xref: /openbmc/linux/block/blk-throttle.c (revision eafc0a02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include "blk.h"
14 #include "blk-cgroup-rwstat.h"
15 #include "blk-stat.h"
16 #include "blk-throttle.h"
17 
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
20 
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
23 
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
29 #define MIN_THROTL_BPS (320 * 1024)
30 #define MIN_THROTL_IOPS (10)
31 #define DFL_LATENCY_TARGET (-1L)
32 #define DFL_IDLE_THRESHOLD (0)
33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34 #define LATENCY_FILTERED_SSD (0)
35 /*
36  * For HD, very small latency comes from sequential IO. Such IO is helpless to
37  * help determine if its IO is impacted by others, hence we ignore the IO
38  */
39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
40 
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct *kthrotld_workqueue;
43 
44 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
45 
46 /* We measure latency for request size from <= 4k to >= 1M */
47 #define LATENCY_BUCKET_SIZE 9
48 
49 struct latency_bucket {
50 	unsigned long total_latency; /* ns / 1024 */
51 	int samples;
52 };
53 
54 struct avg_latency_bucket {
55 	unsigned long latency; /* ns / 1024 */
56 	bool valid;
57 };
58 
59 struct throtl_data
60 {
61 	/* service tree for active throtl groups */
62 	struct throtl_service_queue service_queue;
63 
64 	struct request_queue *queue;
65 
66 	/* Total Number of queued bios on READ and WRITE lists */
67 	unsigned int nr_queued[2];
68 
69 	unsigned int throtl_slice;
70 
71 	/* Work for dispatching throttled bios */
72 	struct work_struct dispatch_work;
73 	unsigned int limit_index;
74 	bool limit_valid[LIMIT_CNT];
75 
76 	unsigned long low_upgrade_time;
77 	unsigned long low_downgrade_time;
78 
79 	unsigned int scale;
80 
81 	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82 	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83 	struct latency_bucket __percpu *latency_buckets[2];
84 	unsigned long last_calculate_time;
85 	unsigned long filtered_latency;
86 
87 	bool track_bio_latency;
88 };
89 
90 static void throtl_pending_timer_fn(struct timer_list *t);
91 
92 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
93 {
94 	return pd_to_blkg(&tg->pd);
95 }
96 
97 /**
98  * sq_to_tg - return the throl_grp the specified service queue belongs to
99  * @sq: the throtl_service_queue of interest
100  *
101  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
102  * embedded in throtl_data, %NULL is returned.
103  */
104 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
105 {
106 	if (sq && sq->parent_sq)
107 		return container_of(sq, struct throtl_grp, service_queue);
108 	else
109 		return NULL;
110 }
111 
112 /**
113  * sq_to_td - return throtl_data the specified service queue belongs to
114  * @sq: the throtl_service_queue of interest
115  *
116  * A service_queue can be embedded in either a throtl_grp or throtl_data.
117  * Determine the associated throtl_data accordingly and return it.
118  */
119 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
120 {
121 	struct throtl_grp *tg = sq_to_tg(sq);
122 
123 	if (tg)
124 		return tg->td;
125 	else
126 		return container_of(sq, struct throtl_data, service_queue);
127 }
128 
129 /*
130  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131  * make the IO dispatch more smooth.
132  * Scale up: linearly scale up according to lapsed time since upgrade. For
133  *           every throtl_slice, the limit scales up 1/2 .low limit till the
134  *           limit hits .max limit
135  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
136  */
137 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
138 {
139 	/* arbitrary value to avoid too big scale */
140 	if (td->scale < 4096 && time_after_eq(jiffies,
141 	    td->low_upgrade_time + td->scale * td->throtl_slice))
142 		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
143 
144 	return low + (low >> 1) * td->scale;
145 }
146 
147 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
148 {
149 	struct blkcg_gq *blkg = tg_to_blkg(tg);
150 	struct throtl_data *td;
151 	uint64_t ret;
152 
153 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
154 		return U64_MAX;
155 
156 	td = tg->td;
157 	ret = tg->bps[rw][td->limit_index];
158 	if (ret == 0 && td->limit_index == LIMIT_LOW) {
159 		/* intermediate node or iops isn't 0 */
160 		if (!list_empty(&blkg->blkcg->css.children) ||
161 		    tg->iops[rw][td->limit_index])
162 			return U64_MAX;
163 		else
164 			return MIN_THROTL_BPS;
165 	}
166 
167 	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168 	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
169 		uint64_t adjusted;
170 
171 		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172 		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
173 	}
174 	return ret;
175 }
176 
177 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
178 {
179 	struct blkcg_gq *blkg = tg_to_blkg(tg);
180 	struct throtl_data *td;
181 	unsigned int ret;
182 
183 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
184 		return UINT_MAX;
185 
186 	td = tg->td;
187 	ret = tg->iops[rw][td->limit_index];
188 	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189 		/* intermediate node or bps isn't 0 */
190 		if (!list_empty(&blkg->blkcg->css.children) ||
191 		    tg->bps[rw][td->limit_index])
192 			return UINT_MAX;
193 		else
194 			return MIN_THROTL_IOPS;
195 	}
196 
197 	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198 	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
199 		uint64_t adjusted;
200 
201 		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202 		if (adjusted > UINT_MAX)
203 			adjusted = UINT_MAX;
204 		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
205 	}
206 	return ret;
207 }
208 
209 #define request_bucket_index(sectors) \
210 	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
211 
212 /**
213  * throtl_log - log debug message via blktrace
214  * @sq: the service_queue being reported
215  * @fmt: printf format string
216  * @args: printf args
217  *
218  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219  * throtl_grp; otherwise, just "throtl".
220  */
221 #define throtl_log(sq, fmt, args...)	do {				\
222 	struct throtl_grp *__tg = sq_to_tg((sq));			\
223 	struct throtl_data *__td = sq_to_td((sq));			\
224 									\
225 	(void)__td;							\
226 	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
227 		break;							\
228 	if ((__tg)) {							\
229 		blk_add_cgroup_trace_msg(__td->queue,			\
230 			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
231 	} else {							\
232 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
233 	}								\
234 } while (0)
235 
236 static inline unsigned int throtl_bio_data_size(struct bio *bio)
237 {
238 	/* assume it's one sector */
239 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
240 		return 512;
241 	return bio->bi_iter.bi_size;
242 }
243 
244 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
245 {
246 	INIT_LIST_HEAD(&qn->node);
247 	bio_list_init(&qn->bios);
248 	qn->tg = tg;
249 }
250 
251 /**
252  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253  * @bio: bio being added
254  * @qn: qnode to add bio to
255  * @queued: the service_queue->queued[] list @qn belongs to
256  *
257  * Add @bio to @qn and put @qn on @queued if it's not already on.
258  * @qn->tg's reference count is bumped when @qn is activated.  See the
259  * comment on top of throtl_qnode definition for details.
260  */
261 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262 				 struct list_head *queued)
263 {
264 	bio_list_add(&qn->bios, bio);
265 	if (list_empty(&qn->node)) {
266 		list_add_tail(&qn->node, queued);
267 		blkg_get(tg_to_blkg(qn->tg));
268 	}
269 }
270 
271 /**
272  * throtl_peek_queued - peek the first bio on a qnode list
273  * @queued: the qnode list to peek
274  */
275 static struct bio *throtl_peek_queued(struct list_head *queued)
276 {
277 	struct throtl_qnode *qn;
278 	struct bio *bio;
279 
280 	if (list_empty(queued))
281 		return NULL;
282 
283 	qn = list_first_entry(queued, struct throtl_qnode, node);
284 	bio = bio_list_peek(&qn->bios);
285 	WARN_ON_ONCE(!bio);
286 	return bio;
287 }
288 
289 /**
290  * throtl_pop_queued - pop the first bio form a qnode list
291  * @queued: the qnode list to pop a bio from
292  * @tg_to_put: optional out argument for throtl_grp to put
293  *
294  * Pop the first bio from the qnode list @queued.  After popping, the first
295  * qnode is removed from @queued if empty or moved to the end of @queued so
296  * that the popping order is round-robin.
297  *
298  * When the first qnode is removed, its associated throtl_grp should be put
299  * too.  If @tg_to_put is NULL, this function automatically puts it;
300  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301  * responsible for putting it.
