xref: /openbmc/linux/block/blk-throttle.c (revision f7777dcc)
1 /*
2  * Interface for controlling IO bandwidth on a request queue
3  *
4  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5  */
6 
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
13 #include "blk.h"
14 
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17 
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20 
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10;	/* 100 ms */
23 
24 static struct blkcg_policy blkcg_policy_throtl;
25 
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct *kthrotld_workqueue;
28 
29 /*
30  * To implement hierarchical throttling, throtl_grps form a tree and bios
31  * are dispatched upwards level by level until they reach the top and get
32  * issued.  When dispatching bios from the children and local group at each
33  * level, if the bios are dispatched into a single bio_list, there's a risk
34  * of a local or child group which can queue many bios at once filling up
35  * the list starving others.
36  *
37  * To avoid such starvation, dispatched bios are queued separately
38  * according to where they came from.  When they are again dispatched to
39  * the parent, they're popped in round-robin order so that no single source
40  * hogs the dispatch window.
41  *
42  * throtl_qnode is used to keep the queued bios separated by their sources.
43  * Bios are queued to throtl_qnode which in turn is queued to
44  * throtl_service_queue and then dispatched in round-robin order.
45  *
46  * It's also used to track the reference counts on blkg's.  A qnode always
47  * belongs to a throtl_grp and gets queued on itself or the parent, so
48  * incrementing the reference of the associated throtl_grp when a qnode is
49  * queued and decrementing when dequeued is enough to keep the whole blkg
50  * tree pinned while bios are in flight.
51  */
52 struct throtl_qnode {
53 	struct list_head	node;		/* service_queue->queued[] */
54 	struct bio_list		bios;		/* queued bios */
55 	struct throtl_grp	*tg;		/* tg this qnode belongs to */
56 };
57 
58 struct throtl_service_queue {
59 	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
60 
61 	/*
62 	 * Bios queued directly to this service_queue or dispatched from
63 	 * children throtl_grp's.
64 	 */
65 	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
66 	unsigned int		nr_queued[2];	/* number of queued bios */
67 
68 	/*
69 	 * RB tree of active children throtl_grp's, which are sorted by
70 	 * their ->disptime.
71 	 */
72 	struct rb_root		pending_tree;	/* RB tree of active tgs */
73 	struct rb_node		*first_pending;	/* first node in the tree */
74 	unsigned int		nr_pending;	/* # queued in the tree */
75 	unsigned long		first_pending_disptime;	/* disptime of the first tg */
76 	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
77 };
78 
79 enum tg_state_flags {
80 	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
81 	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
82 };
83 
84 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
85 
86 /* Per-cpu group stats */
87 struct tg_stats_cpu {
88 	/* total bytes transferred */
89 	struct blkg_rwstat		service_bytes;
90 	/* total IOs serviced, post merge */
91 	struct blkg_rwstat		serviced;
92 };
93 
94 struct throtl_grp {
95 	/* must be the first member */
96 	struct blkg_policy_data pd;
97 
98 	/* active throtl group service_queue member */
99 	struct rb_node rb_node;
100 
101 	/* throtl_data this group belongs to */
102 	struct throtl_data *td;
103 
104 	/* this group's service queue */
105 	struct throtl_service_queue service_queue;
106 
107 	/*
108 	 * qnode_on_self is used when bios are directly queued to this
109 	 * throtl_grp so that local bios compete fairly with bios
110 	 * dispatched from children.  qnode_on_parent is used when bios are
111 	 * dispatched from this throtl_grp into its parent and will compete
112 	 * with the sibling qnode_on_parents and the parent's
113 	 * qnode_on_self.
114 	 */
115 	struct throtl_qnode qnode_on_self[2];
116 	struct throtl_qnode qnode_on_parent[2];
117 
118 	/*
119 	 * Dispatch time in jiffies. This is the estimated time when group
120 	 * will unthrottle and is ready to dispatch more bio. It is used as
121 	 * key to sort active groups in service tree.
122 	 */
123 	unsigned long disptime;
124 
125 	unsigned int flags;
126 
127 	/* are there any throtl rules between this group and td? */
128 	bool has_rules[2];
129 
130 	/* bytes per second rate limits */
131 	uint64_t bps[2];
132 
133 	/* IOPS limits */
134 	unsigned int iops[2];
135 
136 	/* Number of bytes disptached in current slice */
137 	uint64_t bytes_disp[2];
138 	/* Number of bio's dispatched in current slice */
139 	unsigned int io_disp[2];
140 
141 	/* When did we start a new slice */
142 	unsigned long slice_start[2];
143 	unsigned long slice_end[2];
144 
145 	/* Per cpu stats pointer */
146 	struct tg_stats_cpu __percpu *stats_cpu;
147 
148 	/* List of tgs waiting for per cpu stats memory to be allocated */
149 	struct list_head stats_alloc_node;
150 };
151 
152 struct throtl_data
153 {
154 	/* service tree for active throtl groups */
155 	struct throtl_service_queue service_queue;
156 
157 	struct request_queue *queue;
158 
159 	/* Total Number of queued bios on READ and WRITE lists */
160 	unsigned int nr_queued[2];
161 
162 	/*
163 	 * number of total undestroyed groups
164 	 */
165 	unsigned int nr_undestroyed_grps;
166 
167 	/* Work for dispatching throttled bios */
168 	struct work_struct dispatch_work;
169 };
170 
171 /* list and work item to allocate percpu group stats */
172 static DEFINE_SPINLOCK(tg_stats_alloc_lock);
173 static LIST_HEAD(tg_stats_alloc_list);
174 
175 static void tg_stats_alloc_fn(struct work_struct *);
176 static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
177 
178 static void throtl_pending_timer_fn(unsigned long arg);
179 
180 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
181 {
182 	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
183 }
184 
185 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
186 {
187 	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
188 }
189 
190 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
191 {
192 	return pd_to_blkg(&tg->pd);
193 }
194 
195 static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
196 {
197 	return blkg_to_tg(td->queue->root_blkg);
198 }
199 
200 /**
201  * sq_to_tg - return the throl_grp the specified service queue belongs to
202  * @sq: the throtl_service_queue of interest
203  *
204  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
205  * embedded in throtl_data, %NULL is returned.
206  */
207 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
208 {
209 	if (sq && sq->parent_sq)
210 		return container_of(sq, struct throtl_grp, service_queue);
211 	else
212 		return NULL;
213 }
214 
215 /**
216  * sq_to_td - return throtl_data the specified service queue belongs to
217  * @sq: the throtl_service_queue of interest
218  *
219  * A service_queue can be embeded in either a throtl_grp or throtl_data.
220  * Determine the associated throtl_data accordingly and return it.
