1 /* 2 * Interface for controlling IO bandwidth on a request queue 3 * 4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 5 */ 6 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/blkdev.h> 10 #include <linux/bio.h> 11 #include <linux/blktrace_api.h> 12 #include "blk-cgroup.h" 13 #include "blk.h" 14 15 /* Max dispatch from a group in 1 round */ 16 static int throtl_grp_quantum = 8; 17 18 /* Total max dispatch from all groups in one round */ 19 static int throtl_quantum = 32; 20 21 /* Throttling is performed over 100ms slice and after that slice is renewed */ 22 static unsigned long throtl_slice = HZ/10; /* 100 ms */ 23 24 static struct blkcg_policy blkcg_policy_throtl; 25 26 /* A workqueue to queue throttle related work */ 27 static struct workqueue_struct *kthrotld_workqueue; 28 29 /* 30 * To implement hierarchical throttling, throtl_grps form a tree and bios 31 * are dispatched upwards level by level until they reach the top and get 32 * issued. When dispatching bios from the children and local group at each 33 * level, if the bios are dispatched into a single bio_list, there's a risk 34 * of a local or child group which can queue many bios at once filling up 35 * the list starving others. 36 * 37 * To avoid such starvation, dispatched bios are queued separately 38 * according to where they came from. When they are again dispatched to 39 * the parent, they're popped in round-robin order so that no single source 40 * hogs the dispatch window. 41 * 42 * throtl_qnode is used to keep the queued bios separated by their sources. 43 * Bios are queued to throtl_qnode which in turn is queued to 44 * throtl_service_queue and then dispatched in round-robin order. 45 * 46 * It's also used to track the reference counts on blkg's. A qnode always 47 * belongs to a throtl_grp and gets queued on itself or the parent, so 48 * incrementing the reference of the associated throtl_grp when a qnode is 49 * queued and decrementing when dequeued is enough to keep the whole blkg 50 * tree pinned while bios are in flight. 51 */ 52 struct throtl_qnode { 53 struct list_head node; /* service_queue->queued[] */ 54 struct bio_list bios; /* queued bios */ 55 struct throtl_grp *tg; /* tg this qnode belongs to */ 56 }; 57 58 struct throtl_service_queue { 59 struct throtl_service_queue *parent_sq; /* the parent service_queue */ 60 61 /* 62 * Bios queued directly to this service_queue or dispatched from 63 * children throtl_grp's. 64 */ 65 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */ 66 unsigned int nr_queued[2]; /* number of queued bios */ 67 68 /* 69 * RB tree of active children throtl_grp's, which are sorted by 70 * their ->disptime. 71 */ 72 struct rb_root pending_tree; /* RB tree of active tgs */ 73 struct rb_node *first_pending; /* first node in the tree */ 74 unsigned int nr_pending; /* # queued in the tree */ 75 unsigned long first_pending_disptime; /* disptime of the first tg */ 76 struct timer_list pending_timer; /* fires on first_pending_disptime */ 77 }; 78 79 enum tg_state_flags { 80 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */ 81 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */ 82 }; 83 84 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 85 86 /* Per-cpu group stats */ 87 struct tg_stats_cpu { 88 /* total bytes transferred */ 89 struct blkg_rwstat service_bytes; 90 /* total IOs serviced, post merge */ 91 struct blkg_rwstat serviced; 92 }; 93 94 struct throtl_grp { 95 /* must be the first member */ 96 struct blkg_policy_data pd; 97 98 /* active throtl group service_queue member */ 99 struct rb_node rb_node; 100 101 /* throtl_data this group belongs to */ 102 struct throtl_data *td; 103 104 /* this group's service queue */ 105 struct throtl_service_queue service_queue; 106 107 /* 108 * qnode_on_self is used when bios are directly queued to this 109 * throtl_grp so that local bios compete fairly with bios 110 * dispatched from children. qnode_on_parent is used when bios are 111 * dispatched from this throtl_grp into its parent and will compete 112 * with the sibling qnode_on_parents and the parent's 113 * qnode_on_self. 114 */ 115 struct throtl_qnode qnode_on_self[2]; 116 struct throtl_qnode qnode_on_parent[2]; 117 118 /* 119 * Dispatch time in jiffies. This is the estimated time when group 120 * will unthrottle and is ready to dispatch more bio. It is used as 121 * key to sort active groups in service tree. 122 */ 123 unsigned long disptime; 124 125 unsigned int flags; 126 127 /* are there any throtl rules between this group and td? */ 128 bool has_rules[2]; 129 130 /* bytes per second rate limits */ 131 uint64_t bps[2]; 132 133 /* IOPS limits */ 134 unsigned int iops[2]; 135 136 /* Number of bytes disptached in current slice */ 137 uint64_t bytes_disp[2]; 138 /* Number of bio's dispatched in current slice */ 139 unsigned int io_disp[2]; 140 141 /* When did we start a new slice */ 142 unsigned long slice_start[2]; 143 unsigned long slice_end[2]; 144 145 /* Per cpu stats pointer */ 146 struct tg_stats_cpu __percpu *stats_cpu; 147 148 /* List of tgs waiting for per cpu stats memory to be allocated */ 149 struct list_head stats_alloc_node; 150 }; 151 152 struct throtl_data 153 { 154 /* service tree for active throtl groups */ 155 struct throtl_service_queue service_queue; 156 157 struct request_queue *queue; 158 159 /* Total Number of queued bios on READ and WRITE lists */ 160 unsigned int nr_queued[2]; 161 162 /* 163 * number of total undestroyed groups 164 */ 165 unsigned int nr_undestroyed_grps; 166 167 /* Work for dispatching throttled bios */ 168 struct work_struct dispatch_work; 169 }; 170 171 /* list and work item to allocate percpu group stats */ 172 static DEFINE_SPINLOCK(tg_stats_alloc_lock); 173 static LIST_HEAD(tg_stats_alloc_list); 174 175 static void tg_stats_alloc_fn(struct work_struct *); 176 static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn); 177 178 static void throtl_pending_timer_fn(unsigned long arg); 179 180 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd) 181 { 182 return pd ? container_of(pd, struct throtl_grp, pd) : NULL; 183 } 184 185 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg) 186 { 187 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl)); 188 } 189 190 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) 191 { 192 return pd_to_blkg(&tg->pd); 193 } 194 195 static inline struct throtl_grp *td_root_tg(struct throtl_data *td) 196 { 197 return blkg_to_tg(td->queue->root_blkg); 198 } 199 200 /** 201 * sq_to_tg - return the throl_grp the specified service queue belongs to 202 * @sq: the throtl_service_queue of interest 203 * 204 * Return the throtl_grp @sq belongs to. If @sq is the top-level one 205 * embedded in throtl_data, %NULL is returned. 