1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Interface for controlling IO bandwidth on a request queue 4 * 5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/bio.h> 12 #include <linux/blktrace_api.h> 13 #include <linux/blk-cgroup.h> 14 #include "blk.h" 15 16 /* Max dispatch from a group in 1 round */ 17 static int throtl_grp_quantum = 8; 18 19 /* Total max dispatch from all groups in one round */ 20 static int throtl_quantum = 32; 21 22 /* Throttling is performed over a slice and after that slice is renewed */ 23 #define DFL_THROTL_SLICE_HD (HZ / 10) 24 #define DFL_THROTL_SLICE_SSD (HZ / 50) 25 #define MAX_THROTL_SLICE (HZ) 26 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */ 27 #define MIN_THROTL_BPS (320 * 1024) 28 #define MIN_THROTL_IOPS (10) 29 #define DFL_LATENCY_TARGET (-1L) 30 #define DFL_IDLE_THRESHOLD (0) 31 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */ 32 #define LATENCY_FILTERED_SSD (0) 33 /* 34 * For HD, very small latency comes from sequential IO. Such IO is helpless to 35 * help determine if its IO is impacted by others, hence we ignore the IO 36 */ 37 #define LATENCY_FILTERED_HD (1000L) /* 1ms */ 38 39 #define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT) 40 41 static struct blkcg_policy blkcg_policy_throtl; 42 43 /* A workqueue to queue throttle related work */ 44 static struct workqueue_struct *kthrotld_workqueue; 45 46 /* 47 * To implement hierarchical throttling, throtl_grps form a tree and bios 48 * are dispatched upwards level by level until they reach the top and get 49 * issued. When dispatching bios from the children and local group at each 50 * level, if the bios are dispatched into a single bio_list, there's a risk 51 * of a local or child group which can queue many bios at once filling up 52 * the list starving others. 53 * 54 * To avoid such starvation, dispatched bios are queued separately 55 * according to where they came from. When they are again dispatched to 56 * the parent, they're popped in round-robin order so that no single source 57 * hogs the dispatch window. 58 * 59 * throtl_qnode is used to keep the queued bios separated by their sources. 60 * Bios are queued to throtl_qnode which in turn is queued to 61 * throtl_service_queue and then dispatched in round-robin order. 62 * 63 * It's also used to track the reference counts on blkg's. A qnode always 64 * belongs to a throtl_grp and gets queued on itself or the parent, so 65 * incrementing the reference of the associated throtl_grp when a qnode is 66 * queued and decrementing when dequeued is enough to keep the whole blkg 67 * tree pinned while bios are in flight. 68 */ 69 struct throtl_qnode { 70 struct list_head node; /* service_queue->queued[] */ 71 struct bio_list bios; /* queued bios */ 72 struct throtl_grp *tg; /* tg this qnode belongs to */ 73 }; 74 75 struct throtl_service_queue { 76 struct throtl_service_queue *parent_sq; /* the parent service_queue */ 77 78 /* 79 * Bios queued directly to this service_queue or dispatched from 80 * children throtl_grp's. 81 */ 82 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */ 83 unsigned int nr_queued[2]; /* number of queued bios */ 84 85 /* 86 * RB tree of active children throtl_grp's, which are sorted by 87 * their ->disptime. 88 */ 89 struct rb_root pending_tree; /* RB tree of active tgs */ 90 struct rb_node *first_pending; /* first node in the tree */ 91 unsigned int nr_pending; /* # queued in the tree */ 92 unsigned long first_pending_disptime; /* disptime of the first tg */ 93 struct timer_list pending_timer; /* fires on first_pending_disptime */ 94 }; 95 96 enum tg_state_flags { 97 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */ 98 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */ 99 }; 100 101 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 102 103 enum { 104 LIMIT_LOW, 105 LIMIT_MAX, 106 LIMIT_CNT, 107 }; 108 109 struct throtl_grp { 110 /* must be the first member */ 111 struct blkg_policy_data pd; 112 113 /* active throtl group service_queue member */ 114 struct rb_node rb_node; 115 116 /* throtl_data this group belongs to */ 117 struct throtl_data *td; 118 119 /* this group's service queue */ 120 struct throtl_service_queue service_queue; 121 122 /* 123 * qnode_on_self is used when bios are directly queued to this 124 * throtl_grp so that local bios compete fairly with bios 125 * dispatched from children. qnode_on_parent is used when bios are 126 * dispatched from this throtl_grp into its parent and will compete 127 * with the sibling qnode_on_parents and the parent's 128 * qnode_on_self. 129 */ 130 struct throtl_qnode qnode_on_self[2]; 131 struct throtl_qnode qnode_on_parent[2]; 132 133 /* 134 * Dispatch time in jiffies. This is the estimated time when group 135 * will unthrottle and is ready to dispatch more bio. It is used as 136 * key to sort active groups in service tree. 137 */ 138 unsigned long disptime; 139 140 unsigned int flags; 141 142 /* are there any throtl rules between this group and td? */ 143 bool has_rules[2]; 144 145 /* internally used bytes per second rate limits */ 146 uint64_t bps[2][LIMIT_CNT]; 147 /* user configured bps limits */ 148 uint64_t bps_conf[2][LIMIT_CNT]; 149 150 /* internally used IOPS limits */ 151 unsigned int iops[2][LIMIT_CNT]; 152 /* user configured IOPS limits */ 153 unsigned int iops_conf[2][LIMIT_CNT]; 154 155 /* Number of bytes disptached in current slice */ 156 uint64_t bytes_disp[2]; 157 /* Number of bio's dispatched in current slice */ 158 unsigned int io_disp[2]; 159 160 unsigned long last_low_overflow_time[2]; 161 162 uint64_t last_bytes_disp[2]; 163 unsigned int last_io_disp[2]; 164 165 unsigned long last_check_time; 166 167 unsigned long latency_target; /* us */ 168 unsigned long latency_target_conf; /* us */ 169 /* When did we start a new slice */ 170 unsigned long slice_start[2]; 171 unsigned long slice_end[2]; 172 173 unsigned long last_finish_time; /* ns / 1024 */ 174 unsigned long checked_last_finish_time; /* ns / 1024 */ 175 unsigned long avg_idletime; /* ns / 1024 */ 176 unsigned long idletime_threshold; /* us */ 177 unsigned long idletime_threshold_conf; /* us */ 178 179 unsigned int bio_cnt; /* total bios */ 180 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */ 181 unsigned long bio_cnt_reset_time; 182 }; 183 184 /* We measure latency for request size from <= 4k to >= 1M */ 185 #define LATENCY_BUCKET_SIZE 9 186 187 struct latency_bucket { 188 unsigned long total_latency; /* ns / 1024 */ 189 int samples; 190 }; 191 192 struct avg_latency_bucket { 193 unsigned long latency; /* ns / 1024 */ 194 bool valid; 195 }; 196 197 struct throtl_data 198 { 199 /* service tree for active throtl groups */ 200 struct throtl_service_queue service_queue; 201 202 struct request_queue *queue; 203 204 /* Total Number of queued bios on READ and WRITE lists */ 205 unsigned int nr_queued[2]; 206 207 unsigned int throtl_slice; 208 209 /* Work for dispatching throttled bios */ 210 struct work_struct dispatch_work; 211 unsigned int limit_index; 212 bool limit_valid[LIMIT_CNT]; 213 214 unsigned long low_upgrade_time; 215 unsigned long low_downgrade_time; 216 217 unsigned int scale; 218 219 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE]; 220 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE]; 221 struct latency_bucket __percpu *latency_buckets[2]; 222 unsigned long last_calculate_time; 223 unsigned long filtered_latency; 224 225 bool track_bio_latency; 226 }; 227 228 static void throtl_pending_timer_fn(struct timer_list *t); 229 230 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd) 231 { 232 return pd ? container_of(pd, struct throtl_grp, pd) : NULL; 233 } 234 235 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg) 236 { 237 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl)); 238 } 239 240 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) 241 { 242 return pd_to_blkg(&tg->pd); 243 } 244 245 /** 246 * sq_to_tg - return the throl_grp the specified service queue belongs to 247 * @sq: the throtl_service_queue of interest 248 * 249 * Return the throtl_grp @sq belongs to. If @sq is the top-level one 250 * embedded in throtl_data, %NULL is returned. 251 */ 252 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) 253 { 254 if (sq && sq->parent_sq) 255 return container_of(sq, struct throtl_grp, service_queue); 256 else 257 return NULL; 258 } 259 260 /** 261 * sq_to_td - return throtl_data the specified service queue belongs to 262 * @sq: the throtl_service_queue of interest 263 * 264 * A service_queue can be embedded in either a throtl_grp or throtl_data. 265 * Determine the associated throtl_data accordingly and return it. 266 */ 267 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) 268 { 269 struct throtl_grp *tg = sq_to_tg(sq); 270 271 if (tg) 272 return tg->td; 273 else 274 return container_of(sq, struct throtl_data, service_queue); 275 } 276 277 /* 278 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to 279 * make the IO dispatch more smooth. 