1 /* 2 * Interface for controlling IO bandwidth on a request queue 3 * 4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 5 */ 6 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/blkdev.h> 10 #include <linux/bio.h> 11 #include <linux/blktrace_api.h> 12 #include <linux/blk-cgroup.h> 13 #include "blk.h" 14 15 /* Max dispatch from a group in 1 round */ 16 static int throtl_grp_quantum = 8; 17 18 /* Total max dispatch from all groups in one round */ 19 static int throtl_quantum = 32; 20 21 /* Throttling is performed over 100ms slice and after that slice is renewed */ 22 static unsigned long throtl_slice = HZ/10; /* 100 ms */ 23 24 static struct blkcg_policy blkcg_policy_throtl; 25 26 /* A workqueue to queue throttle related work */ 27 static struct workqueue_struct *kthrotld_workqueue; 28 29 /* 30 * To implement hierarchical throttling, throtl_grps form a tree and bios 31 * are dispatched upwards level by level until they reach the top and get 32 * issued. When dispatching bios from the children and local group at each 33 * level, if the bios are dispatched into a single bio_list, there's a risk 34 * of a local or child group which can queue many bios at once filling up 35 * the list starving others. 36 * 37 * To avoid such starvation, dispatched bios are queued separately 38 * according to where they came from. When they are again dispatched to 39 * the parent, they're popped in round-robin order so that no single source 40 * hogs the dispatch window. 41 * 42 * throtl_qnode is used to keep the queued bios separated by their sources. 43 * Bios are queued to throtl_qnode which in turn is queued to 44 * throtl_service_queue and then dispatched in round-robin order. 45 * 46 * It's also used to track the reference counts on blkg's. A qnode always 47 * belongs to a throtl_grp and gets queued on itself or the parent, so 48 * incrementing the reference of the associated throtl_grp when a qnode is 49 * queued and decrementing when dequeued is enough to keep the whole blkg 50 * tree pinned while bios are in flight. 51 */ 52 struct throtl_qnode { 53 struct list_head node; /* service_queue->queued[] */ 54 struct bio_list bios; /* queued bios */ 55 struct throtl_grp *tg; /* tg this qnode belongs to */ 56 }; 57 58 struct throtl_service_queue { 59 struct throtl_service_queue *parent_sq; /* the parent service_queue */ 60 61 /* 62 * Bios queued directly to this service_queue or dispatched from 63 * children throtl_grp's. 64 */ 65 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */ 66 unsigned int nr_queued[2]; /* number of queued bios */ 67 68 /* 69 * RB tree of active children throtl_grp's, which are sorted by 70 * their ->disptime. 71 */ 72 struct rb_root pending_tree; /* RB tree of active tgs */ 73 struct rb_node *first_pending; /* first node in the tree */ 74 unsigned int nr_pending; /* # queued in the tree */ 75 unsigned long first_pending_disptime; /* disptime of the first tg */ 76 struct timer_list pending_timer; /* fires on first_pending_disptime */ 77 }; 78 79 enum tg_state_flags { 80 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */ 81 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */ 82 }; 83 84 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 85 86 struct throtl_grp { 87 /* must be the first member */ 88 struct blkg_policy_data pd; 89 90 /* active throtl group service_queue member */ 91 struct rb_node rb_node; 92 93 /* throtl_data this group belongs to */ 94 struct throtl_data *td; 95 96 /* this group's service queue */ 97 struct throtl_service_queue service_queue; 98 99 /* 100 * qnode_on_self is used when bios are directly queued to this 101 * throtl_grp so that local bios compete fairly with bios 102 * dispatched from children. qnode_on_parent is used when bios are 103 * dispatched from this throtl_grp into its parent and will compete 104 * with the sibling qnode_on_parents and the parent's 105 * qnode_on_self. 106 */ 107 struct throtl_qnode qnode_on_self[2]; 108 struct throtl_qnode qnode_on_parent[2]; 109 110 /* 111 * Dispatch time in jiffies. This is the estimated time when group 112 * will unthrottle and is ready to dispatch more bio. It is used as 113 * key to sort active groups in service tree. 114 */ 115 unsigned long disptime; 116 117 unsigned int flags; 118 119 /* are there any throtl rules between this group and td? */ 120 bool has_rules[2]; 121 122 /* bytes per second rate limits */ 123 uint64_t bps[2]; 124 125 /* IOPS limits */ 126 unsigned int iops[2]; 127 128 /* Number of bytes disptached in current slice */ 129 uint64_t bytes_disp[2]; 130 /* Number of bio's dispatched in current slice */ 131 unsigned int io_disp[2]; 132 133 /* When did we start a new slice */ 134 unsigned long slice_start[2]; 135 unsigned long slice_end[2]; 136 }; 137 138 struct throtl_data 139 { 140 /* service tree for active throtl groups */ 141 struct throtl_service_queue service_queue; 142 143 struct request_queue *queue; 144 145 /* Total Number of queued bios on READ and WRITE lists */ 146 unsigned int nr_queued[2]; 147 148 /* 149 * number of total undestroyed groups 150 */ 151 unsigned int nr_undestroyed_grps; 152 153 /* Work for dispatching throttled bios */ 154 struct work_struct dispatch_work; 155 }; 156 157 static void throtl_pending_timer_fn(unsigned long arg); 158 159 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd) 160 { 161 return pd ? container_of(pd, struct throtl_grp, pd) : NULL; 162 } 163 164 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg) 165 { 166 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl)); 167 } 168 169 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) 170 { 171 return pd_to_blkg(&tg->pd); 172 } 173 174 /** 175 * sq_to_tg - return the throl_grp the specified service queue belongs to 176 * @sq: the throtl_service_queue of interest 177 * 178 * Return the throtl_grp @sq belongs to. If @sq is the top-level one 179 * embedded in throtl_data, %NULL is returned. 