302  */
303 static struct bio *throtl_pop_queued(struct list_head *queued,
304 				     struct throtl_grp **tg_to_put)
305 {
306 	struct throtl_qnode *qn;
307 	struct bio *bio;
308 
309 	if (list_empty(queued))
310 		return NULL;
311 
312 	qn = list_first_entry(queued, struct throtl_qnode, node);
313 	bio = bio_list_pop(&qn->bios);
314 	WARN_ON_ONCE(!bio);
315 
316 	if (bio_list_empty(&qn->bios)) {
317 		list_del_init(&qn->node);
318 		if (tg_to_put)
319 			*tg_to_put = qn->tg;
320 		else
321 			blkg_put(tg_to_blkg(qn->tg));
322 	} else {
323 		list_move_tail(&qn->node, queued);
324 	}
325 
326 	return bio;
327 }
328 
329 /* init a service_queue, assumes the caller zeroed it */
330 static void throtl_service_queue_init(struct throtl_service_queue *sq)
331 {
332 	INIT_LIST_HEAD(&sq->queued[0]);
333 	INIT_LIST_HEAD(&sq->queued[1]);
334 	sq->pending_tree = RB_ROOT_CACHED;
335 	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
336 }
337 
338 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
339 						struct request_queue *q,
340 						struct blkcg *blkcg)
341 {
342 	struct throtl_grp *tg;
343 	int rw;
344 
345 	tg = kzalloc_node(sizeof(*tg), gfp, q->node);
346 	if (!tg)
347 		return NULL;
348 
349 	if (blkg_rwstat_init(&tg->stat_bytes, gfp))
350 		goto err_free_tg;
351 
352 	if (blkg_rwstat_init(&tg->stat_ios, gfp))
353 		goto err_exit_stat_bytes;
354 
355 	throtl_service_queue_init(&tg->service_queue);
356 
357 	for (rw = READ; rw <= WRITE; rw++) {
358 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
359 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
360 	}
361 
362 	RB_CLEAR_NODE(&tg->rb_node);
363 	tg->bps[READ][LIMIT_MAX] = U64_MAX;
364 	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
365 	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
366 	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
367 	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
368 	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
369 	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
370 	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
371 	/* LIMIT_LOW will have default value 0 */
372 
373 	tg->latency_target = DFL_LATENCY_TARGET;
374 	tg->latency_target_conf = DFL_LATENCY_TARGET;
375 	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
376 	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
377 
378 	return &tg->pd;
379 
380 err_exit_stat_bytes:
381 	blkg_rwstat_exit(&tg->stat_bytes);
382 err_free_tg:
383 	kfree(tg);
384 	return NULL;
385 }
386 
387 static void throtl_pd_init(struct blkg_policy_data *pd)
388 {
389 	struct throtl_grp *tg = pd_to_tg(pd);
390 	struct blkcg_gq *blkg = tg_to_blkg(tg);
391 	struct throtl_data *td = blkg->q->td;
392 	struct throtl_service_queue *sq = &tg->service_queue;
393 
394 	/*
395 	 * If on the default hierarchy, we switch to properly hierarchical
396 	 * behavior where limits on a given throtl_grp are applied to the
397 	 * whole subtree rather than just the group itself.  e.g. If 16M
398 	 * read_bps limit is set on the root group, the whole system can't
399 	 * exceed 16M for the device.
400 	 *
401 	 * If not on the default hierarchy, the broken flat hierarchy
402 	 * behavior is retained where all throtl_grps are treated as if
403 	 * they're all separate root groups right below throtl_data.
404 	 * Limits of a group don't interact with limits of other groups
405 	 * regardless of the position of the group in the hierarchy.
406 	 */
407 	sq->parent_sq = &td->service_queue;
408 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
409 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
410 	tg->td = td;
411 }
412 
413 /*
414  * Set has_rules[] if @tg or any of its parents have limits configured.
415  * This doesn't require walking up to the top of the hierarchy as the
416  * parent's has_rules[] is guaranteed to be correct.
417  */
418 static void tg_update_has_rules(struct throtl_grp *tg)
419 {
420 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
421 	struct throtl_data *td = tg->td;
422 	int rw;
423 	int has_iops_limit = 0;
424 
425 	for (rw = READ; rw <= WRITE; rw++) {
426 		unsigned int iops_limit = tg_iops_limit(tg, rw);
427 
428 		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
429 			(td->limit_valid[td->limit_index] &&
430 			 (tg_bps_limit(tg, rw) != U64_MAX ||
431 			  iops_limit != UINT_MAX));
432 
433 		if (iops_limit != UINT_MAX)
434 			has_iops_limit = 1;
435 	}
436 
437 	if (has_iops_limit)
438 		tg->flags |= THROTL_TG_HAS_IOPS_LIMIT;
439 	else
440 		tg->flags &= ~THROTL_TG_HAS_IOPS_LIMIT;
441 }
442 
443 static void throtl_pd_online(struct blkg_policy_data *pd)
444 {
445 	struct throtl_grp *tg = pd_to_tg(pd);
446 	/*
447 	 * We don't want new groups to escape the limits of its ancestors.
448 	 * Update has_rules[] after a new group is brought online.
449 	 */
450 	tg_update_has_rules(tg);
451 }
452 
453 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
454 static void blk_throtl_update_limit_valid(struct throtl_data *td)
455 {
456 	struct cgroup_subsys_state *pos_css;
457 	struct blkcg_gq *blkg;
458 	bool low_valid = false;
459 
460 	rcu_read_lock();
461 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
462 		struct throtl_grp *tg = blkg_to_tg(blkg);
463 
464 		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
465 		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
466 			low_valid = true;
467 			break;
468 		}
469 	}
470 	rcu_read_unlock();
471 
472 	td->limit_valid[LIMIT_LOW] = low_valid;
473 }
474 #else
475 static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
476 {
477 }
478 #endif
479 
480 static void throtl_upgrade_state(struct throtl_data *td);
481 static void throtl_pd_offline(struct blkg_policy_data *pd)
482 {
483 	struct throtl_grp *tg = pd_to_tg(pd);
484 
485 	tg->bps[READ][LIMIT_LOW] = 0;
486 	tg->bps[WRITE][LIMIT_LOW] = 0;
487 	tg->iops[READ][LIMIT_LOW] = 0;
488 	tg->iops[WRITE][LIMIT_LOW] = 0;
489 
490 	blk_throtl_update_limit_valid(tg->td);
491 
492 	if (!tg->td->limit_valid[tg->td->limit_index])
493 		throtl_upgrade_state(tg->td);
494 }
495 
496 static void throtl_pd_free(struct blkg_policy_data *pd)
497 {
498 	struct throtl_grp *tg = pd_to_tg(pd);
499 
500 	del_timer_sync(&tg->service_queue.pending_timer);
501 	blkg_rwstat_exit(&tg->stat_bytes);
502 	blkg_rwstat_exit(&tg->stat_ios);
503 	kfree(tg);
504 }
505 
506 static struct throtl_grp *
507 throtl_rb_first(struct throtl_service_queue *parent_sq)
508 {
509 	struct rb_node *n;
510 
511 	n = rb_first_cached(&parent_sq->pending_tree);
512 	WARN_ON_ONCE(!n);
513 	if (!n)
514 		return NULL;
515 	return rb_entry_tg(n);
516 }
517 
518 static void throtl_rb_erase(struct rb_node *n,
519 			    struct throtl_service_queue *parent_sq)
520 {
521 	rb_erase_cached(n, &parent_sq->pending_tree);
522 	RB_CLEAR_NODE(n);
523 	--parent_sq->nr_pending;
524 }
525 
526 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
527 {
528 	struct throtl_grp *tg;
529 
530 	tg = throtl_rb_first(parent_sq);
531 	if (!tg)
532 		return;
533 
534 	parent_sq->first_pending_disptime = tg->disptime;
535 }
536 
537 static void tg_service_queue_add(struct throtl_grp *tg)
538 {
539 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
540 	struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
541 	struct rb_node *parent = NULL;
542 	struct throtl_grp *__tg;
543 	unsigned long key = tg->disptime;
544 	bool leftmost = true;
545 
546 	while (*node != NULL) {
547 		parent = *node;
548 		__tg = rb_entry_tg(parent);
549 
550 		if (time_before(key, __tg->disptime))
551 			node = &parent->rb_left;
552 		else {
553 			node = &parent->rb_right;
554 			leftmost = false;
555 		}
556 	}
557 
558 	rb_link_node(&tg->rb_node, parent, node);
559 	rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
560 			       leftmost);
561 }
562 
563 static void throtl_enqueue_tg(struct throtl_grp *tg)
564 {
565 	if (!(tg->flags & THROTL_TG_PENDING)) {
566 		tg_service_queue_add(tg);
567 		tg->flags |= THROTL_TG_PENDING;
568 		tg->service_queue.parent_sq->nr_pending++;
569 	}
570 }
571 
572 static void throtl_dequeue_tg(struct throtl_grp *tg)
573 {
574 	if (tg->flags & THROTL_TG_PENDING) {
575 		throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
576 		tg->flags &= ~THROTL_TG_PENDING;
577 	}
578 }
579 
580 /* Call with queue lock held */
581 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
582 					  unsigned long expires)
583 {
584 	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
585 
586 	/*
587 	 * Since we are adjusting the throttle limit dynamically, the sleep
588 	 * time calculated according to previous limit might be invalid. It's
589 	 * possible the cgroup sleep time is very long and no other cgroups
590 	 * have IO running so notify the limit changes. Make sure the cgroup
591 	 * doesn't sleep too long to avoid the missed notification.
592 	 */
593 	if (time_after(expires, max_expire))
594 		expires = max_expire;
595 	mod_timer(&sq->pending_timer, expires);
596 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
597 		   expires - jiffies, jiffies);
598 }
599 
600 /**
601  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
602  * @sq: the service_queue to schedule dispatch for
603  * @force: force scheduling
604  *
605  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
606  * dispatch time of the first pending child.  Returns %true if either timer
607  * is armed or there's no pending child left.  %false if the current
608  * dispatch window is still open and the caller should continue
609  * dispatching.
610  *
611  * If @force is %true, the dispatch timer is always scheduled and this
612  * function is guaranteed to return %true.  This is to be used when the
613  * caller can't dispatch itself and needs to invoke pending_timer
614  * unconditionally.  Note that forced scheduling is likely to induce short
615  * delay before dispatch starts even if @sq->first_pending_disptime is not
616  * in the future and thus shouldn't be used in hot paths.