206 */ 207 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) 208 { 209 if (sq && sq->parent_sq) 210 return container_of(sq, struct throtl_grp, service_queue); 211 else 212 return NULL; 213 } 214 215 /** 216 * sq_to_td - return throtl_data the specified service queue belongs to 217 * @sq: the throtl_service_queue of interest 218 * 219 * A service_queue can be embeded in either a throtl_grp or throtl_data. 220 * Determine the associated throtl_data accordingly and return it. 221 */ 222 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) 223 { 224 struct throtl_grp *tg = sq_to_tg(sq); 225 226 if (tg) 227 return tg->td; 228 else 229 return container_of(sq, struct throtl_data, service_queue); 230 } 231 232 /** 233 * throtl_log - log debug message via blktrace 234 * @sq: the service_queue being reported 235 * @fmt: printf format string 236 * @args: printf args 237 * 238 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a 239 * throtl_grp; otherwise, just "throtl". 240 * 241 * TODO: this should be made a function and name formatting should happen 242 * after testing whether blktrace is enabled. 243 */ 244 #define throtl_log(sq, fmt, args...) do { \ 245 struct throtl_grp *__tg = sq_to_tg((sq)); \ 246 struct throtl_data *__td = sq_to_td((sq)); \ 247 \ 248 (void)__td; \ 249 if ((__tg)) { \ 250 char __pbuf[128]; \ 251 \ 252 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \ 253 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \ 254 } else { \ 255 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ 256 } \ 257 } while (0) 258 259 /* 260 * Worker for allocating per cpu stat for tgs. This is scheduled on the 261 * system_wq once there are some groups on the alloc_list waiting for 262 * allocation. 263 */ 264 static void tg_stats_alloc_fn(struct work_struct *work) 265 { 266 static struct tg_stats_cpu *stats_cpu; /* this fn is non-reentrant */ 267 struct delayed_work *dwork = to_delayed_work(work); 268 bool empty = false; 269 270 alloc_stats: 271 if (!stats_cpu) { 272 stats_cpu = alloc_percpu(struct tg_stats_cpu); 273 if (!stats_cpu) { 274 /* allocation failed, try again after some time */ 275 schedule_delayed_work(dwork, msecs_to_jiffies(10)); 276 return; 277 } 278 } 279 280 spin_lock_irq(&tg_stats_alloc_lock); 281 282 if (!list_empty(&tg_stats_alloc_list)) { 283 struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list, 284 struct throtl_grp, 285 stats_alloc_node); 286 swap(tg->stats_cpu, stats_cpu); 287 list_del_init(&tg->stats_alloc_node); 288 } 289 290 empty = list_empty(&tg_stats_alloc_list); 291 spin_unlock_irq(&tg_stats_alloc_lock); 292 if (!empty) 293 goto alloc_stats; 294 } 295 296 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) 297 { 298 INIT_LIST_HEAD(&qn->node); 299 bio_list_init(&qn->bios); 300 qn->tg = tg; 301 } 302 303 /** 304 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it 305 * @bio: bio being added 306 * @qn: qnode to add bio to 307 * @queued: the service_queue->queued[] list @qn belongs to 308 * 309 * Add @bio to @qn and put @qn on @queued if it's not already on. 310 * @qn->tg's reference count is bumped when @qn is activated. See the 311 * comment on top of throtl_qnode definition for details. 312 */ 313 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, 314 struct list_head *queued) 315 { 316 bio_list_add(&qn->bios, bio); 317 if (list_empty(&qn->node)) { 318 list_add_tail(&qn->node, queued); 319 blkg_get(tg_to_blkg(qn->tg)); 320 } 321 } 322 323 /** 324 * throtl_peek_queued - peek the first bio on a qnode list 325 * @queued: the qnode list to peek 326 */ 327 static struct bio *throtl_peek_queued(struct list_head *queued) 328 { 329 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); 330 struct bio *bio; 331 332 if (list_empty(queued)) 333 return NULL; 334 335 bio = bio_list_peek(&qn->bios); 336 WARN_ON_ONCE(!bio); 337 return bio; 338 } 339 340 /** 341 * throtl_pop_queued - pop the first bio form a qnode list 342 * @queued: the qnode list to pop a bio from 343 * @tg_to_put: optional out argument for throtl_grp to put 344 * 345 * Pop the first bio from the qnode list @queued. After popping, the first 346 * qnode is removed from @queued if empty or moved to the end of @queued so 347 * that the popping order is round-robin. 348 * 349 * When the first qnode is removed, its associated throtl_grp should be put 350 * too. If @tg_to_put is NULL, this function automatically puts it; 351 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is 352 * responsible for putting it. 353 */ 354 static struct bio *throtl_pop_queued(struct list_head *queued, 355 struct throtl_grp **tg_to_put) 356 { 357 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); 358 struct bio *bio; 359 360 if (list_empty(queued)) 361 return NULL; 362 363 bio = bio_list_pop(&qn->bios); 364 WARN_ON_ONCE(!bio); 365 366 if (bio_list_empty(&qn->bios)) { 367 list_del_init(&qn->node); 368 if (tg_to_put) 369 *tg_to_put = qn->tg; 370 else 371 blkg_put(tg_to_blkg(qn->tg)); 372 } else { 373 list_move_tail(&qn->node, queued); 374 } 375 376 return bio; 377 } 378 379 /* init a service_queue, assumes the caller zeroed it */ 380 static void throtl_service_queue_init(struct throtl_service_queue *sq, 381 struct throtl_service_queue *parent_sq) 382 { 383 INIT_LIST_HEAD(&sq->queued[0]); 384 INIT_LIST_HEAD(&sq->queued[1]); 385 sq->pending_tree = RB_ROOT; 386 sq->parent_sq = parent_sq; 387 setup_timer(&sq->pending_timer, throtl_pending_timer_fn, 388 (unsigned long)sq); 389 } 390 391 static void throtl_service_queue_exit(struct throtl_service_queue *sq) 392 { 393 del_timer_sync(&sq->pending_timer); 394 } 395 396 static void throtl_pd_init(struct blkcg_gq *blkg) 397 { 398 struct throtl_grp *tg = blkg_to_tg(blkg); 399 struct throtl_data *td = blkg->q->td; 400 struct throtl_service_queue *parent_sq; 401 unsigned long flags; 402 int rw; 403 404 /* 405 * If sane_hierarchy is enabled, we switch to properly hierarchical 406 * behavior where limits on a given throtl_grp are applied to the 407 * whole subtree rather than just the group itself. e.g. If 16M 408 * read_bps limit is set on the root group, the whole system can't 409 * exceed 16M for the device. 