280 * Scale up: linearly scale up according to lapsed time since upgrade. For 281 * every throtl_slice, the limit scales up 1/2 .low limit till the 282 * limit hits .max limit 283 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit 284 */ 285 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td) 286 { 287 /* arbitrary value to avoid too big scale */ 288 if (td->scale < 4096 && time_after_eq(jiffies, 289 td->low_upgrade_time + td->scale * td->throtl_slice)) 290 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice; 291 292 return low + (low >> 1) * td->scale; 293 } 294 295 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) 296 { 297 struct blkcg_gq *blkg = tg_to_blkg(tg); 298 struct throtl_data *td; 299 uint64_t ret; 300 301 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 302 return U64_MAX; 303 304 td = tg->td; 305 ret = tg->bps[rw][td->limit_index]; 306 if (ret == 0 && td->limit_index == LIMIT_LOW) { 307 /* intermediate node or iops isn't 0 */ 308 if (!list_empty(&blkg->blkcg->css.children) || 309 tg->iops[rw][td->limit_index]) 310 return U64_MAX; 311 else 312 return MIN_THROTL_BPS; 313 } 314 315 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] && 316 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) { 317 uint64_t adjusted; 318 319 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td); 320 ret = min(tg->bps[rw][LIMIT_MAX], adjusted); 321 } 322 return ret; 323 } 324 325 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) 326 { 327 struct blkcg_gq *blkg = tg_to_blkg(tg); 328 struct throtl_data *td; 329 unsigned int ret; 330 331 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 332 return UINT_MAX; 333 334 td = tg->td; 335 ret = tg->iops[rw][td->limit_index]; 336 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) { 337 /* intermediate node or bps isn't 0 */ 338 if (!list_empty(&blkg->blkcg->css.children) || 339 tg->bps[rw][td->limit_index]) 340 return UINT_MAX; 341 else 342 return MIN_THROTL_IOPS; 343 } 344 345 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] && 346 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) { 347 uint64_t adjusted; 348 349 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td); 350 if (adjusted > UINT_MAX) 351 adjusted = UINT_MAX; 352 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted); 353 } 354 return ret; 355 } 356 357 #define request_bucket_index(sectors) \ 358 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1) 359 360 /** 361 * throtl_log - log debug message via blktrace 362 * @sq: the service_queue being reported 363 * @fmt: printf format string 364 * @args: printf args 365 * 366 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a 367 * throtl_grp; otherwise, just "throtl". 368 */ 369 #define throtl_log(sq, fmt, args...) do { \ 370 struct throtl_grp *__tg = sq_to_tg((sq)); \ 371 struct throtl_data *__td = sq_to_td((sq)); \ 372 \ 373 (void)__td; \ 374 if (likely(!blk_trace_note_message_enabled(__td->queue))) \ 375 break; \ 376 if ((__tg)) { \ 377 blk_add_cgroup_trace_msg(__td->queue, \ 378 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\ 379 } else { \ 380 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ 381 } \ 382 } while (0) 383 384 static inline unsigned int throtl_bio_data_size(struct bio *bio) 385 { 386 /* assume it's one sector */ 387 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 388 return 512; 389 return bio->bi_iter.bi_size; 390 } 391 392 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) 393 { 394 INIT_LIST_HEAD(&qn->node); 395 bio_list_init(&qn->bios); 396 qn->tg = tg; 397 } 398 399 /** 400 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it 401 * @bio: bio being added 402 * @qn: qnode to add bio to 403 * @queued: the service_queue->queued[] list @qn belongs to 404 * 405 * Add @bio to @qn and put @qn on @queued if it's not already on. 406 * @qn->tg's reference count is bumped when @qn is activated. See the 407 * comment on top of throtl_qnode definition for details. 408 */ 409 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, 410 struct list_head *queued) 411 { 412 bio_list_add(&qn->bios, bio); 413 if (list_empty(&qn->node)) { 414 list_add_tail(&qn->node, queued); 415 blkg_get(tg_to_blkg(qn->tg)); 416 } 417 } 418 419 /** 420 * throtl_peek_queued - peek the first bio on a qnode list 421 * @queued: the qnode list to peek 422 */ 423 static struct bio *throtl_peek_queued(struct list_head *queued) 424 { 425 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); 426 struct bio *bio; 427 428 if (list_empty(queued)) 429 return NULL; 430 431 bio = bio_list_peek(&qn->bios); 432 WARN_ON_ONCE(!bio); 433 return bio; 434 } 435 436 /** 437 * throtl_pop_queued - pop the first bio form a qnode list 438 * @queued: the qnode list to pop a bio from 439 * @tg_to_put: optional out argument for throtl_grp to put 440 * 441 * Pop the first bio from the qnode list @queued. After popping, the first 442 * qnode is removed from @queued if empty or moved to the end of @queued so 443 * that the popping order is round-robin. 444 * 445 * When the first qnode is removed, its associated throtl_grp should be put 446 * too. If @tg_to_put is NULL, this function automatically puts it; 447 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is 448 * responsible for putting it. 449 */ 450 static struct bio *throtl_pop_queued(struct list_head *queued, 451 struct throtl_grp **tg_to_put) 452 { 453 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); 454 struct bio *bio; 455 456 if (list_empty(queued)) 457 return NULL; 458 459 bio = bio_list_pop(&qn->bios); 460 WARN_ON_ONCE(!bio); 461 462 if (bio_list_empty(&qn->bios)) { 463 list_del_init(&qn->node); 464 if (tg_to_put) 465 *tg_to_put = qn->tg; 466 else 467 blkg_put(tg_to_blkg(qn->tg)); 468 } else { 469 list_move_tail(&qn->node, queued); 470 } 471 472 return bio; 473 } 474 475 /* init a service_queue, assumes the caller zeroed it */ 476 static void throtl_service_queue_init(struct throtl_service_queue *sq) 477 { 478 INIT_LIST_HEAD(&sq->queued[0]); 479 INIT_LIST_HEAD(&sq->queued[1]); 480 sq->pending_tree = RB_ROOT; 481 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0); 482 } 483 484 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node) 485 { 486 struct throtl_grp *tg; 487 int rw; 488 489 tg = kzalloc_node(sizeof(*tg), gfp, node); 490 if (!tg) 491 return NULL; 492 493 throtl_service_queue_init(&tg->service_queue); 494 495 for (rw = READ; rw <= WRITE; rw++) { 496 throtl_qnode_init(&tg->qnode_on_self[rw], tg); 497 throtl_qnode_init(&tg->qnode_on_parent[rw], tg); 498 } 499 500 RB_CLEAR_NODE(&tg->rb_node); 501 tg->bps[READ][LIMIT_MAX] = U64_MAX; 502 tg->bps[WRITE][LIMIT_MAX] = U64_MAX; 503 tg->iops[READ][LIMIT_MAX] = UINT_MAX; 504 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX; 505 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX; 506 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX; 507 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX; 508 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX; 509 /* LIMIT_LOW will have default value 0 */ 510 511 tg->latency_target = DFL_LATENCY_TARGET; 512 tg->latency_target_conf = DFL_LATENCY_TARGET; 513 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 514 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD; 515 516 return &tg->pd; 517 } 518 519 static void throtl_pd_init(struct blkg_policy_data *pd) 520 { 521 struct throtl_grp *tg = pd_to_tg(pd); 522 struct blkcg_gq *blkg = tg_to_blkg(tg); 523 struct throtl_data *td = blkg->q->td; 524 struct throtl_service_queue *sq = &tg->service_queue; 525 526 /* 527 * If on the default hierarchy, we switch to properly hierarchical 528 * behavior where limits on a given throtl_grp are applied to the 529 * whole subtree rather than just the group itself. e.g. If 16M 530 * read_bps limit is set on the root group, the whole system can't 531 * exceed 16M for the device. 532 * 533 * If not on the default hierarchy, the broken flat hierarchy 534 * behavior is retained where all throtl_grps are treated as if 535 * they're all separate root groups right below throtl_data. 536 * Limits of a group don't interact with limits of other groups 537 * regardless of the position of the group in the hierarchy. 538 */ 539 sq->parent_sq = &td->service_queue; 540 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) 541 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; 542 tg->td = td; 543 } 544 545 /* 546 * Set has_rules[] if @tg or any of its parents have limits configured. 547 * This doesn't require walking up to the top of the hierarchy as the 548 * parent's has_rules[] is guaranteed to be correct. 549 */ 550 static void tg_update_has_rules(struct throtl_grp *tg) 551 { 552 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); 553 struct throtl_data *td = tg->td; 554 int rw; 555 556 for (rw = READ; rw <= WRITE; rw++) 557 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) || 558 (td->limit_valid[td->limit_index] && 559 (tg_bps_limit(tg, rw) != U64_MAX || 560 tg_iops_limit(tg, rw) != UINT_MAX)); 561 } 562 563 static void throtl_pd_online(struct blkg_policy_data *pd) 564 { 565 struct throtl_grp *tg = pd_to_tg(pd); 566 /* 567 * We don't want new groups to escape the limits of its ancestors. 568 * Update has_rules[] after a new group is brought online. 