617  */
618 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
619 					  bool force)
620 {
621 	/* any pending children left? */
622 	if (!sq->nr_pending)
623 		return true;
624 
625 	update_min_dispatch_time(sq);
626 
627 	/* is the next dispatch time in the future? */
628 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
629 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
630 		return true;
631 	}
632 
633 	/* tell the caller to continue dispatching */
634 	return false;
635 }
636 
637 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
638 		bool rw, unsigned long start)
639 {
640 	tg->bytes_disp[rw] = 0;
641 	tg->io_disp[rw] = 0;
642 
643 	/*
644 	 * Previous slice has expired. We must have trimmed it after last
645 	 * bio dispatch. That means since start of last slice, we never used
646 	 * that bandwidth. Do try to make use of that bandwidth while giving
647 	 * credit.
648 	 */
649 	if (time_after_eq(start, tg->slice_start[rw]))
650 		tg->slice_start[rw] = start;
651 
652 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
653 	throtl_log(&tg->service_queue,
654 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
655 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
656 		   tg->slice_end[rw], jiffies);
657 }
658 
659 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
660 {
661 	tg->bytes_disp[rw] = 0;
662 	tg->io_disp[rw] = 0;
663 	tg->slice_start[rw] = jiffies;
664 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
665 
666 	throtl_log(&tg->service_queue,
667 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
668 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
669 		   tg->slice_end[rw], jiffies);
670 }
671 
672 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
673 					unsigned long jiffy_end)
674 {
675 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
676 }
677 
678 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
679 				       unsigned long jiffy_end)
680 {
681 	throtl_set_slice_end(tg, rw, jiffy_end);
682 	throtl_log(&tg->service_queue,
683 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
684 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
685 		   tg->slice_end[rw], jiffies);
686 }
687 
688 /* Determine if previously allocated or extended slice is complete or not */
689 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
690 {
691 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
692 		return false;
693 
694 	return true;
695 }
696 
697 /* Trim the used slices and adjust slice start accordingly */
698 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
699 {
700 	unsigned long nr_slices, time_elapsed, io_trim;
701 	u64 bytes_trim, tmp;
702 
703 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
704 
705 	/*
706 	 * If bps are unlimited (-1), then time slice don't get
707 	 * renewed. Don't try to trim the slice if slice is used. A new
708 	 * slice will start when appropriate.
709 	 */
710 	if (throtl_slice_used(tg, rw))
711 		return;
712 
713 	/*
714 	 * A bio has been dispatched. Also adjust slice_end. It might happen
715 	 * that initially cgroup limit was very low resulting in high
716 	 * slice_end, but later limit was bumped up and bio was dispatched
717 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
718 	 * is bad because it does not allow new slice to start.
719 	 */
720 
721 	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
722 
723 	time_elapsed = jiffies - tg->slice_start[rw];
724 
725 	nr_slices = time_elapsed / tg->td->throtl_slice;
726 
727 	if (!nr_slices)
728 		return;
729 	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
730 	do_div(tmp, HZ);
731 	bytes_trim = tmp;
732 
733 	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
734 		HZ;
735 
736 	if (!bytes_trim && !io_trim)
737 		return;
738 
739 	if (tg->bytes_disp[rw] >= bytes_trim)
740 		tg->bytes_disp[rw] -= bytes_trim;
741 	else
742 		tg->bytes_disp[rw] = 0;
743 
744 	if (tg->io_disp[rw] >= io_trim)
745 		tg->io_disp[rw] -= io_trim;
746 	else
747 		tg->io_disp[rw] = 0;
748 
749 	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
750 
751 	throtl_log(&tg->service_queue,
752 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
753 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
754 		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
755 }
756 
757 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
758 				  u32 iops_limit, unsigned long *wait)
759 {
760 	bool rw = bio_data_dir(bio);
761 	unsigned int io_allowed;
762 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
763 	u64 tmp;
764 
765 	if (iops_limit == UINT_MAX) {
766 		if (wait)
767 			*wait = 0;
768 		return true;
769 	}
770 
771 	jiffy_elapsed = jiffies - tg->slice_start[rw];
772 
773 	/* Round up to the next throttle slice, wait time must be nonzero */
774 	jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
775 
776 	/*
777 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
778 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
779 	 * will allow dispatch after 1 second and after that slice should
780 	 * have been trimmed.
781 	 */
782 
783 	tmp = (u64)iops_limit * jiffy_elapsed_rnd;
784 	do_div(tmp, HZ);
785 
786 	if (tmp > UINT_MAX)
787 		io_allowed = UINT_MAX;
788 	else
789 		io_allowed = tmp;
790 
791 	if (tg->io_disp[rw] + 1 <= io_allowed) {
792 		if (wait)
793 			*wait = 0;
794 		return true;
795 	}
796 
797 	/* Calc approx time to dispatch */
798 	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
799 
800 	if (wait)
801 		*wait = jiffy_wait;
802 	return false;
803 }
804 
805 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
806 				 u64 bps_limit, unsigned long *wait)
807 {
808 	bool rw = bio_data_dir(bio);
809 	u64 bytes_allowed, extra_bytes, tmp;
810 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
811 	unsigned int bio_size = throtl_bio_data_size(bio);
812 
813 	/* no need to throttle if this bio's bytes have been accounted */
814 	if (bps_limit == U64_MAX || bio_flagged(bio, BIO_THROTTLED)) {
815 		if (wait)
816 			*wait = 0;
817 		return true;
818 	}
819 
820 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
821 
822 	/* Slice has just started. Consider one slice interval */
823 	if (!jiffy_elapsed)
824 		jiffy_elapsed_rnd = tg->td->throtl_slice;
825 
826 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
827 
828 	tmp = bps_limit * jiffy_elapsed_rnd;
829 	do_div(tmp, HZ);
830 	bytes_allowed = tmp;
831 
832 	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
833 		if (wait)
834 			*wait = 0;
835 		return true;
836 	}
837 
838 	/* Calc approx time to dispatch */
839 	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
840 	jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
841 
842 	if (!jiffy_wait)
843 		jiffy_wait = 1;
844 
845 	/*
846 	 * This wait time is without taking into consideration the rounding
847 	 * up we did. Add that time also.
848 	 */
849 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
850 	if (wait)
851 		*wait = jiffy_wait;
852 	return false;
853 }
854 
855 /*
856  * Returns whether one can dispatch a bio or not. Also returns approx number
857  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
858  */
859 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
860 			    unsigned long *wait)
861 {
862 	bool rw = bio_data_dir(bio);
863 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
864 	u64 bps_limit = tg_bps_limit(tg, rw);
865 	u32 iops_limit = tg_iops_limit(tg, rw);
866 
867 	/*
868  	 * Currently whole state machine of group depends on first bio
869 	 * queued in the group bio list. So one should not be calling
870 	 * this function with a different bio if there are other bios
871 	 * queued.
872 	 */
873 	BUG_ON(tg->service_queue.nr_queued[rw] &&
874 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
875 
876 	/* If tg->bps = -1, then BW is unlimited */
877 	if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
878 	    tg->flags & THROTL_TG_CANCELING) {
879 		if (wait)
880 			*wait = 0;
881 		return true;
882 	}
883 
884 	/*
885 	 * If previous slice expired, start a new one otherwise renew/extend
886 	 * existing slice to make sure it is at least throtl_slice interval
887 	 * long since now. New slice is started only for empty throttle group.
888 	 * If there is queued bio, that means there should be an active
889 	 * slice and it should be extended instead.
890 	 */
891 	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
892 		throtl_start_new_slice(tg, rw);
893 	else {
894 		if (time_before(tg->slice_end[rw],
895 		    jiffies + tg->td->throtl_slice))
896 			throtl_extend_slice(tg, rw,
897 				jiffies + tg->td->throtl_slice);
898 	}
899 
900 	if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
901 	    tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
902 		if (wait)
903 			*wait = 0;
904 		return true;
905 	}
906 
907 	max_wait = max(bps_wait, iops_wait);
908 
909 	if (wait)
910 		*wait = max_wait;
911 
912 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
913 		throtl_extend_slice(tg, rw, jiffies + max_wait);
914 
915 	return false;
916 }
917 
918 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
919 {
920 	bool rw = bio_data_dir(bio);
921 	unsigned int bio_size = throtl_bio_data_size(bio);
922 
923 	/* Charge the bio to the group */
924 	if (!bio_flagged(bio, BIO_THROTTLED)) {
925 		tg->bytes_disp[rw] += bio_size;
926 		tg->last_bytes_disp[rw] += bio_size;
927 	}
928 
929 	tg->io_disp[rw]++;
930 	tg->last_io_disp[rw]++;
931 
932 	/*
933 	 * BIO_THROTTLED is used to prevent the same bio to be throttled
934 	 * more than once as a throttled bio will go through blk-throtl the
935 	 * second time when it eventually gets issued.  Set it when a bio
936 	 * is being charged to a tg.
937 	 */
938 	if (!bio_flagged(bio, BIO_THROTTLED))
939 		bio_set_flag(bio, BIO_THROTTLED);
940 }
941 
942 /**
943  * throtl_add_bio_tg - add a bio to the specified throtl_grp
944  * @bio: bio to add
945  * @qn: qnode to use
946  * @tg: the target throtl_grp
947  *
948  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
949  * tg->qnode_on_self[] is used.
950  */
951 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
952 			      struct throtl_grp *tg)
953 {
954 	struct throtl_service_queue *sq = &tg->service_queue;
955 	bool rw = bio_data_dir(bio);
956 
957 	if (!qn)
958 		qn = &tg->qnode_on_self[rw];
959 
960 	/*
961 	 * If @tg doesn't currently have any bios queued in the same
962 	 * direction, queueing @bio can change when @tg should be
963 	 * dispatched.  Mark that @tg was empty.  This is automatically
964 	 * cleared on the next tg_update_disptime().