410 * 411 * If sane_hierarchy is not enabled, the broken flat hierarchy 412 * behavior is retained where all throtl_grps are treated as if 413 * they're all separate root groups right below throtl_data. 414 * Limits of a group don't interact with limits of other groups 415 * regardless of the position of the group in the hierarchy. 416 */ 417 parent_sq = &td->service_queue; 418 419 if (cgroup_sane_behavior(blkg->blkcg->css.cgroup) && blkg->parent) 420 parent_sq = &blkg_to_tg(blkg->parent)->service_queue; 421 422 throtl_service_queue_init(&tg->service_queue, parent_sq); 423 424 for (rw = READ; rw <= WRITE; rw++) { 425 throtl_qnode_init(&tg->qnode_on_self[rw], tg); 426 throtl_qnode_init(&tg->qnode_on_parent[rw], tg); 427 } 428 429 RB_CLEAR_NODE(&tg->rb_node); 430 tg->td = td; 431 432 tg->bps[READ] = -1; 433 tg->bps[WRITE] = -1; 434 tg->iops[READ] = -1; 435 tg->iops[WRITE] = -1; 436 437 /* 438 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu 439 * but percpu allocator can't be called from IO path. Queue tg on 440 * tg_stats_alloc_list and allocate from work item. 441 */ 442 spin_lock_irqsave(&tg_stats_alloc_lock, flags); 443 list_add(&tg->stats_alloc_node, &tg_stats_alloc_list); 444 schedule_delayed_work(&tg_stats_alloc_work, 0); 445 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags); 446 } 447 448 /* 449 * Set has_rules[] if @tg or any of its parents have limits configured. 450 * This doesn't require walking up to the top of the hierarchy as the 451 * parent's has_rules[] is guaranteed to be correct. 452 */ 453 static void tg_update_has_rules(struct throtl_grp *tg) 454 { 455 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); 456 int rw; 457 458 for (rw = READ; rw <= WRITE; rw++) 459 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) || 460 (tg->bps[rw] != -1 || tg->iops[rw] != -1); 461 } 462 463 static void throtl_pd_online(struct blkcg_gq *blkg) 464 { 465 /* 466 * We don't want new groups to escape the limits of its ancestors. 467 * Update has_rules[] after a new group is brought online. 468 */ 469 tg_update_has_rules(blkg_to_tg(blkg)); 470 } 471 472 static void throtl_pd_exit(struct blkcg_gq *blkg) 473 { 474 struct throtl_grp *tg = blkg_to_tg(blkg); 475 unsigned long flags; 476 477 spin_lock_irqsave(&tg_stats_alloc_lock, flags); 478 list_del_init(&tg->stats_alloc_node); 479 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags); 480 481 free_percpu(tg->stats_cpu); 482 483 throtl_service_queue_exit(&tg->service_queue); 484 } 485 486 static void throtl_pd_reset_stats(struct blkcg_gq *blkg) 487 { 488 struct throtl_grp *tg = blkg_to_tg(blkg); 489 int cpu; 490 491 if (tg->stats_cpu == NULL) 492 return; 493 494 for_each_possible_cpu(cpu) { 495 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu); 496 497 blkg_rwstat_reset(&sc->service_bytes); 498 blkg_rwstat_reset(&sc->serviced); 499 } 500 } 501 502 static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td, 503 struct blkcg *blkcg) 504 { 505 /* 506 * This is the common case when there are no blkcgs. Avoid lookup 507 * in this case 508 */ 509 if (blkcg == &blkcg_root) 510 return td_root_tg(td); 511 512 return blkg_to_tg(blkg_lookup(blkcg, td->queue)); 513 } 514 515 static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td, 516 struct blkcg *blkcg) 517 { 518 struct request_queue *q = td->queue; 519 struct throtl_grp *tg = NULL; 520 521 /* 522 * This is the common case when there are no blkcgs. Avoid lookup 523 * in this case 524 */ 525 if (blkcg == &blkcg_root) { 526 tg = td_root_tg(td); 527 } else { 528 struct blkcg_gq *blkg; 529 530 blkg = blkg_lookup_create(blkcg, q); 531 532 /* if %NULL and @q is alive, fall back to root_tg */ 533 if (!IS_ERR(blkg)) 534 tg = blkg_to_tg(blkg); 535 else if (!blk_queue_dying(q)) 536 tg = td_root_tg(td); 537 } 538 539 return tg; 540 } 541 542 static struct throtl_grp * 543 throtl_rb_first(struct throtl_service_queue *parent_sq) 544 { 545 /* Service tree is empty */ 546 if (!parent_sq->nr_pending) 547 return NULL; 548 549 if (!parent_sq->first_pending) 550 parent_sq->first_pending = rb_first(&parent_sq->pending_tree); 551 552 if (parent_sq->first_pending) 553 return rb_entry_tg(parent_sq->first_pending); 554 555 return NULL; 556 } 557 558 static void rb_erase_init(struct rb_node *n, struct rb_root *root) 559 { 560 rb_erase(n, root); 561 RB_CLEAR_NODE(n); 562 } 563 564 static void throtl_rb_erase(struct rb_node *n, 565 struct throtl_service_queue *parent_sq) 566 { 567 if (parent_sq->first_pending == n) 568 parent_sq->first_pending = NULL; 569 rb_erase_init(n, &parent_sq->pending_tree); 570 --parent_sq->nr_pending; 571 } 572 573 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) 574 { 575 struct throtl_grp *tg; 576 577 tg = throtl_rb_first(parent_sq); 578 if (!tg) 579 return; 580 581 parent_sq->first_pending_disptime = tg->disptime; 582 } 583 584 static void tg_service_queue_add(struct throtl_grp *tg) 585 { 586 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; 587 struct rb_node **node = &parent_sq->pending_tree.rb_node; 588 struct rb_node *parent = NULL; 589 struct throtl_grp *__tg; 590 unsigned long key = tg->disptime; 591 int left = 1; 592 593 while (*node != NULL) { 594 parent = *node; 595 __tg = rb_entry_tg(parent); 596 597 if (time_before(key, __tg->disptime)) 598 node = &parent->rb_left; 599 else { 600 node = &parent->rb_right; 601 left = 0; 602 } 603 } 604 605 if (left) 606 parent_sq->first_pending = &tg->rb_node; 607 608 rb_link_node(&tg->rb_node, parent, node); 609 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree); 610 } 611 612 static void __throtl_enqueue_tg(struct throtl_grp *tg) 613 { 614 tg_service_queue_add(tg); 615 tg->flags |= THROTL_TG_PENDING; 616 tg->service_queue.parent_sq->nr_pending++; 617 } 618 619 static void throtl_enqueue_tg(struct throtl_grp *tg) 620 { 621 if (!