xref: /openbmc/linux/block/blk-throttle.c (revision e8f6f3b4)
1 /*
2  * Interface for controlling IO bandwidth on a request queue
3  *
4  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5  */
6 
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
13 #include "blk.h"
14 
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17 
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20 
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10;	/* 100 ms */
23 
24 static struct blkcg_policy blkcg_policy_throtl;
25 
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct *kthrotld_workqueue;
28 
29 /*
30  * To implement hierarchical throttling, throtl_grps form a tree and bios
31  * are dispatched upwards level by level until they reach the top and get
32  * issued.  When dispatching bios from the children and local group at each
33  * level, if the bios are dispatched into a single bio_list, there's a risk
34  * of a local or child group which can queue many bios at once filling up
35  * the list starving others.
36  *
37  * To avoid such starvation, dispatched bios are queued separately
38  * according to where they came from.  When they are again dispatched to
39  * the parent, they're popped in round-robin order so that no single source
40  * hogs the dispatch window.
41  *
42  * throtl_qnode is used to keep the queued bios separated by their sources.
43  * Bios are queued to throtl_qnode which in turn is queued to
44  * throtl_service_queue and then dispatched in round-robin order.
45  *
46  * It's also used to track the reference counts on blkg's.  A qnode always
47  * belongs to a throtl_grp and gets queued on itself or the parent, so
48  * incrementing the reference of the associated throtl_grp when a qnode is
49  * queued and decrementing when dequeued is enough to keep the whole blkg
50  * tree pinned while bios are in flight.
51  */
52 struct throtl_qnode {
53 	struct list_head	node;		/* service_queue->queued[] */
54 	struct bio_list		bios;		/* queued bios */
55 	struct throtl_grp	*tg;		/* tg this qnode belongs to */
56 };
57 
58 struct throtl_service_queue {
59 	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
60 
61 	/*
62 	 * Bios queued directly to this service_queue or dispatched from
63 	 * children throtl_grp's.
64 	 */
65 	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
66 	unsigned int		nr_queued[2];	/* number of queued bios */
67 
68 	/*
69 	 * RB tree of active children throtl_grp's, which are sorted by
70 	 * their ->disptime.
71 	 */
72 	struct rb_root		pending_tree;	/* RB tree of active tgs */
73 	struct rb_node		*first_pending;	/* first node in the tree */
74 	unsigned int		nr_pending;	/* # queued in the tree */
75 	unsigned long		first_pending_disptime;	/* disptime of the first tg */
76 	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
77 };
78 
79 enum tg_state_flags {
80 	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
81 	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
82 };
83 
84 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
85 
86 /* Per-cpu group stats */
87 struct tg_stats_cpu {
88 	/* total bytes transferred */
89 	struct blkg_rwstat		service_bytes;
90 	/* total IOs serviced, post merge */
91 	struct blkg_rwstat		serviced;
92 };
93 
94 struct throtl_grp {
95 	/* must be the first member */
96 	struct blkg_policy_data pd;
97 
98 	/* active throtl group service_queue member */
99 	struct rb_node rb_node;
100 
101 	/* throtl_data this group belongs to */
102 	struct throtl_data *td;
103 
104 	/* this group's service queue */
105 	struct throtl_service_queue service_queue;
106 
107 	/*
108 	 * qnode_on_self is used when bios are directly queued to this
109 	 * throtl_grp so that local bios compete fairly with bios
110 	 * dispatched from children.  qnode_on_parent is used when bios are
111 	 * dispatched from this throtl_grp into its parent and will compete
112 	 * with the sibling qnode_on_parents and the parent's
113 	 * qnode_on_self.
114 	 */
115 	struct throtl_qnode qnode_on_self[2];
116 	struct throtl_qnode qnode_on_parent[2];
117 
118 	/*
119 	 * Dispatch time in jiffies. This is the estimated time when group
120 	 * will unthrottle and is ready to dispatch more bio. It is used as
121 	 * key to sort active groups in service tree.
