn->node, queued);
416 		blkg_get(tg_to_blkg(qn->tg));
417 	}
418 }
419 
420 /**
421  * throtl_peek_queued - peek the first bio on a qnode list
422  * @queued: the qnode list to peek
423  */
424 static struct bio *throtl_peek_queued(struct list_head *queued)
425 {
426 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
427 	struct bio *bio;
428 
429 	if (list_empty(queued))
430 		return NULL;
431 
432 	bio = bio_list_peek(&qn->bios);
433 	WARN_ON_ONCE(!bio);
434 	return bio;
435 }
436 
437 /**
438  * throtl_pop_queued - pop the first bio form a qnode list
439  * @queued: the qnode list to pop a bio from
440  * @tg_to_put: optional out argument for throtl_grp to put
441  *
442  * Pop the first bio from the qnode list @queued.  After popping, the first
443  * qnode is removed from @queued if empty or moved to the end of @queued so
444  * that the popping order is round-robin.
445  *
446  * When the first qnode is removed, its associated throtl_grp should be put
447  * too.  If @tg_to_put is NULL, this function automatically puts it;
448  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
449  * responsible for putting it.
450  */
451 static struct bio *throtl_pop_queued(struct list_head *queued,
452 				     struct throtl_grp **tg_to_put)
453 {
454 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
455 	struct bio *bio;
456 
457 	if (list_empty(queued))
458 		return NULL;
459 
460 	bio = bio_list_pop(&qn->bios);
461 	WARN_ON_ONCE(!bio);
462 
463 	if (bio_list_empty(&qn->bios)) {
464 		list_del_init(&qn->node);
465 		if (tg_to_put)
466 			*tg_to_put = qn->tg;
467 		else
468 			blkg_put(tg_to_blkg(qn->tg));
469 	} else {
470 		list_move_tail(&qn->node, queued);
471 	}
472 
473 	return bio;
474 }
475 
476 /* init a service_queue, assumes the caller zeroed it */
477 static void throtl_service_queue_init(struct throtl_service_queue *sq)
478 {
479 	INIT_LIST_HEAD(&sq->queued[0]);
480 	INIT_LIST_HEAD(&sq->queued[1]);
481 	sq->pending_tree = RB_ROOT_CACHED;
482 	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
483 }
484 
485 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
486 						struct request_queue *q,
487 						struct blkcg *blkcg)
488 {
489 	struct throtl_grp *tg;
490 	int rw;
491 
492 	tg = kzalloc_node(sizeof(*tg), gfp, q->node);
493 	if (!tg)
494 		return NULL;
495 
496 	if (blkg_rwstat_init(&tg->stat_bytes, gfp))
497 		goto err_free_tg;
498 
499 	if (blkg_rwstat_init(&tg->stat_ios, gfp))
500 		goto err_exit_stat_bytes;
501 
502 	throtl_service_queue_init(&tg->service_queue);
503 
504 	for (rw = READ; rw <= WRITE; rw++) {
505 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
506 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
507 	}
508 
509 	RB_CLEAR_NODE(&tg->rb_node);
510 	tg->bps[READ][LIMIT_MAX] = U64_MAX;
511 	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
512 	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
513 	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
514 	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
515 	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
516 	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
517 	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
518 	/* LIMIT_LOW will have default value 0 */
519 
520 	tg->latency_target = DFL_LATENCY_TARGET;
521 	tg->latency_target_conf = DFL_LATENCY_TARGET;
522 	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
523 	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
524 
525 	return &tg->pd;
526 
527 err_exit_stat_bytes:
528 	blkg_rwstat_exit(&tg->stat_bytes);
529 err_free_tg:
530 	kfree(tg);
531 	return NULL;
532 }
533 
534 static void throtl_pd_init(struct blkg_policy_data *pd)
535 {
536 	struct throtl_grp *tg = pd_to_tg(pd);
537 	struct blkcg_gq *blkg = tg_to_blkg(tg);
538 	struct throtl_data *td = blkg->q->td;
539 	struct throtl_service_queue *sq = &tg->service_queue;
540 
541 	/*
542 	 * If on the default hierarchy, we switch to properly hierarchical
543 	 * behavior where limits on a given throtl_grp are applied to the
544 	 * whole subtree rather than just the group itself.  e.g. If 16M
545 	 * read_bps limit is set on the root group, the whole system can't
546 	 * exceed 16M for the device.
547 	 *
548 	 * If not on the default hierarchy, the broken flat hierarchy
549 	 * behavior is retained where all throtl_grps are treated as if
550 	 * they're all separate root groups right below throtl_data.
551 	 * Limits of a group don't interact with limits of other groups
552 	 * regardless of the position of the group in the hierarchy.
553 	 */
554 	sq->parent_sq = &td->service_queue;
555 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
556 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
557 	tg->td = td;
558 }
559 
560 /*
561  * Set has_rules[] if @tg or any of its parents have limits configured.
562  * This doesn't require walking up to the top of the hierarchy as the
563  * parent's has_rules[] is guaranteed to be correct.
564  */
565 static void tg_update_has_rules(struct throtl_grp *tg)
566 {
567 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
568 	struct throtl_data *td = tg->td;
569 	int rw;
570 
571 	for (rw = READ; rw <= WRITE; rw++)
572 		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
573 			(td->limit_valid[td->limit_index] &&
574 			 (tg_bps_limit(tg, rw) != U64_MAX ||
575 			  tg_iops_limit(tg, rw) != UINT_MAX));
576 }
577 
578 static void throtl_pd_online(struct blkg_policy_data *pd)
579 {
580 	struct throtl_grp *tg = pd_to_tg(pd);
581 	/*
582 	 * We don't want new groups to escape the limits of its ancestors.
583 	 * Update has_rules[] after a new group is brought online.
584 	 */
585 	tg_update_has_rules(tg);
586 }
587 
588 static void blk_throtl_update_limit_valid(struct throtl_data *td)
589 {
590 	struct cgroup_subsys_state *pos_css;
591 	struct blkcg_gq *blkg;
592 	bool low_valid = false;
593 
594 	rcu_read_lock();
595 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
596 		struct throtl_grp *tg = blkg_to_tg(blkg);
597 
598 		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
599 		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
600 			low_valid = true;
601 			break;
602 		}
603 	}
604 	rcu_read_unlock();
605 
606 	td->limit_valid[LIMIT_LOW] = low_valid;
607 }
608 
609 static void throtl_upgrade_state(struct throtl_data *td);
610 static void throtl_pd_offline(struct blkg_policy_data *pd)
611 {
612 	struct throtl_grp *tg = pd_to_tg(pd);
613 
614 	tg->bps[READ][LIMIT_LOW] = 0;
615 	tg->bps[WRITE][LIMIT_LOW] = 0;
616 	tg->iops[READ][LIMIT_LOW] = 0;
617 	tg->iops[WRITE][LIMIT_LOW] = 0;
618 
619 	blk_throtl_update_limit_valid(tg->td);
620 
621 	if (!tg->td->limit_valid[tg->td->limit_index])
622 		throtl_upgrade_state(tg->td);
623 }
624 
625 static void throtl_pd_free(struct blkg_policy_data *pd)
626 {
627 	struct throtl_grp *tg = pd_to_tg(pd);
628 
629 	del_timer_sync(&tg->service_queue.pending_timer);
630 	blkg_rwstat_exit(&tg->stat_bytes);
631 	blkg_rwstat_exit(&tg->stat_ios);
632 	kfree(tg);
633 }
634 
635 static struct throtl_grp *
636 throtl_rb_first(struct throtl_service_queue *parent_sq)
637 {
638 	struct rb_node *n;
639 	/* Service tree is empty */
640 	if (!parent_sq->nr_pending)
641 		return NULL;
642 
643 	n = rb_first_cached(&parent_sq->pending_tree);
644 	WARN_ON_ONCE(!n);
645 	if (!n)
646 		return NULL;
647 	return rb_entry_tg(n);
648 }
649 
650 static void throtl_rb_erase(struct rb_node *n,
651 			    struct throtl_service_queue *parent_sq)
652 {
653 	rb_erase_cached(n, &parent_sq->pending_tree);
654 	RB_CLEAR_NODE(n);
655 	--parent_sq->nr_pending;
656 }
657 
658 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
659 {
660 	struct throtl_grp *tg;
661 
662 	tg = throtl_rb_first(parent_sq);
663 	if (!tg)
664 		return;
665 
666 	parent_sq->first_pending_disptime = tg->disptime;
667 }
668 
669 static void tg_service_queue_add(struct throtl_grp *tg)
670 {
671 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
672 	struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
673 	struct rb_node *parent = NULL;
674 	struct throtl_grp *__tg;
675 	unsigned long key = tg->disptime;
676 	bool leftmost = true;
677 
678 	while (*node != NULL) {
679 		parent = *node;
680 		__tg = rb_entry_tg(parent);
681 
682 		if (time_before(key, __tg->disptime))
683 			node = &parent->rb_left;
684 		else {
685 			node = &parent->rb_right;
686 			leftmost = false;
687 		}
688 	}
689 
690 	rb_link_node(&tg->rb_node, parent, node);
691 	rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
692 			       leftmost);
693 }
694 
695 static void __throtl_enqueue_tg(struct throtl_grp *tg)
696 {
697 	tg_service_queue_add(tg);
698 	tg->flags |= THROTL_TG_PENDING;
699 	tg->service_queue.parent_sq->nr_pending++;
700 }
701 
702 static void throtl_enqueue_tg(struct throtl_grp *tg)
703 {
704 	if (!(tg->flags & THROTL_TG_PENDING))
705 		__throtl_enqueue_tg(tg);
706 }
707 
708 static void __throtl_dequeue_tg(struct throtl_grp *tg)
709 {
710 	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
711 	tg->flags &= ~THROTL_TG_PENDING;
712 }
713 
714 static void throtl_dequeue_tg(struct throtl_grp *tg)
715 {
716 	if (tg->flags & THROTL_TG_PENDING)
717 		__throtl_dequeue_tg(tg);
718 }
719 
720 /* Call with queue lock held */
721 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
722 					  unsigned long expires)
723 {
724 	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
725 
726 	/*
727 	 * Since we are adjusting the throttle limit dynamically, the sleep
728 	 * time calculated according to previous limit might be invalid. It's
729 	 * possible the cgroup sleep time is very long and no other cgroups
730 	 * have IO running so notify the limit changes. Make sure the cgroup
731 	 * doesn't sleep too long to avoid the missed notification.