(tg->flags & THROTL_TG_PENDING)) 622 __throtl_enqueue_tg(tg); 623 } 624 625 static void __throtl_dequeue_tg(struct throtl_grp *tg) 626 { 627 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); 628 tg->flags &= ~THROTL_TG_PENDING; 629 } 630 631 static void throtl_dequeue_tg(struct throtl_grp *tg) 632 { 633 if (tg->flags & THROTL_TG_PENDING) 634 __throtl_dequeue_tg(tg); 635 } 636 637 /* Call with queue lock held */ 638 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, 639 unsigned long expires) 640 { 641 mod_timer(&sq->pending_timer, expires); 642 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", 643 expires - jiffies, jiffies); 644 } 645 646 /** 647 * throtl_schedule_next_dispatch - schedule the next dispatch cycle 648 * @sq: the service_queue to schedule dispatch for 649 * @force: force scheduling 650 * 651 * Arm @sq->pending_timer so that the next dispatch cycle starts on the 652 * dispatch time of the first pending child. Returns %true if either timer 653 * is armed or there's no pending child left. %false if the current 654 * dispatch window is still open and the caller should continue 655 * dispatching. 656 * 657 * If @force is %true, the dispatch timer is always scheduled and this 658 * function is guaranteed to return %true. This is to be used when the 659 * caller can't dispatch itself and needs to invoke pending_timer 660 * unconditionally. Note that forced scheduling is likely to induce short 661 * delay before dispatch starts even if @sq->first_pending_disptime is not 662 * in the future and thus shouldn't be used in hot paths. 663 */ 664 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, 665 bool force) 666 { 667 /* any pending children left? */ 668 if (!sq->nr_pending) 669 return true; 670 671 update_min_dispatch_time(sq); 672 673 /* is the next dispatch time in the future? */ 674 if (force || time_after(sq->first_pending_disptime, jiffies)) { 675 throtl_schedule_pending_timer(sq, sq->first_pending_disptime); 676 return true; 677 } 678 679 /* tell the caller to continue dispatching */ 680 return false; 681 } 682 683 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, 684 bool rw, unsigned long start) 685 { 686 tg->bytes_disp[rw] = 0; 687 tg->io_disp[rw] = 0; 688 689 /* 690 * Previous slice has expired. We must have trimmed it after last 691 * bio dispatch. That means since start of last slice, we never used 692 * that bandwidth. Do try to make use of that bandwidth while giving 693 * credit. 694 */ 695 if (time_after_eq(start, tg->slice_start[rw])) 696 tg->slice_start[rw] = start; 697 698 tg->slice_end[rw] = jiffies + throtl_slice; 699 throtl_log(&tg->service_queue, 700 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", 701 rw == READ ? 'R' : 'W', tg->slice_start[rw], 702 tg->slice_end[rw], jiffies); 703 } 704 705 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw) 706 { 707 tg->bytes_disp[rw] = 0; 708 tg->io_disp[rw] = 0; 709 tg->slice_start[rw] = jiffies; 710 tg->slice_end[rw] = jiffies + throtl_slice; 711 throtl_log(&tg->service_queue, 712 "[%c] new slice start=%lu end=%lu jiffies=%lu", 713 rw == READ ? 'R' : 'W', tg->slice_start[rw], 714 tg->slice_end[rw], jiffies); 715 } 716 717 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, 718 unsigned long jiffy_end) 719 { 720 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); 721 } 722 723 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, 724 unsigned long jiffy_end) 725 { 726 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); 727 throtl_log(&tg->service_queue, 728 "[%c] extend slice start=%lu end=%lu jiffies=%lu", 729 rw == READ ? 'R' : 'W', tg->slice_start[rw], 730 tg->slice_end[rw], jiffies); 731 } 732 733 /* Determine if previously allocated or extended slice is complete or not */ 734 static bool throtl_slice_used(struct throtl_grp *tg, bool rw) 735 { 736 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 737 return 0; 738 739 return 1; 740 } 741 742 /* Trim the used slices and adjust slice start accordingly */ 743 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) 744 { 745 unsigned long nr_slices, time_elapsed, io_trim; 746 u64 bytes_trim, tmp; 747 748 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 749 750 /* 751 * If bps are unlimited (-1), then time slice don't get 752 * renewed. Don't try to trim the slice if slice is used. A new 753 * slice will start when appropriate. 754 */ 755 if (throtl_slice_used(tg, rw)) 756 return; 757 758 /* 759 * A bio has been dispatched. Also adjust slice_end. It might happen 760 * that initially cgroup limit was very low resulting in high 761 * slice_end, but later limit was bumped up and bio was dispached 762 * sooner, then we need to reduce slice_end. A high bogus slice_end 763 * is bad because it does not allow new slice to start. 764 */ 765 766 throtl_set_slice_end(tg, rw, jiffies + throtl_slice); 767 768 time_elapsed = jiffies - tg->slice_start[rw]; 769 770 nr_slices = time_elapsed / throtl_slice; 771 772 if (!nr_slices) 773 return; 774 tmp = tg->bps[rw] * throtl_slice * nr_slices; 775 do_div(tmp, HZ); 776 bytes_trim = tmp; 777 778 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ; 779 780 if (!bytes_trim && !io_trim) 781 return; 782 783 if (tg->bytes_disp[rw] >= bytes_trim) 784 tg->bytes_disp[rw] -= bytes_trim; 785 else 786 tg->bytes_disp[rw] = 0; 787 788 if (tg->io_disp[rw] >= io_trim) 789 tg->io_disp[rw] -= io_trim; 790 else 791 tg->io_disp[rw] = 0; 792 793 tg->slice_start[rw] += nr_slices * throtl_slice; 794 795 throtl_log(&tg->service_queue, 796 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu", 797 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, 798 tg->slice_start[rw], tg->slice_end[rw], jiffies); 799 } 800 801 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, 802 unsigned long *wait) 803 { 804 bool rw = bio_data_dir(bio); 805 unsigned int io_allowed; 806 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 807 u64 tmp; 808 809 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 810 811 /* Slice has just started. Consider one slice interval */ 812 if (!jiffy_elapsed) 813 jiffy_elapsed_rnd = throtl_slice; 814 815 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); 816 817 /* 818 * jiffy_elapsed_rnd should not be a big value as minimum iops can be 819 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 820 * will allow dispatch after 1 second and after that slice should 821 * have been trimmed. 