569 */ 570 tg_update_has_rules(tg); 571 } 572 573 static void blk_throtl_update_limit_valid(struct throtl_data *td) 574 { 575 struct cgroup_subsys_state *pos_css; 576 struct blkcg_gq *blkg; 577 bool low_valid = false; 578 579 rcu_read_lock(); 580 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 581 struct throtl_grp *tg = blkg_to_tg(blkg); 582 583 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] || 584 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) 585 low_valid = true; 586 } 587 rcu_read_unlock(); 588 589 td->limit_valid[LIMIT_LOW] = low_valid; 590 } 591 592 static void throtl_upgrade_state(struct throtl_data *td); 593 static void throtl_pd_offline(struct blkg_policy_data *pd) 594 { 595 struct throtl_grp *tg = pd_to_tg(pd); 596 597 tg->bps[READ][LIMIT_LOW] = 0; 598 tg->bps[WRITE][LIMIT_LOW] = 0; 599 tg->iops[READ][LIMIT_LOW] = 0; 600 tg->iops[WRITE][LIMIT_LOW] = 0; 601 602 blk_throtl_update_limit_valid(tg->td); 603 604 if (!tg->td->limit_valid[tg->td->limit_index]) 605 throtl_upgrade_state(tg->td); 606 } 607 608 static void throtl_pd_free(struct blkg_policy_data *pd) 609 { 610 struct throtl_grp *tg = pd_to_tg(pd); 611 612 del_timer_sync(&tg->service_queue.pending_timer); 613 kfree(tg); 614 } 615 616 static struct throtl_grp * 617 throtl_rb_first(struct throtl_service_queue *parent_sq) 618 { 619 /* Service tree is empty */ 620 if (!parent_sq->nr_pending) 621 return NULL; 622 623 if (!parent_sq->first_pending) 624 parent_sq->first_pending = rb_first(&parent_sq->pending_tree); 625 626 if (parent_sq->first_pending) 627 return rb_entry_tg(parent_sq->first_pending); 628 629 return NULL; 630 } 631 632 static void rb_erase_init(struct rb_node *n, struct rb_root *root) 633 { 634 rb_erase(n, root); 635 RB_CLEAR_NODE(n); 636 } 637 638 static void throtl_rb_erase(struct rb_node *n, 639 struct throtl_service_queue *parent_sq) 640 { 641 if (parent_sq->first_pending == n) 642 parent_sq->first_pending = NULL; 643 rb_erase_init(n, &parent_sq->pending_tree); 644 --parent_sq->nr_pending; 645 } 646 647 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) 648 { 649 struct throtl_grp *tg; 650 651 tg = throtl_rb_first(parent_sq); 652 if (!tg) 653 return; 654 655 parent_sq->first_pending_disptime = tg->disptime; 656 } 657 658 static void tg_service_queue_add(struct throtl_grp *tg) 659 { 660 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; 661 struct rb_node **node = &parent_sq->pending_tree.rb_node; 662 struct rb_node *parent = NULL; 663 struct throtl_grp *__tg; 664 unsigned long key = tg->disptime; 665 int left = 1; 666 667 while (*node != NULL) { 668 parent = *node; 669 __tg = rb_entry_tg(parent); 670 671 if (time_before(key, __tg->disptime)) 672 node = &parent->rb_left; 673 else { 674 node = &parent->rb_right; 675 left = 0; 676 } 677 } 678 679 if (left) 680 parent_sq->first_pending = &tg->rb_node; 681 682 rb_link_node(&tg->rb_node, parent, node); 683 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree); 684 } 685 686 static void __throtl_enqueue_tg(struct throtl_grp *tg) 687 { 688 tg_service_queue_add(tg); 689 tg->flags |= THROTL_TG_PENDING; 690 tg->service_queue.parent_sq->nr_pending++; 691 } 692 693 static void throtl_enqueue_tg(struct throtl_grp *tg) 694 { 695 if (!(tg->flags & THROTL_TG_PENDING)) 696 __throtl_enqueue_tg(tg); 697 } 698 699 static void __throtl_dequeue_tg(struct throtl_grp *tg) 700 { 701 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); 702 tg->flags &= ~THROTL_TG_PENDING; 703 } 704 705 static void throtl_dequeue_tg(struct throtl_grp *tg) 706 { 707 if (tg->flags & THROTL_TG_PENDING) 708 __throtl_dequeue_tg(tg); 709 } 710 711 /* Call with queue lock held */ 712 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, 713 unsigned long expires) 714 { 715 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice; 716 717 /* 718 * Since we are adjusting the throttle limit dynamically, the sleep 719 * time calculated according to previous limit might be invalid. It's 720 * possible the cgroup sleep time is very long and no other cgroups 721 * have IO running so notify the limit changes. Make sure the cgroup 722 * doesn't sleep too long to avoid the missed notification. 723 */ 724 if (time_after(expires, max_expire)) 725 expires = max_expire; 726 mod_timer(&sq->pending_timer, expires); 727 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", 728 expires - jiffies, jiffies); 729 } 730 731 /** 732 * throtl_schedule_next_dispatch - schedule the next dispatch cycle 733 * @sq: the service_queue to schedule dispatch for 734 * @force: force scheduling 735 * 736 * Arm @sq->pending_timer so that the next dispatch cycle starts on the 737 * dispatch time of the first pending child. Returns %true if either timer 738 * is armed or there's no pending child left. %false if the current 739 * dispatch window is still open and the caller should continue 740 * dispatching. 741 * 742 * If @force is %true, the dispatch timer is always scheduled and this 743 * function is guaranteed to return %true. This is to be used when the 744 * caller can't dispatch itself and needs to invoke pending_timer 745 * unconditionally. Note that forced scheduling is likely to induce short 746 * delay before dispatch starts even if @sq->first_pending_disptime is not 747 * in the future and thus shouldn't be used in hot paths. 748 */ 749 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, 750 bool force) 751 { 752 /* any pending children left? */ 753 if (!sq->nr_pending) 754 return true; 755 756 update_min_dispatch_time(sq); 757 758 /* is the next dispatch time in the future? */ 759 if (force || time_after(sq->first_pending_disptime, jiffies)) { 760 throtl_schedule_pending_timer(sq, sq->first_pending_disptime); 761 return true; 762 } 763 764 /* tell the caller to continue dispatching */ 765 return false; 766 } 767 768 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, 769 bool rw, unsigned long start) 770 { 771 tg->bytes_disp[rw] = 0; 772 tg->io_disp[rw] = 0; 773 774 /* 775 * Previous slice has expired. We must have trimmed it after last 776 * bio dispatch. That means since start of last slice, we never used 777 * that bandwidth. Do try to make use of that bandwidth while giving 778 * credit. 779 */ 780 if (time_after_eq(start, tg->slice_start[rw])) 781 tg->slice_start[rw] = start; 782 783 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 784 throtl_log(&tg->service_queue, 785 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", 786 rw == READ ? 'R' : 'W', tg->slice_start[rw], 787 tg->slice_end[rw], jiffies); 788 } 789 790 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw) 791 { 792 tg->bytes_disp[rw] = 0; 793 tg->io_disp[rw] = 0; 794 tg->slice_start[rw] = jiffies; 795 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 796 throtl_log(&tg->service_queue, 797 "[%c] new slice start=%lu end=%lu jiffies=%lu", 798 rw == READ ? 'R' : 'W', tg->slice_start[rw], 799 tg->slice_end[rw], jiffies); 800 } 801 802 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, 803 unsigned long jiffy_end) 804 { 805 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 806 } 807 808 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, 809 unsigned long jiffy_end) 810 { 811 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 812 throtl_log(&tg->service_queue, 813 "[%c] extend slice start=%lu end=%lu jiffies=%lu", 814 rw == READ ? 'R' : 'W', tg->slice_start[rw], 815 tg->slice_end[rw], jiffies); 816 } 817 818 /* Determine if previously allocated or extended slice is complete or not */ 819 static bool throtl_slice_used(struct throtl_grp *tg, bool rw) 820 { 821 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 822 return false; 823 824 return 1; 825 } 826 827 /* Trim the used slices and adjust slice start accordingly */ 828 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) 829 { 830 unsigned long nr_slices, time_elapsed, io_trim; 831 u64 bytes_trim, tmp; 832 833 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 834 835 /* 836 * If bps are unlimited (-1), then time slice don't get 837 * renewed. Don't try to trim the slice if slice is used. A new 838 * slice will start when appropriate. 839 */ 840 if (throtl_slice_used(tg, rw)) 841 return; 842 843 /* 844 * A bio has been dispatched. Also adjust slice_end. It might happen 845 * that initially cgroup limit was very low resulting in high 846 * slice_end, but later limit was bumped up and bio was dispached 847 * sooner, then we need to reduce slice_end. A high bogus slice_end 848 * is bad because it does not allow new slice to start. 849 */ 850 851 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); 852 853 time_elapsed = jiffies - tg->slice_start[rw]; 854 855 nr_slices = time_elapsed / tg->td->throtl_slice; 856 857 if (!nr_slices) 858 return; 859 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices; 860 do_div(tmp, HZ); 861 bytes_trim = tmp; 862 863 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) / 864 HZ; 865 866 if (!bytes_trim && !io_trim) 867 return; 868 869 if (tg->bytes_disp[rw] >= bytes_trim) 870 tg->bytes_disp[rw] -= bytes_trim; 871 else 872 tg->bytes_disp[rw] = 0; 873 874 if (tg->io_disp[rw] >= io_trim) 875 tg->io_disp[rw] -= io_trim; 876 else 877 tg->io_disp[rw] = 0; 878 879 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice; 880 881 throtl_log(&tg->service_queue, 882 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu", 883 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, 884 tg->slice_start[rw], tg->slice_end[rw], jiffies); 885 } 886 887 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, 888 unsigned long *wait) 889 { 890 bool rw = bio_data_dir(bio); 891 unsigned int io_allowed; 892 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 893 u64 tmp; 894 895 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 896 897 /* Slice has just started. Consider one slice interval */ 898 if (!jiffy_elapsed) 899 jiffy_elapsed_rnd = tg->td->throtl_slice; 900 901 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 902 903 /* 904 * jiffy_elapsed_rnd should not be a big value as minimum iops can be 905 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 906 * will allow dispatch after 1 second and after that slice should 907 * have been trimmed. 