732 	 */
733 	if (time_after(expires, max_expire))
734 		expires = max_expire;
735 	mod_timer(&sq->pending_timer, expires);
736 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
737 		   expires - jiffies, jiffies);
738 }
739 
740 /**
741  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
742  * @sq: the service_queue to schedule dispatch for
743  * @force: force scheduling
744  *
745  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
746  * dispatch time of the first pending child.  Returns %true if either timer
747  * is armed or there's no pending child left.  %false if the current
748  * dispatch window is still open and the caller should continue
749  * dispatching.
750  *
751  * If @force is %true, the dispatch timer is always scheduled and this
752  * function is guaranteed to return %true.  This is to be used when the
753  * caller can't dispatch itself and needs to invoke pending_timer
754  * unconditionally.  Note that forced scheduling is likely to induce short
755  * delay before dispatch starts even if @sq->first_pending_disptime is not
756  * in the future and thus shouldn't be used in hot paths.
757  */
758 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
759 					  bool force)
760 {
761 	/* any pending children left? */
762 	if (!sq->nr_pending)
763 		return true;
764 
765 	update_min_dispatch_time(sq);
766 
767 	/* is the next dispatch time in the future? */
768 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
769 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
770 		return true;
771 	}
772 
773 	/* tell the caller to continue dispatching */
774 	return false;
775 }
776 
777 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
778 		bool rw, unsigned long start)
779 {
780 	tg->bytes_disp[rw] = 0;
781 	tg->io_disp[rw] = 0;
782 
783 	/*
784 	 * Previous slice has expired. We must have trimmed it after last
785 	 * bio dispatch. That means since start of last slice, we never used
786 	 * that bandwidth. Do try to make use of that bandwidth while giving
787 	 * credit.
788 	 */
789 	if (time_after_eq(start, tg->slice_start[rw]))
790 		tg->slice_start[rw] = start;
791 
792 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
793 	throtl_log(&tg->service_queue,
794 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
795 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
796 		   tg->slice_end[rw], jiffies);
797 }
798 
799 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
800 {
801 	tg->bytes_disp[rw] = 0;
802 	tg->io_disp[rw] = 0;
803 	tg->slice_start[rw] = jiffies;
804 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
805 	throtl_log(&tg->service_queue,
806 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
807 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
808 		   tg->slice_end[rw], jiffies);
809 }
810 
811 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
812 					unsigned long jiffy_end)
813 {
814 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
815 }
816 
817 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
818 				       unsigned long jiffy_end)
819 {
820 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
821 	throtl_log(&tg->service_queue,
822 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
823 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
824 		   tg->slice_end[rw], jiffies);
825 }
826 
827 /* Determine if previously allocated or extended slice is complete or not */
828 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
829 {
830 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
831 		return false;
832 
833 	return true;
834 }
835 
836 /* Trim the used slices and adjust slice start accordingly */
837 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
838 {
839 	unsigned long nr_slices, time_elapsed, io_trim;
840 	u64 bytes_trim, tmp;
841 
842 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
843 
844 	/*
845 	 * If bps are unlimited (-1), then time slice don't get
846 	 * renewed. Don't try to trim the slice if slice is used. A new
847 	 * slice will start when appropriate.
848 	 */
849 	if (throtl_slice_used(tg, rw))
850 		return;
851 
852 	/*
853 	 * A bio has been dispatched. Also adjust slice_end. It might happen
854 	 * that initially cgroup limit was very low resulting in high
855 	 * slice_end, but later limit was bumped up and bio was dispached
856 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
857 	 * is bad because it does not allow new slice to start.
858 	 */
859 
860 	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
861 
862 	time_elapsed = jiffies - tg->slice_start[rw];
863 
864 	nr_slices = time_elapsed / tg->td->throtl_slice;
865 
866 	if (!nr_slices)
867 		return;
868 	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
869 	do_div(tmp, HZ);
870 	bytes_trim = tmp;
871 
872 	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
873 		HZ;
874 
875 	if (!bytes_trim && !io_trim)
876 		return;
877 
878 	if (tg->bytes_disp[rw] >= bytes_trim)
879 		tg->bytes_disp[rw] -= bytes_trim;
880 	else
881 		tg->bytes_disp[rw] = 0;
882 
883 	if (tg->io_disp[rw] >= io_trim)
884 		tg->io_disp[rw] -= io_trim;
885 	else
886 		tg->io_disp[rw] = 0;
887 
888 	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
889 
890 	throtl_log(&tg->service_queue,
891 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
892 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
893 		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
894 }
895 
896 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
897 				  unsigned long *wait)
898 {
899 	bool rw = bio_data_dir(bio);
900 	unsigned int io_allowed;
901 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
902 	u64 tmp;
903 
904 	jiffy_elapsed = jiffies - tg->slice_start[rw];
905 
906 	/* Round up to the next throttle slice, wait time must be nonzero */
907 	jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
908 
909 	/*
910 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
911 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
912 	 * will allow dispatch after 1 second and after that slice should
913 	 * have been trimmed.
914 	 */
915 
916 	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
917 	do_div(tmp, HZ);
918 
919 	if (tmp > UINT_MAX)
920 		io_allowed = UINT_MAX;
921 	else
922 		io_allowed = tmp;
923 
924 	if (tg->io_disp[rw] + 1 <= io_allowed) {
925 		if (wait)
926 			*wait = 0;
927 		return true;
928 	}
929 
930 	/* Calc approx time to dispatch */
931 	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
932 
933 	if (wait)
934 		*wait = jiffy_wait;
935 	return false;
936 }
937 
938 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
939 				 unsigned long *wait)
940 {
941 	bool rw = bio_data_dir(bio);
942 	u64 bytes_allowed, extra_bytes, tmp;
943 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
944 	unsigned int bio_size = throtl_bio_data_size(bio);
945 
946 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
947 
948 	/* Slice has just started. Consider one slice interval */
949 	if (!jiffy_elapsed)
950 		jiffy_elapsed_rnd = tg->td->throtl_slice;
951 
952 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
953 
954 	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
955 	do_div(tmp, HZ);
956 	bytes_allowed = tmp;
957 
958 	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
959 		if (wait)
960 			*wait = 0;
961 		return true;
962 	}
963 
964 	/* Calc approx time to dispatch */
965 	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
966 	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
967 
968 	if (!jiffy_wait)
969 		jiffy_wait = 1;
970 
971 	/*
972 	 * This wait time is without taking into consideration the rounding
973 	 * up we did. Add that time also.