822 */ 823 824 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd; 825 do_div(tmp, HZ); 826 827 if (tmp > UINT_MAX) 828 io_allowed = UINT_MAX; 829 else 830 io_allowed = tmp; 831 832 if (tg->io_disp[rw] + 1 <= io_allowed) { 833 if (wait) 834 *wait = 0; 835 return 1; 836 } 837 838 /* Calc approx time to dispatch */ 839 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1; 840 841 if (jiffy_wait > jiffy_elapsed) 842 jiffy_wait = jiffy_wait - jiffy_elapsed; 843 else 844 jiffy_wait = 1; 845 846 if (wait) 847 *wait = jiffy_wait; 848 return 0; 849 } 850 851 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, 852 unsigned long *wait) 853 { 854 bool rw = bio_data_dir(bio); 855 u64 bytes_allowed, extra_bytes, tmp; 856 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 857 858 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 859 860 /* Slice has just started. Consider one slice interval */ 861 if (!jiffy_elapsed) 862 jiffy_elapsed_rnd = throtl_slice; 863 864 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); 865 866 tmp = tg->bps[rw] * jiffy_elapsed_rnd; 867 do_div(tmp, HZ); 868 bytes_allowed = tmp; 869 870 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) { 871 if (wait) 872 *wait = 0; 873 return 1; 874 } 875 876 /* Calc approx time to dispatch */ 877 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed; 878 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]); 879 880 if (!jiffy_wait) 881 jiffy_wait = 1; 882 883 /* 884 * This wait time is without taking into consideration the rounding 885 * up we did. Add that time also. 886 */ 887 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 888 if (wait) 889 *wait = jiffy_wait; 890 return 0; 891 } 892 893 /* 894 * Returns whether one can dispatch a bio or not. Also returns approx number 895 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 896 */ 897 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, 898 unsigned long *wait) 899 { 900 bool rw = bio_data_dir(bio); 901 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 902 903 /* 904 * Currently whole state machine of group depends on first bio 905 * queued in the group bio list. So one should not be calling 906 * this function with a different bio if there are other bios 907 * queued. 908 */ 909 BUG_ON(tg->service_queue.nr_queued[rw] && 910 bio != throtl_peek_queued(&tg->service_queue.queued[rw])); 911 912 /* If tg->bps = -1, then BW is unlimited */ 913 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) { 914 if (wait) 915 *wait = 0; 916 return 1; 917 } 918 919 /* 920 * If previous slice expired, start a new one otherwise renew/extend 921 * existing slice to make sure it is at least throtl_slice interval 922 * long since now. 923 */ 924 if (throtl_slice_used(tg, rw)) 925 throtl_start_new_slice(tg, rw); 926 else { 927 if (time_before(tg->slice_end[rw], jiffies + throtl_slice)) 928 throtl_extend_slice(tg, rw, jiffies + throtl_slice); 929 } 930 931 if (tg_with_in_bps_limit(tg, bio, &bps_wait) && 932 tg_with_in_iops_limit(tg, bio, &iops_wait)) { 933 if (wait) 934 *wait = 0; 935 return 1; 936 } 937 938 max_wait = max(bps_wait, iops_wait); 939 940 if (wait) 941 *wait = max_wait; 942 943 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 944 throtl_extend_slice(tg, rw, jiffies + max_wait); 945 946 return 0; 947 } 948 949 static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes, 950 int rw) 951 { 952 struct throtl_grp *tg = blkg_to_tg(blkg); 953 struct tg_stats_cpu *stats_cpu; 954 unsigned long flags; 955 956 /* If per cpu stats are not allocated yet, don't do any accounting. */ 957 if (tg->stats_cpu == NULL) 958 return; 959 960 /* 961 * Disabling interrupts to provide mutual exclusion between two 962 * writes on same cpu. It probably is not needed for 64bit. Not 963 * optimizing that case yet. 964 */ 965 local_irq_save(flags); 966 967 stats_cpu = this_cpu_ptr(tg->stats_cpu); 968 969 blkg_rwstat_add(&stats_cpu->serviced, rw, 1); 970 blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes); 971 972 local_irq_restore(flags); 973 } 974 975 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 976 { 977 bool rw = bio_data_dir(bio); 978 979 /* Charge the bio to the group */ 980 tg->bytes_disp[rw] += bio->bi_size; 981 tg->io_disp[rw]++; 982 983 /* 984 * REQ_THROTTLED is used to prevent the same bio to be throttled 985 * more than once as a throttled bio will go through blk-throtl the 986 * second time when it eventually gets issued. Set it when a bio 987 * is being charged to a tg. 988 * 989 * Dispatch stats aren't recursive and each @bio should only be 990 * accounted by the @tg it was originally associated with. Let's 991 * update the stats when setting REQ_THROTTLED for the first time 992 * which is guaranteed to be for the @bio's original tg. 993 */ 994 if (!(bio->bi_rw & REQ_THROTTLED)) { 995 bio->bi_rw |= REQ_THROTTLED; 996 throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size, 997 bio->bi_rw); 998 } 999 } 1000 1001 /** 1002 * throtl_add_bio_tg - add a bio to the specified throtl_grp 1003 * @bio: bio to add 1004 * @qn: qnode to use 1005 * @tg: the target throtl_grp 1006 * 1007 * Add @bio to @tg's service_queue using @qn. If @qn is not specified, 1008 * tg->qnode_on_self[] is used. 1009 */ 1010 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, 1011 struct throtl_grp *tg) 1012 { 1013 struct throtl_service_queue *sq = &tg->service_queue; 1014 bool rw = bio_data_dir(bio); 1015 1016 if (!qn) 1017 qn = &tg->qnode_on_self[rw]; 1018 1019 /* 1020 * If @tg doesn't currently have any bios queued in the same 1021 * direction, queueing @bio can change when @tg should be 1022 * dispatched. Mark that @tg was empty. This is automatically 1023 * cleaered on the next tg_update_disptime(). 1024 */ 1025 if (!sq->nr_queued[rw]) 1026 tg->flags |= THROTL_TG_WAS_EMPTY; 1027 1028 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); 1029 1030 sq->nr_queued[rw]++; 1031 throtl_enqueue_tg(tg); 1032 } 1033 1034 static void tg_update_disptime(struct throtl_grp *tg) 1035 { 1036 struct throtl_service_queue *sq = &tg->service_queue; 1037 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 1038 struct bio *bio; 1039 1040 if ((bio = throtl_peek_queued(&sq->queued[READ]))) 1041 tg_may_dispatch(tg, bio, &read_wait); 1042 1043 if ((bio = throtl_peek_queued(&sq->queued[WRITE]))) 1044 tg_may_dispatch(tg, bio, &write_wait); 1045 1046 min_wait = min(read_wait, write_wait); 1047 disptime = jiffies + min_wait; 1048 1049 /* Update dispatch time */ 1050 throtl_dequeue_tg(tg); 1051 tg->disptime = disptime; 1052 throtl_enqueue_tg(tg); 1053 1054 /* see throtl_add_bio_tg() */ 1055 tg->flags &= ~THROTL_TG_WAS_EMPTY; 1056 } 1057 1058 static void start_parent_slice_with_credit(struct throtl_grp *child_tg, 1059 struct throtl_grp *parent_tg, bool rw) 1060 { 