122 	 */
123 	unsigned long disptime;
124 
125 	unsigned int flags;
126 
127 	/* are there any throtl rules between this group and td? */
128 	bool has_rules[2];
129 
130 	/* bytes per second rate limits */
131 	uint64_t bps[2];
132 
133 	/* IOPS limits */
134 	unsigned int iops[2];
135 
136 	/* Number of bytes disptached in current slice */
137 	uint64_t bytes_disp[2];
138 	/* Number of bio's dispatched in current slice */
139 	unsigned int io_disp[2];
140 
141 	/* When did we start a new slice */
142 	unsigned long slice_start[2];
143 	unsigned long slice_end[2];
144 
145 	/* Per cpu stats pointer */
146 	struct tg_stats_cpu __percpu *stats_cpu;
147 
148 	/* List of tgs waiting for per cpu stats memory to be allocated */
149 	struct list_head stats_alloc_node;
150 };
151 
152 struct throtl_data
153 {
154 	/* service tree for active throtl groups */
155 	struct throtl_service_queue service_queue;
156 
157 	struct request_queue *queue;
158 
159 	/* Total Number of queued bios on READ and WRITE lists */
160 	unsigned int nr_queued[2];
161 
162 	/*
163 	 * number of total undestroyed groups
164 	 */
165 	unsigned int nr_undestroyed_grps;
166 
167 	/* Work for dispatching throttled bios */
168 	struct work_struct dispatch_work;
169 };
170 
171 /* list and work item to allocate percpu group stats */
172 static DEFINE_SPINLOCK(tg_stats_alloc_lock);
173 static LIST_HEAD(tg_stats_alloc_list);
174 
175 static void tg_stats_alloc_fn(struct work_struct *);
176 static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
177 
178 static void throtl_pending_timer_fn(unsigned long arg);
179 
180 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
181 {
182 	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
183 }
184 
185 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
186 {
187 	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
188 }
189 
190 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
191 {
192 	return pd_to_blkg(&tg->pd);
193 }
194 
195 static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
196 {
197 	return blkg_to_tg(td->queue->root_blkg);
198 }
199 
200 /**
201  * sq_to_tg - return the throl_grp the specified service queue belongs to
202  * @sq: the throtl_service_queue of interest
203  *
204  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
205  * embedded in throtl_data, %NULL is returned.
206  */
207 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
208 {
209 	if (sq && sq->parent_sq)
210 		return container_of(sq, struct throtl_grp, service_queue);
211 	else
212 		return NULL;
213 }
214 
215 /**
216  * sq_to_td - return throtl_data the specified service queue belongs to
217  * @sq: the throtl_service_queue of interest
218  *
219  * A service_queue can be embeded in either a throtl_grp or throtl_data.
220  * Determine the associated throtl_data accordingly and return it.
221  */
222 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
223 {
224 	struct throtl_grp *tg = sq_to_tg(sq);
225 
226 	if (tg)
227 		return tg->td;
228 	else
229 		return container_of(sq, struct throtl_data, service_queue);
230 }
231 
232 /**
233  * throtl_log - log debug message via blktrace
234  * @sq: the service_queue being reported
235  * @fmt: printf format string
236  * @args: printf args
237  *
238  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
239  * throtl_grp; otherwise, just "throtl".
240  *
241  * TODO: this should be made a function and name formatting should happen
242  * after testing whether blktrace is enabled.
243  */
244 #define throtl_log(sq, fmt, args...)	do {				\
245 	struct throtl_grp *__tg = sq_to_tg((sq));			\
246 	struct throtl_data *__td = sq_to_td((sq));			\
247 									\
248 	(void)__td;							\
249 	if ((__tg)) {							\
250 		char __pbuf[128];					\
251 									\
252 		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
253 		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
254 	} else {							\
255 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
256 	}								\
257 } while (0)
258 
259 static void tg_stats_init(struct tg_stats_cpu *tg_stats)
260 {
261 	blkg_rwstat_init(&tg_stats->service_bytes);
262 	blkg_rwstat_init(&tg_stats->serviced);
263 }
264 
265 /*
266  * Worker for allocating per cpu stat for tgs. This is scheduled on the
267  * system_wq once there are some groups on the alloc_list waiting for
268  * allocation.