908 */ 909 910 tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd; 911 do_div(tmp, HZ); 912 913 if (tmp > UINT_MAX) 914 io_allowed = UINT_MAX; 915 else 916 io_allowed = tmp; 917 918 if (tg->io_disp[rw] + 1 <= io_allowed) { 919 if (wait) 920 *wait = 0; 921 return true; 922 } 923 924 /* Calc approx time to dispatch */ 925 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1; 926 927 if (jiffy_wait > jiffy_elapsed) 928 jiffy_wait = jiffy_wait - jiffy_elapsed; 929 else 930 jiffy_wait = 1; 931 932 if (wait) 933 *wait = jiffy_wait; 934 return 0; 935 } 936 937 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, 938 unsigned long *wait) 939 { 940 bool rw = bio_data_dir(bio); 941 u64 bytes_allowed, extra_bytes, tmp; 942 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 943 unsigned int bio_size = throtl_bio_data_size(bio); 944 945 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 946 947 /* Slice has just started. Consider one slice interval */ 948 if (!jiffy_elapsed) 949 jiffy_elapsed_rnd = tg->td->throtl_slice; 950 951 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 952 953 tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd; 954 do_div(tmp, HZ); 955 bytes_allowed = tmp; 956 957 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) { 958 if (wait) 959 *wait = 0; 960 return true; 961 } 962 963 /* Calc approx time to dispatch */ 964 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed; 965 jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw)); 966 967 if (!jiffy_wait) 968 jiffy_wait = 1; 969 970 /* 971 * This wait time is without taking into consideration the rounding 972 * up we did. Add that time also. 973 */ 974 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 975 if (wait) 976 *wait = jiffy_wait; 977 return 0; 978 } 979 980 /* 981 * Returns whether one can dispatch a bio or not. Also returns approx number 982 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 983 */ 984 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, 985 unsigned long *wait) 986 { 987 bool rw = bio_data_dir(bio); 988 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 989 990 /* 991 * Currently whole state machine of group depends on first bio 992 * queued in the group bio list. So one should not be calling 993 * this function with a different bio if there are other bios 994 * queued. 995 */ 996 BUG_ON(tg->service_queue.nr_queued[rw] && 997 bio != throtl_peek_queued(&tg->service_queue.queued[rw])); 998 999 /* If tg->bps = -1, then BW is unlimited */ 1000 if (tg_bps_limit(tg, rw) == U64_MAX && 1001 tg_iops_limit(tg, rw) == UINT_MAX) { 1002 if (wait) 1003 *wait = 0; 1004 return true; 1005 } 1006 1007 /* 1008 * If previous slice expired, start a new one otherwise renew/extend 1009 * existing slice to make sure it is at least throtl_slice interval 1010 * long since now. New slice is started only for empty throttle group. 1011 * If there is queued bio, that means there should be an active 1012 * slice and it should be extended instead. 1013 */ 1014 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw])) 1015 throtl_start_new_slice(tg, rw); 1016 else { 1017 if (time_before(tg->slice_end[rw], 1018 jiffies + tg->td->throtl_slice)) 1019 throtl_extend_slice(tg, rw, 1020 jiffies + tg->td->throtl_slice); 1021 } 1022 1023 if (tg_with_in_bps_limit(tg, bio, &bps_wait) && 1024 tg_with_in_iops_limit(tg, bio, &iops_wait)) { 1025 if (wait) 1026 *wait = 0; 1027 return 1; 1028 } 1029 1030 max_wait = max(bps_wait, iops_wait); 1031 1032 if (wait) 1033 *wait = max_wait; 1034 1035 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 1036 throtl_extend_slice(tg, rw, jiffies + max_wait); 1037 1038 return 0; 1039 } 1040 1041 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 1042 { 1043 bool rw = bio_data_dir(bio); 1044 unsigned int bio_size = throtl_bio_data_size(bio); 1045 1046 /* Charge the bio to the group */ 1047 tg->bytes_disp[rw] += bio_size; 1048 tg->io_disp[rw]++; 1049 tg->last_bytes_disp[rw] += bio_size; 1050 tg->last_io_disp[rw]++; 1051 1052 /* 1053 * BIO_THROTTLED is used to prevent the same bio to be throttled 1054 * more than once as a throttled bio will go through blk-throtl the 1055 * second time when it eventually gets issued. Set it when a bio 1056 * is being charged to a tg. 1057 */ 1058 if (!bio_flagged(bio, BIO_THROTTLED)) 1059 bio_set_flag(bio, BIO_THROTTLED); 1060 } 1061 1062 /** 1063 * throtl_add_bio_tg - add a bio to the specified throtl_grp 1064 * @bio: bio to add 1065 * @qn: qnode to use 1066 * @tg: the target throtl_grp 1067 * 1068 * Add @bio to @tg's service_queue using @qn. If @qn is not specified, 1069 * tg->qnode_on_self[] is used. 1070 */ 1071 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, 1072 struct throtl_grp *tg) 1073 { 1074 struct throtl_service_queue *sq = &tg->service_queue; 1075 bool rw = bio_data_dir(bio); 1076 1077 if (!qn) 1078 qn = &tg->qnode_on_self[rw]; 1079 1080 /* 1081 * If @tg doesn't currently have any bios queued in the same 1082 * direction, queueing @bio can change when @tg should be 1083 * dispatched. Mark that @tg was empty. This is automatically 1084 * cleaered on the next tg_update_disptime(). 1085 */ 1086 if (!sq->nr_queued[rw]) 1087 tg->flags |= THROTL_TG_WAS_EMPTY; 1088 1089 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); 1090 1091 sq->nr_queued[rw]++; 1092 throtl_enqueue_tg(tg); 1093 } 1094 1095 static void tg_update_disptime(struct throtl_grp *tg) 1096 { 1097 struct throtl_service_queue *sq = &tg->service_queue; 1098 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 1099 struct bio *bio; 1100 1101 bio = throtl_peek_queued(&sq->queued[READ]); 1102 if (bio) 1103 tg_may_dispatch(tg, bio, &read_wait); 1104 1105 bio = throtl_peek_queued(&sq->queued[WRITE]); 1106 if (bio) 1107 tg_may_dispatch(tg, bio, &write_wait); 1108 1109 min_wait = min(read_wait, write_wait); 1110 disptime = jiffies + min_wait; 1111 1112 /* Update dispatch time */ 1113 throtl_dequeue_tg(tg); 1114 tg->disptime = disptime; 1115 throtl_enqueue_tg(tg); 1116 1117 /* see throtl_add_bio_tg() */ 1118 tg->flags &= ~THROTL_TG_WAS_EMPTY; 1119 } 1120 1121 static void start_parent_slice_with_credit(struct throtl_grp *child_tg, 1122 struct throtl_grp *parent_tg, bool rw) 1123 { 1124 if (throtl_slice_used(parent_tg, rw)) { 1125 throtl_start_new_slice_with_credit(parent_tg, rw, 1126 child_tg->slice_start[rw]); 1127 } 1128 1129 } 1130 1131 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) 1132 { 1133 struct throtl_service_queue *sq = &tg->service_queue; 1134 struct throtl_service_queue *parent_sq = sq->parent_sq; 1135 struct throtl_grp *parent_tg = sq_to_tg(parent_sq); 1136 struct throtl_grp *tg_to_put = NULL; 1137 struct bio *bio; 1138 1139 /* 1140 * @bio is being transferred from @tg to @parent_sq. Popping a bio 1141 * from @tg may put its reference and @parent_sq might end up 1142 * getting released prematurely. Remember the tg to put and put it 1143 * after @bio is transferred to @parent_sq. 1144 */ 1145 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); 1146 sq->nr_queued[rw]--; 1147 1148 throtl_charge_bio(tg, bio); 1149 1150 /* 1151 * If our parent is another tg, we just need to transfer @bio to 1152 * the parent using throtl_add_bio_tg(). If our parent is 1153 * @td->service_queue, @bio is ready to be issued. Put it on its 1154 * bio_lists[] and decrease total number queued. The caller is 1155 * responsible for issuing these bios. 1156 */ 1157 if (parent_tg) { 1158 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); 1159 start_parent_slice_with_credit(tg, parent_tg, rw); 1160 } else { 1161 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], 1162 &parent_sq->queued[rw]); 1163 BUG_ON(tg->td->nr_queued[rw] <= 0); 1164 tg->td->nr_queued[rw]--; 1165 } 1166 1167 throtl_trim_slice(tg, rw); 1168 1169 if (tg_to_put) 1170 blkg_put(tg_to_blkg(tg_to_put)); 1171 } 1172 1173 static int throtl_dispatch_tg(struct throtl_grp *tg) 1174 { 1175 struct throtl_service_queue *sq = &tg->service_queue; 1176 unsigned int nr_reads = 0, nr_writes = 0; 1177 unsigned int max_nr_reads = throtl_grp_quantum*3/4; 1178 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; 1179 struct bio *bio; 1180 1181 /* Try to dispatch 75% READS and 25% WRITES */ 1182 1183 while ((bio = throtl_peek_queued(&sq->queued[READ])) && 1184 tg_may_dispatch(tg, bio, NULL)) { 1185 1186 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1187 nr_reads++; 1188 1189 if (nr_reads >= max_nr_reads) 1190 break; 1191 } 1192 1193 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && 1194 tg_may_dispatch(tg, bio, NULL)) { 1195 1196 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1197 nr_writes++; 1198 1199 if (nr_writes >= max_nr_writes) 1200 break; 1201 } 1202 1203 return nr_reads + nr_writes; 1204 } 1205 1206 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) 1207 { 1208 unsigned int nr_disp = 0; 1209 1210 while (1) { 1211 struct throtl_grp *tg = throtl_rb_first(parent_sq); 1212 struct throtl_service_queue *sq = &tg->service_queue; 1213 1214 if (!tg) 1215 break; 1216 1217 if (time_before(jiffies, tg->disptime)) 1218 break; 1219 1220 throtl_dequeue_tg(tg); 1221 1222 nr_disp += throtl_dispatch_tg(tg); 1223 1224 if (sq->nr_queued[0] || sq->nr_queued[1]) 1225 tg_update_disptime(tg); 1226 1227 if (nr_disp >= throtl_quantum) 1228 break; 1229 } 1230 1231 return nr_disp; 1232 } 1233 1234 static bool throtl_can_upgrade(struct throtl_data *td, 1235 struct throtl_grp *this_tg); 1236 /** 1237 * throtl_pending_timer_fn - timer function for service_queue->pending_timer 1238 * @arg: the throtl_service_queue being serviced 1239 * 1240 * This timer is armed when a child throtl_grp with active bio's become 1241 * pending and queued on the service_queue's pending_tree and expires when 1242 * the first child throtl_grp should be dispatched. This function 1243 * dispatches bio's from the children throtl_grps to the parent 1244 * service_queue. 