1061 if (throtl_slice_used(parent_tg, rw)) { 1062 throtl_start_new_slice_with_credit(parent_tg, rw, 1063 child_tg->slice_start[rw]); 1064 } 1065 1066 } 1067 1068 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) 1069 { 1070 struct throtl_service_queue *sq = &tg->service_queue; 1071 struct throtl_service_queue *parent_sq = sq->parent_sq; 1072 struct throtl_grp *parent_tg = sq_to_tg(parent_sq); 1073 struct throtl_grp *tg_to_put = NULL; 1074 struct bio *bio; 1075 1076 /* 1077 * @bio is being transferred from @tg to @parent_sq. Popping a bio 1078 * from @tg may put its reference and @parent_sq might end up 1079 * getting released prematurely. Remember the tg to put and put it 1080 * after @bio is transferred to @parent_sq. 1081 */ 1082 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); 1083 sq->nr_queued[rw]--; 1084 1085 throtl_charge_bio(tg, bio); 1086 1087 /* 1088 * If our parent is another tg, we just need to transfer @bio to 1089 * the parent using throtl_add_bio_tg(). If our parent is 1090 * @td->service_queue, @bio is ready to be issued. Put it on its 1091 * bio_lists[] and decrease total number queued. The caller is 1092 * responsible for issuing these bios. 1093 */ 1094 if (parent_tg) { 1095 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); 1096 start_parent_slice_with_credit(tg, parent_tg, rw); 1097 } else { 1098 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], 1099 &parent_sq->queued[rw]); 1100 BUG_ON(tg->td->nr_queued[rw] <= 0); 1101 tg->td->nr_queued[rw]--; 1102 } 1103 1104 throtl_trim_slice(tg, rw); 1105 1106 if (tg_to_put) 1107 blkg_put(tg_to_blkg(tg_to_put)); 1108 } 1109 1110 static int throtl_dispatch_tg(struct throtl_grp *tg) 1111 { 1112 struct throtl_service_queue *sq = &tg->service_queue; 1113 unsigned int nr_reads = 0, nr_writes = 0; 1114 unsigned int max_nr_reads = throtl_grp_quantum*3/4; 1115 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; 1116 struct bio *bio; 1117 1118 /* Try to dispatch 75% READS and 25% WRITES */ 1119 1120 while ((bio = throtl_peek_queued(&sq->queued[READ])) && 1121 tg_may_dispatch(tg, bio, NULL)) { 1122 1123 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1124 nr_reads++; 1125 1126 if (nr_reads >= max_nr_reads) 1127 break; 1128 } 1129 1130 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && 1131 tg_may_dispatch(tg, bio, NULL)) { 1132 1133 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1134 nr_writes++; 1135 1136 if (nr_writes >= max_nr_writes) 1137 break; 1138 } 1139 1140 return nr_reads + nr_writes; 1141 } 1142 1143 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) 1144 { 1145 unsigned int nr_disp = 0; 1146 1147 while (1) { 1148 struct throtl_grp *tg = throtl_rb_first(parent_sq); 1149 struct throtl_service_queue *sq = &tg->service_queue; 1150 1151 if (!tg) 1152 break; 1153 1154 if (time_before(jiffies, tg->disptime)) 1155 break; 1156 1157 throtl_dequeue_tg(tg); 1158 1159 nr_disp += throtl_dispatch_tg(tg); 1160 1161 if (sq->nr_queued[0] || sq->nr_queued[1]) 1162 tg_update_disptime(tg); 1163 1164 if (nr_disp >= throtl_quantum) 1165 break; 1166 } 1167 1168 return nr_disp; 1169 } 1170 1171 /** 1172 * throtl_pending_timer_fn - timer function for service_queue->pending_timer 1173 * @arg: the throtl_service_queue being serviced 1174 * 1175 * This timer is armed when a child throtl_grp with active bio's become 1176 * pending and queued on the service_queue's pending_tree and expires when 1177 * the first child throtl_grp should be dispatched. This function 1178 * dispatches bio's from the children throtl_grps to the parent 1179 * service_queue. 1180 * 1181 * If the parent's parent is another throtl_grp, dispatching is propagated 1182 * by either arming its pending_timer or repeating dispatch directly. If 1183 * the top-level service_tree is reached, throtl_data->dispatch_work is 1184 * kicked so that the ready bio's are issued. 1185 */ 1186 static void throtl_pending_timer_fn(unsigned long arg) 1187 { 1188 struct throtl_service_queue *sq = (void *)arg; 1189 struct throtl_grp *tg = sq_to_tg(sq); 1190 struct throtl_data *td = sq_to_td(sq); 1191 struct request_queue *q = td->queue; 1192 struct throtl_service_queue *parent_sq; 1193 bool dispatched; 1194 int ret; 1195 1196 spin_lock_irq(q->queue_lock); 1197 again: 1198 parent_sq = sq->parent_sq; 1199 dispatched = false; 1200 1201 while (true) { 1202 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", 1203 sq->nr_queued[READ] + sq->nr_queued[WRITE], 1204 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1205 1206 ret = throtl_select_dispatch(sq); 1207 if (ret) { 1208 throtl_log(sq, "bios disp=%u", ret); 1209 dispatched = true; 1210 } 1211 1212 if (throtl_schedule_next_dispatch(sq, false)) 1213 break; 1214 1215 /* this dispatch windows is still open, relax and repeat */ 1216 spin_unlock_irq(q->queue_lock); 1217 cpu_relax(); 1218 spin_lock_irq(q->queue_lock); 1219 } 1220 1221 if (!dispatched) 1222 goto out_unlock; 1223 1224 if (parent_sq) { 1225 /* @parent_sq is another throl_grp, propagate dispatch */ 1226 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1227 tg_update_disptime(tg); 1228 if (!throtl_schedule_next_dispatch(parent_sq, false)) { 1229 /* window is already open, repeat dispatching */ 1230 sq = parent_sq; 1231 tg = sq_to_tg(sq); 1232 goto again; 1233 } 1234 } 1235 } else { 1236 /* reached the top-level, queue issueing */ 1237 queue_work(kthrotld_workqueue, &td->dispatch_work); 1238 } 1239 out_unlock: 1240 spin_unlock_irq(q->queue_lock); 1241 } 1242 1243 /** 1244 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work 1245 * @work: work item being executed 1246 * 1247 * This function is queued for execution when bio's reach the bio_lists[] 1248 * of throtl_data->service_queue. Those bio's are ready and issued by this 1249 * function. 