269  */
270 static void tg_stats_alloc_fn(struct work_struct *work)
271 {
272 	static struct tg_stats_cpu *stats_cpu;	/* this fn is non-reentrant */
273 	struct delayed_work *dwork = to_delayed_work(work);
274 	bool empty = false;
275 
276 alloc_stats:
277 	if (!stats_cpu) {
278 		int cpu;
279 
280 		stats_cpu = alloc_percpu(struct tg_stats_cpu);
281 		if (!stats_cpu) {
282 			/* allocation failed, try again after some time */
283 			schedule_delayed_work(dwork, msecs_to_jiffies(10));
284 			return;
285 		}
286 		for_each_possible_cpu(cpu)
287 			tg_stats_init(per_cpu_ptr(stats_cpu, cpu));
288 	}
289 
290 	spin_lock_irq(&tg_stats_alloc_lock);
291 
292 	if (!list_empty(&tg_stats_alloc_list)) {
293 		struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
294 							 struct throtl_grp,
295 							 stats_alloc_node);
296 		swap(tg->stats_cpu, stats_cpu);
297 		list_del_init(&tg->stats_alloc_node);
298 	}
299 
300 	empty = list_empty(&tg_stats_alloc_list);
301 	spin_unlock_irq(&tg_stats_alloc_lock);
302 	if (!empty)
303 		goto alloc_stats;
304 }
305 
306 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
307 {
308 	INIT_LIST_HEAD(&qn->node);
309 	bio_list_init(&qn->bios);
310 	qn->tg = tg;
311 }
312 
313 /**
314  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
315  * @bio: bio being added
316  * @qn: qnode to add bio to
317  * @queued: the service_queue->queued[] list @qn belongs to
318  *
319  * Add @bio to @qn and put @qn on @queued if it's not already on.
320  * @qn->tg's reference count is bumped when @qn is activated.  See the
321  * comment on top of throtl_qnode definition for details.
322  */
323 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
324 				 struct list_head *queued)
325 {
326 	bio_list_add(&qn->bios, bio);
327 	if (list_empty(&qn->node)) {
328 		list_add_tail(&qn->node, queued);
329 		blkg_get(tg_to_blkg(qn->tg));
330 	}
331 }
332 
333 /**
334  * throtl_peek_queued - peek the first bio on a qnode list
335  * @queued: the qnode list to peek
336  */
337 static struct bio *throtl_peek_queued(struct list_head *queued)
338 {
339 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
340 	struct bio *bio;
341 
342 	if (list_empty(queued))
343 		return NULL;
344 
345 	bio = bio_list_peek(&qn->bios);
346 	WARN_ON_ONCE(!bio);
347 	return bio;
348 }
349 
350 /**
351  * throtl_pop_queued - pop the first bio form a qnode list
352  * @queued: the qnode list to pop a bio from
353  * @tg_to_put: optional out argument for throtl_grp to put
354  *
355  * Pop the first bio from the qnode list @queued.  After popping, the first
356  * qnode is removed from @queued if empty or moved to the end of @queued so
357  * that the popping order is round-robin.
358  *
359  * When the first qnode is removed, its associated throtl_grp should be put
360  * too.  If @tg_to_put is NULL, this function automatically puts it;
361  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
362  * responsible for putting it.