1245 * 1246 * If the parent's parent is another throtl_grp, dispatching is propagated 1247 * by either arming its pending_timer or repeating dispatch directly. If 1248 * the top-level service_tree is reached, throtl_data->dispatch_work is 1249 * kicked so that the ready bio's are issued. 1250 */ 1251 static void throtl_pending_timer_fn(struct timer_list *t) 1252 { 1253 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer); 1254 struct throtl_grp *tg = sq_to_tg(sq); 1255 struct throtl_data *td = sq_to_td(sq); 1256 struct request_queue *q = td->queue; 1257 struct throtl_service_queue *parent_sq; 1258 bool dispatched; 1259 int ret; 1260 1261 spin_lock_irq(q->queue_lock); 1262 if (throtl_can_upgrade(td, NULL)) 1263 throtl_upgrade_state(td); 1264 1265 again: 1266 parent_sq = sq->parent_sq; 1267 dispatched = false; 1268 1269 while (true) { 1270 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", 1271 sq->nr_queued[READ] + sq->nr_queued[WRITE], 1272 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1273 1274 ret = throtl_select_dispatch(sq); 1275 if (ret) { 1276 throtl_log(sq, "bios disp=%u", ret); 1277 dispatched = true; 1278 } 1279 1280 if (throtl_schedule_next_dispatch(sq, false)) 1281 break; 1282 1283 /* this dispatch windows is still open, relax and repeat */ 1284 spin_unlock_irq(q->queue_lock); 1285 cpu_relax(); 1286 spin_lock_irq(q->queue_lock); 1287 } 1288 1289 if (!dispatched) 1290 goto out_unlock; 1291 1292 if (parent_sq) { 1293 /* @parent_sq is another throl_grp, propagate dispatch */ 1294 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1295 tg_update_disptime(tg); 1296 if (!throtl_schedule_next_dispatch(parent_sq, false)) { 1297 /* window is already open, repeat dispatching */ 1298 sq = parent_sq; 1299 tg = sq_to_tg(sq); 1300 goto again; 1301 } 1302 } 1303 } else { 1304 /* reached the top-level, queue issueing */ 1305 queue_work(kthrotld_workqueue, &td->dispatch_work); 1306 } 1307 out_unlock: 1308 spin_unlock_irq(q->queue_lock); 1309 } 1310 1311 /** 1312 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work 1313 * @work: work item being executed 1314 * 1315 * This function is queued for execution when bio's reach the bio_lists[] 1316 * of throtl_data->service_queue. Those bio's are ready and issued by this 1317 * function. 1318 */ 1319 static void blk_throtl_dispatch_work_fn(struct work_struct *work) 1320 { 1321 struct throtl_data *td = container_of(work, struct throtl_data, 1322 dispatch_work); 1323 struct throtl_service_queue *td_sq = &td->service_queue; 1324 struct request_queue *q = td->queue; 1325 struct bio_list bio_list_on_stack; 1326 struct bio *bio; 1327 struct blk_plug plug; 1328 int rw; 1329 1330 bio_list_init(&bio_list_on_stack); 1331 1332 spin_lock_irq(q->queue_lock); 1333 for (rw = READ; rw <= WRITE; rw++) 1334 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) 1335 bio_list_add(&bio_list_on_stack, bio); 1336 spin_unlock_irq(q->queue_lock); 1337 1338 if (!bio_list_empty(&bio_list_on_stack)) { 1339 blk_start_plug(&plug); 1340 while((bio = bio_list_pop(&bio_list_on_stack))) 1341 generic_make_request(bio); 1342 blk_finish_plug(&plug); 1343 } 1344 } 1345 1346 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, 1347 int off) 1348 { 1349 struct throtl_grp *tg = pd_to_tg(pd); 1350 u64 v = *(u64 *)((void *)tg + off); 1351 1352 if (v == U64_MAX) 1353 return 0; 1354 return __blkg_prfill_u64(sf, pd, v); 1355 } 1356 1357 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, 1358 int off) 1359 { 1360 struct throtl_grp *tg = pd_to_tg(pd); 1361 unsigned int v = *(unsigned int *)((void *)tg + off); 1362 1363 if (v == UINT_MAX) 1364 return 0; 1365 return __blkg_prfill_u64(sf, pd, v); 1366 } 1367 1368 static int tg_print_conf_u64(struct seq_file *sf, void *v) 1369 { 1370 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, 1371 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1372 return 0; 1373 } 1374 1375 static int tg_print_conf_uint(struct seq_file *sf, void *v) 1376 { 1377 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, 1378 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1379 return 0; 1380 } 1381 1382 static void tg_conf_updated(struct throtl_grp *tg, bool global) 1383 { 1384 struct throtl_service_queue *sq = &tg->service_queue; 1385 struct cgroup_subsys_state *pos_css; 1386 struct blkcg_gq *blkg; 1387 1388 throtl_log(&tg->service_queue, 1389 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", 1390 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), 1391 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); 1392 1393 /* 1394 * Update has_rules[] flags for the updated tg's subtree. A tg is 1395 * considered to have rules if either the tg itself or any of its 1396 * ancestors has rules. This identifies groups without any 1397 * restrictions in the whole hierarchy and allows them to bypass 1398 * blk-throttle. 1399 */ 1400 blkg_for_each_descendant_pre(blkg, pos_css, 1401 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { 1402 struct throtl_grp *this_tg = blkg_to_tg(blkg); 1403 struct throtl_grp *parent_tg; 1404 1405 tg_update_has_rules(this_tg); 1406 /* ignore root/second level */ 1407 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || 1408 !blkg->parent->parent) 1409 continue; 1410 parent_tg = blkg_to_tg(blkg->parent); 1411 /* 1412 * make sure all children has lower idle time threshold and 1413 * higher latency target 1414 */ 1415 this_tg->idletime_threshold = min(this_tg->idletime_threshold, 1416 parent_tg->idletime_threshold); 1417 this_tg->latency_target = max(this_tg->latency_target, 1418 parent_tg->latency_target); 1419 } 1420 1421 /* 1422 * We're already holding queue_lock and know @tg is valid. Let's 1423 * apply the new config directly. 1424 * 1425 * Restart the slices for both READ and WRITES. It might happen 1426 * that a group's limit are dropped suddenly and we don't want to 1427 * account recently dispatched IO with new low rate. 1428 */ 1429 throtl_start_new_slice(tg, 0); 1430 throtl_start_new_slice(tg, 1); 1431 1432 if (tg->flags & THROTL_TG_PENDING) { 1433 tg_update_disptime(tg); 1434 throtl_schedule_next_dispatch(sq->parent_sq, true); 1435 } 1436 } 1437 1438 static ssize_t tg_set_conf(struct kernfs_open_file *of, 1439 char *buf, size_t nbytes, loff_t off, bool is_u64) 1440 { 1441 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1442 struct blkg_conf_ctx ctx; 1443 struct throtl_grp *tg; 1444 int ret; 1445 u64 v; 1446 1447 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1448 if (ret) 1449 return ret; 1450 1451 ret = -EINVAL; 1452 if (sscanf(ctx.body, "%llu", &v) != 1) 1453 goto out_finish; 1454 if (!v) 1455 v = U64_MAX; 1456 1457 tg = blkg_to_tg(ctx.blkg); 1458 1459 if (is_u64) 1460 *(u64 *)((void *)tg + of_cft(of)->private) = v; 1461 else 1462 *(unsigned int *)((void *)tg + of_cft(of)->private) = v; 1463 1464 tg_conf_updated(tg, false); 1465 ret = 0; 1466 out_finish: 1467 blkg_conf_finish(&ctx); 1468 return ret ?: nbytes; 1469 } 1470 1471 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, 1472 char *buf, size_t nbytes, loff_t off) 1473 { 1474 return tg_set_conf(of, buf, nbytes, off, true); 1475 } 1476 1477 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, 1478 char *buf, size_t nbytes, loff_t off) 1479 { 1480 return tg_set_conf(of, buf, nbytes, off, false); 1481 } 1482 1483 static struct cftype throtl_legacy_files[] = { 1484 { 1485 .name = "throttle.read_bps_device", 1486 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]), 1487 .seq_show = tg_print_conf_u64, 1488 .write = tg_set_conf_u64, 1489 }, 1490 { 1491 .name = "throttle.write_bps_device", 1492 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]), 1493 .seq_show = tg_print_conf_u64, 1494 .write = tg_set_conf_u64, 1495 }, 1496 { 1497 .name = "throttle.read_iops_device", 1498 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]), 1499 .seq_show = tg_print_conf_uint, 1500 .write = tg_set_conf_uint, 1501 }, 1502 { 1503 .name = "throttle.write_iops_device", 1504 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]), 1505 .seq_show = tg_print_conf_uint, 1506 .write = tg_set_conf_uint, 1507 }, 1508 { 1509 .name = "throttle.io_service_bytes", 1510 .private = (unsigned long)&blkcg_policy_throtl, 1511 .seq_show = blkg_print_stat_bytes, 1512 }, 1513 { 1514 .name = "throttle.io_service_bytes_recursive", 1515 .private = (unsigned long)&blkcg_policy_throtl, 1516 .seq_show = blkg_print_stat_bytes_recursive, 1517 }, 1518 { 1519 .name = "throttle.io_serviced", 1520 .private = (unsigned long)&blkcg_policy_throtl, 1521 .seq_show = blkg_print_stat_ios, 1522 }, 1523 { 1524 .name = "throttle.io_serviced_recursive", 1525 .private = (unsigned long)&blkcg_policy_throtl, 1526 .seq_show = blkg_print_stat_ios_recursive, 1527 }, 1528 { } /* terminate */ 1529 }; 1530 1531 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, 1532 int off) 1533 { 1534 struct throtl_grp *tg = pd_to_tg(pd); 1535 const char *dname = blkg_dev_name(pd->blkg); 1536 char bufs[4][21] = { "max", "max", "max", "max" }; 1537 u64 bps_dft; 1538 unsigned int iops_dft; 1539 char idle_time[26] = ""; 1540 char latency_time[26] = ""; 1541 1542 if (!dname) 1543 return 0; 1544 1545 if (off == LIMIT_LOW) { 1546 bps_dft = 0; 1547 iops_dft = 0; 1548 } else { 1549 bps_dft = U64_MAX; 1550 iops_dft = UINT_MAX; 1551 } 1552 1553 if (tg->bps_conf[READ][off] == bps_dft && 1554 tg->bps_conf[WRITE][off] == bps_dft && 1555 tg->iops_conf[READ][off] == iops_dft && 1556 tg->iops_conf[WRITE][off] == iops_dft && 1557 (off != LIMIT_LOW || 1558 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD && 1559 tg->latency_target_conf == DFL_LATENCY_TARGET))) 1560 return 0; 1561 1562 if (tg->bps_conf[READ][off] != U64_MAX) 1563 snprintf(bufs[0], sizeof(bufs[0]), "%llu", 1564 