180 */ 181 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) 182 { 183 if (sq && sq->parent_sq) 184 return container_of(sq, struct throtl_grp, service_queue); 185 else 186 return NULL; 187 } 188 189 /** 190 * sq_to_td - return throtl_data the specified service queue belongs to 191 * @sq: the throtl_service_queue of interest 192 * 193 * A service_queue can be embeded in either a throtl_grp or throtl_data. 194 * Determine the associated throtl_data accordingly and return it. 195 */ 196 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) 197 { 198 struct throtl_grp *tg = sq_to_tg(sq); 199 200 if (tg) 201 return tg->td; 202 else 203 return container_of(sq, struct throtl_data, service_queue); 204 } 205 206 /** 207 * throtl_log - log debug message via blktrace 208 * @sq: the service_queue being reported 209 * @fmt: printf format string 210 * @args: printf args 211 * 212 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a 213 * throtl_grp; otherwise, just "throtl". 214 * 215 * TODO: this should be made a function and name formatting should happen 216 * after testing whether blktrace is enabled. 217 */ 218 #define throtl_log(sq, fmt, args...) do { \ 219 struct throtl_grp *__tg = sq_to_tg((sq)); \ 220 struct throtl_data *__td = sq_to_td((sq)); \ 221 \ 222 (void)__td; \ 223 if ((__tg)) { \ 224 char __pbuf[128]; \ 225 \ 226 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \ 227 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \ 228 } else { \ 229 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ 230 } \ 231 } while (0) 232 233 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) 234 { 235 INIT_LIST_HEAD(&qn->node); 236 bio_list_init(&qn->bios); 237 qn->tg = tg; 238 } 239 240 /** 241 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it 242 * @bio: bio being added 243 * @qn: qnode to add bio to 244 * @queued: the service_queue->queued[] list @qn belongs to 245 * 246 * Add @bio to @qn and put @qn on @queued if it's not already on. 247 * @qn->tg's reference count is bumped when @qn is activated. See the 248 * comment on top of throtl_qnode definition for details. 249 */ 250 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, 251 struct list_head *queued) 252 { 253 bio_list_add(&qn->bios, bio); 254 if (list_empty(&qn->node)) { 255 list_add_tail(&qn->node, queued); 256 blkg_get(tg_to_blkg(qn->tg)); 257 } 258 } 259 260 /** 261 * throtl_peek_queued - peek the first bio on a qnode list 262 * @queued: the qnode list to peek 263 */ 264 static struct bio *throtl_peek_queued(struct list_head *queued) 265 { 266 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); 267 struct bio *bio; 268 269 if (list_empty(queued)) 270 return NULL; 271 272 bio = bio_list_peek(&qn->bios); 273 WARN_ON_ONCE(!bio); 274 return bio; 275 } 276 277 /** 278 * throtl_pop_queued - pop the first bio form a qnode list 279 * @queued: the qnode list to pop a bio from 280 * @tg_to_put: optional out argument for throtl_grp to put 281 * 282 * Pop the first bio from the qnode list @queued. After popping, the first 283 * qnode is removed from @queued if empty or moved to the end of @queued so 284 * that the popping order is round-robin. 285 * 286 * When the first qnode is removed, its associated throtl_grp should be put 287 * too. If @tg_to_put is NULL, this function automatically puts it; 288 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is 289 * responsible for putting it. 290 */ 291 static struct bio *throtl_pop_queued(struct list_head *queued, 292 struct throtl_grp **tg_to_put) 293 { 294 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); 295 struct bio *bio; 296 297 if (list_empty(queued)) 298 return NULL; 299 300 bio = bio_list_pop(&qn->bios); 301 WARN_ON_ONCE(!bio); 302 303 if (bio_list_empty(&qn->bios)) { 304 list_del_init(&qn->node); 305 if (tg_to_put) 306 *tg_to_put = qn->tg; 307 else 308 blkg_put(tg_to_blkg(qn->tg)); 309 } else { 310 list_move_tail(&qn->node, queued); 311 } 312 313 return bio; 314 } 315 316 /* init a service_queue, assumes the caller zeroed it */ 317 static void throtl_service_queue_init(struct throtl_service_queue *sq) 318 { 319 INIT_LIST_HEAD(&sq->queued[0]); 320 INIT_LIST_HEAD(&sq->queued[1]); 321 sq->pending_tree = RB_ROOT; 322 setup_timer(&sq->pending_timer, throtl_pending_timer_fn, 323 (unsigned long)sq); 324 } 325 326 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node) 327 { 328 struct throtl_grp *tg; 329 int rw; 330 331 tg = kzalloc_node(sizeof(*tg), gfp, node); 332 if (!tg) 333 return NULL; 334 335 throtl_service_queue_init(&tg->service_queue); 336 337 for (rw = READ; rw <= WRITE; rw++) { 338 throtl_qnode_init(&tg->qnode_on_self[rw], tg); 339 throtl_qnode_init(&tg->qnode_on_parent[rw], tg); 340 } 341 342 RB_CLEAR_NODE(&tg->rb_node); 343 tg->bps[READ] = -1; 344 tg->bps[WRITE] = -1; 345 tg->iops[READ] = -1; 346 tg->iops[WRITE] = -1; 347 348 return &tg->pd; 349 } 350 351 static void throtl_pd_init(struct blkg_policy_data *pd) 352 { 353 struct throtl_grp *tg = pd_to_tg(pd); 354 struct blkcg_gq *blkg = tg_to_blkg(tg); 355 struct throtl_data *td = blkg->q->td; 356 struct throtl_service_queue *sq = &tg->service_queue; 357 358 /* 359 * If on the default hierarchy, we switch to properly hierarchical 360 * behavior where limits on a given throtl_grp are applied to the 361 * whole subtree rather than just the group itself. e.g. If 16M 362 * read_bps limit is set on the root group, the whole system can't 363 * exceed 16M for the device. 364 * 365 * If not on the default hierarchy, the broken flat hierarchy 366 * behavior is retained where all throtl_grps are treated as if 367 * they're all separate root groups right below throtl_data. 368 * Limits of a group don't interact with limits of other groups 369 * regardless of the position of the group in the hierarchy. 370 */ 371 sq->parent_sq = &td->service_queue; 372 if (cgroup_on_dfl(blkg->blkcg->css.cgroup) && blkg->parent) 373 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; 374 tg->td = td; 375 } 376 377 /* 378 * Set has_rules[] if @tg or any of its parents have limits configured. 