1250 */ 1251 void blk_throtl_dispatch_work_fn(struct work_struct *work) 1252 { 1253 struct throtl_data *td = container_of(work, struct throtl_data, 1254 dispatch_work); 1255 struct throtl_service_queue *td_sq = &td->service_queue; 1256 struct request_queue *q = td->queue; 1257 struct bio_list bio_list_on_stack; 1258 struct bio *bio; 1259 struct blk_plug plug; 1260 int rw; 1261 1262 bio_list_init(&bio_list_on_stack); 1263 1264 spin_lock_irq(q->queue_lock); 1265 for (rw = READ; rw <= WRITE; rw++) 1266 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) 1267 bio_list_add(&bio_list_on_stack, bio); 1268 spin_unlock_irq(q->queue_lock); 1269 1270 if (!bio_list_empty(&bio_list_on_stack)) { 1271 blk_start_plug(&plug); 1272 while((bio = bio_list_pop(&bio_list_on_stack))) 1273 generic_make_request(bio); 1274 blk_finish_plug(&plug); 1275 } 1276 } 1277 1278 static u64 tg_prfill_cpu_rwstat(struct seq_file *sf, 1279 struct blkg_policy_data *pd, int off) 1280 { 1281 struct throtl_grp *tg = pd_to_tg(pd); 1282 struct blkg_rwstat rwstat = { }, tmp; 1283 int i, cpu; 1284 1285 for_each_possible_cpu(cpu) { 1286 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu); 1287 1288 tmp = blkg_rwstat_read((void *)sc + off); 1289 for (i = 0; i < BLKG_RWSTAT_NR; i++) 1290 rwstat.cnt[i] += tmp.cnt[i]; 1291 } 1292 1293 return __blkg_prfill_rwstat(sf, pd, &rwstat); 1294 } 1295 1296 static int tg_print_cpu_rwstat(struct cgroup_subsys_state *css, 1297 struct cftype *cft, struct seq_file *sf) 1298 { 1299 struct blkcg *blkcg = css_to_blkcg(css); 1300 1301 blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl, 1302 cft->private, true); 1303 return 0; 1304 } 1305 1306 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, 1307 int off) 1308 { 1309 struct throtl_grp *tg = pd_to_tg(pd); 1310 u64 v = *(u64 *)((void *)tg + off); 1311 1312 if (v == -1) 1313 return 0; 1314 return __blkg_prfill_u64(sf, pd, v); 1315 } 1316 1317 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, 1318 int off) 1319 { 1320 struct throtl_grp *tg = pd_to_tg(pd); 1321 unsigned int v = *(unsigned int *)((void *)tg + off); 1322 1323 if (v == -1) 1324 return 0; 1325 return __blkg_prfill_u64(sf, pd, v); 1326 } 1327 1328 static int tg_print_conf_u64(struct cgroup_subsys_state *css, 1329 struct cftype *cft, struct seq_file *sf) 1330 { 1331 blkcg_print_blkgs(sf, css_to_blkcg(css), tg_prfill_conf_u64, 1332 &blkcg_policy_throtl, cft->private, false); 1333 return 0; 1334 } 1335 1336 static int tg_print_conf_uint(struct cgroup_subsys_state *css, 1337 struct cftype *cft, struct seq_file *sf) 1338 { 1339 blkcg_print_blkgs(sf, css_to_blkcg(css), tg_prfill_conf_uint, 1340 &blkcg_policy_throtl, cft->private, false); 1341 return 0; 1342 } 1343 1344 static int tg_set_conf(struct cgroup_subsys_state *css, struct cftype *cft, 1345 const char *buf, bool is_u64) 1346 { 1347 struct blkcg *blkcg = css_to_blkcg(css); 1348 struct blkg_conf_ctx ctx; 1349 struct throtl_grp *tg; 1350 struct throtl_service_queue *sq; 1351 struct blkcg_gq *blkg; 1352 struct cgroup_subsys_state *pos_css; 1353 int ret; 1354 1355 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1356 if (ret) 1357 return ret; 1358 1359 tg = blkg_to_tg(ctx.blkg); 1360 sq = &tg->service_queue; 1361 1362 if (!ctx.v) 1363 ctx.v = -1; 1364 1365 if (is_u64) 1366 *(u64 *)((void *)tg + cft->private) = ctx.v; 1367 else 1368 *(unsigned int *)((void *)tg + cft->private) = ctx.v; 1369 1370 throtl_log(&tg->service_queue, 1371 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", 1372 tg->bps[READ], tg->bps[WRITE], 1373 tg->iops[READ], tg->iops[WRITE]); 1374 1375 /* 1376 * Update has_rules[] flags for the updated tg's subtree. A tg is 1377 * considered to have rules if either the tg itself or any of its 1378 * ancestors has rules. This identifies groups without any 1379 * restrictions in the whole hierarchy and allows them to bypass 1380 * blk-throttle. 1381 */ 1382 blkg_for_each_descendant_pre(blkg, pos_css, ctx.blkg) 1383 tg_update_has_rules(blkg_to_tg(blkg)); 1384 1385 /* 1386 * We're already holding queue_lock and know @tg is valid. Let's 1387 * apply the new config directly. 1388 * 1389 * Restart the slices for both READ and WRITES. It might happen 1390 * that a group's limit are dropped suddenly and we don't want to 1391 * account recently dispatched IO with new low rate. 1392 */ 1393 throtl_start_new_slice(tg, 0); 1394 throtl_start_new_slice(tg, 1); 1395 1396 if (tg->flags & THROTL_TG_PENDING) { 1397 tg_update_disptime(tg); 1398 throtl_schedule_next_dispatch(sq->parent_sq, true); 1399 } 1400 1401 blkg_conf_finish(&ctx); 1402 return 0; 1403 } 1404 1405 static int tg_set_conf_u64(struct cgroup_subsys_state *css, struct cftype *cft, 1406 const char *buf) 1407 { 1408 return tg_set_conf(css, cft, buf, true); 1409 } 1410 1411 static int tg_set_conf_uint(struct cgroup_subsys_state *css, struct cftype *cft, 1412 const char *buf) 1413 { 1414 return tg_set_conf(css, cft, buf, false); 1415 } 1416 1417 static struct cftype throtl_files[] = { 1418 { 1419 .name = "throttle.read_bps_device", 1420 .private = offsetof(struct throtl_grp, bps[READ]), 1421 .read_seq_string = tg_print_conf_u64, 1422 .write_string = tg_set_conf_u64, 1423 .max_write_len = 256, 1424 }, 1425 { 1426 .name = "throttle.write_bps_device", 1427 .private = offsetof(struct throtl_grp, bps[WRITE]), 1428 .read_seq_string = tg_print_conf_u64, 1429 .write_string = tg_set_conf_u64, 1430 .max_write_len = 256, 1431 }, 1432 { 1433 .name = "throttle.read_iops_device", 1434 .private = offsetof(struct throtl_grp, iops[READ]), 1435 .read_seq_string = tg_print_conf_uint, 1436 .write_string = tg_set_conf_uint, 1437 .max_write_len = 256, 1438 }, 1439 { 1440 .name = "throttle.write_iops_device", 1441 .private = offsetof(struct throtl_grp, iops[WRITE]), 1442 .read_seq_string = tg_print_conf_uint, 1443 .write_string = tg_set_conf_uint, 1444 .max_write_len = 256, 1445 }, 1446 { 1447 .name = "throttle.io_service_bytes", 1448 .private = offsetof(struct tg_stats_cpu, service_bytes), 1449 .read_seq_string = tg_print_cpu_rwstat, 1450 }, 1451 { 1452 .name = "throttle.io_serviced", 1453 .private = offsetof(struct tg_stats_cpu, serviced), 1454 .read_seq_string = tg_print_cpu_rwstat, 1455 }, 1456 { } /* terminate */ 1457 }; 1458 1459 static void throtl_shutdown_wq(struct request_queue *q) 1460 { 1461 struct throtl_data *td = q->td; 1462 1463 cancel_work_sync(&td->dispatch_work); 1464 } 1465 1466 static struct blkcg_policy blkcg_policy_throtl = { 1467 .pd_size = sizeof(struct throtl_grp), 1468 .cftypes = throtl_files, 1469 1470 .pd_init_fn = throtl_pd_init, 1471 .pd_online_fn = throtl_pd_online, 1472 .pd_exit_fn = throtl_pd_exit, 1473 .pd_reset_stats_fn = throtl_pd_reset_stats, 1474 }; 1475 1476 bool blk_throtl_bio(struct request_queue *q, struct bio *bio) 1477 { 1478 struct throtl_data *td = q->td; 1479 struct throtl_qnode *qn = NULL; 1480 struct throtl_grp *tg; 1481 struct throtl_service_queue *sq; 1482 bool rw = bio_data_dir(bio); 1483 struct blkcg *blkcg; 1484 bool throttled = false; 1485 1486 /* see throtl_charge_bio() */ 1487 if (bio->bi_rw & REQ_THROTTLED) 1488 goto out; 1489 1490 /* 1491 * A throtl_grp pointer retrieved under rcu can be used to access 1492 * basic fields like stats and io rates. If a group has no rules, 1493 * just update the dispatch stats in lockless manner and return. 