965 	 */
966 	if (!sq->nr_queued[rw])
967 		tg->flags |= THROTL_TG_WAS_EMPTY;
968 
969 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
970 
971 	sq->nr_queued[rw]++;
972 	throtl_enqueue_tg(tg);
973 }
974 
975 static void tg_update_disptime(struct throtl_grp *tg)
976 {
977 	struct throtl_service_queue *sq = &tg->service_queue;
978 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
979 	struct bio *bio;
980 
981 	bio = throtl_peek_queued(&sq->queued[READ]);
982 	if (bio)
983 		tg_may_dispatch(tg, bio, &read_wait);
984 
985 	bio = throtl_peek_queued(&sq->queued[WRITE]);
986 	if (bio)
987 		tg_may_dispatch(tg, bio, &write_wait);
988 
989 	min_wait = min(read_wait, write_wait);
990 	disptime = jiffies + min_wait;
991 
992 	/* Update dispatch time */
993 	throtl_dequeue_tg(tg);
994 	tg->disptime = disptime;
995 	throtl_enqueue_tg(tg);
996 
997 	/* see throtl_add_bio_tg() */
998 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
999 }
1000 
1001 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1002 					struct throtl_grp *parent_tg, bool rw)
1003 {
1004 	if (throtl_slice_used(parent_tg, rw)) {
1005 		throtl_start_new_slice_with_credit(parent_tg, rw,
1006 				child_tg->slice_start[rw]);
1007 	}
1008 
1009 }
1010 
1011 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1012 {
1013 	struct throtl_service_queue *sq = &tg->service_queue;
1014 	struct throtl_service_queue *parent_sq = sq->parent_sq;
1015 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1016 	struct throtl_grp *tg_to_put = NULL;
1017 	struct bio *bio;
1018 
1019 	/*
1020 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1021 	 * from @tg may put its reference and @parent_sq might end up
1022 	 * getting released prematurely.  Remember the tg to put and put it
1023 	 * after @bio is transferred to @parent_sq.
1024 	 */
1025 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1026 	sq->nr_queued[rw]--;
1027 
1028 	throtl_charge_bio(tg, bio);
1029 
1030 	/*
1031 	 * If our parent is another tg, we just need to transfer @bio to
1032 	 * the parent using throtl_add_bio_tg().  If our parent is
1033 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1034 	 * bio_lists[] and decrease total number queued.  The caller is
1035 	 * responsible for issuing these bios.
1036 	 */
1037 	if (parent_tg) {
1038 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1039 		start_parent_slice_with_credit(tg, parent_tg, rw);
1040 	} else {
1041 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1042 				     &parent_sq->queued[rw]);
1043 		BUG_ON(tg->td->nr_queued[rw] <= 0);
1044 		tg->td->nr_queued[rw]--;
1045 	}
1046 
1047 	throtl_trim_slice(tg, rw);
1048 
1049 	if (tg_to_put)
1050 		blkg_put(tg_to_blkg(tg_to_put));
1051 }
1052 
1053 static int throtl_dispatch_tg(struct throtl_grp *tg)
1054 {
1055 	struct throtl_service_queue *sq = &tg->service_queue;
1056 	unsigned int nr_reads = 0, nr_writes = 0;
1057 	unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1058 	unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1059 	struct bio *bio;
1060 
1061 	/* Try to dispatch 75% READS and 25% WRITES */
1062 
1063 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1064 	       tg_may_dispatch(tg, bio, NULL)) {
1065 
1066 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1067 		nr_reads++;
1068 
1069 		if (nr_reads >= max_nr_reads)
1070 			break;
1071 	}
1072 
1073 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1074 	       tg_may_dispatch(tg, bio, NULL)) {
1075 
1076 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1077 		nr_writes++;
1078 
1079 		if (nr_writes >= max_nr_writes)
1080 			break;
1081 	}
1082 
1083 	return nr_reads + nr_writes;
1084 }
1085 
1086 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1087 {
1088 	unsigned int nr_disp = 0;
1089 
1090 	while (1) {
1091 		struct throtl_grp *tg;
1092 		struct throtl_service_queue *sq;
1093 
1094 		if (!parent_sq->nr_pending)
1095 			break;
1096 
1097 		tg = throtl_rb_first(parent_sq);
1098 		if (!tg)
1099 			break;
1100 
1101 		if (time_before(jiffies, tg->disptime))
1102 			break;
1103 
1104 		throtl_dequeue_tg(tg);
1105 
1106 		nr_disp += throtl_dispatch_tg(tg);
1107 
1108 		sq = &tg->service_queue;
1109 		if (sq->nr_queued[0] || sq->nr_queued[1])
1110 			tg_update_disptime(tg);
1111 
1112 		if (nr_disp >= THROTL_QUANTUM)
1113 			break;
1114 	}
1115 
1116 	return nr_disp;
1117 }
1118 
1119 static bool throtl_can_upgrade(struct throtl_data *td,
1120 	struct throtl_grp *this_tg);
1121 /**
1122  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1123  * @t: the pending_timer member of the throtl_service_queue being serviced
1124  *
1125  * This timer is armed when a child throtl_grp with active bio's become
1126  * pending and queued on the service_queue's pending_tree and expires when
1127  * the first child throtl_grp should be dispatched.  This function
1128  * dispatches bio's from the children throtl_grps to the parent
1129  * service_queue.
1130  *
1131  * If the parent's parent is another throtl_grp, dispatching is propagated
1132  * by either arming its pending_timer or repeating dispatch directly.  If
1133  * the top-level service_tree is reached, throtl_data->dispatch_work is
1134  * kicked so that the ready bio's are issued.
1135  */
1136 static void throtl_pending_timer_fn(struct timer_list *t)
1137 {
1138 	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1139 	struct throtl_grp *tg = sq_to_tg(sq);
1140 	struct throtl_data *td = sq_to_td(sq);
1141 	struct throtl_service_queue *parent_sq;
1142 	struct request_queue *q;
1143 	bool dispatched;
1144 	int ret;
1145 
1146 	/* throtl_data may be gone, so figure out request queue by blkg */
1147 	if (tg)
1148 		q = tg->pd.blkg->q;
1149 	else
1150 		q = td->queue;
1151 
1152 	spin_lock_irq(&q->queue_lock);
1153 
1154 	if (!q->root_blkg)
1155 		goto out_unlock;
1156 
1157 	if (throtl_can_upgrade(td, NULL))
1158 		throtl_upgrade_state(td);
1159 
1160 again:
1161 	parent_sq = sq->parent_sq;
1162 	dispatched = false;
1163 
1164 	while (true) {
1165 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1166 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1167 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1168 
1169 		ret = throtl_select_dispatch(sq);
1170 		if (ret) {
1171 			throtl_log(sq, "bios disp=%u", ret);
1172 			dispatched = true;
1173 		}
1174 
1175 		if (throtl_schedule_next_dispatch(sq, false))
1176 			break;
1177 
1178 		/* this dispatch windows is still open, relax and repeat */
1179 		spin_unlock_irq(&q->queue_lock);
1180 		cpu_relax();
1181 		spin_lock_irq(&q->queue_lock);
1182 	}
1183 
1184 	if (!dispatched)
1185 		goto out_unlock;
1186 
1187 	if (parent_sq) {
1188 		/* @parent_sq is another throl_grp, propagate dispatch */
1189 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1190 			tg_update_disptime(tg);
1191 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1192 				/* window is already open, repeat dispatching */
1193 				sq = parent_sq;
1194 				tg = sq_to_tg(sq);
1195 				goto again;
1196 			}
1197 		}
1198 	} else {
1199 		/* reached the top-level, queue issuing */
1200 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1201 	}
1202 out_unlock:
1203 	spin_unlock_irq(&q->queue_lock);
1204 }
1205 
1206 /**
1207  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1208  * @work: work item being executed
1209  *
1210  * This function is queued for execution when bios reach the bio_lists[]
1211  * of throtl_data->service_queue.  Those bios are ready and issued by this
1212  * function.
1213  */
1214 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1215 {
1216 	struct throtl_data *td = container_of(work, struct throtl_data,
1217 					      dispatch_work);
1218 	struct throtl_service_queue *td_sq = &td->service_queue;
1219 	struct request_queue *q = td->queue;
1220 	struct bio_list bio_list_on_stack;
1221 	struct bio *bio;
1222 	struct blk_plug plug;
1223 	int rw;
1224 
1225 	bio_list_init(&bio_list_on_stack);
1226 
1227 	spin_lock_irq(&q->queue_lock);
1228 	for (rw = READ; rw <= WRITE; rw++)
1229 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1230 			bio_list_add(&bio_list_on_stack, bio);
1231 	spin_unlock_irq(&q->queue_lock);
1232 
1233 	if (!bio_list_empty(&bio_list_on_stack)) {
1234 		blk_start_plug(&plug);
1235 		while ((bio = bio_list_pop(&bio_list_on_stack)))
1236 			submit_bio_noacct_nocheck(bio);
1237 		blk_finish_plug(&plug);
1238 	}
1239 }
1240 
1241 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1242 			      int off)
1243 {
1244 	struct throtl_grp *tg = pd_to_tg(pd);
1245 	u64 v = *(u64 *)((void *)tg + off);
1246 
1247 	if (v == U64_MAX)
1248 		return 0;
1249 	return __blkg_prfill_u64(sf, pd, v);
1250 }
1251 
1252 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1253 			       int off)
1254 {
1255 	struct throtl_grp *tg = pd_to_tg(pd);
1256 	unsigned int v = *(unsigned int *)((void *)tg + off);
1257 
1258 	if (v == UINT_MAX)
1259 		return 0;
1260 	return __blkg_prfill_u64(sf, pd, v);
1261 }
1262 
1263 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1264 {
1265 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1266 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1267 	return 0;
1268 }
1269 
1270 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1271 {
1272 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1273 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1274 	return 0;
1275 }
1276 
1277 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1278 {
1279 	struct throtl_service_queue *sq = &tg->service_queue;
1280 	struct cgroup_subsys_state *pos_css;
1281 	struct blkcg_gq *blkg;
1282 
1283 	throtl_log(&tg->service_queue,
1284 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1285 		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1286 		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1287 
1288 	/*
1289 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1290 	 * considered to have rules if either the tg itself or any of its
1291 	 * ancestors has rules.  This identifies groups without any
1292 	 * restrictions in the whole hierarchy and allows them to bypass
1293 	 * blk-throttle.