379 * This doesn't require walking up to the top of the hierarchy as the 380 * parent's has_rules[] is guaranteed to be correct. 381 */ 382 static void tg_update_has_rules(struct throtl_grp *tg) 383 { 384 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); 385 int rw; 386 387 for (rw = READ; rw <= WRITE; rw++) 388 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) || 389 (tg->bps[rw] != -1 || tg->iops[rw] != -1); 390 } 391 392 static void throtl_pd_online(struct blkg_policy_data *pd) 393 { 394 /* 395 * We don't want new groups to escape the limits of its ancestors. 396 * Update has_rules[] after a new group is brought online. 397 */ 398 tg_update_has_rules(pd_to_tg(pd)); 399 } 400 401 static void throtl_pd_free(struct blkg_policy_data *pd) 402 { 403 struct throtl_grp *tg = pd_to_tg(pd); 404 405 del_timer_sync(&tg->service_queue.pending_timer); 406 kfree(tg); 407 } 408 409 static struct throtl_grp * 410 throtl_rb_first(struct throtl_service_queue *parent_sq) 411 { 412 /* Service tree is empty */ 413 if (!parent_sq->nr_pending) 414 return NULL; 415 416 if (!parent_sq->first_pending) 417 parent_sq->first_pending = rb_first(&parent_sq->pending_tree); 418 419 if (parent_sq->first_pending) 420 return rb_entry_tg(parent_sq->first_pending); 421 422 return NULL; 423 } 424 425 static void rb_erase_init(struct rb_node *n, struct rb_root *root) 426 { 427 rb_erase(n, root); 428 RB_CLEAR_NODE(n); 429 } 430 431 static void throtl_rb_erase(struct rb_node *n, 432 struct throtl_service_queue *parent_sq) 433 { 434 if (parent_sq->first_pending == n) 435 parent_sq->first_pending = NULL; 436 rb_erase_init(n, &parent_sq->pending_tree); 437 --parent_sq->nr_pending; 438 } 439 440 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) 441 { 442 struct throtl_grp *tg; 443 444 tg = throtl_rb_first(parent_sq); 445 if (!tg) 446 return; 447 448 parent_sq->first_pending_disptime = tg->disptime; 449 } 450 451 static void tg_service_queue_add(struct throtl_grp *tg) 452 { 453 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; 454 struct rb_node **node = &parent_sq->pending_tree.rb_node; 455 struct rb_node *parent = NULL; 456 struct throtl_grp *__tg; 457 unsigned long key = tg->disptime; 458 int left = 1; 459 460 while (*node != NULL) { 461 parent = *node; 462 __tg = rb_entry_tg(parent); 463 464 if (time_before(key, __tg->disptime)) 465 node = &parent->rb_left; 466 else { 467 node = &parent->rb_right; 468 left = 0; 469 } 470 } 471 472 if (left) 473 parent_sq->first_pending = &tg->rb_node; 474 475 rb_link_node(&tg->rb_node, parent, node); 476 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree); 477 } 478 479 static void __throtl_enqueue_tg(struct throtl_grp *tg) 480 { 481 tg_service_queue_add(tg); 482 tg->flags |= THROTL_TG_PENDING; 483 tg->service_queue.parent_sq->nr_pending++; 484 } 485 486 static void throtl_enqueue_tg(struct throtl_grp *tg) 487 { 488 if (!(tg->flags & THROTL_TG_PENDING)) 489 __throtl_enqueue_tg(tg); 490 } 491 492 static void __throtl_dequeue_tg(struct throtl_grp *tg) 493 { 494 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); 495 tg->flags &= ~THROTL_TG_PENDING; 496 } 497 498 static void throtl_dequeue_tg(struct throtl_grp *tg) 499 { 500 if (tg->flags & THROTL_TG_PENDING) 501 __throtl_dequeue_tg(tg); 502 } 503 504 /* Call with queue lock held */ 505 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, 506 unsigned long expires) 507 { 508 mod_timer(&sq->pending_timer, expires); 509 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", 510 expires - jiffies, jiffies); 511 } 512 513 /** 514 * throtl_schedule_next_dispatch - schedule the next dispatch cycle 515 * @sq: the service_queue to schedule dispatch for 516 * @force: force scheduling 517 * 518 * Arm @sq->pending_timer so that the next dispatch cycle starts on the 519 * dispatch time of the first pending child. Returns %true if either timer 520 * is armed or there's no pending child left. %false if the current 521 * dispatch window is still open and the caller should continue 522 * dispatching. 523 * 524 * If @force is %true, the dispatch timer is always scheduled and this 525 * function is guaranteed to return %true. This is to be used when the 526 * caller can't dispatch itself and needs to invoke pending_timer 527 * unconditionally. Note that forced scheduling is likely to induce short 528 * delay before dispatch starts even if @sq->first_pending_disptime is not 529 * in the future and thus shouldn't be used in hot paths. 530 */ 531 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, 532 bool force) 533 { 534 /* any pending children left? */ 535 if (!sq->nr_pending) 536 return true; 537 538 update_min_dispatch_time(sq); 539 540 /* is the next dispatch time in the future? */ 541 if (force || time_after(sq->first_pending_disptime, jiffies)) { 542 throtl_schedule_pending_timer(sq, sq->first_pending_disptime); 543 return true; 544 } 545 546 /* tell the caller to continue dispatching */ 547 return false; 548 } 549 550 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, 551 bool rw, unsigned long start) 552 { 553 tg->bytes_disp[rw] = 0; 554 tg->io_disp[rw] = 0; 555 556 /* 557 * Previous slice has expired. We must have trimmed it after last 558 * bio dispatch. That means since start of last slice, we never used 559 * that bandwidth. Do try to make use of that bandwidth while giving 560 * credit. 561 */ 562 if (time_after_eq(start, tg->slice_start[rw])) 563 tg->slice_start[rw] = start; 564 565 tg->slice_end[rw] = jiffies + throtl_slice; 566 throtl_log(&tg->service_queue, 567 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", 568 rw == READ ? 