974 	 */
975 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
976 	if (wait)
977 		*wait = jiffy_wait;
978 	return false;
979 }
980 
981 /*
982  * Returns whether one can dispatch a bio or not. Also returns approx number
983  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
984  */
985 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
986 			    unsigned long *wait)
987 {
988 	bool rw = bio_data_dir(bio);
989 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
990 
991 	/*
992  	 * Currently whole state machine of group depends on first bio
993 	 * queued in the group bio list. So one should not be calling
994 	 * this function with a different bio if there are other bios
995 	 * queued.
996 	 */
997 	BUG_ON(tg->service_queue.nr_queued[rw] &&
998 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
999 
1000 	/* If tg->bps = -1, then BW is unlimited */
1001 	if (tg_bps_limit(tg, rw) == U64_MAX &&
1002 	    tg_iops_limit(tg, rw) == UINT_MAX) {
1003 		if (wait)
1004 			*wait = 0;
1005 		return true;
1006 	}
1007 
1008 	/*
1009 	 * If previous slice expired, start a new one otherwise renew/extend
1010 	 * existing slice to make sure it is at least throtl_slice interval
1011 	 * long since now. New slice is started only for empty throttle group.
1012 	 * If there is queued bio, that means there should be an active
1013 	 * slice and it should be extended instead.
1014 	 */
1015 	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1016 		throtl_start_new_slice(tg, rw);
1017 	else {
1018 		if (time_before(tg->slice_end[rw],
1019 		    jiffies + tg->td->throtl_slice))
1020 			throtl_extend_slice(tg, rw,
1021 				jiffies + tg->td->throtl_slice);
1022 	}
1023 
1024 	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
1025 	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1026 		if (wait)
1027 			*wait = 0;
1028 		return true;
1029 	}
1030 
1031 	max_wait = max(bps_wait, iops_wait);
1032 
1033 	if (wait)
1034 		*wait = max_wait;
1035 
1036 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1037 		throtl_extend_slice(tg, rw, jiffies + max_wait);
1038 
1039 	return false;
1040 }
1041 
1042 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1043 {
1044 	bool rw = bio_data_dir(bio);
1045 	unsigned int bio_size = throtl_bio_data_size(bio);
1046 
1047 	/* Charge the bio to the group */
1048 	tg->bytes_disp[rw] += bio_size;
1049 	tg->io_disp[rw]++;
1050 	tg->last_bytes_disp[rw] += bio_size;
1051 	tg->last_io_disp[rw]++;
1052 
1053 	/*
1054 	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1055 	 * more than once as a throttled bio will go through blk-throtl the
1056 	 * second time when it eventually gets issued.  Set it when a bio
1057 	 * is being charged to a tg.
1058 	 */
1059 	if (!bio_flagged(bio, BIO_THROTTLED))
1060 		bio_set_flag(bio, BIO_THROTTLED);
1061 }
1062 
1063 /**
1064  * throtl_add_bio_tg - add a bio to the specified throtl_grp
1065  * @bio: bio to add
1066  * @qn: qnode to use
1067  * @tg: the target throtl_grp
1068  *
1069  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1070  * tg->qnode_on_self[] is used.
1071  */
1072 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1073 			      struct throtl_grp *tg)
1074 {
1075 	struct throtl_service_queue *sq = &tg->service_queue;
1076 	bool rw = bio_data_dir(bio);
1077 
1078 	if (!qn)
1079 		qn = &tg->qnode_on_self[rw];
1080 
1081 	/*
1082 	 * If @tg doesn't currently have any bios queued in the same
1083 	 * direction, queueing @bio can change when @tg should be
1084 	 * dispatched.  Mark that @tg was empty.  This is automatically
1085 	 * cleaered on the next tg_update_disptime().
1086 	 */
1087 	if (!sq->nr_queued[rw])
1088 		tg->flags |= THROTL_TG_WAS_EMPTY;
1089 
1090 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1091 
1092 	sq->nr_queued[rw]++;
1093 	throtl_enqueue_tg(tg);
1094 }
1095 
1096 static void tg_update_disptime(struct throtl_grp *tg)
1097 {
1098 	struct throtl_service_queue *sq = &tg->service_queue;
1099 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1100 	struct bio *bio;
1101 
1102 	bio = throtl_peek_queued(&sq->queued[READ]);
1103 	if (bio)
1104 		tg_may_dispatch(tg, bio, &read_wait);
1105 
1106 	bio = throtl_peek_queued(&sq->queued[WRITE]);
1107 	if (bio)
1108 		tg_may_dispatch(tg, bio, &write_wait);
1109 
1110 	min_wait = min(read_wait, write_wait);
1111 	disptime = jiffies + min_wait;
1112 
1113 	/* Update dispatch time */
1114 	throtl_dequeue_tg(tg);
1115 	tg->disptime = disptime;
1116 	throtl_enqueue_tg(tg);
1117 
1118 	/* see throtl_add_bio_tg() */
1119 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1120 }
1121 
1122 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1123 					struct throtl_grp *parent_tg, bool rw)
1124 {
1125 	if (throtl_slice_used(parent_tg, rw)) {
1126 		throtl_start_new_slice_with_credit(parent_tg, rw,
1127 				child_tg->slice_start[rw]);
1128 	}
1129 
1130 }
1131 
1132 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1133 {
1134 	struct throtl_service_queue *sq = &tg->service_queue;
1135 	struct throtl_service_queue *parent_sq = sq->parent_sq;
1136 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1137 	struct throtl_grp *tg_to_put = NULL;
1138 	struct bio *bio;
1139 
1140 	/*
1141 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1142 	 * from @tg may put its reference and @parent_sq might end up
1143 	 * getting released prematurely.  Remember the tg to put and put it
1144 	 * after @bio is transferred to @parent_sq.
1145 	 */
1146 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1147 	sq->nr_queued[rw]--;
1148 
1149 	throtl_charge_bio(tg, bio);
1150 
1151 	/*
1152 	 * If our parent is another tg, we just need to transfer @bio to
1153 	 * the parent using throtl_add_bio_tg().  If our parent is
1154 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1155 	 * bio_lists[] and decrease total number queued.  The caller is
1156 	 * responsible for issuing these bios.
1157 	 */
1158 	if (parent_tg) {
1159 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1160 		start_parent_slice_with_credit(tg, parent_tg, rw);
1161 	} else {
1162 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1163 				     &parent_sq->queued[rw]);
1164 		BUG_ON(tg->td->nr_queued[rw] <= 0);
1165 		tg->td->nr_queued[rw]--;
1166 	}
1167 
1168 	throtl_trim_slice(tg, rw);
1169 
1170 	if (tg_to_put)
1171 		blkg_put(tg_to_blkg(tg_to_put));
1172 }
1173 
1174 static int throtl_dispatch_tg(struct throtl_grp *tg)
1175 {
1176 	struct throtl_service_queue *sq = &tg->service_queue;
1177 	unsigned int nr_reads = 0, nr_writes = 0;
1178 	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1179 	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1180 	struct bio *bio;
1181 
1182 	/* Try to dispatch 75% READS and 25% WRITES */
1183 
1184 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1185 	       tg_may_dispatch(tg, bio, NULL)) {
1186 
1187 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1188 		nr_reads++;
1189 
1190 		if (nr_reads >= max_nr_reads)
1191 			break;
1192 	}
1193 
1194 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1195 	       tg_may_dispatch(tg, bio, NULL)) {
1196 
1197 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1198 		nr_writes++;
1199 
1200 		if (nr_writes >= max_nr_writes)
1201 			break;
1202 	}
1203 
1204 	return nr_reads + nr_writes;
1205 }
1206 
1207 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1208 {
1209 	unsigned int nr_disp = 0;
1210 
1211 	while (1) {
1212 		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1213 		struct throtl_service_queue *sq;
1214 
1215 		if (!tg)
1216 			break;
1217 
1218 		if (time_before(jiffies, tg->disptime))
1219 			break;
1220 
1221 		throtl_dequeue_tg(tg);
1222 
1223 		nr_disp += throtl_dispatch_tg(tg);
1224 
1225 		sq = &tg->service_queue;
1226 		if (sq->nr_queued[0] || sq->nr_queued[1])
1227 			tg_update_disptime(tg);
1228 
1229 		if (nr_disp >= throtl_quantum)
1230 			break;
1231 	}
1232 
1233 	return nr_disp;
1234 }
1235 
1236 static bool throtl_can_upgrade(struct throtl_data *td,
1237 	struct throtl_grp *this_tg);
1238 /**
1239  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1240  * @t: the pending_timer member of the throtl_service_queue being serviced
1241  *
1242  * This timer is armed when a child throtl_grp with active bio's become
1243  * pending and queued on the service_queue's pending_tree and expires when
1244  * the first child throtl_grp should be dispatched.  This function
1245  * dispatches bio's from the children throtl_grps to the parent
1246  * service_queue.