221  */
222 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
223 {
224 	struct throtl_grp *tg = sq_to_tg(sq);
225 
226 	if (tg)
227 		return tg->td;
228 	else
229 		return container_of(sq, struct throtl_data, service_queue);
230 }
231 
232 /**
233  * throtl_log - log debug message via blktrace
234  * @sq: the service_queue being reported
235  * @fmt: printf format string
236  * @args: printf args
237  *
238  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
239  * throtl_grp; otherwise, just "throtl".
240  *
241  * TODO: this should be made a function and name formatting should happen
242  * after testing whether blktrace is enabled.
243  */
244 #define throtl_log(sq, fmt, args...)	do {				\
245 	struct throtl_grp *__tg = sq_to_tg((sq));			\
246 	struct throtl_data *__td = sq_to_td((sq));			\
247 									\
248 	(void)__td;							\
249 	if ((__tg)) {							\
250 		char __pbuf[128];					\
251 									\
252 		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
253 		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
254 	} else {							\
255 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
256 	}								\
257 } while (0)
258 
259 /*
260  * Worker for allocating per cpu stat for tgs. This is scheduled on the
261  * system_wq once there are some groups on the alloc_list waiting for
262  * allocation.
263  */
264 static void tg_stats_alloc_fn(struct work_struct *work)
265 {
266 	static struct tg_stats_cpu *stats_cpu;	/* this fn is non-reentrant */
267 	struct delayed_work *dwork = to_delayed_work(work);
268 	bool empty = false;
269 
270 alloc_stats:
271 	if (!stats_cpu) {
272 		stats_cpu = alloc_percpu(struct tg_stats_cpu);
273 		if (!stats_cpu) {
274 			/* allocation failed, try again after some time */
275 			schedule_delayed_work(dwork, msecs_to_jiffies(10));
276 			return;
277 		}
278 	}
279 
280 	spin_lock_irq(&tg_stats_alloc_lock);
281 
282 	if (!list_empty(&tg_stats_alloc_list)) {
283 		struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
284 							 struct throtl_grp,
285 							 stats_alloc_node);
286 		swap(tg->stats_cpu, stats_cpu);
287 		list_del_init(&tg->stats_alloc_node);
288 	}
289 
290 	empty = list_empty(&tg_stats_alloc_list);
291 	spin_unlock_irq(&tg_stats_alloc_lock);
292 	if (!empty)
293 		goto alloc_stats;
294 }
295 
296 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
297 {
298 	INIT_LIST_HEAD(&qn->node);
299 	bio_list_init(&qn->bios);
300 	qn->tg = tg;
301 }
302 
303 /**
304  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
305  * @bio: bio being added
306  * @qn: qnode to add bio to
307  * @queued: the service_queue->queued[] list @qn belongs to
308  *
309  * Add @bio to @qn and put @qn on @queued if it's not already on.
310  * @qn->tg's reference count is bumped when @qn is activated.  See the
311  * comment on top of throtl_qnode definition for details.
312  */
313 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
314 				 struct list_head *queued)
315 {
316 	bio_list_add(&qn->bios, bio);
317 	if (list_empty(&qn->node)) {
318 		list_add_tail(&qn->node, queued);
319 		blkg_get(tg_to_blkg(qn->tg));
320 	}
321 }
322 
323 /**
324  * throtl_peek_queued - peek the first bio on a qnode list
325  * @queued: the qnode list to peek
326  */
327 static struct bio *throtl_peek_queued(struct list_head *queued)
328 {
329 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
330 	struct bio *bio;
331 
332 	if (list_empty(queued))
333 		return NULL;
334 
335 	bio = bio_list_peek(&qn->bios);
336 	WARN_ON_ONCE(!bio);
337 	return bio;
338 }
339 
340 /**
341  * throtl_pop_queued - pop the first bio form a qnode list
342  * @queued: the qnode list to pop a bio from
343  * @tg_to_put: optional out argument for throtl_grp to put
344  *
345  * Pop the first bio from the qnode list @queued.  After popping, the first
346  * qnode is removed from @queued if empty or moved to the end of @queued so
347  * that the popping order is round-robin.
348  *
349  * When the first qnode is removed, its associated throtl_grp should be put
350  * too.  If @tg_to_put is NULL, this function automatically puts it;
351  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
352  * responsible for putting it.
353  */
354 static struct bio *throtl_pop_queued(struct list_head *queued,
355 				     struct throtl_grp **tg_to_put)
356 {
357 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
358 	struct bio *bio;
359 
360 	if (list_empty(queued))
361 		return NULL;
362 
363 	bio = bio_list_pop(&qn->bios);
364 	WARN_ON_ONCE(!bio);
365 
366 	if (bio_list_empty(&qn->bios)) {
367 		list_del_init(&qn->node);
368 		if (tg_to_put)
369 			*tg_to_put = qn->tg;
370 		else
371 			blkg_put(tg_to_blkg(qn->tg));
372 	} else {
373 		list_move_tail(&qn->node, queued);
374 	}
375 
376 	return bio;
377 }
378 
379 /* init a service_queue, assumes the caller zeroed it */
380 static void throtl_service_queue_init(struct throtl_service_queue *sq,
381 				      struct throtl_service_queue *parent_sq)
382 {
383 	INIT_LIST_HEAD(&sq->queued[0]);
384 	INIT_LIST_HEAD(&sq->queued[1]);
385 	sq->pending_tree = RB_ROOT;
386 	sq->parent_sq = parent_sq;
387 	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
388 		    (unsigned long)sq);
389 }
390 
391 static void throtl_service_queue_exit(struct throtl_service_queue *sq)
392 {
393 	del_timer_sync(&sq->pending_timer);
394 }
395 
396 static void throtl_pd_init(struct blkcg_gq *blkg)
397 {
398 	struct throtl_grp *tg = blkg_to_tg(blkg);
399 	struct throtl_data *td = blkg->q->td;
400 	struct throtl_service_queue *parent_sq;
401 	unsigned long flags;
402 	int rw;
403 
404 	/*
405 	 * If sane_hierarchy is enabled, we switch to properly hierarchical
406 	 * behavior where limits on a given throtl_grp are applied to the
407 	 * whole subtree rather than just the group itself.  e.g. If 16M
408 	 * read_bps limit is set on the root group, the whole system can't
409 	 * exceed 16M for the device.
410 	 *
411 	 * If sane_hierarchy is not enabled, the broken flat hierarchy
412 	 * behavior is retained where all throtl_grps are treated as if
413 	 * they're all separate root groups right below throtl_data.
414 	 * Limits of a group don't interact with limits of other groups
415 	 * regardless of the position of the group in the hierarchy.