363  */
364 static struct bio *throtl_pop_queued(struct list_head *queued,
365 				     struct throtl_grp **tg_to_put)
366 {
367 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
368 	struct bio *bio;
369 
370 	if (list_empty(queued))
371 		return NULL;
372 
373 	bio = bio_list_pop(&qn->bios);
374 	WARN_ON_ONCE(!bio);
375 
376 	if (bio_list_empty(&qn->bios)) {
377 		list_del_init(&qn->node);
378 		if (tg_to_put)
379 			*tg_to_put = qn->tg;
380 		else
381 			blkg_put(tg_to_blkg(qn->tg));
382 	} else {
383 		list_move_tail(&qn->node, queued);
384 	}
385 
386 	return bio;
387 }
388 
389 /* init a service_queue, assumes the caller zeroed it */
390 static void throtl_service_queue_init(struct throtl_service_queue *sq,
391 				      struct throtl_service_queue *parent_sq)
392 {
393 	INIT_LIST_HEAD(&sq->queued[0]);
394 	INIT_LIST_HEAD(&sq->queued[1]);
395 	sq->pending_tree = RB_ROOT;
396 	sq->parent_sq = parent_sq;
397 	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
398 		    (unsigned long)sq);
399 }
400 
401 static void throtl_service_queue_exit(struct throtl_service_queue *sq)
402 {
403 	del_timer_sync(&sq->pending_timer);
404 }
405 
406 static void throtl_pd_init(struct blkcg_gq *blkg)
407 {
408 	struct throtl_grp *tg = blkg_to_tg(blkg);
409 	struct throtl_data *td = blkg->q->td;
410 	struct throtl_service_queue *parent_sq;
411 	unsigned long flags;
412 	int rw;
413 
414 	/*
415 	 * If on the default hierarchy, we switch to properly hierarchical
416 	 * behavior where limits on a given throtl_grp are applied to the
417 	 * whole subtree rather than just the group itself.  e.g. If 16M
418 	 * read_bps limit is set on the root group, the whole system can't
419 	 * exceed 16M for the device.
420 	 *
421 	 * If not on the default hierarchy, the broken flat hierarchy
422 	 * behavior is retained where all throtl_grps are treated as if
423 	 * they're all separate root groups right below throtl_data.
424 	 * Limits of a group don't interact with limits of other groups
425 	 * regardless of the position of the group in the hierarchy.
426 	 */
427 	parent_sq = &td->service_queue;
428 
429 	if (cgroup_on_dfl(blkg->blkcg->css.cgroup) && blkg->parent)
430 		parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
431 
432 	throtl_service_queue_init(&tg->service_queue, parent_sq);
433 
434 	for (rw = READ; rw <= WRITE; rw++) {
435 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
436 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
437 	}
438 
439 	RB_CLEAR_NODE(&tg->rb_node);
440 	tg->td = td;
441 
442 	tg->bps[READ] = -1;
443 	tg->bps[WRITE] = -1;
444 	tg->iops[READ] = -1;
445 	tg->iops[WRITE] = -1;
446 
447 	/*
448 	 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
449 	 * but percpu allocator can't be called from IO path.  Queue tg on
450 	 * tg_stats_alloc_list and allocate from work item.
451 	 */
452 	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
453 	list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
454 	schedule_delayed_work(&tg_stats_alloc_work, 0);
455 	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
456 }
457 
458 /*
459  * Set has_rules[] if @tg or any of its parents have limits configured.
460  * This doesn't require walking up to the top of the hierarchy as the
461  * parent's has_rules[] is guaranteed to be correct.
462  */
463 static void tg_update_has_rules(struct throtl_grp *tg)
464 {
465 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
466 	int rw;
467 
468 	for (rw = READ; rw <= WRITE; rw++)
469 		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
470 				    (tg->bps[rw] != -1 || tg->iops[rw] != -1);
471 }
472 
473 static void throtl_pd_online(struct blkcg_gq *blkg)
474 {
475 	/*
476 	 * We don't want new groups to escape the limits of its ancestors.
477 	 * Update has_rules[] after a new group is brought online.