'R' : 'W', tg->slice_start[rw], 569 tg->slice_end[rw], jiffies); 570 } 571 572 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw) 573 { 574 tg->bytes_disp[rw] = 0; 575 tg->io_disp[rw] = 0; 576 tg->slice_start[rw] = jiffies; 577 tg->slice_end[rw] = jiffies + throtl_slice; 578 throtl_log(&tg->service_queue, 579 "[%c] new slice start=%lu end=%lu jiffies=%lu", 580 rw == READ ? 'R' : 'W', tg->slice_start[rw], 581 tg->slice_end[rw], jiffies); 582 } 583 584 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, 585 unsigned long jiffy_end) 586 { 587 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); 588 } 589 590 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, 591 unsigned long jiffy_end) 592 { 593 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); 594 throtl_log(&tg->service_queue, 595 "[%c] extend slice start=%lu end=%lu jiffies=%lu", 596 rw == READ ? 'R' : 'W', tg->slice_start[rw], 597 tg->slice_end[rw], jiffies); 598 } 599 600 /* Determine if previously allocated or extended slice is complete or not */ 601 static bool throtl_slice_used(struct throtl_grp *tg, bool rw) 602 { 603 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 604 return false; 605 606 return 1; 607 } 608 609 /* Trim the used slices and adjust slice start accordingly */ 610 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) 611 { 612 unsigned long nr_slices, time_elapsed, io_trim; 613 u64 bytes_trim, tmp; 614 615 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 616 617 /* 618 * If bps are unlimited (-1), then time slice don't get 619 * renewed. Don't try to trim the slice if slice is used. A new 620 * slice will start when appropriate. 621 */ 622 if (throtl_slice_used(tg, rw)) 623 return; 624 625 /* 626 * A bio has been dispatched. Also adjust slice_end. It might happen 627 * that initially cgroup limit was very low resulting in high 628 * slice_end, but later limit was bumped up and bio was dispached 629 * sooner, then we need to reduce slice_end. A high bogus slice_end 630 * is bad because it does not allow new slice to start. 631 */ 632 633 throtl_set_slice_end(tg, rw, jiffies + throtl_slice); 634 635 time_elapsed = jiffies - tg->slice_start[rw]; 636 637 nr_slices = time_elapsed / throtl_slice; 638 639 if (!nr_slices) 640 return; 641 tmp = tg->bps[rw] * throtl_slice * nr_slices; 642 do_div(tmp, HZ); 643 bytes_trim = tmp; 644 645 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ; 646 647 if (!bytes_trim && !io_trim) 648 return; 649 650 if (tg->bytes_disp[rw] >= bytes_trim) 651 tg->bytes_disp[rw] -= bytes_trim; 652 else 653 tg->bytes_disp[rw] = 0; 654 655 if (tg->io_disp[rw] >= io_trim) 656 tg->io_disp[rw] -= io_trim; 657 else 658 tg->io_disp[rw] = 0; 659 660 tg->slice_start[rw] += nr_slices * throtl_slice; 661 662 throtl_log(&tg->service_queue, 663 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu", 664 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, 665 tg->slice_start[rw], tg->slice_end[rw], jiffies); 666 } 667 668 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, 669 unsigned long *wait) 670 { 671 bool rw = bio_data_dir(bio); 672 unsigned int io_allowed; 673 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 674 u64 tmp; 675 676 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 677 678 /* Slice has just started. Consider one slice interval */ 679 if (!jiffy_elapsed) 680 jiffy_elapsed_rnd = throtl_slice; 681 682 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); 683 684 /* 685 * jiffy_elapsed_rnd should not be a big value as minimum iops can be 686 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 687 * will allow dispatch after 1 second and after that slice should 688 * have been trimmed. 689 */ 690 691 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd; 692 do_div(tmp, HZ); 693 694 if (tmp > UINT_MAX) 695 io_allowed = UINT_MAX; 696 else 697 io_allowed = tmp; 698 699 if (tg->io_disp[rw] + 1 <= io_allowed) { 700 if (wait) 701 *wait = 0; 702 return true; 703 } 704 705 /* Calc approx time to dispatch */ 706 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1; 707 708 if (jiffy_wait > jiffy_elapsed) 709 jiffy_wait = jiffy_wait - jiffy_elapsed; 710 else 711 jiffy_wait = 1; 712 713 if (wait) 714 *wait = jiffy_wait; 715 return 0; 716 } 717 718 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, 719 unsigned long *wait) 720 { 721 bool rw = bio_data_dir(bio); 722 u64 bytes_allowed, extra_bytes, tmp; 723 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 724 725 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 726 727 /* Slice has just started. Consider one slice interval */ 728 if (!jiffy_elapsed) 729 jiffy_elapsed_rnd = throtl_slice; 730 731 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); 732 733 tmp = tg->bps[rw] * jiffy_elapsed_rnd; 734 do_div(tmp, HZ); 735 bytes_allowed = tmp; 736 737 if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) { 738 if (wait) 739 *wait = 0; 740 return true; 741 } 742 743 /* Calc approx time to dispatch */ 744 extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed; 745 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]); 746 747 if (!jiffy_wait) 748 jiffy_wait = 1; 749 750 /* 751 * This wait time is without taking into consideration the rounding 752 * up we did. Add that time also. 753 */ 754 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 755 if (wait) 756 *wait = jiffy_wait; 757 return 0; 758 } 759 760 /* 761 * Returns whether one can dispatch a bio or not. Also returns approx number 762 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 763 */ 764 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, 765 unsigned long *wait) 766 { 767 bool rw = bio_data_dir(bio); 768 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 769 770 /* 771 * Currently whole state machine of group depends on first bio 772 * queued in the group bio list. So one should not be calling 773 * this function with a different bio if there are other bios 774 * queued. 