416 	 */
417 	parent_sq = &td->service_queue;
418 
419 	if (cgroup_sane_behavior(blkg->blkcg->css.cgroup) && blkg->parent)
420 		parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
421 
422 	throtl_service_queue_init(&tg->service_queue, parent_sq);
423 
424 	for (rw = READ; rw <= WRITE; rw++) {
425 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
426 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
427 	}
428 
429 	RB_CLEAR_NODE(&tg->rb_node);
430 	tg->td = td;
431 
432 	tg->bps[READ] = -1;
433 	tg->bps[WRITE] = -1;
434 	tg->iops[READ] = -1;
435 	tg->iops[WRITE] = -1;
436 
437 	/*
438 	 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
439 	 * but percpu allocator can't be called from IO path.  Queue tg on
440 	 * tg_stats_alloc_list and allocate from work item.
441 	 */
442 	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
443 	list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
444 	schedule_delayed_work(&tg_stats_alloc_work, 0);
445 	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
446 }
447 
448 /*
449  * Set has_rules[] if @tg or any of its parents have limits configured.
450  * This doesn't require walking up to the top of the hierarchy as the
451  * parent's has_rules[] is guaranteed to be correct.
452  */
453 static void tg_update_has_rules(struct throtl_grp *tg)
454 {
455 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
456 	int rw;
457 
458 	for (rw = READ; rw <= WRITE; rw++)
459 		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
460 				    (tg->bps[rw] != -1 || tg->iops[rw] != -1);
461 }
462 
463 static void throtl_pd_online(struct blkcg_gq *blkg)
464 {
465 	/*
466 	 * We don't want new groups to escape the limits of its ancestors.
467 	 * Update has_rules[] after a new group is brought online.
468 	 */
469 	tg_update_has_rules(blkg_to_tg(blkg));
470 }
471 
472 static void throtl_pd_exit(struct blkcg_gq *blkg)
473 {
474 	struct throtl_grp *tg = blkg_to_tg(blkg);
475 	unsigned long flags;
476 
477 	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
478 	list_del_init(&tg->stats_alloc_node);
479 	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
480 
481 	free_percpu(tg->stats_cpu);
482 
483 	throtl_service_queue_exit(&tg->service_queue);
484 }
485 
486 static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
487 {
488 	struct throtl_grp *tg = blkg_to_tg(blkg);
489 	int cpu;
490 
491 	if (tg->stats_cpu == NULL)
492 		return;
493 
494 	for_each_possible_cpu(cpu) {
495 		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
496 
497 		blkg_rwstat_reset(&sc->service_bytes);
498 		blkg_rwstat_reset(&sc->serviced);
499 	}
500 }
501 
502 static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
503 					   struct blkcg *blkcg)
504 {
505 	/*
506 	 * This is the common case when there are no blkcgs.  Avoid lookup
507 	 * in this case
508 	 */
509 	if (blkcg == &blkcg_root)
510 		return td_root_tg(td);
511 
512 	return blkg_to_tg(blkg_lookup(blkcg, td->queue));
513 }
514 
515 static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
516 						  struct blkcg *blkcg)
517 {
518 	struct request_queue *q = td->queue;
519 	struct throtl_grp *tg = NULL;
520 
521 	/*
522 	 * This is the common case when there are no blkcgs.  Avoid lookup
523 	 * in this case
524 	 */
525 	if (blkcg == &blkcg_root) {
526 		tg = td_root_tg(td);
527 	} else {
528 		struct blkcg_gq *blkg;
529 
530 		blkg = blkg_lookup_create(blkcg, q);
531 
532 		/* if %NULL and @q is alive, fall back to root_tg */
533 		if (!IS_ERR(blkg))
534 			tg = blkg_to_tg(blkg);
535 		else if (!blk_queue_dying(q))
536 			tg = td_root_tg(td);
537 	}
538 
539 	return tg;
540 }
541 
542 static struct throtl_grp *
543 throtl_rb_first(struct throtl_service_queue *parent_sq)
544 {
545 	/* Service tree is empty */
546 	if (!parent_sq->nr_pending)
547 		return NULL;
548 
549 	if (!parent_sq->first_pending)
550 		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
551 
552 	if (parent_sq->first_pending)
553 		return rb_entry_tg(parent_sq->first_pending);
554 
555 	return NULL;
556 }
557 
558 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
559 {
560 	rb_erase(n, root);
561 	RB_CLEAR_NODE(n);
562 }
563 
564 static void throtl_rb_erase(struct rb_node *n,
565 			    struct throtl_service_queue *parent_sq)
566 {
567 	if (parent_sq->first_pending == n)
568 		parent_sq->first_pending = NULL;
569 	rb_erase_init(n, &parent_sq->pending_tree);
570 	--parent_sq->nr_pending;
571 }
572 
573 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
574 {
575 	struct throtl_grp *tg;
576 
577 	tg = throtl_rb_first(parent_sq);
578 	if (!tg)
579 		return;
580 
581 	parent_sq->first_pending_disptime = tg->disptime;
582 }
583 
584 static void tg_service_queue_add(struct throtl_grp *tg)
585 {
586 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
587 	struct rb_node **node = &parent_sq->pending_tree.rb_node;
588 	struct rb_node *parent = NULL;
589 	struct throtl_grp *__tg;
590 	unsigned long key = tg->disptime;
591 	int left = 1;
592 
593 	while (*node != NULL) {
594 		parent = *node;
595 		__tg = rb_entry_tg(parent);
596 
597 		if (time_before(key, __tg->disptime))
598 			node = &parent->rb_left;
599 		else {
600 			node = &parent->rb_right;
601 			left = 0;
602 		}
603 	}
604 
605 	if (left)
606 		parent_sq->first_pending = &tg->rb_node;
607 
608 	rb_link_node(&tg->rb_node, parent, node);
609 	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
610 }
611 
612 static void __throtl_enqueue_tg(struct throtl_grp *tg)
613 {
614 	tg_service_queue_add(tg);
615 	tg->flags |= THROTL_TG_PENDING;
616 	tg->service_queue.parent_sq->nr_pending++;
617 }
618 
619 static void throtl_enqueue_tg(struct throtl_grp *tg)
620 {
621 	if (!(tg->flags & THROTL_TG_PENDING))
622 		__throtl_enqueue_tg(tg);
623 }
624 
625 static void __throtl_dequeue_tg(struct throtl_grp *tg)
626 {
627 	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
628 	tg->flags &= ~THROTL_TG_PENDING;
629 }
630 
631 static void throtl_dequeue_tg(struct throtl_grp *tg)
632 {
633 	if (tg->flags & THROTL_TG_PENDING)
634 		__throtl_dequeue_tg(tg);
635 }
636 
637 /* Call with queue lock held */
638 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
639 					  unsigned long expires)
640 {
641 	mod_timer(&sq->pending_timer, expires);
642 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
643 		   expires - jiffies, jiffies);
644 }
645 
646 /**
647  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
648  * @sq: the service_queue to schedule dispatch for
649  * @force: force scheduling
650  *
651  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
652  * dispatch time of the first pending child.  Returns %true if either timer
653  * is armed or there's no pending child left.  %false if the current
654  * dispatch window is still open and the caller should continue
655  * dispatching.