tg->bps_conf[READ][off]); 1565 if (tg->bps_conf[WRITE][off] != U64_MAX) 1566 snprintf(bufs[1], sizeof(bufs[1]), "%llu", 1567 tg->bps_conf[WRITE][off]); 1568 if (tg->iops_conf[READ][off] != UINT_MAX) 1569 snprintf(bufs[2], sizeof(bufs[2]), "%u", 1570 tg->iops_conf[READ][off]); 1571 if (tg->iops_conf[WRITE][off] != UINT_MAX) 1572 snprintf(bufs[3], sizeof(bufs[3]), "%u", 1573 tg->iops_conf[WRITE][off]); 1574 if (off == LIMIT_LOW) { 1575 if (tg->idletime_threshold_conf == ULONG_MAX) 1576 strcpy(idle_time, " idle=max"); 1577 else 1578 snprintf(idle_time, sizeof(idle_time), " idle=%lu", 1579 tg->idletime_threshold_conf); 1580 1581 if (tg->latency_target_conf == ULONG_MAX) 1582 strcpy(latency_time, " latency=max"); 1583 else 1584 snprintf(latency_time, sizeof(latency_time), 1585 " latency=%lu", tg->latency_target_conf); 1586 } 1587 1588 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n", 1589 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time, 1590 latency_time); 1591 return 0; 1592 } 1593 1594 static int tg_print_limit(struct seq_file *sf, void *v) 1595 { 1596 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, 1597 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1598 return 0; 1599 } 1600 1601 static ssize_t tg_set_limit(struct kernfs_open_file *of, 1602 char *buf, size_t nbytes, loff_t off) 1603 { 1604 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1605 struct blkg_conf_ctx ctx; 1606 struct throtl_grp *tg; 1607 u64 v[4]; 1608 unsigned long idle_time; 1609 unsigned long latency_time; 1610 int ret; 1611 int index = of_cft(of)->private; 1612 1613 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1614 if (ret) 1615 return ret; 1616 1617 tg = blkg_to_tg(ctx.blkg); 1618 1619 v[0] = tg->bps_conf[READ][index]; 1620 v[1] = tg->bps_conf[WRITE][index]; 1621 v[2] = tg->iops_conf[READ][index]; 1622 v[3] = tg->iops_conf[WRITE][index]; 1623 1624 idle_time = tg->idletime_threshold_conf; 1625 latency_time = tg->latency_target_conf; 1626 while (true) { 1627 char tok[27]; /* wiops=18446744073709551616 */ 1628 char *p; 1629 u64 val = U64_MAX; 1630 int len; 1631 1632 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) 1633 break; 1634 if (tok[0] == '\0') 1635 break; 1636 ctx.body += len; 1637 1638 ret = -EINVAL; 1639 p = tok; 1640 strsep(&p, "="); 1641 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) 1642 goto out_finish; 1643 1644 ret = -ERANGE; 1645 if (!val) 1646 goto out_finish; 1647 1648 ret = -EINVAL; 1649 if (!strcmp(tok, "rbps")) 1650 v[0] = val; 1651 else if (!strcmp(tok, "wbps")) 1652 v[1] = val; 1653 else if (!strcmp(tok, "riops")) 1654 v[2] = min_t(u64, val, UINT_MAX); 1655 else if (!strcmp(tok, "wiops")) 1656 v[3] = min_t(u64, val, UINT_MAX); 1657 else if (off == LIMIT_LOW && !strcmp(tok, "idle")) 1658 idle_time = val; 1659 else if (off == LIMIT_LOW && !strcmp(tok, "latency")) 1660 latency_time = val; 1661 else 1662 goto out_finish; 1663 } 1664 1665 tg->bps_conf[READ][index] = v[0]; 1666 tg->bps_conf[WRITE][index] = v[1]; 1667 tg->iops_conf[READ][index] = v[2]; 1668 tg->iops_conf[WRITE][index] = v[3]; 1669 1670 if (index == LIMIT_MAX) { 1671 tg->bps[READ][index] = v[0]; 1672 tg->bps[WRITE][index] = v[1]; 1673 tg->iops[READ][index] = v[2]; 1674 tg->iops[WRITE][index] = v[3]; 1675 } 1676 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW], 1677 tg->bps_conf[READ][LIMIT_MAX]); 1678 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW], 1679 tg->bps_conf[WRITE][LIMIT_MAX]); 1680 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW], 1681 tg->iops_conf[READ][LIMIT_MAX]); 1682 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW], 1683 tg->iops_conf[WRITE][LIMIT_MAX]); 1684 tg->idletime_threshold_conf = idle_time; 1685 tg->latency_target_conf = latency_time; 1686 1687 /* force user to configure all settings for low limit */ 1688 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] || 1689 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) || 1690 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD || 1691 tg->latency_target_conf == DFL_LATENCY_TARGET) { 1692 tg->bps[READ][LIMIT_LOW] = 0; 1693 tg->bps[WRITE][LIMIT_LOW] = 0; 1694 tg->iops[READ][LIMIT_LOW] = 0; 1695 tg->iops[WRITE][LIMIT_LOW] = 0; 1696 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 1697 tg->latency_target = DFL_LATENCY_TARGET; 1698 } else if (index == LIMIT_LOW) { 1699 tg->idletime_threshold = tg->idletime_threshold_conf; 1700 tg->latency_target = tg->latency_target_conf; 1701 } 1702 1703 blk_throtl_update_limit_valid(tg->td); 1704 if (tg->td->limit_valid[LIMIT_LOW]) { 1705 if (index == LIMIT_LOW) 1706 tg->td->limit_index = LIMIT_LOW; 1707 } else 1708 tg->td->limit_index = LIMIT_MAX; 1709 tg_conf_updated(tg, index == LIMIT_LOW && 1710 tg->td->limit_valid[LIMIT_LOW]); 1711 ret = 0; 1712 out_finish: 1713 blkg_conf_finish(&ctx); 1714 return ret ?: nbytes; 1715 } 1716 1717 static struct cftype throtl_files[] = { 1718 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 1719 { 1720 .name = "low", 1721 .flags = CFTYPE_NOT_ON_ROOT, 1722 .seq_show = tg_print_limit, 1723 .write = tg_set_limit, 1724 .private = LIMIT_LOW, 1725 }, 1726 #endif 1727 { 1728 .name = "max", 1729 .flags = CFTYPE_NOT_ON_ROOT, 1730 .seq_show = tg_print_limit, 1731 .write = tg_set_limit, 1732 .private = LIMIT_MAX, 1733 }, 1734 { } /* terminate */ 1735 }; 1736 1737 static void throtl_shutdown_wq(struct request_queue *q) 1738 { 1739 struct throtl_data *td = q->td; 1740 1741 cancel_work_sync(&td->dispatch_work); 1742 } 1743 1744 static struct blkcg_policy blkcg_policy_throtl = { 1745 .dfl_cftypes = throtl_files, 1746 .legacy_cftypes = throtl_legacy_files, 1747 1748 .pd_alloc_fn = throtl_pd_alloc, 1749 .pd_init_fn = throtl_pd_init, 1750 .pd_online_fn = throtl_pd_online, 1751 .pd_offline_fn = throtl_pd_offline, 1752 .pd_free_fn = throtl_pd_free, 1753 }; 1754 1755 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg) 1756 { 1757 unsigned long rtime = jiffies, wtime = jiffies; 1758 1759 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]) 1760 rtime = tg->last_low_overflow_time[READ]; 1761 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) 1762 wtime = tg->last_low_overflow_time[WRITE]; 1763 return min(rtime, wtime); 1764 } 1765 1766 /* tg should not be an intermediate node */ 1767 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg) 1768 { 1769 struct throtl_service_queue *parent_sq; 1770 struct throtl_grp *parent = tg; 1771 unsigned long ret = __tg_last_low_overflow_time(tg); 1772 1773 while (true) { 1774 parent_sq = parent->service_queue.parent_sq; 1775 parent = sq_to_tg(parent_sq); 1776 if (!parent) 1777 break; 1778 1779 /* 1780 * The parent doesn't have low limit, it always reaches low 1781 * limit. Its overflow time is useless for children 1782 */ 1783 if (!parent->bps[READ][LIMIT_LOW] && 1784 !parent->iops[READ][LIMIT_LOW] && 1785 !parent->bps[WRITE][LIMIT_LOW] && 1786 !parent->iops[WRITE][LIMIT_LOW]) 1787 continue; 1788 if (time_after(__tg_last_low_overflow_time(parent), ret)) 1789 ret = __tg_last_low_overflow_time(parent); 1790 } 1791 return ret; 1792 } 1793 1794 static bool throtl_tg_is_idle(struct throtl_grp *tg) 1795 { 1796 /* 1797 * cgroup is idle if: 1798 * - single idle is too long, longer than a fixed value (in case user 1799 * configure a too big threshold) or 4 times of idletime threshold 1800 * - average think time is more than threshold 1801 * - IO latency is largely below threshold 1802 */ 1803 unsigned long time; 1804 bool ret; 1805 1806 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold); 1807 ret = tg->latency_target == DFL_LATENCY_TARGET || 1808 tg->idletime_threshold == DFL_IDLE_THRESHOLD || 1809 (ktime_get_ns() >> 10) - tg->last_finish_time > time || 1810 tg->avg_idletime > tg->idletime_threshold || 1811 (tg->latency_target && tg->bio_cnt && 1812 tg->bad_bio_cnt * 5 < tg->bio_cnt); 1813 throtl_log(&tg->service_queue, 1814 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d", 1815 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt, 1816 tg->bio_cnt, ret, tg->td->scale); 1817 return ret; 1818 } 1819 1820 static bool throtl_tg_can_upgrade(struct throtl_grp *tg) 1821 { 1822 struct throtl_service_queue *sq = &tg->service_queue; 1823 bool read_limit, write_limit; 1824 1825 /* 1826 * if cgroup reaches low limit (if low limit is 0, the cgroup always 1827 * reaches), it's ok to upgrade to next limit 1828 */ 1829 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]; 1830 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]; 1831 if (!read_limit && !write_limit) 1832 return true; 1833 if (read_limit && sq->nr_queued[READ] && 1834 (!write_limit || sq->nr_queued[WRITE])) 1835 return true; 1836 if (write_limit && sq->nr_queued[WRITE] && 1837 (!read_limit || sq->nr_queued[READ])) 1838 return true; 1839 1840 if (time_after_eq(jiffies, 1841 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) && 1842 throtl_tg_is_idle(tg)) 1843 return true; 1844 return false; 1845 } 1846 1847 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg) 1848 { 1849 while (true) { 1850 if (throtl_tg_can_upgrade(tg)) 1851 return true; 1852 tg = sq_to_tg(tg->service_queue.parent_sq); 1853 if (!tg || !tg_to_blkg(tg)->parent) 1854 return false; 1855 } 1856 return false; 1857 } 1858 1859 static bool throtl_can_upgrade(struct throtl_data *td, 1860 struct throtl_grp *this_tg) 1861 { 1862 struct cgroup_subsys_state *pos_css; 1863 struct blkcg_gq *blkg; 1864 1865 if (td->limit_index != LIMIT_LOW) 1866 return false; 1867 1868 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice)) 1869 return false; 1870 1871 rcu_read_lock(); 1872 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1873 