775 */ 776 BUG_ON(tg->service_queue.nr_queued[rw] && 777 bio != throtl_peek_queued(&tg->service_queue.queued[rw])); 778 779 /* If tg->bps = -1, then BW is unlimited */ 780 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) { 781 if (wait) 782 *wait = 0; 783 return true; 784 } 785 786 /* 787 * If previous slice expired, start a new one otherwise renew/extend 788 * existing slice to make sure it is at least throtl_slice interval 789 * long since now. 790 */ 791 if (throtl_slice_used(tg, rw)) 792 throtl_start_new_slice(tg, rw); 793 else { 794 if (time_before(tg->slice_end[rw], jiffies + throtl_slice)) 795 throtl_extend_slice(tg, rw, jiffies + throtl_slice); 796 } 797 798 if (tg_with_in_bps_limit(tg, bio, &bps_wait) && 799 tg_with_in_iops_limit(tg, bio, &iops_wait)) { 800 if (wait) 801 *wait = 0; 802 return 1; 803 } 804 805 max_wait = max(bps_wait, iops_wait); 806 807 if (wait) 808 *wait = max_wait; 809 810 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 811 throtl_extend_slice(tg, rw, jiffies + max_wait); 812 813 return 0; 814 } 815 816 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 817 { 818 bool rw = bio_data_dir(bio); 819 820 /* Charge the bio to the group */ 821 tg->bytes_disp[rw] += bio->bi_iter.bi_size; 822 tg->io_disp[rw]++; 823 824 /* 825 * REQ_THROTTLED is used to prevent the same bio to be throttled 826 * more than once as a throttled bio will go through blk-throtl the 827 * second time when it eventually gets issued. Set it when a bio 828 * is being charged to a tg. 829 */ 830 if (!(bio->bi_rw & REQ_THROTTLED)) 831 bio->bi_rw |= REQ_THROTTLED; 832 } 833 834 /** 835 * throtl_add_bio_tg - add a bio to the specified throtl_grp 836 * @bio: bio to add 837 * @qn: qnode to use 838 * @tg: the target throtl_grp 839 * 840 * Add @bio to @tg's service_queue using @qn. If @qn is not specified, 841 * tg->qnode_on_self[] is used. 842 */ 843 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, 844 struct throtl_grp *tg) 845 { 846 struct throtl_service_queue *sq = &tg->service_queue; 847 bool rw = bio_data_dir(bio); 848 849 if (!qn) 850 qn = &tg->qnode_on_self[rw]; 851 852 /* 853 * If @tg doesn't currently have any bios queued in the same 854 * direction, queueing @bio can change when @tg should be 855 * dispatched. Mark that @tg was empty. This is automatically 856 * cleaered on the next tg_update_disptime(). 857 */ 858 if (!sq->nr_queued[rw]) 859 tg->flags |= THROTL_TG_WAS_EMPTY; 860 861 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); 862 863 sq->nr_queued[rw]++; 864 throtl_enqueue_tg(tg); 865 } 866 867 static void tg_update_disptime(struct throtl_grp *tg) 868 { 869 struct throtl_service_queue *sq = &tg->service_queue; 870 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 871 struct bio *bio; 872 873 if ((bio = throtl_peek_queued(&sq->queued[READ]))) 874 tg_may_dispatch(tg, bio, &read_wait); 875 876 if ((bio = throtl_peek_queued(&sq->queued[WRITE]))) 877 tg_may_dispatch(tg, bio, &write_wait); 878 879 min_wait = min(read_wait, write_wait); 880 disptime = jiffies + min_wait; 881 882 /* Update dispatch time */ 883 throtl_dequeue_tg(tg); 884 tg->disptime = disptime; 885 throtl_enqueue_tg(tg); 886 887 /* see throtl_add_bio_tg() */ 888 tg->flags &= ~THROTL_TG_WAS_EMPTY; 889 } 890 891 static void start_parent_slice_with_credit(struct throtl_grp *child_tg, 892 struct throtl_grp *parent_tg, bool rw) 893 { 894 if (throtl_slice_used(parent_tg, rw)) { 895 throtl_start_new_slice_with_credit(parent_tg, rw, 896 child_tg->slice_start[rw]); 897 } 898 899 } 900 901 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) 902 { 903 struct throtl_service_queue *sq = &tg->service_queue; 904 struct throtl_service_queue *parent_sq = sq->parent_sq; 905 struct throtl_grp *parent_tg = sq_to_tg(parent_sq); 906 struct throtl_grp *tg_to_put = NULL; 907 struct bio *bio; 908 909 /* 910 * @bio is being transferred from @tg to @parent_sq. Popping a bio 911 * from @tg may put its reference and @parent_sq might end up 912 * getting released prematurely. Remember the tg to put and put it 913 * after @bio is transferred to @parent_sq. 914 */ 915 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); 916 sq->nr_queued[rw]--; 917 918 throtl_charge_bio(tg, bio); 919 920 /* 921 * If our parent is another tg, we just need to transfer @bio to 922 * the parent using throtl_add_bio_tg(). If our parent is 923 * @td->service_queue, @bio is ready to be issued. Put it on its 924 * bio_lists[] and decrease total number queued. The caller is 925 * responsible for issuing these bios. 926 */ 927 if (parent_tg) { 928 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); 929 start_parent_slice_with_credit(tg, parent_tg, rw); 930 } else { 931 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], 932 &parent_sq->queued[rw]); 933 BUG_ON(tg->td->nr_queued[rw] <= 0); 934 tg->td->nr_queued[rw]--; 935 } 936 937 throtl_trim_slice(tg, rw); 938 939 if (tg_to_put) 940 blkg_put(tg_to_blkg(tg_to_put)); 941 } 942 943 static int throtl_dispatch_tg(struct throtl_grp *tg) 944 { 945 struct throtl_service_queue *sq = &tg->service_queue; 946 unsigned int nr_reads = 0, nr_writes = 0; 947 unsigned int max_nr_reads = throtl_grp_quantum*3/4; 948 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; 949 struct bio *bio; 950 951 /* Try to dispatch 75% READS and 25% WRITES */ 952 953 while ((bio = throtl_peek_queued(&sq->queued[READ])) && 954 tg_may_dispatch(tg, bio, NULL)) { 955 956 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 957 nr_reads++; 958 959 if (nr_reads >= max_nr_reads) 960 break; 961 } 962 963 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && 964 tg_may_dispatch(tg, bio, NULL)) { 965 966 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 967 nr_writes++; 968 969 if (nr_writes >= max_nr_writes) 970 break; 971 } 972 973 return nr_reads + nr_writes; 974 } 975 976 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) 977 { 978 unsigned int nr_disp = 0; 979 980 while (1) { 981 struct throtl_grp *tg = throtl_rb_first(parent_sq); 982 struct throtl_service_queue *sq = &tg->service_queue; 983 984 if (!tg) 985 break; 986 987 if (time_before(jiffies, tg->disptime)) 988 break; 989 990 throtl_dequeue_tg(tg); 991 992 nr_disp += throtl_dispatch_tg(tg); 993 994 if (sq->nr_queued[0] || sq->nr_queued[1]) 995 tg_update_disptime(tg); 996 997 if (nr_disp >= throtl_quantum) 998 break; 999 } 1000 1001 return nr_disp; 1002 } 1003 1004 /** 1005 * throtl_pending_timer_fn - timer function for service_queue->pending_timer 1006 * @arg: the throtl_service_queue being serviced 1007 * 1008 * This timer is armed when a child throtl_grp with active bio's become 1009 * pending and queued on the service_queue's pending_tree and expires when 1010 * the first child throtl_grp should be dispatched. This function 1011 * dispatches bio's from the children throtl_grps to the parent 1012 * service_queue. 