1294 	 */
1295 	blkg_for_each_descendant_pre(blkg, pos_css,
1296 			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1297 		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1298 		struct throtl_grp *parent_tg;
1299 
1300 		tg_update_has_rules(this_tg);
1301 		/* ignore root/second level */
1302 		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1303 		    !blkg->parent->parent)
1304 			continue;
1305 		parent_tg = blkg_to_tg(blkg->parent);
1306 		/*
1307 		 * make sure all children has lower idle time threshold and
1308 		 * higher latency target
1309 		 */
1310 		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1311 				parent_tg->idletime_threshold);
1312 		this_tg->latency_target = max(this_tg->latency_target,
1313 				parent_tg->latency_target);
1314 	}
1315 
1316 	/*
1317 	 * We're already holding queue_lock and know @tg is valid.  Let's
1318 	 * apply the new config directly.
1319 	 *
1320 	 * Restart the slices for both READ and WRITES. It might happen
1321 	 * that a group's limit are dropped suddenly and we don't want to
1322 	 * account recently dispatched IO with new low rate.
1323 	 */
1324 	throtl_start_new_slice(tg, READ);
1325 	throtl_start_new_slice(tg, WRITE);
1326 
1327 	if (tg->flags & THROTL_TG_PENDING) {
1328 		tg_update_disptime(tg);
1329 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1330 	}
1331 }
1332 
1333 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1334 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1335 {
1336 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1337 	struct blkg_conf_ctx ctx;
1338 	struct throtl_grp *tg;
1339 	int ret;
1340 	u64 v;
1341 
1342 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1343 	if (ret)
1344 		return ret;
1345 
1346 	ret = -EINVAL;
1347 	if (sscanf(ctx.body, "%llu", &v) != 1)
1348 		goto out_finish;
1349 	if (!v)
1350 		v = U64_MAX;
1351 
1352 	tg = blkg_to_tg(ctx.blkg);
1353 
1354 	if (is_u64)
1355 		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1356 	else
1357 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1358 
1359 	tg_conf_updated(tg, false);
1360 	ret = 0;
1361 out_finish:
1362 	blkg_conf_finish(&ctx);
1363 	return ret ?: nbytes;
1364 }
1365 
1366 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1367 			       char *buf, size_t nbytes, loff_t off)
1368 {
1369 	return tg_set_conf(of, buf, nbytes, off, true);
1370 }
1371 
1372 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1373 				char *buf, size_t nbytes, loff_t off)
1374 {
1375 	return tg_set_conf(of, buf, nbytes, off, false);
1376 }
1377 
1378 static int tg_print_rwstat(struct seq_file *sf, void *v)
1379 {
1380 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1381 			  blkg_prfill_rwstat, &blkcg_policy_throtl,
1382 			  seq_cft(sf)->private, true);
1383 	return 0;
1384 }
1385 
1386 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1387 				      struct blkg_policy_data *pd, int off)
1388 {
1389 	struct blkg_rwstat_sample sum;
1390 
1391 	blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1392 				  &sum);
1393 	return __blkg_prfill_rwstat(sf, pd, &sum);
1394 }
1395 
1396 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1397 {
1398 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1399 			  tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1400 			  seq_cft(sf)->private, true);
1401 	return 0;
1402 }
1403 
1404 static struct cftype throtl_legacy_files[] = {
1405 	{
1406 		.name = "throttle.read_bps_device",
1407 		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1408 		.seq_show = tg_print_conf_u64,
1409 		.write = tg_set_conf_u64,
1410 	},
1411 	{
1412 		.name = "throttle.write_bps_device",
1413 		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1414 		.seq_show = tg_print_conf_u64,
1415 		.write = tg_set_conf_u64,
1416 	},
1417 	{
1418 		.name = "throttle.read_iops_device",
1419 		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1420 		.seq_show = tg_print_conf_uint,
1421 		.write = tg_set_conf_uint,
1422 	},
1423 	{
1424 		.name = "throttle.write_iops_device",
1425 		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1426 		.seq_show = tg_print_conf_uint,
1427 		.write = tg_set_conf_uint,
1428 	},
1429 	{
1430 		.name = "throttle.io_service_bytes",
1431 		.private = offsetof(struct throtl_grp, stat_bytes),
1432 		.seq_show = tg_print_rwstat,
1433 	},
1434 	{
1435 		.name = "throttle.io_service_bytes_recursive",
1436 		.private = offsetof(struct throtl_grp, stat_bytes),
1437 		.seq_show = tg_print_rwstat_recursive,
1438 	},
1439 	{
1440 		.name = "throttle.io_serviced",
1441 		.private = offsetof(struct throtl_grp, stat_ios),
1442 		.seq_show = tg_print_rwstat,
1443 	},
1444 	{
1445 		.name = "throttle.io_serviced_recursive",
1446 		.private = offsetof(struct throtl_grp, stat_ios),
1447 		.seq_show = tg_print_rwstat_recursive,
1448 	},
1449 	{ }	/* terminate */
1450 };
1451 
1452 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1453 			 int off)
1454 {
1455 	struct throtl_grp *tg = pd_to_tg(pd);
1456 	const char *dname = blkg_dev_name(pd->blkg);
1457 	char bufs[4][21] = { "max", "max", "max", "max" };
1458 	u64 bps_dft;
1459 	unsigned int iops_dft;
1460 	char idle_time[26] = "";
1461 	char latency_time[26] = "";
1462 
1463 	if (!dname)
1464 		return 0;
1465 
1466 	if (off == LIMIT_LOW) {
1467 		bps_dft = 0;
1468 		iops_dft = 0;
1469 	} else {
1470 		bps_dft = U64_MAX;
1471 		iops_dft = UINT_MAX;
1472 	}
1473 
1474 	if (tg->bps_conf[READ][off] == bps_dft &&
1475 	    tg->bps_conf[WRITE][off] == bps_dft &&
1476 	    tg->iops_conf[READ][off] == iops_dft &&
1477 	    tg->iops_conf[WRITE][off] == iops_dft &&
1478 	    (off != LIMIT_LOW ||
1479 	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1480 	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1481 		return 0;
1482 
1483 	if (tg->bps_conf[READ][off] != U64_MAX)
1484 		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1485 			tg->bps_conf[READ][off]);
1486 	if (tg->bps_conf[WRITE][off] != U64_MAX)
1487 		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1488 			tg->bps_conf[WRITE][off]);
1489 	if (tg->iops_conf[READ][off] != UINT_MAX)
1490 		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1491 			tg->iops_conf[READ][off]);
1492 	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1493 		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1494 			tg->iops_conf[WRITE][off]);
1495 	if (off == LIMIT_LOW) {
1496 		if (tg->idletime_threshold_conf == ULONG_MAX)
1497 			strcpy(idle_time, " idle=max");
1498 		else
1499 			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1500 				tg->idletime_threshold_conf);
1501 
1502 		if (tg->latency_target_conf == ULONG_MAX)
1503 			strcpy(latency_time, " latency=max");
1504 		else
1505 			snprintf(latency_time, sizeof(latency_time),
1506 				" latency=%lu", tg->latency_target_conf);
1507 	}
1508 
1509 	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1510 		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1511 		   latency_time);
1512 	return 0;
1513 }
1514 
1515 static int tg_print_limit(struct seq_file *sf, void *v)
1516 {
1517 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1518 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1519 	return 0;
1520 }
1521 
1522 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1523 			  char *buf, size_t nbytes, loff_t off)
1524 {
1525 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1526 	struct blkg_conf_ctx ctx;
1527 	struct throtl_grp *tg;
1528 	u64 v[4];
1529 	unsigned long idle_time;
1530 	unsigned long latency_time;
1531 	int ret;
1532 	int index = of_cft(of)->private;
1533 
1534 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1535 	if (ret)
1536 		return ret;
1537 
1538 	tg = blkg_to_tg(ctx.blkg);
1539 
1540 	v[0] = tg->bps_conf[READ][index];
1541 	v[1] = tg->bps_conf[WRITE][index];
1542 	v[2] = tg->iops_conf[READ][index];
1543 	v[3] = tg->iops_conf[WRITE][index];
1544 
1545 	idle_time = tg->idletime_threshold_conf;
1546 	latency_time = tg->latency_target_conf;
1547 	while (true) {
1548 		char tok[27];	/* wiops=18446744073709551616 */
1549 		char *p;
1550 		u64 val = U64_MAX;
1551 		int len;
1552 
1553 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1554 			break;
1555 		if (tok[0] == '\0')
1556 			break;
1557 		ctx.body += len;