478 	 */
479 	tg_update_has_rules(blkg_to_tg(blkg));
480 }
481 
482 static void throtl_pd_exit(struct blkcg_gq *blkg)
483 {
484 	struct throtl_grp *tg = blkg_to_tg(blkg);
485 	unsigned long flags;
486 
487 	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
488 	list_del_init(&tg->stats_alloc_node);
489 	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
490 
491 	free_percpu(tg->stats_cpu);
492 
493 	throtl_service_queue_exit(&tg->service_queue);
494 }
495 
496 static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
497 {
498 	struct throtl_grp *tg = blkg_to_tg(blkg);
499 	int cpu;
500 
501 	if (tg->stats_cpu == NULL)
502 		return;
503 
504 	for_each_possible_cpu(cpu) {
505 		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
506 
507 		blkg_rwstat_reset(&sc->service_bytes);
508 		blkg_rwstat_reset(&sc->serviced);
509 	}
510 }
511 
512 static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
513 					   struct blkcg *blkcg)
514 {
515 	/*
516 	 * This is the common case when there are no blkcgs.  Avoid lookup
517 	 * in this case
518 	 */
519 	if (blkcg == &blkcg_root)
520 		return td_root_tg(td);
521 
522 	return blkg_to_tg(blkg_lookup(blkcg, td->queue));
523 }
524 
525 static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
526 						  struct blkcg *blkcg)
527 {
528 	struct request_queue *q = td->queue;
529 	struct throtl_grp *tg = NULL;
530 
531 	/*
532 	 * This is the common case when there are no blkcgs.  Avoid lookup
533 	 * in this case
534 	 */
535 	if (blkcg == &blkcg_root) {
536 		tg = td_root_tg(td);
537 	} else {
538 		struct blkcg_gq *blkg;
539 
540 		blkg = blkg_lookup_create(blkcg, q);
541 
542 		/* if %NULL and @q is alive, fall back to root_tg */
543 		if (!IS_ERR(blkg))
544 			tg = blkg_to_tg(blkg);
545 		else if (!blk_queue_dying(q))
546 			tg = td_root_tg(td);
547 	}
548 
549 	return tg;
550 }
551 
552 static struct throtl_grp *
553 throtl_rb_first(struct throtl_service_queue *parent_sq)
554 {
555 	/* Service tree is empty */
556 	if (!parent_sq->nr_pending)
557 		return NULL;
558 
559 	if (!parent_sq->first_pending)
560 		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
561 
562 	if (parent_sq->first_pending)
563 		return rb_entry_tg(parent_sq->first_pending);
564 
565 	return NULL;
566 }
567 
568 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
569 {
570 	rb_erase(n, root);
571 	RB_CLEAR_NODE(n);
572 }
573 
574 static void throtl_rb_erase(struct rb_node *n,
575 			    struct throtl_service_queue *parent_sq)
576 {
577 	if (parent_sq->first_pending == n)
578 		parent_sq->first_pending = NULL;
579 	rb_erase_init(n, &parent_sq->pending_tree);
580 	--parent_sq->nr_pending;
581 }
582 
583 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
584 {
585 	struct throtl_grp *tg;
586 
587 	tg = throtl_rb_first(parent_sq);
588 	if (!tg)
589 		return;
590 
591 	parent_sq->first_pending_disptime = tg->disptime;
592 }
593 
594 static void tg_service_queue_add(struct throtl_grp *tg)
595 {
596 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
597 	struct rb_node **node = &parent_sq->pending_tree.rb_node;
598 	struct rb_node *parent = NULL;
599 	struct throtl_grp *__tg;
600 	unsigned long key = tg->disptime;
601 	int left = 1;
602 
603 	while (*node != NULL) {
604 		parent = *node;
605 		__tg = rb_entry_tg(parent);
606 
607 		if (time_before(key, __tg->disptime))
608 			node = &parent->rb_left;
609 		else {
610 			node = &parent->rb_right;
611 			left = 0;
612 		}
613 	}
614 
615 	if (left)
616 		parent_sq->first_pending = &tg->rb_node;
617 
618 	rb_link_node(&tg->rb_node, parent, node);
619 	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
620 }
621 
622 static void __throtl_enqueue_tg(struct throtl_grp *tg)
623 {
624 	tg_service_queue_add(tg);
625 	tg->flags |= THROTL_TG_PENDING;
626 	tg->service_queue.parent_sq->nr_pending++;
627 }
628 
629 static void throtl_enqueue_tg(struct throtl_grp *tg)
630 {
631 	if (!(tg->flags & THROTL_TG_PENDING))
632 		__throtl_enqueue_tg(tg);
633 }
634 
635 static void __throtl_dequeue_tg(struct throtl_grp *tg)
636 {
637 	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
638 	tg->flags &= ~THROTL_TG_PENDING;
639 }
640 
641 static void throtl_dequeue_tg(struct throtl_grp *tg)