1013 * 1014 * If the parent's parent is another throtl_grp, dispatching is propagated 1015 * by either arming its pending_timer or repeating dispatch directly. If 1016 * the top-level service_tree is reached, throtl_data->dispatch_work is 1017 * kicked so that the ready bio's are issued. 1018 */ 1019 static void throtl_pending_timer_fn(unsigned long arg) 1020 { 1021 struct throtl_service_queue *sq = (void *)arg; 1022 struct throtl_grp *tg = sq_to_tg(sq); 1023 struct throtl_data *td = sq_to_td(sq); 1024 struct request_queue *q = td->queue; 1025 struct throtl_service_queue *parent_sq; 1026 bool dispatched; 1027 int ret; 1028 1029 spin_lock_irq(q->queue_lock); 1030 again: 1031 parent_sq = sq->parent_sq; 1032 dispatched = false; 1033 1034 while (true) { 1035 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", 1036 sq->nr_queued[READ] + sq->nr_queued[WRITE], 1037 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1038 1039 ret = throtl_select_dispatch(sq); 1040 if (ret) { 1041 throtl_log(sq, "bios disp=%u", ret); 1042 dispatched = true; 1043 } 1044 1045 if (throtl_schedule_next_dispatch(sq, false)) 1046 break; 1047 1048 /* this dispatch windows is still open, relax and repeat */ 1049 spin_unlock_irq(q->queue_lock); 1050 cpu_relax(); 1051 spin_lock_irq(q->queue_lock); 1052 } 1053 1054 if (!dispatched) 1055 goto out_unlock; 1056 1057 if (parent_sq) { 1058 /* @parent_sq is another throl_grp, propagate dispatch */ 1059 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1060 tg_update_disptime(tg); 1061 if (!throtl_schedule_next_dispatch(parent_sq, false)) { 1062 /* window is already open, repeat dispatching */ 1063 sq = parent_sq; 1064 tg = sq_to_tg(sq); 1065 goto again; 1066 } 1067 } 1068 } else { 1069 /* reached the top-level, queue issueing */ 1070 queue_work(kthrotld_workqueue, &td->dispatch_work); 1071 } 1072 out_unlock: 1073 spin_unlock_irq(q->queue_lock); 1074 } 1075 1076 /** 1077 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work 1078 * @work: work item being executed 1079 * 1080 * This function is queued for execution when bio's reach the bio_lists[] 1081 * of throtl_data->service_queue. Those bio's are ready and issued by this 1082 * function. 1083 */ 1084 static void blk_throtl_dispatch_work_fn(struct work_struct *work) 1085 { 1086 struct throtl_data *td = container_of(work, struct throtl_data, 1087 dispatch_work); 1088 struct throtl_service_queue *td_sq = &td->service_queue; 1089 struct request_queue *q = td->queue; 1090 struct bio_list bio_list_on_stack; 1091 struct bio *bio; 1092 struct blk_plug plug; 1093 int rw; 1094 1095 bio_list_init(&bio_list_on_stack); 1096 1097 spin_lock_irq(q->queue_lock); 1098 for (rw = READ; rw <= WRITE; rw++) 1099 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) 1100 bio_list_add(&bio_list_on_stack, bio); 1101 spin_unlock_irq(q->queue_lock); 1102 1103 if (!bio_list_empty(&bio_list_on_stack)) { 1104 blk_start_plug(&plug); 1105 while((bio = bio_list_pop(&bio_list_on_stack))) 1106 generic_make_request(bio); 1107 blk_finish_plug(&plug); 1108 } 1109 } 1110 1111 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, 1112 int off) 1113 { 1114 struct throtl_grp *tg = pd_to_tg(pd); 1115 u64 v = *(u64 *)((void *)tg + off); 1116 1117 if (v == -1) 1118 return 0; 1119 return __blkg_prfill_u64(sf, pd, v); 1120 } 1121 1122 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, 1123 int off) 1124 { 1125 struct throtl_grp *tg = pd_to_tg(pd); 1126 unsigned int v = *(unsigned int *)((void *)tg + off); 1127 1128 if (v == -1) 1129 return 0; 1130 return __blkg_prfill_u64(sf, pd, v); 1131 } 1132 1133 static int tg_print_conf_u64(struct seq_file *sf, void *v) 1134 { 1135 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, 1136 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1137 return 0; 1138 } 1139 1140 static int tg_print_conf_uint(struct seq_file *sf, void *v) 1141 { 1142 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, 1143 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1144 return 0; 1145 } 1146 1147 static void tg_conf_updated(struct throtl_grp *tg) 1148 { 1149 struct throtl_service_queue *sq = &tg->service_queue; 1150 struct cgroup_subsys_state *pos_css; 1151 struct blkcg_gq *blkg; 1152 1153 throtl_log(&tg->service_queue, 1154 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", 1155 tg->bps[READ], tg->bps[WRITE], 1156 tg->iops[READ], tg->iops[WRITE]); 1157 1158 /* 1159 * Update has_rules[] flags for the updated tg's subtree. A tg is 1160 * considered to have rules if either the tg itself or any of its 1161 * ancestors has rules. This identifies groups without any 1162 * restrictions in the whole hierarchy and allows them to bypass 1163 * blk-throttle. 1164 */ 1165 blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg)) 1166 tg_update_has_rules(blkg_to_tg(blkg)); 1167 1168 /* 1169 * We're already holding queue_lock and know @tg is valid. Let's 1170 * apply the new config directly. 