struct throtl_grp *tg = blkg_to_tg(blkg); 1874 1875 if (tg == this_tg) 1876 continue; 1877 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1878 continue; 1879 if (!throtl_hierarchy_can_upgrade(tg)) { 1880 rcu_read_unlock(); 1881 return false; 1882 } 1883 } 1884 rcu_read_unlock(); 1885 return true; 1886 } 1887 1888 static void throtl_upgrade_check(struct throtl_grp *tg) 1889 { 1890 unsigned long now = jiffies; 1891 1892 if (tg->td->limit_index != LIMIT_LOW) 1893 return; 1894 1895 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1896 return; 1897 1898 tg->last_check_time = now; 1899 1900 if (!time_after_eq(now, 1901 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice)) 1902 return; 1903 1904 if (throtl_can_upgrade(tg->td, NULL)) 1905 throtl_upgrade_state(tg->td); 1906 } 1907 1908 static void throtl_upgrade_state(struct throtl_data *td) 1909 { 1910 struct cgroup_subsys_state *pos_css; 1911 struct blkcg_gq *blkg; 1912 1913 throtl_log(&td->service_queue, "upgrade to max"); 1914 td->limit_index = LIMIT_MAX; 1915 td->low_upgrade_time = jiffies; 1916 td->scale = 0; 1917 rcu_read_lock(); 1918 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1919 struct throtl_grp *tg = blkg_to_tg(blkg); 1920 struct throtl_service_queue *sq = &tg->service_queue; 1921 1922 tg->disptime = jiffies - 1; 1923 throtl_select_dispatch(sq); 1924 throtl_schedule_next_dispatch(sq, true); 1925 } 1926 rcu_read_unlock(); 1927 throtl_select_dispatch(&td->service_queue); 1928 throtl_schedule_next_dispatch(&td->service_queue, true); 1929 queue_work(kthrotld_workqueue, &td->dispatch_work); 1930 } 1931 1932 static void throtl_downgrade_state(struct throtl_data *td, int new) 1933 { 1934 td->scale /= 2; 1935 1936 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale); 1937 if (td->scale) { 1938 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice; 1939 return; 1940 } 1941 1942 td->limit_index = new; 1943 td->low_downgrade_time = jiffies; 1944 } 1945 1946 static bool throtl_tg_can_downgrade(struct throtl_grp *tg) 1947 { 1948 struct throtl_data *td = tg->td; 1949 unsigned long now = jiffies; 1950 1951 /* 1952 * If cgroup is below low limit, consider downgrade and throttle other 1953 * cgroups 1954 */ 1955 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) && 1956 time_after_eq(now, tg_last_low_overflow_time(tg) + 1957 td->throtl_slice) && 1958 (!throtl_tg_is_idle(tg) || 1959 !list_empty(&tg_to_blkg(tg)->blkcg->css.children))) 1960 return true; 1961 return false; 1962 } 1963 1964 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg) 1965 { 1966 while (true) { 1967 if (!throtl_tg_can_downgrade(tg)) 1968 return false; 1969 tg = sq_to_tg(tg->service_queue.parent_sq); 1970 if (!tg || !tg_to_blkg(tg)->parent) 1971 break; 1972 } 1973 return true; 1974 } 1975 1976 static void throtl_downgrade_check(struct throtl_grp *tg) 1977 { 1978 uint64_t bps; 1979 unsigned int iops; 1980 unsigned long elapsed_time; 1981 unsigned long now = jiffies; 1982 1983 if (tg->td->limit_index != LIMIT_MAX || 1984 !tg->td->limit_valid[LIMIT_LOW]) 1985 return; 1986 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1987 return; 1988 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1989 return; 1990 1991 elapsed_time = now - tg->last_check_time; 1992 tg->last_check_time = now; 1993 1994 if (time_before(now, tg_last_low_overflow_time(tg) + 1995 tg->td->throtl_slice)) 1996 return; 1997 1998 if (tg->bps[READ][LIMIT_LOW]) { 1999 bps = tg->last_bytes_disp[READ] * HZ; 2000 do_div(bps, elapsed_time); 2001 if (bps >= tg->bps[READ][LIMIT_LOW]) 2002 tg->last_low_overflow_time[READ] = now; 2003 } 2004 2005 if (tg->bps[WRITE][LIMIT_LOW]) { 2006 bps = tg->last_bytes_disp[WRITE] * HZ; 2007 do_div(bps, elapsed_time); 2008 if (bps >= tg->bps[WRITE][LIMIT_LOW]) 2009 tg->last_low_overflow_time[WRITE] = now; 2010 } 2011 2012 if (tg->iops[READ][LIMIT_LOW]) { 2013 iops = tg->last_io_disp[READ] * HZ / elapsed_time; 2014 if (iops >= tg->iops[READ][LIMIT_LOW]) 2015 tg->last_low_overflow_time[READ] = now; 2016 } 2017 2018 if (tg->iops[WRITE][LIMIT_LOW]) { 2019 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time; 2020 if (iops >= tg->iops[WRITE][LIMIT_LOW]) 2021 tg->last_low_overflow_time[WRITE] = now; 2022 } 2023 2024 /* 2025 * If cgroup is below low limit, consider downgrade and throttle other 2026 * cgroups 2027 */ 2028 if (throtl_hierarchy_can_downgrade(tg)) 2029 throtl_downgrade_state(tg->td, LIMIT_LOW); 2030 2031 tg->last_bytes_disp[READ] = 0; 2032 tg->last_bytes_disp[WRITE] = 0; 2033 tg->last_io_disp[READ] = 0; 2034 tg->last_io_disp[WRITE] = 0; 2035 } 2036 2037 static void blk_throtl_update_idletime(struct throtl_grp *tg) 2038 { 2039 unsigned long now = ktime_get_ns() >> 10; 2040 unsigned long last_finish_time = tg->last_finish_time; 2041 2042 if (now <= last_finish_time || last_finish_time == 0 || 2043 last_finish_time == tg->checked_last_finish_time) 2044 return; 2045 2046 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3; 2047 tg->checked_last_finish_time = last_finish_time; 2048 } 2049 2050 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2051 static void throtl_update_latency_buckets(struct throtl_data *td) 2052 { 2053 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE]; 2054 int i, cpu, rw; 2055 unsigned long last_latency[2] = { 0 }; 2056 unsigned long latency[2]; 2057 2058 if (!blk_queue_nonrot(td->queue)) 2059 return; 2060 if (time_before(jiffies, td->last_calculate_time + HZ)) 2061 return; 2062 td->last_calculate_time = jiffies; 2063 2064 memset(avg_latency, 0, sizeof(avg_latency)); 2065 for (rw = READ; rw <= WRITE; rw++) { 2066 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2067 struct latency_bucket *tmp = &td->tmp_buckets[rw][i]; 2068 2069 for_each_possible_cpu(cpu) { 2070 struct latency_bucket *bucket; 2071 2072 /* this isn't race free, but ok in practice */ 2073 bucket = per_cpu_ptr(td->latency_buckets[rw], 2074 cpu); 2075 tmp->total_latency += bucket[i].total_latency; 2076 tmp->samples += bucket[i].samples; 2077 bucket[i].total_latency = 0; 2078 bucket[i].samples = 0; 2079 } 2080 2081 if (tmp->samples >= 32) { 2082 int samples = tmp->samples; 2083 2084 latency[rw] = tmp->total_latency; 2085 2086 tmp->total_latency = 0; 2087 tmp->samples = 0; 2088 latency[rw] /= samples; 2089 if (latency[rw] == 0) 2090 continue; 2091 avg_latency[rw][i].latency = latency[rw]; 2092 } 2093 } 2094 } 2095 2096 for (rw = READ; rw <= WRITE; rw++) { 2097 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2098 if (!avg_latency[rw][i].latency) { 2099 if (td->avg_buckets[rw][i].latency < last_latency[rw]) 2100 td->avg_buckets[rw][i].latency = 2101 last_latency[rw]; 2102 continue; 2103 } 2104 2105 if (!td->avg_buckets[rw][i].valid) 2106 latency[rw] = avg_latency[rw][i].latency; 2107 else 2108 latency[rw] = (td->avg_buckets[rw][i].latency * 7 + 2109 avg_latency[rw][i].latency) >> 3; 2110 2111 td->avg_buckets[rw][i].latency = max(latency[rw], 2112 last_latency[rw]); 2113 td->avg_buckets[rw][i].valid = true; 2114 last_latency[rw] = td->avg_buckets[rw][i].latency; 2115 } 2116 } 2117 2118 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) 2119 throtl_log(&td->service_queue, 2120 "Latency bucket %d: read latency=%ld, read valid=%d, " 2121 "write latency=%ld, write valid=%d", i, 2122 td->avg_buckets[READ][i].latency, 2123 td->avg_buckets[READ][i].valid, 2124 td->avg_buckets[WRITE][i].latency, 2125 td->avg_buckets[WRITE][i].valid); 2126 } 2127 #else 2128 static inline void throtl_update_latency_buckets(struct throtl_data *td) 2129 { 2130 } 2131 #endif 2132 2133 static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio) 2134 { 2135 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2136 if (bio->bi_css) { 2137 if (bio->bi_cg_private) 2138 blkg_put(tg_to_blkg(bio->bi_cg_private)); 2139 bio->bi_cg_private = tg; 2140 blkg_get(tg_to_blkg(tg)); 2141 } 2142 blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio)); 2143 #endif 2144 } 2145 2146 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg, 2147 struct bio *bio) 2148 { 2149 struct throtl_qnode *qn = NULL; 2150 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg); 2151 struct throtl_service_queue *sq; 2152 bool rw = bio_data_dir(bio); 2153 bool throttled = false; 2154 struct throtl_data *td = tg->td; 2155 2156 WARN_ON_ONCE(!rcu_read_lock_held()); 2157 2158 /* see throtl_charge_bio() */ 2159 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw]) 2160 goto out; 2161 2162 spin_lock_irq(q->queue_lock); 2163 2164 throtl_update_latency_buckets(td); 2165 2166 if (unlikely(blk_queue_bypass(q))) 2167 goto out_unlock; 2168 2169 blk_throtl_assoc_bio(tg, bio); 2170 blk_throtl_update_idletime(tg); 2171 2172 sq = &tg->service_queue; 2173 2174 again: 2175 while (true) { 2176 if (tg->last_low_overflow_time[rw] == 0) 2177 tg->last_low_overflow_time[rw] = jiffies; 2178 throtl_downgrade_check(tg); 2179 throtl_upgrade_check(tg); 2180 /* throtl is FIFO - if bios are already queued, should queue */ 2181 if (sq->nr_queued[rw]) 2182 break; 2183 2184 /* if above limits, break to queue */ 2185 if (!tg_may_dispatch(tg, bio, NULL)) { 2186 tg->last_low_overflow_time[rw] = jiffies; 2187 if (throtl_can_upgrade(td, tg)) { 2188 throtl_upgrade_state(td); 2189 goto again; 2190 } 2191 break; 2192 } 2193 2194 /* within limits, let's charge and dispatch directly */ 2195 throtl_charge_bio(tg, bio); 2196 2197 /* 2198 * We need to trim slice even when bios are not being queued 2199 * otherwise it might happen that a bio is not queued for 2200 * a long time and slice keeps on extending and trim is not 2201 * called for a long time. Now if limits are reduced suddenly 2202 * we take into account all the IO dispatched so far at new 2203 * low rate and * newly queued IO gets a really long dispatch 2204 * time. 2205 * 2206 * So keep on trimming slice even if bio is not queued. 