642 {
643 	if (tg->flags & THROTL_TG_PENDING)
644 		__throtl_dequeue_tg(tg);
645 }
646 
647 /* Call with queue lock held */
648 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
649 					  unsigned long expires)
650 {
651 	mod_timer(&sq->pending_timer, expires);
652 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
653 		   expires - jiffies, jiffies);
654 }
655 
656 /**
657  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
658  * @sq: the service_queue to schedule dispatch for
659  * @force: force scheduling
660  *
661  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
662  * dispatch time of the first pending child.  Returns %true if either timer
663  * is armed or there's no pending child left.  %false if the current
664  * dispatch window is still open and the caller should continue
665  * dispatching.
666  *
667  * If @force is %true, the dispatch timer is always scheduled and this
668  * function is guaranteed to return %true.  This is to be used when the
669  * caller can't dispatch itself and needs to invoke pending_timer
670  * unconditionally.  Note that forced scheduling is likely to induce short
671  * delay before dispatch starts even if @sq->first_pending_disptime is not
672  * in the future and thus shouldn't be used in hot paths.
673  */
674 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
675 					  bool force)
676 {
677 	/* any pending children left? */
678 	if (!sq->nr_pending)
679 		return true;
680 
681 	update_min_dispatch_time(sq);
682 
683 	/* is the next dispatch time in the future? */
684 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
685 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
686 		return true;
687 	}
688 
689 	/* tell the caller to continue dispatching */
690 	return false;
691 }
692 
693 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
694 		bool rw, unsigned long start)
695 {
696 	tg->bytes_disp[rw] = 0;
697 	tg->io_disp[rw] = 0;
698 
699 	/*
700 	 * Previous slice has expired. We must have trimmed it after last
701 	 * bio dispatch. That means since start of last slice, we never used
702 	 * that bandwidth. Do try to make use of that bandwidth while giving
703 	 * credit.
704 	 */
705 	if (time_after_eq(start, tg->slice_start[rw]))
706 		tg->slice_start[rw] = start;
707 
708 	tg->slice_end[rw] = jiffies + throtl_slice;
709 	throtl_log(&tg->service_queue,
710 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
711 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
712 		   tg->slice_end[rw], jiffies);
713 }
714 
715 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
716 {
717 	tg->bytes_disp[rw] = 0;
718 	tg->io_disp[rw] = 0;
719 	tg->slice_start[rw] = jiffies;
720 	tg->slice_end[rw] = jiffies + throtl_slice;
721 	throtl_log(&tg->service_queue,
722 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
723 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
724 		   tg->slice_end[rw], jiffies);
725 }
726 
727 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
728 					unsigned long jiffy_end)
729 {
730 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
731 }
732 
733 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
734 				       unsigned long jiffy_end)
735 {
736 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
737 	throtl_log(&tg->service_queue,
738 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
739 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
740 		   tg->slice_end[rw], jiffies);
741 }
742 
743 /* Determine if previously allocated or extended slice is complete or not */
744 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
745 {
746 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
747 		return false;
748 
749 	return 1;
750 }
751 
752 /* Trim the used slices and adjust slice start accordingly */
753 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
754 {
755 	unsigned long nr_slices, time_elapsed, io_trim;
756 	u64 bytes_trim, tmp;
757 
758 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
759 
760 	/*
761 	 * If bps are unlimited (-1), then time slice don't get
762 	 * renewed. Don't try to trim the slice if slice is used. A new
763 	 * slice will start when appropriate.