1171 * 1172 * Restart the slices for both READ and WRITES. It might happen 1173 * that a group's limit are dropped suddenly and we don't want to 1174 * account recently dispatched IO with new low rate. 1175 */ 1176 throtl_start_new_slice(tg, 0); 1177 throtl_start_new_slice(tg, 1); 1178 1179 if (tg->flags & THROTL_TG_PENDING) { 1180 tg_update_disptime(tg); 1181 throtl_schedule_next_dispatch(sq->parent_sq, true); 1182 } 1183 } 1184 1185 static ssize_t tg_set_conf(struct kernfs_open_file *of, 1186 char *buf, size_t nbytes, loff_t off, bool is_u64) 1187 { 1188 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1189 struct blkg_conf_ctx ctx; 1190 struct throtl_grp *tg; 1191 int ret; 1192 u64 v; 1193 1194 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1195 if (ret) 1196 return ret; 1197 1198 ret = -EINVAL; 1199 if (sscanf(ctx.body, "%llu", &v) != 1) 1200 goto out_finish; 1201 if (!v) 1202 v = -1; 1203 1204 tg = blkg_to_tg(ctx.blkg); 1205 1206 if (is_u64) 1207 *(u64 *)((void *)tg + of_cft(of)->private) = v; 1208 else 1209 *(unsigned int *)((void *)tg + of_cft(of)->private) = v; 1210 1211 tg_conf_updated(tg); 1212 ret = 0; 1213 out_finish: 1214 blkg_conf_finish(&ctx); 1215 return ret ?: nbytes; 1216 } 1217 1218 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, 1219 char *buf, size_t nbytes, loff_t off) 1220 { 1221 return tg_set_conf(of, buf, nbytes, off, true); 1222 } 1223 1224 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, 1225 char *buf, size_t nbytes, loff_t off) 1226 { 1227 return tg_set_conf(of, buf, nbytes, off, false); 1228 } 1229 1230 static struct cftype throtl_legacy_files[] = { 1231 { 1232 .name = "throttle.read_bps_device", 1233 .private = offsetof(struct throtl_grp, bps[READ]), 1234 .seq_show = tg_print_conf_u64, 1235 .write = tg_set_conf_u64, 1236 }, 1237 { 1238 .name = "throttle.write_bps_device", 1239 .private = offsetof(struct throtl_grp, bps[WRITE]), 1240 .seq_show = tg_print_conf_u64, 1241 .write = tg_set_conf_u64, 1242 }, 1243 { 1244 .name = "throttle.read_iops_device", 1245 .private = offsetof(struct throtl_grp, iops[READ]), 1246 .seq_show = tg_print_conf_uint, 1247 .write = tg_set_conf_uint, 1248 }, 1249 { 1250 .name = "throttle.write_iops_device", 1251 .private = offsetof(struct throtl_grp, iops[WRITE]), 1252 .seq_show = tg_print_conf_uint, 1253 .write = tg_set_conf_uint, 1254 }, 1255 { 1256 .name = "throttle.io_service_bytes", 1257 .private = (unsigned long)&blkcg_policy_throtl, 1258 .seq_show = blkg_print_stat_bytes, 1259 }, 1260 { 1261 .name = "throttle.io_serviced", 1262 .private = (unsigned long)&blkcg_policy_throtl, 1263 .seq_show = blkg_print_stat_ios, 1264 }, 1265 { } /* terminate */ 1266 }; 1267 1268 static u64 tg_prfill_max(struct seq_file *sf, struct blkg_policy_data *pd, 1269 int off) 1270 { 1271 struct throtl_grp *tg = pd_to_tg(pd); 1272 const char *dname = blkg_dev_name(pd->blkg); 1273 char bufs[4][21] = { "max", "max", "max", "max" }; 1274 1275 if (!dname) 1276 return 0; 1277 if (tg->bps[READ] == -1 && tg->bps[WRITE] == -1 && 1278 tg->iops[READ] == -1 && tg->iops[WRITE] == -1) 1279 return 0; 1280 1281 if (tg->bps[READ] != -1) 1282 snprintf(bufs[0], sizeof(bufs[0]), "%llu", tg->bps[READ]); 1283 if (tg->bps[WRITE] != -1) 1284 snprintf(bufs[1], sizeof(bufs[1]), "%llu", tg->bps[WRITE]); 1285 if (tg->iops[READ] != -1) 1286 snprintf(bufs[2], sizeof(bufs[2]), "%u", tg->iops[READ]); 1287 if (tg->iops[WRITE] != -1) 1288 snprintf(bufs[3], sizeof(bufs[3]), "%u", tg->iops[WRITE]); 1289 1290 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n", 1291 dname, bufs[0], bufs[1], bufs[2], bufs[3]); 1292 return 0; 1293 } 1294 1295 static int tg_print_max(struct seq_file *sf, void *v) 1296 { 1297 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_max, 1298 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1299 return 0; 1300 } 1301 1302 static ssize_t tg_set_max(struct kernfs_open_file *of, 1303 char *buf, size_t nbytes, loff_t off) 1304 { 1305 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1306 struct blkg_conf_ctx ctx; 1307 struct throtl_grp *tg; 1308 u64 v[4]; 1309 int ret; 1310 1311 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1312 if (ret) 1313 return ret; 1314 1315 tg = blkg_to_tg(ctx.blkg); 1316 1317 v[0] = tg->bps[READ]; 1318 v[1] = tg->bps[WRITE]; 1319 v[2] = tg->iops[READ]; 1320 v[3] = tg->iops[WRITE]; 1321 1322 while (true) { 1323 char tok[27]; /* wiops=18446744073709551616 */ 1324 char *p; 1325 u64 val = -1; 1326 int len; 1327 1328 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) 1329 break; 1330 if (tok[0] == '\0') 1331 break; 1332 ctx.body += len; 1333 1334 ret = -EINVAL; 1335 p = tok; 1336 strsep(&p, "="); 1337 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) 1338 goto out_finish; 1339 1340 ret = -ERANGE; 1341 if (!val) 1342 goto out_finish; 1343 1344 ret = -EINVAL; 1345 if (!strcmp(tok, "rbps")) 1346 v[0] = val; 1347 else if (!strcmp(tok, "wbps")) 1348 v[1] = val; 1349 else if (!strcmp(tok, "riops")) 1350 v[2] = min_t(u64, val, UINT_MAX); 1351 else if (!strcmp(tok, "wiops")) 1352 v[3] = min_t(u64, val, UINT_MAX); 1353 else 1354 goto out_finish; 1355 } 1356 1357 tg->bps[READ] = v[0]; 1358 tg->bps[WRITE] = v[1]; 1359 tg->iops[READ] = v[2]; 1360 tg->iops[WRITE] = v[3]; 1361 1362 tg_conf_updated(tg); 1363 ret = 0; 1364 out_finish: 1365 blkg_conf_finish(&ctx); 1366 return ret ?: nbytes; 1367 } 1368 1369 static struct cftype throtl_files[] = { 1370 { 1371 .name = "max", 1372 .flags = CFTYPE_NOT_ON_ROOT, 1373 .seq_show = tg_print_max, 1374 .write = tg_set_max, 1375 }, 1376 { } /* terminate */ 1377 }; 1378 1379 static void throtl_shutdown_wq(struct request_queue *q) 1380 { 1381 struct throtl_data *td = q->td; 1382 1383 cancel_work_sync(&td->dispatch_work); 1384 } 1385 1386 static struct blkcg_policy blkcg_policy_throtl = { 1387 .dfl_cftypes = throtl_files, 1388 .legacy_cftypes = throtl_legacy_files, 1389 1390 .pd_alloc_fn = throtl_pd_alloc, 1391 .pd_init_fn = throtl_pd_init, 1392 .pd_online_fn = throtl_pd_online, 1393 .pd_free_fn = throtl_pd_free, 1394 }; 1395 1396 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg, 1397 struct bio *bio) 1398 { 1399 struct