1247  *
1248  * If the parent's parent is another throtl_grp, dispatching is propagated
1249  * by either arming its pending_timer or repeating dispatch directly.  If
1250  * the top-level service_tree is reached, throtl_data->dispatch_work is
1251  * kicked so that the ready bio's are issued.
1252  */
1253 static void throtl_pending_timer_fn(struct timer_list *t)
1254 {
1255 	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1256 	struct throtl_grp *tg = sq_to_tg(sq);
1257 	struct throtl_data *td = sq_to_td(sq);
1258 	struct request_queue *q = td->queue;
1259 	struct throtl_service_queue *parent_sq;
1260 	bool dispatched;
1261 	int ret;
1262 
1263 	spin_lock_irq(&q->queue_lock);
1264 	if (throtl_can_upgrade(td, NULL))
1265 		throtl_upgrade_state(td);
1266 
1267 again:
1268 	parent_sq = sq->parent_sq;
1269 	dispatched = false;
1270 
1271 	while (true) {
1272 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1273 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1274 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1275 
1276 		ret = throtl_select_dispatch(sq);
1277 		if (ret) {
1278 			throtl_log(sq, "bios disp=%u", ret);
1279 			dispatched = true;
1280 		}
1281 
1282 		if (throtl_schedule_next_dispatch(sq, false))
1283 			break;
1284 
1285 		/* this dispatch windows is still open, relax and repeat */
1286 		spin_unlock_irq(&q->queue_lock);
1287 		cpu_relax();
1288 		spin_lock_irq(&q->queue_lock);
1289 	}
1290 
1291 	if (!dispatched)
1292 		goto out_unlock;
1293 
1294 	if (parent_sq) {
1295 		/* @parent_sq is another throl_grp, propagate dispatch */
1296 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1297 			tg_update_disptime(tg);
1298 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1299 				/* window is already open, repeat dispatching */
1300 				sq = parent_sq;
1301 				tg = sq_to_tg(sq);
1302 				goto again;
1303 			}
1304 		}
1305 	} else {
1306 		/* reached the top-level, queue issueing */
1307 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1308 	}
1309 out_unlock:
1310 	spin_unlock_irq(&q->queue_lock);
1311 }
1312 
1313 /**
1314  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1315  * @work: work item being executed
1316  *
1317  * This function is queued for execution when bio's reach the bio_lists[]
1318  * of throtl_data->service_queue.  Those bio's are ready and issued by this
1319  * function.
1320  */
1321 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1322 {
1323 	struct throtl_data *td = container_of(work, struct throtl_data,
1324 					      dispatch_work);
1325 	struct throtl_service_queue *td_sq = &td->service_queue;
1326 	struct request_queue *q = td->queue;
1327 	struct bio_list bio_list_on_stack;
1328 	struct bio *bio;
1329 	struct blk_plug plug;
1330 	int rw;
1331 
1332 	bio_list_init(&bio_list_on_stack);
1333 
1334 	spin_lock_irq(&q->queue_lock);
1335 	for (rw = READ; rw <= WRITE; rw++)
1336 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1337 			bio_list_add(&bio_list_on_stack, bio);
1338 	spin_unlock_irq(&q->queue_lock);
1339 
1340 	if (!bio_list_empty(&bio_list_on_stack)) {
1341 		blk_start_plug(&plug);
1342 		while((bio = bio_list_pop(&bio_list_on_stack)))
1343 			generic_make_request(bio);
1344 		blk_finish_plug(&plug);
1345 	}
1346 }
1347 
1348 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1349 			      int off)
1350 {
1351 	struct throtl_grp *tg = pd_to_tg(pd);
1352 	u64 v = *(u64 *)((void *)tg + off);
1353 
1354 	if (v == U64_MAX)
1355 		return 0;
1356 	return __blkg_prfill_u64(sf, pd, v);
1357 }
1358 
1359 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1360 			       int off)
1361 {
1362 	struct throtl_grp *tg = pd_to_tg(pd);
1363 	unsigned int v = *(unsigned int *)((void *)tg + off);
1364 
1365 	if (v == UINT_MAX)
1366 		return 0;
1367 	return __blkg_prfill_u64(sf, pd, v);
1368 }
1369 
1370 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1371 {
1372 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1373 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1374 	return 0;
1375 }
1376 
1377 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1378 {
1379 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1380 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1381 	return 0;
1382 }
1383 
1384 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1385 {
1386 	struct throtl_service_queue *sq = &tg->service_queue;
1387 	struct cgroup_subsys_state *pos_css;
1388 	struct blkcg_gq *blkg;
1389 
1390 	throtl_log(&tg->service_queue,
1391 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1392 		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1393 		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1394 
1395 	/*
1396 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1397 	 * considered to have rules if either the tg itself or any of its
1398 	 * ancestors has rules.  This identifies groups without any
1399 	 * restrictions in the whole hierarchy and allows them to bypass
1400 	 * blk-throttle.
1401 	 */
1402 	blkg_for_each_descendant_pre(blkg, pos_css,
1403 			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1404 		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1405 		struct throtl_grp *parent_tg;
1406 
1407 		tg_update_has_rules(this_tg);
1408 		/* ignore root/second level */
1409 		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1410 		    !blkg->parent->parent)
1411 			continue;
1412 		parent_tg = blkg_to_tg(blkg->parent);
1413 		/*
1414 		 * make sure all children has lower idle time threshold and
1415 		 * higher latency target
1416 		 */
1417 		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1418 				parent_tg->idletime_threshold);
1419 		this_tg->latency_target = max(this_tg->latency_target,
1420 				parent_tg->latency_target);
1421 	}
1422 
1423 	/*
1424 	 * We're already holding queue_lock and know @tg is valid.  Let's
1425 	 * apply the new config directly.
1426 	 *
1427 	 * Restart the slices for both READ and WRITES. It might happen
1428 	 * that a group's limit are dropped suddenly and we don't want to
1429 	 * account recently dispatched IO with new low rate.
1430 	 */
1431 	throtl_start_new_slice(tg, 0);
1432 	throtl_start_new_slice(tg, 1);
1433 
1434 	if (tg->flags & THROTL_TG_PENDING) {
1435 		tg_update_disptime(tg);
1436 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1437 	}
1438 }
1439 
1440 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1441 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1442 {
1443 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1444 	struct blkg_conf_ctx ctx;
1445 	struct throtl_grp *tg;
1446 	int ret;
1447 	u64 v;
1448 
1449 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1450 	if (ret)
1451 		return ret;
1452 
1453 	ret = -EINVAL;
1454 	if (sscanf(ctx.body, "%llu", &v) != 1)
1455 		goto out_finish;
1456 	if (!v)
1457 		v = U64_MAX;
1458 
1459 	tg = blkg_to_tg(ctx.blkg);
1460 
1461 	if (is_u64)
1462 		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1463 	else
1464 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1465 
1466 	tg_conf_updated(tg, false);
1467 	ret = 0;
1468 out_finish:
1469 	blkg_conf_finish(&ctx);
1470 	return ret ?: nbytes;
1471 }
1472 
1473 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1474 			       char *buf, size_t nbytes, loff_t off)
1475 {
1476 	return tg_set_conf(of, buf, nbytes, off, true);
1477 }
1478 
1479 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1480 				char *buf, size_t nbytes, loff_t off)
1481 {
1482 	return tg_set_conf(of, buf, nbytes, off, false);
1483 }
1484 
1485 static int tg_print_rwstat(struct seq_file *sf, void *v)
1486 {
1487 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1488 			  blkg_prfill_rwstat, &blkcg_policy_throtl,
1489 			  seq_cft(sf)->private, true);
1490 	return 0;
1491 }
1492 
1493 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1494 				      struct blkg_policy_data *pd, int off)
1495 {
1496 	struct blkg_rwstat_sample sum;
1497 
1498 	blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1499 				  &sum);