2207 */ 2208 throtl_trim_slice(tg, rw); 2209 2210 /* 2211 * @bio passed through this layer without being throttled. 2212 * Climb up the ladder. If we''re already at the top, it 2213 * can be executed directly. 2214 */ 2215 qn = &tg->qnode_on_parent[rw]; 2216 sq = sq->parent_sq; 2217 tg = sq_to_tg(sq); 2218 if (!tg) 2219 goto out_unlock; 2220 } 2221 2222 /* out-of-limit, queue to @tg */ 2223 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", 2224 rw == READ ? 'R' : 'W', 2225 tg->bytes_disp[rw], bio->bi_iter.bi_size, 2226 tg_bps_limit(tg, rw), 2227 tg->io_disp[rw], tg_iops_limit(tg, rw), 2228 sq->nr_queued[READ], sq->nr_queued[WRITE]); 2229 2230 tg->last_low_overflow_time[rw] = jiffies; 2231 2232 td->nr_queued[rw]++; 2233 throtl_add_bio_tg(bio, qn, tg); 2234 throttled = true; 2235 2236 /* 2237 * Update @tg's dispatch time and force schedule dispatch if @tg 2238 * was empty before @bio. The forced scheduling isn't likely to 2239 * cause undue delay as @bio is likely to be dispatched directly if 2240 * its @tg's disptime is not in the future. 2241 */ 2242 if (tg->flags & THROTL_TG_WAS_EMPTY) { 2243 tg_update_disptime(tg); 2244 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); 2245 } 2246 2247 out_unlock: 2248 spin_unlock_irq(q->queue_lock); 2249 out: 2250 bio_set_flag(bio, BIO_THROTTLED); 2251 2252 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2253 if (throttled || !td->track_bio_latency) 2254 bio->bi_issue_stat.stat |= SKIP_LATENCY; 2255 #endif 2256 return throttled; 2257 } 2258 2259 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2260 static void throtl_track_latency(struct throtl_data *td, sector_t size, 2261 int op, unsigned long time) 2262 { 2263 struct latency_bucket *latency; 2264 int index; 2265 2266 if (!td || td->limit_index != LIMIT_LOW || 2267 !(op == REQ_OP_READ || op == REQ_OP_WRITE) || 2268 !blk_queue_nonrot(td->queue)) 2269 return; 2270 2271 index = request_bucket_index(size); 2272 2273 latency = get_cpu_ptr(td->latency_buckets[op]); 2274 latency[index].total_latency += time; 2275 latency[index].samples++; 2276 put_cpu_ptr(td->latency_buckets[op]); 2277 } 2278 2279 void blk_throtl_stat_add(struct request *rq, u64 time_ns) 2280 { 2281 struct request_queue *q = rq->q; 2282 struct throtl_data *td = q->td; 2283 2284 throtl_track_latency(td, blk_stat_size(&rq->issue_stat), 2285 req_op(rq), time_ns >> 10); 2286 } 2287 2288 void blk_throtl_bio_endio(struct bio *bio) 2289 { 2290 struct throtl_grp *tg; 2291 u64 finish_time_ns; 2292 unsigned long finish_time; 2293 unsigned long start_time; 2294 unsigned long lat; 2295 int rw = bio_data_dir(bio); 2296 2297 tg = bio->bi_cg_private; 2298 if (!tg) 2299 return; 2300 bio->bi_cg_private = NULL; 2301 2302 finish_time_ns = ktime_get_ns(); 2303 tg->last_finish_time = finish_time_ns >> 10; 2304 2305 start_time = blk_stat_time(&bio->bi_issue_stat) >> 10; 2306 finish_time = __blk_stat_time(finish_time_ns) >> 10; 2307 if (!start_time || finish_time <= start_time) { 2308 blkg_put(tg_to_blkg(tg)); 2309 return; 2310 } 2311 2312 lat = finish_time - start_time; 2313 /* this is only for bio based driver */ 2314 if (!(bio->bi_issue_stat.stat & SKIP_LATENCY)) 2315 throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat), 2316 bio_op(bio), lat); 2317 2318 if (tg->latency_target && lat >= tg->td->filtered_latency) { 2319 int bucket; 2320 unsigned int threshold; 2321 2322 bucket = request_bucket_index( 2323 blk_stat_size(&bio->bi_issue_stat)); 2324 threshold = tg->td->avg_buckets[rw][bucket].latency + 2325 tg->latency_target; 2326 if (lat > threshold) 2327 tg->bad_bio_cnt++; 2328 /* 2329 * Not race free, could get wrong count, which means cgroups 2330 * will be throttled 2331 */ 2332 tg->bio_cnt++; 2333 } 2334 2335 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) { 2336 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies; 2337 tg->bio_cnt /= 2; 2338 tg->bad_bio_cnt /= 2; 2339 } 2340 2341 blkg_put(tg_to_blkg(tg)); 2342 } 2343 #endif 2344 2345 /* 2346 * Dispatch all bios from all children tg's queued on @parent_sq. On 2347 * return, @parent_sq is guaranteed to not have any active children tg's 2348 * and all bios from previously active tg's are on @parent_sq->bio_lists[]. 2349 */ 2350 static void tg_drain_bios(struct throtl_service_queue *parent_sq) 2351 { 2352 struct throtl_grp *tg; 2353 2354 while ((tg = throtl_rb_first(parent_sq))) { 2355 struct throtl_service_queue *sq = &tg->service_queue; 2356 struct bio *bio; 2357 2358 throtl_dequeue_tg(tg); 2359 2360 while ((bio = throtl_peek_queued(&sq->queued[READ]))) 2361 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 2362 while ((bio = throtl_peek_queued(&sq->queued[WRITE]))) 2363 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 2364 } 2365 } 2366 2367 /** 2368 * blk_throtl_drain - drain throttled bios 2369 * @q: request_queue to drain throttled bios for 2370 * 2371 * Dispatch all currently throttled bios on @q through ->make_request_fn(). 2372 */ 2373 void blk_throtl_drain(struct request_queue *q) 2374 __releases(q->queue_lock) __acquires(q->queue_lock) 2375 { 2376 struct throtl_data *td = q->td; 2377 struct blkcg_gq *blkg; 2378 struct cgroup_subsys_state *pos_css; 2379 struct bio *bio; 2380 int rw; 2381 2382 queue_lockdep_assert_held(q); 2383 rcu_read_lock(); 2384 2385 /* 2386 * Drain each tg while doing post-order walk on the blkg tree, so 2387 * that all bios are propagated to td->service_queue. It'd be 2388 * better to walk service_queue tree directly but blkg walk is 2389 * easier. 2390 */ 2391 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) 2392 tg_drain_bios(&blkg_to_tg(blkg)->service_queue); 2393 2394 /* finally, transfer bios from top-level tg's into the td */ 2395 tg_drain_bios(&td->service_queue); 2396 2397 rcu_read_unlock(); 2398 spin_unlock_irq(q->queue_lock); 2399 2400 /* all bios now should be in td->service_queue, issue them */ 2401 for (rw = READ; rw <= WRITE; rw++) 2402 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw], 2403 NULL))) 2404 generic_make_request(bio); 2405 2406 spin_lock_irq(q->queue_lock); 2407 } 2408 2409 int blk_throtl_init(struct request_queue *q) 2410 { 2411 struct throtl_data *td; 2412 int ret; 2413 2414 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 2415 if (!td) 2416 return -ENOMEM; 2417 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) * 2418 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2419 if (!td->latency_buckets[READ]) { 2420 kfree(td); 2421 return -ENOMEM; 2422 } 2423 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) * 2424 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2425 if (!td->latency_buckets[WRITE]) { 2426 free_percpu(td->latency_buckets[READ]); 2427 kfree(td); 2428 return -ENOMEM; 2429 } 2430 2431 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); 2432 throtl_service_queue_init(&td->service_queue); 2433 2434 q->td = td; 2435 td->queue = q; 2436 2437 td->limit_valid[LIMIT_MAX] = true; 2438 td->limit_index = LIMIT_MAX; 2439 td->low_upgrade_time = jiffies; 2440 td->low_downgrade_time = jiffies; 2441 2442 /* activate policy */ 2443 ret = blkcg_activate_policy(q, &blkcg_policy_throtl); 2444 if (ret) { 2445 free_percpu(td->latency_buckets[READ]); 2446 free_percpu(td->latency_buckets[WRITE]); 2447 kfree(td); 2448 } 2449 return ret; 2450 } 2451 2452 void blk_throtl_exit(struct request_queue *q) 2453 { 2454 BUG_ON(!q->td); 2455 throtl_shutdown_wq(q); 2456 blkcg_deactivate_policy(q, &blkcg_policy_throtl); 2457 free_percpu(q->td->latency_buckets[READ]); 2458 free_percpu(q->td->latency_buckets[WRITE]); 2459 kfree(q->td); 2460 } 2461 2462 void blk_throtl_register_queue(struct request_queue *q) 2463 { 2464 struct throtl_data *td; 2465 int i; 2466 2467 td = q->td; 2468 BUG_ON(!td); 2469 2470 if (blk_queue_nonrot(q)) { 2471 td->throtl_slice = DFL_THROTL_SLICE_SSD; 2472 td->filtered_latency = LATENCY_FILTERED_SSD; 2473 } else { 2474 td->throtl_slice = DFL_THROTL_SLICE_HD; 2475 td->filtered_latency = LATENCY_FILTERED_HD; 2476 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2477 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY; 2478 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY; 2479 } 2480 } 2481 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW 2482 /* if no low limit, use previous default */ 2483 td->throtl_slice = DFL_THROTL_SLICE_HD; 2484 #endif 2485 2486 td->track_bio_latency = !queue_is_rq_based(q); 2487 if (!td->track_bio_latency) 2488 blk_stat_enable_accounting(q); 2489 } 2490 2491 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2492 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page) 2493 { 2494 if (!q->td) 2495 return -EINVAL; 2496 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice)); 2497 } 2498 2499 ssize_t blk_throtl_sample_time_store(struct request_queue *q, 2500 const char *page, size_t count) 2501 { 2502 unsigned long v; 2503 unsigned long t; 2504 2505 if (!q->td) 2506 return -EINVAL; 2507 if (kstrtoul(page, 10, &v)) 2508 return -EINVAL; 2509 t = msecs_to_jiffies(v); 2510 if (t == 0 || t > MAX_THROTL_SLICE) 2511 return -EINVAL; 2512 q->td->throtl_slice = t; 2513 return count; 2514 } 2515 #endif 2516 2517 static int __init throtl_init(void) 2518 { 2519 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 2520 if (!kthrotld_workqueue) 2521 panic("Failed to create kthrotld\n"); 2522 2523 return blkcg_policy_register(&blkcg_policy_throtl); 2524 } 2525 2526 module_init(throtl_init); 2527