656  *
657  * If @force is %true, the dispatch timer is always scheduled and this
658  * function is guaranteed to return %true.  This is to be used when the
659  * caller can't dispatch itself and needs to invoke pending_timer
660  * unconditionally.  Note that forced scheduling is likely to induce short
661  * delay before dispatch starts even if @sq->first_pending_disptime is not
662  * in the future and thus shouldn't be used in hot paths.
663  */
664 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
665 					  bool force)
666 {
667 	/* any pending children left? */
668 	if (!sq->nr_pending)
669 		return true;
670 
671 	update_min_dispatch_time(sq);
672 
673 	/* is the next dispatch time in the future? */
674 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
675 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
676 		return true;
677 	}
678 
679 	/* tell the caller to continue dispatching */
680 	return false;
681 }
682 
683 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
684 		bool rw, unsigned long start)
685 {
686 	tg->bytes_disp[rw] = 0;
687 	tg->io_disp[rw] = 0;
688 
689 	/*
690 	 * Previous slice has expired. We must have trimmed it after last
691 	 * bio dispatch. That means since start of last slice, we never used
692 	 * that bandwidth. Do try to make use of that bandwidth while giving
693 	 * credit.
694 	 */
695 	if (time_after_eq(start, tg->slice_start[rw]))
696 		tg->slice_start[rw] = start;
697 
698 	tg->slice_end[rw] = jiffies + throtl_slice;
699 	throtl_log(&tg->service_queue,
700 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
701 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
702 		   tg->slice_end[rw], jiffies);
703 }
704 
705 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
706 {
707 	tg->bytes_disp[rw] = 0;
708 	tg->io_disp[rw] = 0;
709 	tg->slice_start[rw] = jiffies;
710 	tg->slice_end[rw] = jiffies + throtl_slice;
711 	throtl_log(&tg->service_queue,
712 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
713 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
714 		   tg->slice_end[rw], jiffies);
715 }
716 
717 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
718 					unsigned long jiffy_end)
719 {
720 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
721 }
722 
723 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
724 				       unsigned long jiffy_end)
725 {
726 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
727 	throtl_log(&tg->service_queue,
728 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
729 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
730 		   tg->slice_end[rw], jiffies);
731 }
732 
733 /* Determine if previously allocated or extended slice is complete or not */
734 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
735 {
736 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
737 		return 0;
738 
739 	return 1;
740 }
741 
742 /* Trim the used slices and adjust slice start accordingly */
743 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
744 {
745 	unsigned long nr_slices, time_elapsed, io_trim;
746 	u64 bytes_trim, tmp;
747 
748 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
749 
750 	/*
751 	 * If bps are unlimited (-1), then time slice don't get
752 	 * renewed. Don't try to trim the slice if slice is used. A new
753 	 * slice will start when appropriate.
754 	 */
755 	if (throtl_slice_used(tg, rw))
756 		return;
757 
758 	/*
759 	 * A bio has been dispatched. Also adjust slice_end. It might happen
760 	 * that initially cgroup limit was very low resulting in high
761 	 * slice_end, but later limit was bumped up and bio was dispached
762 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
763 	 * is bad because it does not allow new slice to start.
764 	 */
765 
766 	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
767 
768 	time_elapsed = jiffies - tg->slice_start[rw];
769 
770 	nr_slices = time_elapsed / throtl_slice;
771 
772 	if (!nr_slices)
773 		return;
774 	tmp = tg->bps[rw] * throtl_slice * nr_slices;
775 	do_div(tmp, HZ);
776 	bytes_trim = tmp;
777 
778 	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
779 
780 	if (!bytes_trim && !io_trim)
781 		return;
782 
783 	if (tg->bytes_disp[rw] >= bytes_trim)
784 		tg->bytes_disp[rw] -= bytes_trim;
785 	else
786 		tg->bytes_disp[rw] = 0;
787 
788 	if (tg->io_disp[rw] >= io_trim)
789 		tg->io_disp[rw] -= io_trim;
790 	else
791 		tg->io_disp[rw] = 0;
792 
793 	tg->slice_start[rw] += nr_slices * throtl_slice;
794 
795 	throtl_log(&tg->service_queue,
796 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
797 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
798 		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
799 }
800 
801 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
802 				  unsigned long *wait)
803 {
804 	bool rw = bio_data_dir(bio);
805 	unsigned int io_allowed;
806 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
807 	u64 tmp;
808 
809 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
810 
811 	/* Slice has just started. Consider one slice interval */
812 	if (!jiffy_elapsed)
813 		jiffy_elapsed_rnd = throtl_slice;
814 
815 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
816 
817 	/*
818 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
819 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
820 	 * will allow dispatch after 1 second and after that slice should
821 	 * have been trimmed.
822 	 */
823 
824 	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
825 	do_div(tmp, HZ);
826 
827 	if (tmp > UINT_MAX)
828 		io_allowed = UINT_MAX;
829 	else
830 		io_allowed = tmp;
831 
832 	if (tg->io_disp[rw] + 1 <= io_allowed) {
833 		if (wait)
834 			*wait = 0;
835 		return 1;
836 	}
837 
838 	/* Calc approx time to dispatch */
839 	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
840 
841 	if (jiffy_wait > jiffy_elapsed)
842 		jiffy_wait = jiffy_wait - jiffy_elapsed;
843 	else
844 		jiffy_wait = 1;
845 
846 	if (wait)
847 		*wait = jiffy_wait;
848 	return 0;
849 }
850 
851 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
852 				 unsigned long *wait)
853 {
854 	bool rw = bio_data_dir(bio);
855 	u64 bytes_allowed, extra_bytes, tmp;
856 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
857 
858 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
859 
860 	/* Slice has just started. Consider one slice interval */
861 	if (!jiffy_elapsed)
862 		jiffy_elapsed_rnd = throtl_slice;
863 
864 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
865 
866 	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
867 	do_div(tmp, HZ);
868 	bytes_allowed = tmp;
869 
870 	if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
871 		if (wait)
872 			*wait = 0;
873 		return 1;
874 	}
875 
876 	/* Calc approx time to dispatch */
877 	extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
878 	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
879 
880 	if (!jiffy_wait)
881 		jiffy_wait = 1;
882 
883 	/*
884 	 * This wait time is without taking into consideration the rounding
885 	 * up we did. Add that time also.
886 	 */
887 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
888 	if (wait)
889 		*wait = jiffy_wait;
890 	return 0;
891 }
892 
893 /*
894  * Returns whether one can dispatch a bio or not. Also returns approx number
895  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
896  */
897 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
898 			    unsigned long *wait)
899 {
900 	bool rw = bio_data_dir(bio);
901 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
902 
903 	/*
904  	 * Currently whole state machine of group depends on first bio
905 	 * queued in the group bio list. So one should not be calling
906 	 * this function with a different bio if there are other bios
907 	 * queued.