1558 
1559 		ret = -EINVAL;
1560 		p = tok;
1561 		strsep(&p, "=");
1562 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1563 			goto out_finish;
1564 
1565 		ret = -ERANGE;
1566 		if (!val)
1567 			goto out_finish;
1568 
1569 		ret = -EINVAL;
1570 		if (!strcmp(tok, "rbps") && val > 1)
1571 			v[0] = val;
1572 		else if (!strcmp(tok, "wbps") && val > 1)
1573 			v[1] = val;
1574 		else if (!strcmp(tok, "riops") && val > 1)
1575 			v[2] = min_t(u64, val, UINT_MAX);
1576 		else if (!strcmp(tok, "wiops") && val > 1)
1577 			v[3] = min_t(u64, val, UINT_MAX);
1578 		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1579 			idle_time = val;
1580 		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1581 			latency_time = val;
1582 		else
1583 			goto out_finish;
1584 	}
1585 
1586 	tg->bps_conf[READ][index] = v[0];
1587 	tg->bps_conf[WRITE][index] = v[1];
1588 	tg->iops_conf[READ][index] = v[2];
1589 	tg->iops_conf[WRITE][index] = v[3];
1590 
1591 	if (index == LIMIT_MAX) {
1592 		tg->bps[READ][index] = v[0];
1593 		tg->bps[WRITE][index] = v[1];
1594 		tg->iops[READ][index] = v[2];
1595 		tg->iops[WRITE][index] = v[3];
1596 	}
1597 	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1598 		tg->bps_conf[READ][LIMIT_MAX]);
1599 	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1600 		tg->bps_conf[WRITE][LIMIT_MAX]);
1601 	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1602 		tg->iops_conf[READ][LIMIT_MAX]);
1603 	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1604 		tg->iops_conf[WRITE][LIMIT_MAX]);
1605 	tg->idletime_threshold_conf = idle_time;
1606 	tg->latency_target_conf = latency_time;
1607 
1608 	/* force user to configure all settings for low limit  */
1609 	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1610 	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1611 	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1612 	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
1613 		tg->bps[READ][LIMIT_LOW] = 0;
1614 		tg->bps[WRITE][LIMIT_LOW] = 0;
1615 		tg->iops[READ][LIMIT_LOW] = 0;
1616 		tg->iops[WRITE][LIMIT_LOW] = 0;
1617 		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1618 		tg->latency_target = DFL_LATENCY_TARGET;
1619 	} else if (index == LIMIT_LOW) {
1620 		tg->idletime_threshold = tg->idletime_threshold_conf;
1621 		tg->latency_target = tg->latency_target_conf;
1622 	}
1623 
1624 	blk_throtl_update_limit_valid(tg->td);
1625 	if (tg->td->limit_valid[LIMIT_LOW]) {
1626 		if (index == LIMIT_LOW)
1627 			tg->td->limit_index = LIMIT_LOW;
1628 	} else
1629 		tg->td->limit_index = LIMIT_MAX;
1630 	tg_conf_updated(tg, index == LIMIT_LOW &&
1631 		tg->td->limit_valid[LIMIT_LOW]);
1632 	ret = 0;
1633 out_finish:
1634 	blkg_conf_finish(&ctx);
1635 	return ret ?: nbytes;
1636 }
1637 
1638 static struct cftype throtl_files[] = {
1639 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1640 	{
1641 		.name = "low",
1642 		.flags = CFTYPE_NOT_ON_ROOT,
1643 		.seq_show = tg_print_limit,
1644 		.write = tg_set_limit,
1645 		.private = LIMIT_LOW,
1646 	},
1647 #endif
1648 	{
1649 		.name = "max",
1650 		.flags = CFTYPE_NOT_ON_ROOT,
1651 		.seq_show = tg_print_limit,
1652 		.write = tg_set_limit,
1653 		.private = LIMIT_MAX,
1654 	},
1655 	{ }	/* terminate */
1656 };
1657 
1658 static void throtl_shutdown_wq(struct request_queue *q)
1659 {
1660 	struct throtl_data *td = q->td;
1661 
1662 	cancel_work_sync(&td->dispatch_work);
1663 }
1664 
1665 struct blkcg_policy blkcg_policy_throtl = {
1666 	.dfl_cftypes		= throtl_files,
1667 	.legacy_cftypes		= throtl_legacy_files,
1668 
1669 	.pd_alloc_fn		= throtl_pd_alloc,
1670 	.pd_init_fn		= throtl_pd_init,
1671 	.pd_online_fn		= throtl_pd_online,
1672 	.pd_offline_fn		= throtl_pd_offline,
1673 	.pd_free_fn		= throtl_pd_free,
1674 };
1675 
1676 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1677 {
1678 	unsigned long rtime = jiffies, wtime = jiffies;
1679 
1680 	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1681 		rtime = tg->last_low_overflow_time[READ];
1682 	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1683 		wtime = tg->last_low_overflow_time[WRITE];
1684 	return min(rtime, wtime);
1685 }
1686 
1687 /* tg should not be an intermediate node */
1688 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1689 {
1690 	struct throtl_service_queue *parent_sq;
1691 	struct throtl_grp *parent = tg;
1692 	unsigned long ret = __tg_last_low_overflow_time(tg);
1693 
1694 	while (true) {
1695 		parent_sq = parent->service_queue.parent_sq;
1696 		parent = sq_to_tg(parent_sq);
1697 		if (!parent)
1698 			break;
1699 
1700 		/*
1701 		 * The parent doesn't have low limit, it always reaches low
1702 		 * limit. Its overflow time is useless for children
1703 		 */
1704 		if (!parent->bps[READ][LIMIT_LOW] &&
1705 		    !parent->iops[READ][LIMIT_LOW] &&
1706 		    !parent->bps[WRITE][LIMIT_LOW] &&
1707 		    !parent->iops[WRITE][LIMIT_LOW])
1708 			continue;
1709 		if (time_after(__tg_last_low_overflow_time(parent), ret))
1710 			ret = __tg_last_low_overflow_time(parent);
1711 	}
1712 	return ret;
1713 }
1714 
1715 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1716 {
1717 	/*
1718 	 * cgroup is idle if:
1719 	 * - single idle is too long, longer than a fixed value (in case user
1720 	 *   configure a too big threshold) or 4 times of idletime threshold
1721 	 * - average think time is more than threshold
1722 	 * - IO latency is largely below threshold
1723 	 */
1724 	unsigned long time;
1725 	bool ret;
1726 
1727 	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1728 	ret = tg->latency_target == DFL_LATENCY_TARGET ||
1729 	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1730 	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1731 	      tg->avg_idletime > tg->idletime_threshold ||
1732 	      (tg->latency_target && tg->bio_cnt &&
1733 		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1734 	throtl_log(&tg->service_queue,
1735 		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1736 		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1737 		tg->bio_cnt, ret, tg->td->scale);
1738 	return ret;
1739 }
1740 
1741 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1742 {
1743 	struct throtl_service_queue *sq = &tg->service_queue;
1744 	bool read_limit, write_limit;
1745 
1746 	/*
1747 	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1748 	 * reaches), it's ok to upgrade to next limit
1749 	 */
1750 	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1751 	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1752 	if (!read_limit && !write_limit)
1753 		return true;
1754 	if (read_limit && sq->nr_queued[READ] &&
1755 	    (!write_limit || sq->nr_queued[WRITE]))
1756 		return true;
1757 	if (write_limit && sq->nr_queued[WRITE] &&
1758 	    (!read_limit || sq->nr_queued[READ]))
1759 		return true;
1760 
1761 	if (time_after_eq(jiffies,
1762 		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1763 	    throtl_tg_is_idle(tg))
1764 		return true;
1765 	return false;
1766 }
1767 
1768 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1769 {
1770 	while (true) {
1771 		if (throtl_tg_can_upgrade(tg))
1772 			return true;
1773 		tg = sq_to_tg(tg->service_queue.parent_sq);
1774 		if (!tg || !tg_to_blkg(tg)->parent)
1775 			return false;
1776 	}
1777 	return false;
1778 }
1779 
1780 void blk_throtl_cancel_bios(struct request_queue *q)
1781 {
1782 	struct cgroup_subsys_state *pos_css;
1783 	struct blkcg_gq *blkg;
1784 
1785 	spin_lock_irq(&q->queue_lock);
1786 	/*
1787 	 * queue_lock is held, rcu lock is not needed here technically.
1788 	 * However, rcu lock is still held to emphasize that following
1789 	 * path need RCU protection and to prevent warning from lockdep.
1790 	 */
1791 	rcu_read_lock();
1792 	blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1793 		struct throtl_grp *tg = blkg_to_tg(blkg);
1794 		struct throtl_service_queue *sq = &tg->service_queue;
1795 
1796 		/*
1797 		 * Set the flag to make sure throtl_pending_timer_fn() won't
1798 		 * stop until all throttled bios are dispatched.
1799 		 */
1800 		blkg_to_tg(blkg)->flags |= THROTL_TG_CANCELING;
1801 		/*
1802 		 * Update disptime after setting the above flag to make sure
1803 		 * throtl_select_dispatch() won't exit without dispatching.