764 	 */
765 	if (throtl_slice_used(tg, rw))
766 		return;
767 
768 	/*
769 	 * A bio has been dispatched. Also adjust slice_end. It might happen
770 	 * that initially cgroup limit was very low resulting in high
771 	 * slice_end, but later limit was bumped up and bio was dispached
772 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
773 	 * is bad because it does not allow new slice to start.
774 	 */
775 
776 	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
777 
778 	time_elapsed = jiffies - tg->slice_start[rw];
779 
780 	nr_slices = time_elapsed / throtl_slice;
781 
782 	if (!nr_slices)
783 		return;
784 	tmp = tg->bps[rw] * throtl_slice * nr_slices;
785 	do_div(tmp, HZ);
786 	bytes_trim = tmp;
787 
788 	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
789 
790 	if (!bytes_trim && !io_trim)
791 		return;
792 
793 	if (tg->bytes_disp[rw] >= bytes_trim)
794 		tg->bytes_disp[rw] -= bytes_trim;
795 	else
796 		tg->bytes_disp[rw] = 0;
797 
798 	if (tg->io_disp[rw] >= io_trim)
799 		tg->io_disp[rw] -= io_trim;
800 	else
801 		tg->io_disp[rw] = 0;
802 
803 	tg->slice_start[rw] += nr_slices * throtl_slice;
804 
805 	throtl_log(&tg->service_queue,
806 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
807 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
808 		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
809 }
810 
811 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
812 				  unsigned long *wait)
813 {
814 	bool rw = bio_data_dir(bio);
815 	unsigned int io_allowed;
816 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
817 	u64 tmp;
818 
819 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
820 
821 	/* Slice has just started. Consider one slice interval */
822 	if (!jiffy_elapsed)
823 		jiffy_elapsed_rnd = throtl_slice;
824 
825 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
826 
827 	/*
828 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
829 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
830 	 * will allow dispatch after 1 second and after that slice should
831 	 * have been trimmed.
832 	 */
833 
834 	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
835 	do_div(tmp, HZ);
836 
837 	if (tmp > UINT_MAX)
838 		io_allowed = UINT_MAX;
839 	else
840 		io_allowed = tmp;
841 
842 	if (tg->io_disp[rw] + 1 <= io_allowed) {
843 		if (wait)
844 			*wait = 0;
845 		return true;
846 	}
847 
848 	/* Calc approx time to dispatch */
849 	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
850 
851 	if (jiffy_wait > jiffy_elapsed)
852 		jiffy_wait = jiffy_wait - jiffy_elapsed;
853 	else
854 		jiffy_wait = 1;
855 
856 	if (wait)
857 		*wait = jiffy_wait;
858 	return 0;
859 }
860 
861 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
862 				 unsigned long *wait)
863 {
864 	bool rw = bio_data_dir(bio);
865 	u64 bytes_allowed, extra_bytes, tmp;
866 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
867 
868 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
869 
870 	/* Slice has just started. Consider one slice interval */
871 	if (!jiffy_elapsed)
872 		jiffy_elapsed_rnd = throtl_slice;
873 
874 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
875 
876 	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
877 	do_div(tmp, HZ);
878 	bytes_allowed = tmp;
879 
880 	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
881 		if (wait)
882 			*wait = 0;
883 		return true;
884 	}
885 
886 	/* Calc approx time to dispatch */
887 	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
888 	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
889 
890 	if (!jiffy_wait)
891 		jiffy_wait = 1;
892 
893 	/*
894 	 * This wait time is without taking into consideration the rounding
895 	 * up we did. Add that time also.