908 	 */
909 	BUG_ON(tg->service_queue.nr_queued[rw] &&
910 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
911 
912 	/* If tg->bps = -1, then BW is unlimited */
913 	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
914 		if (wait)
915 			*wait = 0;
916 		return 1;
917 	}
918 
919 	/*
920 	 * If previous slice expired, start a new one otherwise renew/extend
921 	 * existing slice to make sure it is at least throtl_slice interval
922 	 * long since now.
923 	 */
924 	if (throtl_slice_used(tg, rw))
925 		throtl_start_new_slice(tg, rw);
926 	else {
927 		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
928 			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
929 	}
930 
931 	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
932 	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
933 		if (wait)
934 			*wait = 0;
935 		return 1;
936 	}
937 
938 	max_wait = max(bps_wait, iops_wait);
939 
940 	if (wait)
941 		*wait = max_wait;
942 
943 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
944 		throtl_extend_slice(tg, rw, jiffies + max_wait);
945 
946 	return 0;
947 }
948 
949 static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
950 					 int rw)
951 {
952 	struct throtl_grp *tg = blkg_to_tg(blkg);
953 	struct tg_stats_cpu *stats_cpu;
954 	unsigned long flags;
955 
956 	/* If per cpu stats are not allocated yet, don't do any accounting. */
957 	if (tg->stats_cpu == NULL)
958 		return;
959 
960 	/*
961 	 * Disabling interrupts to provide mutual exclusion between two
962 	 * writes on same cpu. It probably is not needed for 64bit. Not
963 	 * optimizing that case yet.
964 	 */
965 	local_irq_save(flags);
966 
967 	stats_cpu = this_cpu_ptr(tg->stats_cpu);
968 
969 	blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
970 	blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
971 
972 	local_irq_restore(flags);
973 }
974 
975 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
976 {
977 	bool rw = bio_data_dir(bio);
978 
979 	/* Charge the bio to the group */
980 	tg->bytes_disp[rw] += bio->bi_size;
981 	tg->io_disp[rw]++;
982 
983 	/*
984 	 * REQ_THROTTLED is used to prevent the same bio to be throttled
985 	 * more than once as a throttled bio will go through blk-throtl the
986 	 * second time when it eventually gets issued.  Set it when a bio
987 	 * is being charged to a tg.
988 	 *
989 	 * Dispatch stats aren't recursive and each @bio should only be
990 	 * accounted by the @tg it was originally associated with.  Let's
991 	 * update the stats when setting REQ_THROTTLED for the first time
992 	 * which is guaranteed to be for the @bio's original tg.
993 	 */
994 	if (!(bio->bi_rw & REQ_THROTTLED)) {
995 		bio->bi_rw |= REQ_THROTTLED;
996 		throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size,
997 					     bio->bi_rw);
998 	}
999 }
1000 
1001 /**
1002  * throtl_add_bio_tg - add a bio to the specified throtl_grp
1003  * @bio: bio to add
1004  * @qn: qnode to use
1005  * @tg: the target throtl_grp
1006  *
1007  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1008  * tg->qnode_on_self[] is used.
1009  */
1010 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1011 			      struct throtl_grp *tg)
1012 {
1013 	struct throtl_service_queue *sq = &tg->service_queue;
1014 	bool rw = bio_data_dir(bio);
1015 
1016 	if (!qn)
1017 		qn = &tg->qnode_on_self[rw];
1018 
1019 	/*
1020 	 * If @tg doesn't currently have any bios queued in the same
1021 	 * direction, queueing @bio can change when @tg should be
1022 	 * dispatched.  Mark that @tg was empty.  This is automatically
1023 	 * cleaered on the next tg_update_disptime().
1024 	 */
1025 	if (!sq->nr_queued[rw])
1026 		tg->flags |= THROTL_TG_WAS_EMPTY;
1027 
1028 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1029 
1030 	sq->nr_queued[rw]++;
1031 	throtl_enqueue_tg(tg);
1032 }
1033 
1034 static void tg_update_disptime(struct throtl_grp *tg)
1035 {
1036 	struct throtl_service_queue *sq = &tg->service_queue;
1037 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1038 	struct bio *bio;
1039 
1040 	if ((bio = throtl_peek_queued(&sq->queued[READ])))
1041 		tg_may_dispatch(tg, bio, &read_wait);
1042 
1043 	if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1044 		tg_may_dispatch(tg, bio, &write_wait);
1045 
1046 	min_wait = min(read_wait, write_wait);
1047 	disptime = jiffies + min_wait;
1048 
1049 	/* Update dispatch time */
1050 	throtl_dequeue_tg(tg);
1051 	tg->disptime = disptime;
1052 	throtl_enqueue_tg(tg);
1053 
1054 	/* see throtl_add_bio_tg() */
1055 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1056 }
1057 
1058 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1059 					struct throtl_grp *parent_tg, bool rw)
1060 {
1061 	if (throtl_slice_used(parent_tg, rw)) {
1062 		throtl_start_new_slice_with_credit(parent_tg, rw,
1063 				child_tg->slice_start[rw]);
1064 	}
1065 
1066 }
1067 
1068 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1069 {
1070 	struct throtl_service_queue *sq = &tg->service_queue;
1071 	struct throtl_service_queue *parent_sq = sq->parent_sq;
1072 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1073 	struct throtl_grp *tg_to_put = NULL;
1074 	struct bio *bio;
1075 
1076 	/*
1077 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1078 	 * from @tg may put its reference and @parent_sq might end up
1079 	 * getting released prematurely.  Remember the tg to put and put it
1080 	 * after @bio is transferred to @parent_sq.
1081 	 */
1082 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1083 	sq->nr_queued[rw]--;
1084 
1085 	throtl_charge_bio(tg, bio);
1086 
1087 	/*
1088 	 * If our parent is another tg, we just need to transfer @bio to
1089 	 * the parent using throtl_add_bio_tg().  If our parent is
1090 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1091 	 * bio_lists[] and decrease total number queued.  The caller is
1092 	 * responsible for issuing these bios.