1804 		 */
1805 		tg_update_disptime(tg);
1806 
1807 		throtl_schedule_pending_timer(sq, jiffies + 1);
1808 	}
1809 	rcu_read_unlock();
1810 	spin_unlock_irq(&q->queue_lock);
1811 }
1812 
1813 static bool throtl_can_upgrade(struct throtl_data *td,
1814 	struct throtl_grp *this_tg)
1815 {
1816 	struct cgroup_subsys_state *pos_css;
1817 	struct blkcg_gq *blkg;
1818 
1819 	if (td->limit_index != LIMIT_LOW)
1820 		return false;
1821 
1822 	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1823 		return false;
1824 
1825 	rcu_read_lock();
1826 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1827 		struct throtl_grp *tg = blkg_to_tg(blkg);
1828 
1829 		if (tg == this_tg)
1830 			continue;
1831 		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1832 			continue;
1833 		if (!throtl_hierarchy_can_upgrade(tg)) {
1834 			rcu_read_unlock();
1835 			return false;
1836 		}
1837 	}
1838 	rcu_read_unlock();
1839 	return true;
1840 }
1841 
1842 static void throtl_upgrade_check(struct throtl_grp *tg)
1843 {
1844 	unsigned long now = jiffies;
1845 
1846 	if (tg->td->limit_index != LIMIT_LOW)
1847 		return;
1848 
1849 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1850 		return;
1851 
1852 	tg->last_check_time = now;
1853 
1854 	if (!time_after_eq(now,
1855 	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1856 		return;
1857 
1858 	if (throtl_can_upgrade(tg->td, NULL))
1859 		throtl_upgrade_state(tg->td);
1860 }
1861 
1862 static void throtl_upgrade_state(struct throtl_data *td)
1863 {
1864 	struct cgroup_subsys_state *pos_css;
1865 	struct blkcg_gq *blkg;
1866 
1867 	throtl_log(&td->service_queue, "upgrade to max");
1868 	td->limit_index = LIMIT_MAX;
1869 	td->low_upgrade_time = jiffies;
1870 	td->scale = 0;
1871 	rcu_read_lock();
1872 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1873 		struct throtl_grp *tg = blkg_to_tg(blkg);
1874 		struct throtl_service_queue *sq = &tg->service_queue;
1875 
1876 		tg->disptime = jiffies - 1;
1877 		throtl_select_dispatch(sq);
1878 		throtl_schedule_next_dispatch(sq, true);
1879 	}
1880 	rcu_read_unlock();
1881 	throtl_select_dispatch(&td->service_queue);
1882 	throtl_schedule_next_dispatch(&td->service_queue, true);
1883 	queue_work(kthrotld_workqueue, &td->dispatch_work);
1884 }
1885 
1886 static void throtl_downgrade_state(struct throtl_data *td)
1887 {
1888 	td->scale /= 2;
1889 
1890 	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1891 	if (td->scale) {
1892 		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1893 		return;
1894 	}
1895 
1896 	td->limit_index = LIMIT_LOW;
1897 	td->low_downgrade_time = jiffies;
1898 }
1899 
1900 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1901 {
1902 	struct throtl_data *td = tg->td;
1903 	unsigned long now = jiffies;
1904 
1905 	/*
1906 	 * If cgroup is below low limit, consider downgrade and throttle other
1907 	 * cgroups
1908 	 */
1909 	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1910 	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1911 					td->throtl_slice) &&
1912 	    (!throtl_tg_is_idle(tg) ||
1913 	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1914 		return true;
1915 	return false;
1916 }
1917 
1918 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1919 {
1920 	while (true) {
1921 		if (!throtl_tg_can_downgrade(tg))
1922 			return false;
1923 		tg = sq_to_tg(tg->service_queue.parent_sq);
1924 		if (!tg || !tg_to_blkg(tg)->parent)
1925 			break;
1926 	}
1927 	return true;
1928 }
1929 
1930 static void throtl_downgrade_check(struct throtl_grp *tg)
1931 {
1932 	uint64_t bps;
1933 	unsigned int iops;
1934 	unsigned long elapsed_time;
1935 	unsigned long now = jiffies;
1936 
1937 	if (tg->td->limit_index != LIMIT_MAX ||
1938 	    !tg->td->limit_valid[LIMIT_LOW])
1939 		return;
1940 	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1941 		return;
1942 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1943 		return;
1944 
1945 	elapsed_time = now - tg->last_check_time;
1946 	tg->last_check_time = now;
1947 
1948 	if (time_before(now, tg_last_low_overflow_time(tg) +
1949 			tg->td->throtl_slice))
1950 		return;
1951 
1952 	if (tg->bps[READ][LIMIT_LOW]) {
1953 		bps = tg->last_bytes_disp[READ] * HZ;
1954 		do_div(bps, elapsed_time);
1955 		if (bps >= tg->bps[READ][LIMIT_LOW])
1956 			tg->last_low_overflow_time[READ] = now;
1957 	}
1958 
1959 	if (tg->bps[WRITE][LIMIT_LOW]) {
1960 		bps = tg->last_bytes_disp[WRITE] * HZ;
1961 		do_div(bps, elapsed_time);
1962 		if (bps >= tg->bps[WRITE][LIMIT_LOW])
1963 			tg->last_low_overflow_time[WRITE] = now;
1964 	}
1965 
1966 	if (tg->iops[READ][LIMIT_LOW]) {
1967 		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1968 		if (iops >= tg->iops[READ][LIMIT_LOW])
1969 			tg->last_low_overflow_time[READ] = now;
1970 	}
1971 
1972 	if (tg->iops[WRITE][LIMIT_LOW]) {
1973 		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1974 		if (iops >= tg->iops[WRITE][LIMIT_LOW])
1975 			tg->last_low_overflow_time[WRITE] = now;
1976 	}
1977 
1978 	/*
1979 	 * If cgroup is below low limit, consider downgrade and throttle other
1980 	 * cgroups
1981 	 */
1982 	if (throtl_hierarchy_can_downgrade(tg))
1983 		throtl_downgrade_state(tg->td);
1984 
1985 	tg->last_bytes_disp[READ] = 0;
1986 	tg->last_bytes_disp[WRITE] = 0;
1987 	tg->last_io_disp[READ] = 0;
1988 	tg->last_io_disp[WRITE] = 0;
1989 }
1990 
1991 static void blk_throtl_update_idletime(struct throtl_grp *tg)
1992 {
1993 	unsigned long now;
1994 	unsigned long last_finish_time = tg->last_finish_time;
1995 
1996 	if (last_finish_time == 0)
1997 		return;
1998 
1999 	now = ktime_get_ns() >> 10;
2000 	if (now <= last_finish_time ||
2001 	    last_finish_time == tg->checked_last_finish_time)
2002 		return;
2003 
2004 	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2005 	tg->checked_last_finish_time = last_finish_time;
2006 }
2007 
2008 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2009 static void throtl_update_latency_buckets(struct throtl_data *td)
2010 {
2011 	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2012 	int i, cpu, rw;
2013 	unsigned long last_latency[2] = { 0 };
2014 	unsigned long latency[2];
2015 
2016 	if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2017 		return;
2018 	if (time_before(jiffies, td->last_calculate_time + HZ))
2019 		return;
2020 	td->last_calculate_time = jiffies;
2021 
2022 	memset(avg_latency, 0, sizeof(avg_latency));
2023 	for (rw = READ; rw <= WRITE; rw++) {
2024 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2025 			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2026 
2027 			for_each_possible_cpu(cpu) {
2028 				struct latency_bucket *bucket;
2029 
2030 				/* this isn't race free, but ok in practice */
2031 				bucket = per_cpu_ptr(td->latency_buckets[rw],
2032 					cpu);
2033 				tmp->total_latency += bucket[i].total_latency;
2034 				tmp->samples += bucket[i].samples;
2035 				bucket[i].total_latency = 0;
2036 				bucket[i].samples = 0;
2037 			}
2038 
2039 			if (tmp->samples >= 32) {
2040 				int samples = tmp->samples;
2041 
2042 				latency[rw] = tmp->total_latency;
2043 
2044 				tmp->total_latency = 0;
2045 				tmp->samples = 0;
2046 				latency[rw] /= samples;
2047 				if (latency[rw] == 0)
2048 					continue;
2049 				avg_latency[rw][i].latency = latency[rw];
2050 			}
2051 		}
2052 	}
2053 
2054 	for (rw = READ; rw <= WRITE; rw++) {
2055 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2056 			if (!avg_latency[rw][i].latency) {
2057 				if (td->avg_buckets[rw][i].latency < last_latency[rw])
2058 					td->avg_buckets[rw][i].latency =
2059 						last_latency[rw];
2060 				continue;
2061 			}
2062 
2063 			if (!td->avg_buckets[rw][i].valid)
2064 				latency[rw] = avg_latency[rw][i].latency;
2065 			else
2066 				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2067 					avg_latency[rw][i].latency) >> 3;
2068 
2069 			td->avg_buckets[rw][i].latency = max(latency[rw],
2070 				last_latency[rw]);
2071 			td->avg_buckets[rw][i].valid = true;
2072 			last_latency[rw] = td->avg_buckets[rw][i].latency;
2073 		}
2074 	}
2075 
2076 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2077 		throtl_log(&td->service_queue,
2078 			"Latency bucket %d: read latency=%ld, read valid=%d, "
2079 			"write latency=%ld, write valid=%d", i,
2080 			td->avg_buckets[READ][i].latency,
2081 			td->avg_buckets[READ][i].valid,
2082 			td->avg_buckets[WRITE][i].latency,
2083 			td->avg_buckets[WRITE][i].valid);
2084 }
2085 #else
2086 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2087 {
2088 }
2089 #endif
2090 
2091 bool __blk_throtl_bio(struct bio *bio)
2092 {
2093 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2094 	struct blkcg_gq *blkg = bio->bi_blkg;
2095 	struct throtl_qnode *qn = NULL;
2096 	struct throtl_grp *tg = blkg_to_tg(blkg);
2097 	struct throtl_service_queue *sq;
2098 	bool rw = bio_data_dir(bio);
2099 	bool throttled = false;
2100 	struct throtl_data *td = tg->td;
2101 
2102 	rcu_read_lock();
2103 
2104 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2105 		blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2106 				bio->bi_iter.bi_size);
2107 		blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2108 	}
2109 
2110 	spin_lock_irq(&q->queue_lock);
2111 
2112 	throtl_update_latency_buckets(td);
2113 
2114 	blk_throtl_update_idletime(tg);
2115 
2116 	sq = &tg->service_queue;
2117 
2118 again:
2119 	while (true) {
2120 		if (tg->last_low_overflow_time[rw] == 0)
2121 			tg->last_low_overflow_time[rw] = jiffies;
2122 		throtl_downgrade_check(tg);
2123 		throtl_upgrade_check(tg);
2124 		/* throtl is FIFO - if bios are already queued, should queue */
2125 		if (sq->nr_queued[rw])
2126 			break;
2127 
2128 		/* if above limits, break to queue */
2129 		if (!tg_may_dispatch(tg, bio, NULL)) {
2130 			tg->last_low_overflow_time[rw] = jiffies;
2131 			if (throtl_can_upgrade(td, tg)) {
2132 				throtl_upgrade_state(td);
2133 				goto again;
2134 			}
2135 			break;
2136 		}
2137 
2138 		/* within limits, let's charge and dispatch directly */
2139 		throtl_charge_bio(tg, bio);
2140 
2141 		/*
2142 		 * We need to trim slice even when bios are not being queued
2143 		 * otherwise it might happen that a bio is not queued for
2144 		 * a long time and slice keeps on extending and trim is not
2145 		 * called for a long time. Now if limits are reduced suddenly
2146 		 * we take into account all the IO dispatched so far at new
2147 		 * low rate and * newly queued IO gets a really long dispatch
2148 		 * time.