1500 	return __blkg_prfill_rwstat(sf, pd, &sum);
1501 }
1502 
1503 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1504 {
1505 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1506 			  tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1507 			  seq_cft(sf)->private, true);
1508 	return 0;
1509 }
1510 
1511 static struct cftype throtl_legacy_files[] = {
1512 	{
1513 		.name = "throttle.read_bps_device",
1514 		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1515 		.seq_show = tg_print_conf_u64,
1516 		.write = tg_set_conf_u64,
1517 	},
1518 	{
1519 		.name = "throttle.write_bps_device",
1520 		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1521 		.seq_show = tg_print_conf_u64,
1522 		.write = tg_set_conf_u64,
1523 	},
1524 	{
1525 		.name = "throttle.read_iops_device",
1526 		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1527 		.seq_show = tg_print_conf_uint,
1528 		.write = tg_set_conf_uint,
1529 	},
1530 	{
1531 		.name = "throttle.write_iops_device",
1532 		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1533 		.seq_show = tg_print_conf_uint,
1534 		.write = tg_set_conf_uint,
1535 	},
1536 	{
1537 		.name = "throttle.io_service_bytes",
1538 		.private = offsetof(struct throtl_grp, stat_bytes),
1539 		.seq_show = tg_print_rwstat,
1540 	},
1541 	{
1542 		.name = "throttle.io_service_bytes_recursive",
1543 		.private = offsetof(struct throtl_grp, stat_bytes),
1544 		.seq_show = tg_print_rwstat_recursive,
1545 	},
1546 	{
1547 		.name = "throttle.io_serviced",
1548 		.private = offsetof(struct throtl_grp, stat_ios),
1549 		.seq_show = tg_print_rwstat,
1550 	},
1551 	{
1552 		.name = "throttle.io_serviced_recursive",
1553 		.private = offsetof(struct throtl_grp, stat_ios),
1554 		.seq_show = tg_print_rwstat_recursive,
1555 	},
1556 	{ }	/* terminate */
1557 };
1558 
1559 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1560 			 int off)
1561 {
1562 	struct throtl_grp *tg = pd_to_tg(pd);
1563 	const char *dname = blkg_dev_name(pd->blkg);
1564 	char bufs[4][21] = { "max", "max", "max", "max" };
1565 	u64 bps_dft;
1566 	unsigned int iops_dft;
1567 	char idle_time[26] = "";
1568 	char latency_time[26] = "";
1569 
1570 	if (!dname)
1571 		return 0;
1572 
1573 	if (off == LIMIT_LOW) {
1574 		bps_dft = 0;
1575 		iops_dft = 0;
1576 	} else {
1577 		bps_dft = U64_MAX;
1578 		iops_dft = UINT_MAX;
1579 	}
1580 
1581 	if (tg->bps_conf[READ][off] == bps_dft &&
1582 	    tg->bps_conf[WRITE][off] == bps_dft &&
1583 	    tg->iops_conf[READ][off] == iops_dft &&
1584 	    tg->iops_conf[WRITE][off] == iops_dft &&
1585 	    (off != LIMIT_LOW ||
1586 	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1587 	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1588 		return 0;
1589 
1590 	if (tg->bps_conf[READ][off] != U64_MAX)
1591 		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1592 			tg->bps_conf[READ][off]);
1593 	if (tg->bps_conf[WRITE][off] != U64_MAX)
1594 		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1595 			tg->bps_conf[WRITE][off]);
1596 	if (tg->iops_conf[READ][off] != UINT_MAX)
1597 		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1598 			tg->iops_conf[READ][off]);
1599 	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1600 		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1601 			tg->iops_conf[WRITE][off]);
1602 	if (off == LIMIT_LOW) {
1603 		if (tg->idletime_threshold_conf == ULONG_MAX)
1604 			strcpy(idle_time, " idle=max");
1605 		else
1606 			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1607 				tg->idletime_threshold_conf);
1608 
1609 		if (tg->latency_target_conf == ULONG_MAX)
1610 			strcpy(latency_time, " latency=max");
1611 		else
1612 			snprintf(latency_time, sizeof(latency_time),
1613 				" latency=%lu", tg->latency_target_conf);
1614 	}
1615 
1616 	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1617 		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1618 		   latency_time);
1619 	return 0;
1620 }
1621 
1622 static int tg_print_limit(struct seq_file *sf, void *v)
1623 {
1624 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1625 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1626 	return 0;
1627 }
1628 
1629 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1630 			  char *buf, size_t nbytes, loff_t off)
1631 {
1632 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1633 	struct blkg_conf_ctx ctx;
1634 	struct throtl_grp *tg;
1635 	u64 v[4];
1636 	unsigned long idle_time;
1637 	unsigned long latency_time;
1638 	int ret;
1639 	int index = of_cft(of)->private;
1640 
1641 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1642 	if (ret)
1643 		return ret;
1644 
1645 	tg = blkg_to_tg(ctx.blkg);
1646 
1647 	v[0] = tg->bps_conf[READ][index];
1648 	v[1] = tg->bps_conf[WRITE][index];
1649 	v[2] = tg->iops_conf[READ][index];
1650 	v[3] = tg->iops_conf[WRITE][index];
1651 
1652 	idle_time = tg->idletime_threshold_conf;
1653 	latency_time = tg->latency_target_conf;
1654 	while (true) {
1655 		char tok[27];	/* wiops=18446744073709551616 */
1656 		char *p;
1657 		u64 val = U64_MAX;
1658 		int len;
1659 
1660 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1661 			break;
1662 		if (tok[0] == '\0')
1663 			break;
1664 		ctx.body += len;
1665 
1666 		ret = -EINVAL;
1667 		p = tok;
1668 		strsep(&p, "=");
1669 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1670 			goto out_finish;
1671 
1672 		ret = -ERANGE;
1673 		if (!val)
1674 			goto out_finish;
1675 
1676 		ret = -EINVAL;
1677 		if (!strcmp(tok, "rbps"))
1678 			v[0] = val;
1679 		else if (!strcmp(tok, "wbps"))
1680 			v[1] = val;
1681 		else if (!strcmp(tok, "riops"))
1682 			v[2] = min_t(u64, val, UINT_MAX);
1683 		else if (!strcmp(tok, "wiops"))
1684 			v[3] = min_t(u64, val, UINT_MAX);
1685 		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1686 			idle_time = val;
1687 		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1688 			latency_time = val;
1689 		else
1690 			goto out_finish;
1691 	}
1692 
1693 	tg->bps_conf[READ][index] = v[0];
1694 	tg->bps_conf[WRITE][index] = v[1];
1695 	tg->iops_conf[READ][index] = v[2];
1696 	tg->iops_conf[WRITE][index] = v[3];
1697 
1698 	if (index == LIMIT_MAX) {
1699 		tg->bps[READ][index] = v[0];
1700 		tg->bps[WRITE][index] = v[1];
1701 		tg->iops[READ][index] = v[2];
1702 		tg->iops[WRITE][index] = v[3];
1703 	}
1704 	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1705 		tg->bps_conf[READ][LIMIT_MAX]);
1706 	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1707 		tg->bps_conf[WRITE][LIMIT_MAX]);
1708 	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1709 		tg->iops_conf[READ][LIMIT_MAX]);
1710 	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1711 		tg->iops_conf[WRITE][LIMIT_MAX]);
1712 	tg->idletime_threshold_conf = idle_time;
1713 	tg->latency_target_conf = latency_time;
1714 
1715 	/* force user to configure all settings for low limit  */
1716 	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1717 	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1718 	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1719 	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
1720 		tg->bps[READ][LIMIT_LOW] = 0;
1721 		tg->bps[WRITE][LIMIT_LOW] = 0;
1722 		tg->iops[READ][LIMIT_LOW] = 0;
1723 		tg->iops[WRITE][LIMIT_LOW] = 0;
1724 		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1725 		tg->latency_target = DFL_LATENCY_TARGET;
1726 	} else if (index == LIMIT_LOW) {
1727 		tg->idletime_threshold = tg->idletime_threshold_conf;
1728 		tg->latency_target = tg->latency_target_conf;
1729 	}
1730 
1731 	blk_throtl_update_limit_valid(tg->td);
1732 	if (tg->td->limit_valid[LIMIT_LOW]) {
1733 		if (index == LIMIT_LOW)
1734 			tg->td->limit_index = LIMIT_LOW;
1735 	} else
1736 		tg->td->limit_index = LIMIT_MAX;
1737 	tg_conf_updated(tg, index == LIMIT_LOW &&
1738 		tg->td->limit_valid[LIMIT_LOW]);
1739 	ret = 0;
1740 out_finish:
1741 	blkg_conf_finish(&ctx);
1742 	return ret ?: nbytes;
1743 }
1744 
1745 static struct cftype throtl_files[] = {
1746 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1747 	{