1093 	 */
1094 	if (parent_tg) {
1095 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1096 		start_parent_slice_with_credit(tg, parent_tg, rw);
1097 	} else {
1098 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1099 				     &parent_sq->queued[rw]);
1100 		BUG_ON(tg->td->nr_queued[rw] <= 0);
1101 		tg->td->nr_queued[rw]--;
1102 	}
1103 
1104 	throtl_trim_slice(tg, rw);
1105 
1106 	if (tg_to_put)
1107 		blkg_put(tg_to_blkg(tg_to_put));
1108 }
1109 
1110 static int throtl_dispatch_tg(struct throtl_grp *tg)
1111 {
1112 	struct throtl_service_queue *sq = &tg->service_queue;
1113 	unsigned int nr_reads = 0, nr_writes = 0;
1114 	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1115 	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1116 	struct bio *bio;
1117 
1118 	/* Try to dispatch 75% READS and 25% WRITES */
1119 
1120 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1121 	       tg_may_dispatch(tg, bio, NULL)) {
1122 
1123 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1124 		nr_reads++;
1125 
1126 		if (nr_reads >= max_nr_reads)
1127 			break;
1128 	}
1129 
1130 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1131 	       tg_may_dispatch(tg, bio, NULL)) {
1132 
1133 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1134 		nr_writes++;
1135 
1136 		if (nr_writes >= max_nr_writes)
1137 			break;
1138 	}
1139 
1140 	return nr_reads + nr_writes;
1141 }
1142 
1143 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1144 {
1145 	unsigned int nr_disp = 0;
1146 
1147 	while (1) {
1148 		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1149 		struct throtl_service_queue *sq = &tg->service_queue;
1150 
1151 		if (!tg)
1152 			break;
1153 
1154 		if (time_before(jiffies, tg->disptime))
1155 			break;
1156 
1157 		throtl_dequeue_tg(tg);
1158 
1159 		nr_disp += throtl_dispatch_tg(tg);
1160 
1161 		if (sq->nr_queued[0] || sq->nr_queued[1])
1162 			tg_update_disptime(tg);
1163 
1164 		if (nr_disp >= throtl_quantum)
1165 			break;
1166 	}
1167 
1168 	return nr_disp;
1169 }
1170 
1171 /**
1172  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1173  * @arg: the throtl_service_queue being serviced
1174  *
1175  * This timer is armed when a child throtl_grp with active bio's become
1176  * pending and queued on the service_queue's pending_tree and expires when
1177  * the first child throtl_grp should be dispatched.  This function
1178  * dispatches bio's from the children throtl_grps to the parent
1179  * service_queue.
1180  *
1181  * If the parent's parent is another throtl_grp, dispatching is propagated
1182  * by either arming its pending_timer or repeating dispatch directly.  If
1183  * the top-level service_tree is reached, throtl_data->dispatch_work is
1184  * kicked so that the ready bio's are issued.
1185  */
1186 static void throtl_pending_timer_fn(unsigned long arg)
1187 {
1188 	struct throtl_service_queue *sq = (void *)arg;
1189 	struct throtl_grp *tg = sq_to_tg(sq);
1190 	struct throtl_data *td = sq_to_td(sq);
1191 	struct request_queue *q = td->queue;
1192 	struct throtl_service_queue *parent_sq;
1193 	bool dispatched;
1194 	int ret;
1195 
1196 	spin_lock_irq(q->queue_lock);
1197 again:
1198 	parent_sq = sq->parent_sq;
1199 	dispatched = false;
1200 
1201 	while (true) {
1202 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1203 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1204 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1205 
1206 		ret = throtl_select_dispatch(sq);
1207 		if (ret) {
1208 			throtl_log(sq, "bios disp=%u", ret);
1209 			dispatched = true;
1210 		}
1211 
1212 		if (throtl_schedule_next_dispatch(sq, false))
1213 			break;
1214 
1215 		/* this dispatch windows is still open, relax and repeat */
1216 		spin_unlock_irq(q->queue_lock);
1217 		cpu_relax();
1218 		spin_lock_irq(q->queue_lock);
1219 	}
1220 
1221 	if (!dispatched)
1222 		goto out_unlock;
1223 
1224 	if (parent_sq) {
1225 		/* @parent_sq is another throl_grp, propagate dispatch */
1226 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1227 			tg_update_disptime(tg);
1228 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1229 				/* window is already open, repeat dispatching */
1230 				sq = parent_sq;
1231 				tg = sq_to_tg(sq);
1232 				goto again;
1233 			}
1234 		}
1235 	} else {
1236 		/* reached the top-level, queue issueing */
1237 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1238 	}
1239 out_unlock:
1240 	spin_unlock_irq(q->queue_lock);
1241 }
1242 
1243 /**
1244  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1245  * @work: work item being executed
1246  *
1247  * This function is queued for execution when bio's reach the bio_lists[]
1248  * of throtl_data->service_queue.  Those bio's are ready and issued by this
1249  * function.
1250  */
1251 void blk_throtl_dispatch_work_fn(struct work_struct *work)
1252 {
1253 	struct throtl_data *td = container_of(work, struct throtl_data,
1254 					      dispatch_work);
1255 	struct throtl_service_queue *td_sq = &td->service_queue;
1256 	struct request_queue *q = td->queue;
1257 	struct bio_list bio_list_on_stack;
1258 	struct bio *bio;
1259 	struct blk_plug plug;
1260 	int rw;
1261 
1262 	bio_list_init(&bio_list_on_stack);
1263 
1264 	spin_lock_irq(q->queue_lock);
1265 	for (rw = READ; rw <= WRITE; rw++)
1266 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1267 			bio_list_add(&bio_list_on_stack, bio);
1268 	spin_unlock_irq(q->queue_lock);
1269 
1270 	if (!bio_list_empty(&bio_list_on_stack)) {
1271 		blk_start_plug(&plug);
1272 		while((bio = bio_list_pop(&bio_list_on_stack)))
1273 			generic_make_request(bio);
1274 		blk_finish_plug(&plug);
1275 	}
1276 }
1277 
1278 static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
1279 				struct blkg_policy_data *pd, int off)
1280 {
1281 	struct throtl_grp *tg = pd_to_tg(pd);
1282 	struct blkg_rwstat rwstat = { }, tmp;
1283 	int i, cpu;
1284 
1285 	for_each_possible_cpu(cpu) {
1286 		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
1287 
1288 		tmp = blkg_rwstat_read((void *)sc + off);
1289 		for (i = 0; i < BLKG_RWSTAT_NR; i++)
1290 			rwstat.cnt[i] += tmp.cnt[i];
1291 	}
1292 
1293 	return __blkg_prfill_rwstat(sf, pd, &rwstat);
1294 }
1295 