2149 		 *
2150 		 * So keep on trimming slice even if bio is not queued.
2151 		 */
2152 		throtl_trim_slice(tg, rw);
2153 
2154 		/*
2155 		 * @bio passed through this layer without being throttled.
2156 		 * Climb up the ladder.  If we're already at the top, it
2157 		 * can be executed directly.
2158 		 */
2159 		qn = &tg->qnode_on_parent[rw];
2160 		sq = sq->parent_sq;
2161 		tg = sq_to_tg(sq);
2162 		if (!tg)
2163 			goto out_unlock;
2164 	}
2165 
2166 	/* out-of-limit, queue to @tg */
2167 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2168 		   rw == READ ? 'R' : 'W',
2169 		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2170 		   tg_bps_limit(tg, rw),
2171 		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2172 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2173 
2174 	tg->last_low_overflow_time[rw] = jiffies;
2175 
2176 	td->nr_queued[rw]++;
2177 	throtl_add_bio_tg(bio, qn, tg);
2178 	throttled = true;
2179 
2180 	/*
2181 	 * Update @tg's dispatch time and force schedule dispatch if @tg
2182 	 * was empty before @bio.  The forced scheduling isn't likely to
2183 	 * cause undue delay as @bio is likely to be dispatched directly if
2184 	 * its @tg's disptime is not in the future.
2185 	 */
2186 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2187 		tg_update_disptime(tg);
2188 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2189 	}
2190 
2191 out_unlock:
2192 	spin_unlock_irq(&q->queue_lock);
2193 	bio_set_flag(bio, BIO_THROTTLED);
2194 
2195 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2196 	if (throttled || !td->track_bio_latency)
2197 		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2198 #endif
2199 	rcu_read_unlock();
2200 	return throttled;
2201 }
2202 
2203 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2204 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2205 	int op, unsigned long time)
2206 {
2207 	struct latency_bucket *latency;
2208 	int index;
2209 
2210 	if (!td || td->limit_index != LIMIT_LOW ||
2211 	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2212 	    !blk_queue_nonrot(td->queue))
2213 		return;
2214 
2215 	index = request_bucket_index(size);
2216 
2217 	latency = get_cpu_ptr(td->latency_buckets[op]);
2218 	latency[index].total_latency += time;
2219 	latency[index].samples++;
2220 	put_cpu_ptr(td->latency_buckets[op]);
2221 }
2222 
2223 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2224 {
2225 	struct request_queue *q = rq->q;
2226 	struct throtl_data *td = q->td;
2227 
2228 	throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2229 			     time_ns >> 10);
2230 }
2231 
2232 void blk_throtl_bio_endio(struct bio *bio)
2233 {
2234 	struct blkcg_gq *blkg;
2235 	struct throtl_grp *tg;
2236 	u64 finish_time_ns;
2237 	unsigned long finish_time;
2238 	unsigned long start_time;
2239 	unsigned long lat;
2240 	int rw = bio_data_dir(bio);
2241 
2242 	blkg = bio->bi_blkg;
2243 	if (!blkg)
2244 		return;
2245 	tg = blkg_to_tg(blkg);
2246 	if (!tg->td->limit_valid[LIMIT_LOW])
2247 		return;
2248 
2249 	finish_time_ns = ktime_get_ns();
2250 	tg->last_finish_time = finish_time_ns >> 10;
2251 
2252 	start_time = bio_issue_time(&bio->bi_issue) >> 10;
2253 	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2254 	if (!start_time || finish_time <= start_time)
2255 		return;
2256 
2257 	lat = finish_time - start_time;
2258 	/* this is only for bio based driver */
2259 	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2260 		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2261 				     bio_op(bio), lat);
2262 
2263 	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2264 		int bucket;
2265 		unsigned int threshold;
2266 
2267 		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2268 		threshold = tg->td->avg_buckets[rw][bucket].latency +
2269 			tg->latency_target;
2270 		if (lat > threshold)
2271 			tg->bad_bio_cnt++;
2272 		/*
2273 		 * Not race free, could get wrong count, which means cgroups
2274 		 * will be throttled
2275 		 */
2276 		tg->bio_cnt++;
2277 	}
2278 
2279 	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2280 		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2281 		tg->bio_cnt /= 2;
2282 		tg->bad_bio_cnt /= 2;
2283 	}
2284 }
2285 #endif
2286 
2287 int blk_throtl_init(struct request_queue *q)
2288 {
2289 	struct throtl_data *td;
2290 	int ret;
2291 
2292 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2293 	if (!td)
2294 		return -ENOMEM;
2295 	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2296 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2297 	if (!td->latency_buckets[READ]) {
2298 		kfree(td);
2299 		return -ENOMEM;
2300 	}
2301 	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2302 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2303 	if (!td->latency_buckets[WRITE]) {
2304 		free_percpu(td->latency_buckets[READ]);
2305 		kfree(td);
2306 		return -ENOMEM;
2307 	}
2308 
2309 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2310 	throtl_service_queue_init(&td->service_queue);
2311 
2312 	q->td = td;
2313 	td->queue = q;
2314 
2315 	td->limit_valid[LIMIT_MAX] = true;
2316 	td->limit_index = LIMIT_MAX;
2317 	td->low_upgrade_time = jiffies;
2318 	td->low_downgrade_time = jiffies;
2319 
2320 	/* activate policy */
2321 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2322 	if (ret) {
2323 		free_percpu(td->latency_buckets[READ]);
2324 		free_percpu(td->latency_buckets[WRITE]);
2325 		kfree(td);
2326 	}
2327 	return ret;
2328 }
2329 
2330 void blk_throtl_exit(struct request_queue *q)
2331 {
2332 	BUG_ON(!q->td);
2333 	del_timer_sync(&q->td->service_queue.pending_timer);
2334 	throtl_shutdown_wq(q);
2335 	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2336 	free_percpu(q->td->latency_buckets[READ]);
2337 	free_percpu(q->td->latency_buckets[WRITE]);
2338 	kfree(q->td);
2339 }
2340 
2341 void blk_throtl_register_queue(struct request_queue *q)
2342 {
2343 	struct throtl_data *td;
2344 	int i;
2345 
2346 	td = q->td;
2347 	BUG_ON(!td);
2348 
2349 	if (blk_queue_nonrot(q)) {
2350 		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2351 		td->filtered_latency = LATENCY_FILTERED_SSD;
2352 	} else {
2353 		td->throtl_slice = DFL_THROTL_SLICE_HD;
2354 		td->filtered_latency = LATENCY_FILTERED_HD;
2355 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2356 			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2357 			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2358 		}
2359 	}
2360 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2361 	/* if no low limit, use previous default */
2362 	td->throtl_slice = DFL_THROTL_SLICE_HD;
2363 #endif
2364 
2365 	td->track_bio_latency = !queue_is_mq(q);
2366 	if (!td->track_bio_latency)
2367 		blk_stat_enable_accounting(q);
2368 }
2369 
2370 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2371 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2372 {
2373 	if (!q->td)
2374 		return -EINVAL;
2375 	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2376 }
2377 
2378 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2379 	const char *page, size_t count)
2380 {
2381 	unsigned long v;
2382 	unsigned long t;
2383 
2384 	if (!q->td)
2385 		return -EINVAL;
2386 	if (kstrtoul(page, 10, &v))
2387 		return -EINVAL;
2388 	t = msecs_to_jiffies(v);
2389 	if (t == 0 || t > MAX_THROTL_SLICE)
2390 		return -EINVAL;
2391 	q->td->throtl_slice = t;
2392 	return count;
2393 }
2394 #endif
2395 
2396 static int __init throtl_init(void)
2397 {
2398 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2399 	if (!kthrotld_workqueue)
2400 		panic("Failed to create kthrotld\n");
2401 
2402 	return blkcg_policy_register(&blkcg_policy_throtl);
2403 }
2404 
2405 module_init(throtl_init);
2406