1748 		.name = "low",
1749 		.flags = CFTYPE_NOT_ON_ROOT,
1750 		.seq_show = tg_print_limit,
1751 		.write = tg_set_limit,
1752 		.private = LIMIT_LOW,
1753 	},
1754 #endif
1755 	{
1756 		.name = "max",
1757 		.flags = CFTYPE_NOT_ON_ROOT,
1758 		.seq_show = tg_print_limit,
1759 		.write = tg_set_limit,
1760 		.private = LIMIT_MAX,
1761 	},
1762 	{ }	/* terminate */
1763 };
1764 
1765 static void throtl_shutdown_wq(struct request_queue *q)
1766 {
1767 	struct throtl_data *td = q->td;
1768 
1769 	cancel_work_sync(&td->dispatch_work);
1770 }
1771 
1772 static struct blkcg_policy blkcg_policy_throtl = {
1773 	.dfl_cftypes		= throtl_files,
1774 	.legacy_cftypes		= throtl_legacy_files,
1775 
1776 	.pd_alloc_fn		= throtl_pd_alloc,
1777 	.pd_init_fn		= throtl_pd_init,
1778 	.pd_online_fn		= throtl_pd_online,
1779 	.pd_offline_fn		= throtl_pd_offline,
1780 	.pd_free_fn		= throtl_pd_free,
1781 };
1782 
1783 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1784 {
1785 	unsigned long rtime = jiffies, wtime = jiffies;
1786 
1787 	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1788 		rtime = tg->last_low_overflow_time[READ];
1789 	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1790 		wtime = tg->last_low_overflow_time[WRITE];
1791 	return min(rtime, wtime);
1792 }
1793 
1794 /* tg should not be an intermediate node */
1795 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1796 {
1797 	struct throtl_service_queue *parent_sq;
1798 	struct throtl_grp *parent = tg;
1799 	unsigned long ret = __tg_last_low_overflow_time(tg);
1800 
1801 	while (true) {
1802 		parent_sq = parent->service_queue.parent_sq;
1803 		parent = sq_to_tg(parent_sq);
1804 		if (!parent)
1805 			break;
1806 
1807 		/*
1808 		 * The parent doesn't have low limit, it always reaches low
1809 		 * limit. Its overflow time is useless for children
1810 		 */
1811 		if (!parent->bps[READ][LIMIT_LOW] &&
1812 		    !parent->iops[READ][LIMIT_LOW] &&
1813 		    !parent->bps[WRITE][LIMIT_LOW] &&
1814 		    !parent->iops[WRITE][LIMIT_LOW])
1815 			continue;
1816 		if (time_after(__tg_last_low_overflow_time(parent), ret))
1817 			ret = __tg_last_low_overflow_time(parent);
1818 	}
1819 	return ret;
1820 }
1821 
1822 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1823 {
1824 	/*
1825 	 * cgroup is idle if:
1826 	 * - single idle is too long, longer than a fixed value (in case user
1827 	 *   configure a too big threshold) or 4 times of idletime threshold
1828 	 * - average think time is more than threshold
1829 	 * - IO latency is largely below threshold
1830 	 */
1831 	unsigned long time;
1832 	bool ret;
1833 
1834 	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1835 	ret = tg->latency_target == DFL_LATENCY_TARGET ||
1836 	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1837 	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1838 	      tg->avg_idletime > tg->idletime_threshold ||
1839 	      (tg->latency_target && tg->bio_cnt &&
1840 		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1841 	throtl_log(&tg->service_queue,
1842 		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1843 		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1844 		tg->bio_cnt, ret, tg->td->scale);
1845 	return ret;
1846 }
1847 
1848 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1849 {
1850 	struct throtl_service_queue *sq = &tg->service_queue;
1851 	bool read_limit, write_limit;
1852 
1853 	/*
1854 	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1855 	 * reaches), it's ok to upgrade to next limit
1856 	 */
1857 	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1858 	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1859 	if (!read_limit && !write_limit)
1860 		return true;
1861 	if (read_limit && sq->nr_queued[READ] &&
1862 	    (!write_limit || sq->nr_queued[WRITE]))
1863 		return true;
1864 	if (write_limit && sq->nr_queued[WRITE] &&
1865 	    (!read_limit || sq->nr_queued[READ]))
1866 		return true;
1867 
1868 	if (time_after_eq(jiffies,
1869 		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1870 	    throtl_tg_is_idle(tg))
1871 		return true;
1872 	return false;
1873 }
1874 
1875 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1876 {
1877 	while (true) {
1878 		if (throtl_tg_can_upgrade(tg))
1879 			return true;
1880 		tg = sq_to_tg(tg->service_queue.parent_sq);
1881 		if (!tg || !tg_to_blkg(tg)->parent)
1882 			return false;
1883 	}
1884 	return false;
1885 }
1886 
1887 static bool throtl_can_upgrade(struct throtl_data *td,
1888 	struct throtl_grp *this_tg)
1889 {
1890 	struct cgroup_subsys_state *pos_css;
1891 	struct blkcg_gq *blkg;
1892 
1893 	if (td->limit_index != LIMIT_LOW)
1894 		return false;
1895 
1896 	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1897 		return false;
1898 
1899 	rcu_read_lock();
1900 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1901 		struct throtl_grp *tg = blkg_to_tg(blkg);
1902 
1903 		if (tg == this_tg)
1904 			continue;
1905 		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1906 			continue;
1907 		if (!throtl_hierarchy_can_upgrade(tg)) {
1908 			rcu_read_unlock();
1909 			return false;
1910 		}
1911 	}
1912 	rcu_read_unlock();
1913 	return true;
1914 }
1915 
1916 static void throtl_upgrade_check(struct throtl_grp *tg)
1917 {
1918 	unsigned long now = jiffies;
1919 
1920 	if (tg->td->limit_index != LIMIT_LOW)
1921 		return;
1922 
1923 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1924 		return;
1925 
1926 	tg->last_check_time = now;
1927 
1928 	if (!time_after_eq(now,
1929 	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1930 		return;
1931 
1932 	if (throtl_can_upgrade(tg->td, NULL))
1933 		throtl_upgrade_state(tg->td);
1934 }
1935 
1936 static void throtl_upgrade_state(struct throtl_data *td)
1937 {
1938 	struct cgroup_subsys_state *pos_css;
1939 	struct blkcg_gq *blkg;
1940 
1941 	throtl_log(&td->service_queue, "upgrade to max");
1942 	td->limit_index = LIMIT_MAX;
1943 	td->low_upgrade_time = jiffies;
1944 	td->scale = 0;
1945 	rcu_read_lock();
1946 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1947 		struct throtl_grp *tg = blkg_to_tg(blkg);
1948 		struct throtl_service_queue *sq = &tg->service_queue;
1949 
1950 		tg->disptime = jiffies - 1;
1951 		throtl_select_dispatch(sq);
1952 		throtl_schedule_next_dispatch(sq, true);
1953 	}
1954 	rcu_read_unlock();
1955 	throtl_select_dispatch(&td->service_queue);
1956 	throtl_schedule_next_dispatch(&td->service_queue, true);
1957 	queue_work(kthrotld_workqueue, &td->dispatch_work);
1958 }
1959 
1960 static void throtl_downgrade_state(struct throtl_data *td, int new)
1961 {
1962 	td->scale /= 2;
1963 
1964 	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1965 	if (td->scale) {
1966 		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1967 		return;
1968 	}
1969 
1970 	td->limit_index = new;
1971 	td->low_downgrade_time = jiffies;
1972 }
1973 
1974 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1975 {
1976 	struct throtl_data *td = tg->td;
1977 	unsigned long now = jiffies;
1978 
1979 	/*
1980 	 * If cgroup is below low limit, consider downgrade and throttle other
1981 	 * cgroups
1982 	 */
1983 	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1984 	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1985 					td->throtl_slice) &&
1986 	    (!throtl_tg_is_idle(tg) ||
1987 	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1988 		return true;
1989 	return false;
1990 }
1991 
1992 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1993 {
1994 	while (true) {
1995 		if (!throtl_tg_can_downgrade(tg))
1996 			return false;
1997 		tg = sq_to_tg(tg->service_queue.parent_sq);
1998 		if (!tg || !tg_to_blkg(tg)->parent)
1999 			break;
2000 	}
2001 	return true;
2002 }
2003 
2004 static void throtl_downgrade_check(struct throtl_grp *tg)
2005 {
2006 	uint64_t bps;
2007 	unsigned int iops;
2008 	unsigned long elapsed_time;
2009 	unsigned long now = jiffies;
2010 
2011 	if (tg->td->limit_index != LIMIT_MAX ||
2012 	    !tg->td->limit_valid[LIMIT_LOW])