1296 static int tg_print_cpu_rwstat(struct cgroup_subsys_state *css,
1297 			       struct cftype *cft, struct seq_file *sf)
1298 {
1299 	struct blkcg *blkcg = css_to_blkcg(css);
1300 
1301 	blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl,
1302 			  cft->private, true);
1303 	return 0;
1304 }
1305 
1306 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1307 			      int off)
1308 {
1309 	struct throtl_grp *tg = pd_to_tg(pd);
1310 	u64 v = *(u64 *)((void *)tg + off);
1311 
1312 	if (v == -1)
1313 		return 0;
1314 	return __blkg_prfill_u64(sf, pd, v);
1315 }
1316 
1317 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1318 			       int off)
1319 {
1320 	struct throtl_grp *tg = pd_to_tg(pd);
1321 	unsigned int v = *(unsigned int *)((void *)tg + off);
1322 
1323 	if (v == -1)
1324 		return 0;
1325 	return __blkg_prfill_u64(sf, pd, v);
1326 }
1327 
1328 static int tg_print_conf_u64(struct cgroup_subsys_state *css,
1329 			     struct cftype *cft, struct seq_file *sf)
1330 {
1331 	blkcg_print_blkgs(sf, css_to_blkcg(css), tg_prfill_conf_u64,
1332 			  &blkcg_policy_throtl, cft->private, false);
1333 	return 0;
1334 }
1335 
1336 static int tg_print_conf_uint(struct cgroup_subsys_state *css,
1337 			      struct cftype *cft, struct seq_file *sf)
1338 {
1339 	blkcg_print_blkgs(sf, css_to_blkcg(css), tg_prfill_conf_uint,
1340 			  &blkcg_policy_throtl, cft->private, false);
1341 	return 0;
1342 }
1343 
1344 static int tg_set_conf(struct cgroup_subsys_state *css, struct cftype *cft,
1345 		       const char *buf, bool is_u64)
1346 {
1347 	struct blkcg *blkcg = css_to_blkcg(css);
1348 	struct blkg_conf_ctx ctx;
1349 	struct throtl_grp *tg;
1350 	struct throtl_service_queue *sq;
1351 	struct blkcg_gq *blkg;
1352 	struct cgroup_subsys_state *pos_css;
1353 	int ret;
1354 
1355 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1356 	if (ret)
1357 		return ret;
1358 
1359 	tg = blkg_to_tg(ctx.blkg);
1360 	sq = &tg->service_queue;
1361 
1362 	if (!ctx.v)
1363 		ctx.v = -1;
1364 
1365 	if (is_u64)
1366 		*(u64 *)((void *)tg + cft->private) = ctx.v;
1367 	else
1368 		*(unsigned int *)((void *)tg + cft->private) = ctx.v;
1369 
1370 	throtl_log(&tg->service_queue,
1371 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1372 		   tg->bps[READ], tg->bps[WRITE],
1373 		   tg->iops[READ], tg->iops[WRITE]);
1374 
1375 	/*
1376 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1377 	 * considered to have rules if either the tg itself or any of its
1378 	 * ancestors has rules.  This identifies groups without any
1379 	 * restrictions in the whole hierarchy and allows them to bypass
1380 	 * blk-throttle.
1381 	 */
1382 	blkg_for_each_descendant_pre(blkg, pos_css, ctx.blkg)
1383 		tg_update_has_rules(blkg_to_tg(blkg));
1384 
1385 	/*
1386 	 * We're already holding queue_lock and know @tg is valid.  Let's
1387 	 * apply the new config directly.
1388 	 *
1389 	 * Restart the slices for both READ and WRITES. It might happen
1390 	 * that a group's limit are dropped suddenly and we don't want to
1391 	 * account recently dispatched IO with new low rate.
1392 	 */
1393 	throtl_start_new_slice(tg, 0);
1394 	throtl_start_new_slice(tg, 1);
1395 
1396 	if (tg->flags & THROTL_TG_PENDING) {
1397 		tg_update_disptime(tg);
1398 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1399 	}
1400 
1401 	blkg_conf_finish(&ctx);
1402 	return 0;
1403 }
1404 
1405 static int tg_set_conf_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1406 			   const char *buf)
1407 {
1408 	return tg_set_conf(css, cft, buf, true);
1409 }
1410 
1411 static int tg_set_conf_uint(struct cgroup_subsys_state *css, struct cftype *cft,
1412 			    const char *buf)
1413 {
1414 	return tg_set_conf(css, cft, buf, false);
1415 }
1416 
1417 static struct cftype throtl_files[] = {
1418 	{
1419 		.name = "throttle.read_bps_device",
1420 		.private = offsetof(struct throtl_grp, bps[READ]),
1421 		.read_seq_string = tg_print_conf_u64,
1422 		.write_string = tg_set_conf_u64,
1423 		.max_write_len = 256,
1424 	},
1425 	{
1426 		.name = "throttle.write_bps_device",
1427 		.private = offsetof(struct throtl_grp, bps[WRITE]),
1428 		.read_seq_string = tg_print_conf_u64,
1429 		.write_string = tg_set_conf_u64,
1430 		.max_write_len = 256,
1431 	},
1432 	{
1433 		.name = "throttle.read_iops_device",
1434 		.private = offsetof(struct throtl_grp, iops[READ]),
1435 		.read_seq_string = tg_print_conf_uint,
1436 		.write_string = tg_set_conf_uint,
1437 		.max_write_len = 256,
1438 	},
1439 	{
1440 		.name = "throttle.write_iops_device",
1441 		.private = offsetof(struct throtl_grp, iops[WRITE]),
1442 		.read_seq_string = tg_print_conf_uint,
1443 		.write_string = tg_set_conf_uint,
1444 		.max_write_len = 256,
1445 	},
1446 	{
1447 		.name = "throttle.io_service_bytes",
1448 		.private = offsetof(struct tg_stats_cpu, service_bytes),
1449 		.read_seq_string = tg_print_cpu_rwstat,
1450 	},
1451 	{
1452 		.name = "throttle.io_serviced",
1453 		.private = offsetof(struct tg_stats_cpu, serviced),
1454 		.read_seq_string = tg_print_cpu_rwstat,
1455 	},
1456 	{ }	/* terminate */
1457 };
1458 
1459 static void throtl_shutdown_wq(struct request_queue *q)
1460 {
1461 	struct throtl_data *td = q->td;
1462 
1463 	cancel_work_sync(&td->dispatch_work);
1464 }
1465 
1466 static struct blkcg_policy blkcg_policy_throtl = {
1467 	.pd_size		= sizeof(struct throtl_grp),
1468 	.cftypes		= throtl_files,
1469 
1470 	.pd_init_fn		= throtl_pd_init,
1471 	.pd_online_fn		= throtl_pd_online,
1472 	.pd_exit_fn		= throtl_pd_exit,
1473 	.pd_reset_stats_fn	= throtl_pd_reset_stats,
1474 };
1475 
1476 bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1477 {
1478 	struct throtl_data *td = q->td;
1479 	struct throtl_qnode *qn = NULL;
1480 	struct throtl_grp *tg;
1481 	struct throtl_service_queue *sq;
1482 	bool rw = bio_data_dir(bio);
1483 	struct blkcg *blkcg;
1484 	bool throttled = false;
1485 
1486 	/* see throtl_charge_bio() */
1487 	if (bio->bi_rw & REQ_THROTTLED)
1488 		goto out;
1489 
1490 	/*
1491 	 * A throtl_grp pointer retrieved under rcu can be used to access
1492 	 * basic fields like stats and io rates. If a group has no rules,
1493 	 * just update the dispatch stats in lockless manner and return.