1494 */ 1495 rcu_read_lock(); 1496 blkcg = bio_blkcg(bio); 1497 tg = throtl_lookup_tg(td, blkcg); 1498 if (tg) { 1499 if (!tg->has_rules[rw]) { 1500 throtl_update_dispatch_stats(tg_to_blkg(tg), 1501 bio->bi_size, bio->bi_rw); 1502 goto out_unlock_rcu; 1503 } 1504 } 1505 1506 /* 1507 * Either group has not been allocated yet or it is not an unlimited 1508 * IO group 1509 */ 1510 spin_lock_irq(q->queue_lock); 1511 tg = throtl_lookup_create_tg(td, blkcg); 1512 if (unlikely(!tg)) 1513 goto out_unlock; 1514 1515 sq = &tg->service_queue; 1516 1517 while (true) { 1518 /* throtl is FIFO - if bios are already queued, should queue */ 1519 if (sq->nr_queued[rw]) 1520 break; 1521 1522 /* if above limits, break to queue */ 1523 if (!tg_may_dispatch(tg, bio, NULL)) 1524 break; 1525 1526 /* within limits, let's charge and dispatch directly */ 1527 throtl_charge_bio(tg, bio); 1528 1529 /* 1530 * We need to trim slice even when bios are not being queued 1531 * otherwise it might happen that a bio is not queued for 1532 * a long time and slice keeps on extending and trim is not 1533 * called for a long time. Now if limits are reduced suddenly 1534 * we take into account all the IO dispatched so far at new 1535 * low rate and * newly queued IO gets a really long dispatch 1536 * time. 1537 * 1538 * So keep on trimming slice even if bio is not queued. 1539 */ 1540 throtl_trim_slice(tg, rw); 1541 1542 /* 1543 * @bio passed through this layer without being throttled. 1544 * Climb up the ladder. If we''re already at the top, it 1545 * can be executed directly. 1546 */ 1547 qn = &tg->qnode_on_parent[rw]; 1548 sq = sq->parent_sq; 1549 tg = sq_to_tg(sq); 1550 if (!tg) 1551 goto out_unlock; 1552 } 1553 1554 /* out-of-limit, queue to @tg */ 1555 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", 1556 rw == READ ? 'R' : 'W', 1557 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw], 1558 tg->io_disp[rw], tg->iops[rw], 1559 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1560 1561 bio_associate_current(bio); 1562 tg->td->nr_queued[rw]++; 1563 throtl_add_bio_tg(bio, qn, tg); 1564 throttled = true; 1565 1566 /* 1567 * Update @tg's dispatch time and force schedule dispatch if @tg 1568 * was empty before @bio. The forced scheduling isn't likely to 1569 * cause undue delay as @bio is likely to be dispatched directly if 1570 * its @tg's disptime is not in the future. 1571 */ 1572 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1573 tg_update_disptime(tg); 1574 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); 1575 } 1576 1577 out_unlock: 1578 spin_unlock_irq(q->queue_lock); 1579 out_unlock_rcu: 1580 rcu_read_unlock(); 1581 out: 1582 /* 1583 * As multiple blk-throtls may stack in the same issue path, we 1584 * don't want bios to leave with the flag set. Clear the flag if 1585 * being issued. 1586 */ 1587 if (!throttled) 1588 bio->bi_rw &= ~REQ_THROTTLED; 1589 return throttled; 1590 } 1591 1592 /* 1593 * Dispatch all bios from all children tg's queued on @parent_sq. On 1594 * return, @parent_sq is guaranteed to not have any active children tg's 1595 * and all bios from previously active tg's are on @parent_sq->bio_lists[]. 1596 */ 1597 static void tg_drain_bios(struct throtl_service_queue *parent_sq) 1598 { 1599 struct throtl_grp *tg; 1600 1601 while ((tg = throtl_rb_first(parent_sq))) { 1602 struct throtl_service_queue *sq = &tg->service_queue; 1603 struct bio *bio; 1604 1605 throtl_dequeue_tg(tg); 1606 1607 while ((bio = throtl_peek_queued(&sq->queued[READ]))) 1608 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1609 while ((bio = throtl_peek_queued(&sq->queued[WRITE]))) 1610 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1611 } 1612 } 1613 1614 /** 1615 * blk_throtl_drain - drain throttled bios 1616 * @q: request_queue to drain throttled bios for 1617 * 1618 * Dispatch all currently throttled bios on @q through ->make_request_fn(). 1619 */ 1620 void blk_throtl_drain(struct request_queue *q) 1621 __releases(q->queue_lock) __acquires(q->queue_lock) 1622 { 1623 struct throtl_data *td = q->td; 1624 struct blkcg_gq *blkg; 1625 struct cgroup_subsys_state *pos_css; 1626 struct bio *bio; 1627 int rw; 1628 1629 queue_lockdep_assert_held(q); 1630 rcu_read_lock(); 1631 1632 /* 1633 * Drain each tg while doing post-order walk on the blkg tree, so 1634 * that all bios are propagated to td->service_queue. It'd be 1635 * better to walk service_queue tree directly but blkg walk is 1636 * easier. 1637 */ 1638 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) 1639 tg_drain_bios(&blkg_to_tg(blkg)->service_queue); 1640 1641 /* finally, transfer bios from top-level tg's into the td */ 1642 tg_drain_bios(&td->service_queue); 1643 1644 rcu_read_unlock(); 1645 spin_unlock_irq(q->queue_lock); 1646 1647 /* all bios now should be in td->service_queue, issue them */ 1648 for (rw = READ; rw <= WRITE; rw++) 1649 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw], 1650 NULL))) 1651 generic_make_request(bio); 1652 1653 spin_lock_irq(q->queue_lock); 1654 } 1655 1656 int blk_throtl_init(struct request_queue *q) 1657 { 1658 struct throtl_data *td; 1659 int ret; 1660 1661 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 1662 if (!td) 1663 return -ENOMEM; 1664 1665 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); 1666 throtl_service_queue_init(&td->service_queue, NULL); 1667 1668 q->td = td; 1669 td->queue = q; 1670 1671 /* activate policy */ 1672 ret = blkcg_activate_policy(q, &blkcg_policy_throtl); 1673 if (ret) 1674 kfree(td); 1675 return ret; 1676 } 1677 1678 void blk_throtl_exit(struct request_queue *q) 1679 { 1680 BUG_ON(!q->td); 1681 throtl_shutdown_wq(q); 1682 blkcg_deactivate_policy(q, &blkcg_policy_throtl); 1683 kfree(q->td); 1684 } 1685 1686 static int __init throtl_init(void) 1687 { 1688 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 1689 if (!kthrotld_workqueue) 1690 panic("Failed to create kthrotld\n"); 1691 1692 return blkcg_policy_register(&blkcg_policy_throtl); 1693 } 1694 1695 module_init(throtl_init); 1696