2013 		return;
2014 	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2015 		return;
2016 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2017 		return;
2018 
2019 	elapsed_time = now - tg->last_check_time;
2020 	tg->last_check_time = now;
2021 
2022 	if (time_before(now, tg_last_low_overflow_time(tg) +
2023 			tg->td->throtl_slice))
2024 		return;
2025 
2026 	if (tg->bps[READ][LIMIT_LOW]) {
2027 		bps = tg->last_bytes_disp[READ] * HZ;
2028 		do_div(bps, elapsed_time);
2029 		if (bps >= tg->bps[READ][LIMIT_LOW])
2030 			tg->last_low_overflow_time[READ] = now;
2031 	}
2032 
2033 	if (tg->bps[WRITE][LIMIT_LOW]) {
2034 		bps = tg->last_bytes_disp[WRITE] * HZ;
2035 		do_div(bps, elapsed_time);
2036 		if (bps >= tg->bps[WRITE][LIMIT_LOW])
2037 			tg->last_low_overflow_time[WRITE] = now;
2038 	}
2039 
2040 	if (tg->iops[READ][LIMIT_LOW]) {
2041 		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2042 		if (iops >= tg->iops[READ][LIMIT_LOW])
2043 			tg->last_low_overflow_time[READ] = now;
2044 	}
2045 
2046 	if (tg->iops[WRITE][LIMIT_LOW]) {
2047 		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2048 		if (iops >= tg->iops[WRITE][LIMIT_LOW])
2049 			tg->last_low_overflow_time[WRITE] = now;
2050 	}
2051 
2052 	/*
2053 	 * If cgroup is below low limit, consider downgrade and throttle other
2054 	 * cgroups
2055 	 */
2056 	if (throtl_hierarchy_can_downgrade(tg))
2057 		throtl_downgrade_state(tg->td, LIMIT_LOW);
2058 
2059 	tg->last_bytes_disp[READ] = 0;
2060 	tg->last_bytes_disp[WRITE] = 0;
2061 	tg->last_io_disp[READ] = 0;
2062 	tg->last_io_disp[WRITE] = 0;
2063 }
2064 
2065 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2066 {
2067 	unsigned long now = ktime_get_ns() >> 10;
2068 	unsigned long last_finish_time = tg->last_finish_time;
2069 
2070 	if (now <= last_finish_time || last_finish_time == 0 ||
2071 	    last_finish_time == tg->checked_last_finish_time)
2072 		return;
2073 
2074 	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2075 	tg->checked_last_finish_time = last_finish_time;
2076 }
2077 
2078 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2079 static void throtl_update_latency_buckets(struct throtl_data *td)
2080 {
2081 	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2082 	int i, cpu, rw;
2083 	unsigned long last_latency[2] = { 0 };
2084 	unsigned long latency[2];
2085 
2086 	if (!blk_queue_nonrot(td->queue))
2087 		return;
2088 	if (time_before(jiffies, td->last_calculate_time + HZ))
2089 		return;
2090 	td->last_calculate_time = jiffies;
2091 
2092 	memset(avg_latency, 0, sizeof(avg_latency));
2093 	for (rw = READ; rw <= WRITE; rw++) {
2094 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2095 			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2096 
2097 			for_each_possible_cpu(cpu) {
2098 				struct latency_bucket *bucket;
2099 
2100 				/* this isn't race free, but ok in practice */
2101 				bucket = per_cpu_ptr(td->latency_buckets[rw],
2102 					cpu);
2103 				tmp->total_latency += bucket[i].total_latency;
2104 				tmp->samples += bucket[i].samples;
2105 				bucket[i].total_latency = 0;
2106 				bucket[i].samples = 0;
2107 			}
2108 
2109 			if (tmp->samples >= 32) {
2110 				int samples = tmp->samples;
2111 
2112 				latency[rw] = tmp->total_latency;
2113 
2114 				tmp->total_latency = 0;
2115 				tmp->samples = 0;
2116 				latency[rw] /= samples;
2117 				if (latency[rw] == 0)
2118 					continue;
2119 				avg_latency[rw][i].latency = latency[rw];
2120 			}
2121 		}
2122 	}
2123 
2124 	for (rw = READ; rw <= WRITE; rw++) {
2125 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2126 			if (!avg_latency[rw][i].latency) {
2127 				if (td->avg_buckets[rw][i].latency < last_latency[rw])
2128 					td->avg_buckets[rw][i].latency =
2129 						last_latency[rw];
2130 				continue;
2131 			}
2132 
2133 			if (!td->avg_buckets[rw][i].valid)
2134 				latency[rw] = avg_latency[rw][i].latency;
2135 			else
2136 				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2137 					avg_latency[rw][i].latency) >> 3;
2138 
2139 			td->avg_buckets[rw][i].latency = max(latency[rw],
2140 				last_latency[rw]);
2141 			td->avg_buckets[rw][i].valid = true;
2142 			last_latency[rw] = td->avg_buckets[rw][i].latency;
2143 		}
2144 	}
2145 
2146 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2147 		throtl_log(&td->service_queue,
2148 			"Latency bucket %d: read latency=%ld, read valid=%d, "
2149 			"write latency=%ld, write valid=%d", i,
2150 			td->avg_buckets[READ][i].latency,
2151 			td->avg_buckets[READ][i].valid,
2152 			td->avg_buckets[WRITE][i].latency,
2153 			td->avg_buckets[WRITE][i].valid);
2154 }
2155 #else
2156 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2157 {
2158 }
2159 #endif
2160 
2161 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2162 		    struct bio *bio)
2163 {
2164 	struct throtl_qnode *qn = NULL;
2165 	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2166 	struct throtl_service_queue *sq;
2167 	bool rw = bio_data_dir(bio);
2168 	bool throttled = false;
2169 	struct throtl_data *td = tg->td;
2170 
2171 	WARN_ON_ONCE(!rcu_read_lock_held());
2172 
2173 	/* see throtl_charge_bio() */
2174 	if (bio_flagged(bio, BIO_THROTTLED))
2175 		goto out;
2176 
2177 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2178 		blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2179 				bio->bi_iter.bi_size);
2180 		blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2181 	}
2182 
2183 	if (!tg->has_rules[rw])
2184 		goto out;
2185 
2186 	spin_lock_irq(&q->queue_lock);
2187 
2188 	throtl_update_latency_buckets(td);
2189 
2190 	blk_throtl_update_idletime(tg);
2191 
2192 	sq = &tg->service_queue;
2193 
2194 again:
2195 	while (true) {
2196 		if (tg->last_low_overflow_time[rw] == 0)
2197 			tg->last_low_overflow_time[rw] = jiffies;
2198 		throtl_downgrade_check(tg);
2199 		throtl_upgrade_check(tg);
2200 		/* throtl is FIFO - if bios are already queued, should queue */
2201 		if (sq->nr_queued[rw])
2202 			break;
2203 
2204 		/* if above limits, break to queue */
2205 		if (!tg_may_dispatch(tg, bio, NULL)) {
2206 			tg->last_low_overflow_time[rw] = jiffies;
2207 			if (throtl_can_upgrade(td, tg)) {
2208 				throtl_upgrade_state(td);
2209 				goto again;
2210 			}
2211 			break;
2212 		}
2213 
2214 		/* within limits, let's charge and dispatch directly */
2215 		throtl_charge_bio(tg, bio);
2216 
2217 		/*
2218 		 * We need to trim slice even when bios are not being queued
2219 		 * otherwise it might happen that a bio is not queued for
2220 		 * a long time and slice keeps on extending and trim is not
2221 		 * called for a long time. Now if limits are reduced suddenly
2222 		 * we take into account all the IO dispatched so far at new
2223 		 * low rate and * newly queued IO gets a really long dispatch
2224 		 * time.
2225 		 *
2226 		 * So keep on trimming slice even if bio is not queued.
2227 		 */
2228 		throtl_trim_slice(tg, rw);
2229 
2230 		/*
2231 		 * @bio passed through this layer without being throttled.
2232 		 * Climb up the ladder.  If we''re already at the top, it
2233 		 * can be executed directly.
2234 		 */
2235 		qn = &tg->qnode_on_parent[rw];
2236 		sq = sq->parent_sq;
2237 		tg = sq_to_tg(sq);
2238 		if (!tg)
2239 			goto out_unlock;
2240 	}
2241 
2242 	/* out-of-limit, queue to @tg */
2243 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2244 		   rw == READ ? 'R' : 'W',
2245 		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2246 		   tg_bps_limit(tg, rw),
2247 		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2248 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2249 
2250 	tg->last_low_overflow_time[rw] = jiffies;
2251 
2252 	td->nr_queued[rw]++;
2253 	throtl_add_bio_tg(bio, qn, tg);
2254 	throttled = true;
2255 
2256 	/*
2257 	 * Update @tg's dispatch time and force schedule dispatch if @tg
2258 	 * was empty before @bio.  The forced scheduling isn't likely to
2259 	 * cause undue delay as @bio is likely to be dispatched directly if
2260 	 * its @tg's disptime is not in the future.