1494 	 */
1495 	rcu_read_lock();
1496 	blkcg = bio_blkcg(bio);
1497 	tg = throtl_lookup_tg(td, blkcg);
1498 	if (tg) {
1499 		if (!tg->has_rules[rw]) {
1500 			throtl_update_dispatch_stats(tg_to_blkg(tg),
1501 						     bio->bi_size, bio->bi_rw);
1502 			goto out_unlock_rcu;
1503 		}
1504 	}
1505 
1506 	/*
1507 	 * Either group has not been allocated yet or it is not an unlimited
1508 	 * IO group
1509 	 */
1510 	spin_lock_irq(q->queue_lock);
1511 	tg = throtl_lookup_create_tg(td, blkcg);
1512 	if (unlikely(!tg))
1513 		goto out_unlock;
1514 
1515 	sq = &tg->service_queue;
1516 
1517 	while (true) {
1518 		/* throtl is FIFO - if bios are already queued, should queue */
1519 		if (sq->nr_queued[rw])
1520 			break;
1521 
1522 		/* if above limits, break to queue */
1523 		if (!tg_may_dispatch(tg, bio, NULL))
1524 			break;
1525 
1526 		/* within limits, let's charge and dispatch directly */
1527 		throtl_charge_bio(tg, bio);
1528 
1529 		/*
1530 		 * We need to trim slice even when bios are not being queued
1531 		 * otherwise it might happen that a bio is not queued for
1532 		 * a long time and slice keeps on extending and trim is not
1533 		 * called for a long time. Now if limits are reduced suddenly
1534 		 * we take into account all the IO dispatched so far at new
1535 		 * low rate and * newly queued IO gets a really long dispatch
1536 		 * time.
1537 		 *
1538 		 * So keep on trimming slice even if bio is not queued.
1539 		 */
1540 		throtl_trim_slice(tg, rw);
1541 
1542 		/*
1543 		 * @bio passed through this layer without being throttled.
1544 		 * Climb up the ladder.  If we''re already at the top, it
1545 		 * can be executed directly.
1546 		 */
1547 		qn = &tg->qnode_on_parent[rw];
1548 		sq = sq->parent_sq;
1549 		tg = sq_to_tg(sq);
1550 		if (!tg)
1551 			goto out_unlock;
1552 	}
1553 
1554 	/* out-of-limit, queue to @tg */
1555 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1556 		   rw == READ ? 'R' : 'W',
1557 		   tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1558 		   tg->io_disp[rw], tg->iops[rw],
1559 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1560 
1561 	bio_associate_current(bio);
1562 	tg->td->nr_queued[rw]++;
1563 	throtl_add_bio_tg(bio, qn, tg);
1564 	throttled = true;
1565 
1566 	/*
1567 	 * Update @tg's dispatch time and force schedule dispatch if @tg
1568 	 * was empty before @bio.  The forced scheduling isn't likely to
1569 	 * cause undue delay as @bio is likely to be dispatched directly if
1570 	 * its @tg's disptime is not in the future.
1571 	 */
1572 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1573 		tg_update_disptime(tg);
1574 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1575 	}
1576 
1577 out_unlock:
1578 	spin_unlock_irq(q->queue_lock);
1579 out_unlock_rcu:
1580 	rcu_read_unlock();
1581 out:
1582 	/*
1583 	 * As multiple blk-throtls may stack in the same issue path, we
1584 	 * don't want bios to leave with the flag set.  Clear the flag if
1585 	 * being issued.
1586 	 */
1587 	if (!throttled)
1588 		bio->bi_rw &= ~REQ_THROTTLED;
1589 	return throttled;
1590 }
1591 
1592 /*
1593  * Dispatch all bios from all children tg's queued on @parent_sq.  On
1594  * return, @parent_sq is guaranteed to not have any active children tg's
1595  * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1596  */
1597 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1598 {
1599 	struct throtl_grp *tg;
1600 
1601 	while ((tg = throtl_rb_first(parent_sq))) {
1602 		struct throtl_service_queue *sq = &tg->service_queue;
1603 		struct bio *bio;
1604 
1605 		throtl_dequeue_tg(tg);
1606 
1607 		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1608 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1609 		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1610 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1611 	}
1612 }
1613 
1614 /**
1615  * blk_throtl_drain - drain throttled bios
1616  * @q: request_queue to drain throttled bios for
1617  *
1618  * Dispatch all currently throttled bios on @q through ->make_request_fn().
1619  */
1620 void blk_throtl_drain(struct request_queue *q)
1621 	__releases(q->queue_lock) __acquires(q->queue_lock)
1622 {
1623 	struct throtl_data *td = q->td;
1624 	struct blkcg_gq *blkg;
1625 	struct cgroup_subsys_state *pos_css;
1626 	struct bio *bio;
1627 	int rw;
1628 
1629 	queue_lockdep_assert_held(q);
1630 	rcu_read_lock();
1631 
1632 	/*
1633 	 * Drain each tg while doing post-order walk on the blkg tree, so
1634 	 * that all bios are propagated to td->service_queue.  It'd be
1635 	 * better to walk service_queue tree directly but blkg walk is
1636 	 * easier.
1637 	 */
1638 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1639 		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1640 
1641 	/* finally, transfer bios from top-level tg's into the td */
1642 	tg_drain_bios(&td->service_queue);
1643 
1644 	rcu_read_unlock();
1645 	spin_unlock_irq(q->queue_lock);
1646 
1647 	/* all bios now should be in td->service_queue, issue them */
1648 	for (rw = READ; rw <= WRITE; rw++)
1649 		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1650 						NULL)))
1651 			generic_make_request(bio);
1652 
1653 	spin_lock_irq(q->queue_lock);
1654 }
1655 
1656 int blk_throtl_init(struct request_queue *q)
1657 {
1658 	struct throtl_data *td;
1659 	int ret;
1660 
1661 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1662 	if (!td)
1663 		return -ENOMEM;
1664 
1665 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1666 	throtl_service_queue_init(&td->service_queue, NULL);
1667 
1668 	q->td = td;
1669 	td->queue = q;
1670 
1671 	/* activate policy */
1672 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1673 	if (ret)
1674 		kfree(td);
1675 	return ret;
1676 }
1677 
1678 void blk_throtl_exit(struct request_queue *q)
1679 {
1680 	BUG_ON(!q->td);
1681 	throtl_shutdown_wq(q);
1682 	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1683 	kfree(q->td);
1684 }
1685 
1686 static int __init throtl_init(void)
1687 {
1688 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1689 	if (!kthrotld_workqueue)
1690 		panic("Failed to create kthrotld\n");
1691 
1692 	return blkcg_policy_register(&blkcg_policy_throtl);
1693 }
1694 
1695 module_init(throtl_init);
1696