throtl_qnode *qn = NULL; 1400 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg); 1401 struct throtl_service_queue *sq; 1402 bool rw = bio_data_dir(bio); 1403 bool throttled = false; 1404 1405 WARN_ON_ONCE(!rcu_read_lock_held()); 1406 1407 /* see throtl_charge_bio() */ 1408 if ((bio->bi_rw & REQ_THROTTLED) || !tg->has_rules[rw]) 1409 goto out; 1410 1411 spin_lock_irq(q->queue_lock); 1412 1413 if (unlikely(blk_queue_bypass(q))) 1414 goto out_unlock; 1415 1416 sq = &tg->service_queue; 1417 1418 while (true) { 1419 /* throtl is FIFO - if bios are already queued, should queue */ 1420 if (sq->nr_queued[rw]) 1421 break; 1422 1423 /* if above limits, break to queue */ 1424 if (!tg_may_dispatch(tg, bio, NULL)) 1425 break; 1426 1427 /* within limits, let's charge and dispatch directly */ 1428 throtl_charge_bio(tg, bio); 1429 1430 /* 1431 * We need to trim slice even when bios are not being queued 1432 * otherwise it might happen that a bio is not queued for 1433 * a long time and slice keeps on extending and trim is not 1434 * called for a long time. Now if limits are reduced suddenly 1435 * we take into account all the IO dispatched so far at new 1436 * low rate and * newly queued IO gets a really long dispatch 1437 * time. 1438 * 1439 * So keep on trimming slice even if bio is not queued. 1440 */ 1441 throtl_trim_slice(tg, rw); 1442 1443 /* 1444 * @bio passed through this layer without being throttled. 1445 * Climb up the ladder. If we''re already at the top, it 1446 * can be executed directly. 1447 */ 1448 qn = &tg->qnode_on_parent[rw]; 1449 sq = sq->parent_sq; 1450 tg = sq_to_tg(sq); 1451 if (!tg) 1452 goto out_unlock; 1453 } 1454 1455 /* out-of-limit, queue to @tg */ 1456 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", 1457 rw == READ ? 'R' : 'W', 1458 tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw], 1459 tg->io_disp[rw], tg->iops[rw], 1460 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1461 1462 bio_associate_current(bio); 1463 tg->td->nr_queued[rw]++; 1464 throtl_add_bio_tg(bio, qn, tg); 1465 throttled = true; 1466 1467 /* 1468 * Update @tg's dispatch time and force schedule dispatch if @tg 1469 * was empty before @bio. The forced scheduling isn't likely to 1470 * cause undue delay as @bio is likely to be dispatched directly if 1471 * its @tg's disptime is not in the future. 1472 */ 1473 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1474 tg_update_disptime(tg); 1475 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); 1476 } 1477 1478 out_unlock: 1479 spin_unlock_irq(q->queue_lock); 1480 out: 1481 /* 1482 * As multiple blk-throtls may stack in the same issue path, we 1483 * don't want bios to leave with the flag set. Clear the flag if 1484 * being issued. 1485 */ 1486 if (!throttled) 1487 bio->bi_rw &= ~REQ_THROTTLED; 1488 return throttled; 1489 } 1490 1491 /* 1492 * Dispatch all bios from all children tg's queued on @parent_sq. On 1493 * return, @parent_sq is guaranteed to not have any active children tg's 1494 * and all bios from previously active tg's are on @parent_sq->bio_lists[]. 1495 */ 1496 static void tg_drain_bios(struct throtl_service_queue *parent_sq) 1497 { 1498 struct throtl_grp *tg; 1499 1500 while ((tg = throtl_rb_first(parent_sq))) { 1501 struct throtl_service_queue *sq = &tg->service_queue; 1502 struct bio *bio; 1503 1504 throtl_dequeue_tg(tg); 1505 1506 while ((bio = throtl_peek_queued(&sq->queued[READ]))) 1507 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1508 while ((bio = throtl_peek_queued(&sq->queued[WRITE]))) 1509 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1510 } 1511 } 1512 1513 /** 1514 * blk_throtl_drain - drain throttled bios 1515 * @q: request_queue to drain throttled bios for 1516 * 1517 * Dispatch all currently throttled bios on @q through ->make_request_fn(). 1518 */ 1519 void blk_throtl_drain(struct request_queue *q) 1520 __releases(q->queue_lock) __acquires(q->queue_lock) 1521 { 1522 struct throtl_data *td = q->td; 1523 struct blkcg_gq *blkg; 1524 struct cgroup_subsys_state *pos_css; 1525 struct bio *bio; 1526 int rw; 1527 1528 queue_lockdep_assert_held(q); 1529 rcu_read_lock(); 1530 1531 /* 1532 * Drain each tg while doing post-order walk on the blkg tree, so 1533 * that all bios are propagated to td->service_queue. It'd be 1534 * better to walk service_queue tree directly but blkg walk is 1535 * easier. 1536 */ 1537 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) 1538 tg_drain_bios(&blkg_to_tg(blkg)->service_queue); 1539 1540 /* finally, transfer bios from top-level tg's into the td */ 1541 tg_drain_bios(&td->service_queue); 1542 1543 rcu_read_unlock(); 1544 spin_unlock_irq(q->queue_lock); 1545 1546 /* all bios now should be in td->service_queue, issue them */ 1547 for (rw = READ; rw <= WRITE; rw++) 1548 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw], 1549 NULL))) 1550 generic_make_request(bio); 1551 1552 spin_lock_irq(q->queue_lock); 1553 } 1554 1555 int blk_throtl_init(struct request_queue *q) 1556 { 1557 struct throtl_data *td; 1558 int ret; 1559 1560 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 1561 if (!td) 1562 return -ENOMEM; 1563 1564 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); 1565 throtl_service_queue_init(&td->service_queue); 1566 1567 q->td = td; 1568 td->queue = q; 1569 1570 /* activate policy */ 1571 ret = blkcg_activate_policy(q, &blkcg_policy_throtl); 1572 if (ret) 1573 kfree(td); 1574 return ret; 1575 } 1576 1577 void blk_throtl_exit(struct request_queue *q) 1578 { 1579 BUG_ON(!q->td); 1580 throtl_shutdown_wq(q); 1581 blkcg_deactivate_policy(q, &blkcg_policy_throtl); 1582 kfree(q->td); 1583 } 1584 1585 static int __init throtl_init(void) 1586 { 1587 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 1588 if (!kthrotld_workqueue) 1589 panic("Failed to create kthrotld\n"); 1590 1591 return blkcg_policy_register(&blkcg_policy_throtl); 1592 } 1593 1594 module_init(throtl_init); 1595