2261 	 */
2262 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2263 		tg_update_disptime(tg);
2264 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2265 	}
2266 
2267 out_unlock:
2268 	spin_unlock_irq(&q->queue_lock);
2269 out:
2270 	bio_set_flag(bio, BIO_THROTTLED);
2271 
2272 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2273 	if (throttled || !td->track_bio_latency)
2274 		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2275 #endif
2276 	return throttled;
2277 }
2278 
2279 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2280 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2281 	int op, unsigned long time)
2282 {
2283 	struct latency_bucket *latency;
2284 	int index;
2285 
2286 	if (!td || td->limit_index != LIMIT_LOW ||
2287 	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2288 	    !blk_queue_nonrot(td->queue))
2289 		return;
2290 
2291 	index = request_bucket_index(size);
2292 
2293 	latency = get_cpu_ptr(td->latency_buckets[op]);
2294 	latency[index].total_latency += time;
2295 	latency[index].samples++;
2296 	put_cpu_ptr(td->latency_buckets[op]);
2297 }
2298 
2299 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2300 {
2301 	struct request_queue *q = rq->q;
2302 	struct throtl_data *td = q->td;
2303 
2304 	throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2305 			     time_ns >> 10);
2306 }
2307 
2308 void blk_throtl_bio_endio(struct bio *bio)
2309 {
2310 	struct blkcg_gq *blkg;
2311 	struct throtl_grp *tg;
2312 	u64 finish_time_ns;
2313 	unsigned long finish_time;
2314 	unsigned long start_time;
2315 	unsigned long lat;
2316 	int rw = bio_data_dir(bio);
2317 
2318 	blkg = bio->bi_blkg;
2319 	if (!blkg)
2320 		return;
2321 	tg = blkg_to_tg(blkg);
2322 
2323 	finish_time_ns = ktime_get_ns();
2324 	tg->last_finish_time = finish_time_ns >> 10;
2325 
2326 	start_time = bio_issue_time(&bio->bi_issue) >> 10;
2327 	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2328 	if (!start_time || finish_time <= start_time)
2329 		return;
2330 
2331 	lat = finish_time - start_time;
2332 	/* this is only for bio based driver */
2333 	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2334 		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2335 				     bio_op(bio), lat);
2336 
2337 	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2338 		int bucket;
2339 		unsigned int threshold;
2340 
2341 		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2342 		threshold = tg->td->avg_buckets[rw][bucket].latency +
2343 			tg->latency_target;
2344 		if (lat > threshold)
2345 			tg->bad_bio_cnt++;
2346 		/*
2347 		 * Not race free, could get wrong count, which means cgroups
2348 		 * will be throttled
2349 		 */
2350 		tg->bio_cnt++;
2351 	}
2352 
2353 	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2354 		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2355 		tg->bio_cnt /= 2;
2356 		tg->bad_bio_cnt /= 2;
2357 	}
2358 }
2359 #endif
2360 
2361 /*
2362  * Dispatch all bios from all children tg's queued on @parent_sq.  On
2363  * return, @parent_sq is guaranteed to not have any active children tg's
2364  * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2365  */
2366 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2367 {
2368 	struct throtl_grp *tg;
2369 
2370 	while ((tg = throtl_rb_first(parent_sq))) {
2371 		struct throtl_service_queue *sq = &tg->service_queue;
2372 		struct bio *bio;
2373 
2374 		throtl_dequeue_tg(tg);
2375 
2376 		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2377 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2378 		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2379 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2380 	}
2381 }
2382 
2383 /**
2384  * blk_throtl_drain - drain throttled bios
2385  * @q: request_queue to drain throttled bios for
2386  *
2387  * Dispatch all currently throttled bios on @q through ->make_request_fn().
2388  */
2389 void blk_throtl_drain(struct request_queue *q)
2390 	__releases(&q->queue_lock) __acquires(&q->queue_lock)
2391 {
2392 	struct throtl_data *td = q->td;
2393 	struct blkcg_gq *blkg;
2394 	struct cgroup_subsys_state *pos_css;
2395 	struct bio *bio;
2396 	int rw;
2397 
2398 	rcu_read_lock();
2399 
2400 	/*
2401 	 * Drain each tg while doing post-order walk on the blkg tree, so
2402 	 * that all bios are propagated to td->service_queue.  It'd be
2403 	 * better to walk service_queue tree directly but blkg walk is
2404 	 * easier.
2405 	 */
2406 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2407 		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2408 
2409 	/* finally, transfer bios from top-level tg's into the td */
2410 	tg_drain_bios(&td->service_queue);
2411 
2412 	rcu_read_unlock();
2413 	spin_unlock_irq(&q->queue_lock);
2414 
2415 	/* all bios now should be in td->service_queue, issue them */
2416 	for (rw = READ; rw <= WRITE; rw++)
2417 		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2418 						NULL)))
2419 			generic_make_request(bio);
2420 
2421 	spin_lock_irq(&q->queue_lock);
2422 }
2423 
2424 int blk_throtl_init(struct request_queue *q)
2425 {
2426 	struct throtl_data *td;
2427 	int ret;
2428 
2429 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2430 	if (!td)
2431 		return -ENOMEM;
2432 	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2433 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2434 	if (!td->latency_buckets[READ]) {
2435 		kfree(td);
2436 		return -ENOMEM;
2437 	}
2438 	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2439 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2440 	if (!td->latency_buckets[WRITE]) {
2441 		free_percpu(td->latency_buckets[READ]);
2442 		kfree(td);
2443 		return -ENOMEM;
2444 	}
2445 
2446 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2447 	throtl_service_queue_init(&td->service_queue);
2448 
2449 	q->td = td;
2450 	td->queue = q;
2451 
2452 	td->limit_valid[LIMIT_MAX] = true;
2453 	td->limit_index = LIMIT_MAX;
2454 	td->low_upgrade_time = jiffies;
2455 	td->low_downgrade_time = jiffies;
2456 
2457 	/* activate policy */
2458 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2459 	if (ret) {
2460 		free_percpu(td->latency_buckets[READ]);
2461 		free_percpu(td->latency_buckets[WRITE]);
2462 		kfree(td);
2463 	}
2464 	return ret;
2465 }
2466 
2467 void blk_throtl_exit(struct request_queue *q)
2468 {
2469 	BUG_ON(!q->td);
2470 	throtl_shutdown_wq(q);
2471 	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2472 	free_percpu(q->td->latency_buckets[READ]);
2473 	free_percpu(q->td->latency_buckets[WRITE]);
2474 	kfree(q->td);
2475 }
2476 
2477 void blk_throtl_register_queue(struct request_queue *q)
2478 {
2479 	struct throtl_data *td;
2480 	int i;
2481 
2482 	td = q->td;
2483 	BUG_ON(!td);
2484 
2485 	if (blk_queue_nonrot(q)) {
2486 		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2487 		td->filtered_latency = LATENCY_FILTERED_SSD;
2488 	} else {
2489 		td->throtl_slice = DFL_THROTL_SLICE_HD;
2490 		td->filtered_latency = LATENCY_FILTERED_HD;
2491 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2492 			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2493 			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2494 		}
2495 	}
2496 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2497 	/* if no low limit, use previous default */
2498 	td->throtl_slice = DFL_THROTL_SLICE_HD;
2499 #endif
2500 
2501 	td->track_bio_latency = !queue_is_mq(q);
2502 	if (!td->track_bio_latency)
2503 		blk_stat_enable_accounting(q);
2504 }
2505 
2506 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2507 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2508 {
2509 	if (!q->td)
2510 		return -EINVAL;
2511 	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2512 }
2513 
2514 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2515 	const char *page, size_t count)
2516 {
2517 	unsigned long v;
2518 	unsigned long t;
2519 
2520 	if (!q->td)
2521 		return -EINVAL;
2522 	if (kstrtoul(page, 10, &v))
2523 		return -EINVAL;
2524 	t = msecs_to_jiffies(v);
2525 	if (t == 0 || t > MAX_THROTL_SLICE)
2526 		return -EINVAL;
2527 	q->td->throtl_slice = t;
2528 	return count;
2529 }
2530 #endif
2531 
2532 static int __init throtl_init(void)
2533 {
2534 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2535 	if (!kthrotld_workqueue)
2536 		panic("Failed to create kthrotld\n");
2537 
2538 	return blkcg_policy_register(&blkcg_policy_throtl);
2539 }
2540 
2541 module_init(throtl_init);
2542