896 	 */
897 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
898 	if (wait)
899 		*wait = jiffy_wait;
900 	return 0;
901 }
902 
903 /*
904  * Returns whether one can dispatch a bio or not. Also returns approx number
905  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
906  */
907 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
908 			    unsigned long *wait)
909 {
910 	bool rw = bio_data_dir(bio);
911 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
912 
913 	/*
914  	 * Currently whole state machine of group depends on first bio
915 	 * queued in the group bio list. So one should not be calling
916 	 * this function with a different bio if there are other bios
917 	 * queued.
918 	 */
919 	BUG_ON(tg->service_queue.nr_queued[rw] &&
920 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
921 
922 	/* If tg->bps = -1, then BW is unlimited */
923 	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
924 		if (wait)
925 			*wait = 0;
926 		return true;
927 	}
928 
929 	/*
930 	 * If previous slice expired, start a new one otherwise renew/extend
931 	 * existing slice to make sure it is at least throtl_slice interval
932 	 * long since now.
933 	 */
934 	if (throtl_slice_used(tg, rw))
935 		throtl_start_new_slice(tg, rw);
936 	else {
937 		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
938 			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
939 	}
940 
941 	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
942 	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
943 		if (wait)
944 			*wait = 0;
945 		return 1;
946 	}
947 
948 	max_wait = max(bps_wait, iops_wait);
949 
950 	if (wait)
951 		*wait = max_wait;
952 
953 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
954 		throtl_extend_slice(tg, rw, jiffies + max_wait);
955 
956 	return 0;
957 }
958 
959 static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
960 					 int rw)
961 {
962 	struct throtl_grp *tg = blkg_to_tg(blkg);
963 	struct tg_stats_cpu *stats_cpu;
964 	unsigned long flags;
965 
966 	/* If per cpu stats are not allocated yet, don't do any accounting. */
967 	if (tg->stats_cpu == NULL)
968 		return;
969 
970 	/*
971 	 * Disabling interrupts to provide mutual exclusion between two
972 	 * writes on same cpu. It probably is not needed for 64bit. Not
973 	 * optimizing that case yet.
974 	 */
975 	local_irq_save(flags);
976 
977 	stats_cpu = this_cpu_ptr(tg->stats_cpu);
978 
979 	blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
980 	blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
981 
982 	local_irq_restore(flags);
983 }
984 
985 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
986 {
987 	bool rw = bio_data_dir(bio);
988 
989 	/* Charge the bio to the group */
990 	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
991 	tg->io_disp[rw]++;
992 
993 	/*
994 	 * REQ_THROTTLED is used to prevent the same bio to be throttled
995 	 * more than once as a throttled bio will go through blk-throtl the
996 	 * second time when it eventually gets issued.  Set it when a bio
997 	 * is being charged to a tg.
998 	 *
999 	 * Dispatch stats aren't recursive and each @bio should only be
1000 	 * accounted by the @tg it was originally associated with.  Let's
1001 	 * update the stats when setting REQ_THROTTLED for the first time
1002 	 * which is guaranteed to be for the @bio's original tg.
1003 	 */
1004 	if (!(bio->bi_rw & REQ_THROTTLED)) {
1005 		bio->bi_rw |= REQ_THROTTLED;
1006 		throtl_update_dispatch_stats(tg_to_blkg(tg),
1007 					     bio->bi_iter.bi_size, bio->bi_rw);
1008 	}
1009 }
1010 
1011 /**
1012  * throtl_add_bio_tg - add a bio to the specified throtl_grp
1013  * @bio: bio to add
1014  * @qn: qnode to use
1015  * @tg: the target throtl_grp
1016  *
1017  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1018  * tg->qnode_on_self[] is used.
1019  */
1020 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1021 			      struct throtl_grp *tg)
1022 {
1023 	struct throtl_service_queue *sq = &tg->service_queue;
1024 	bool rw = bio_data_dir(bio);
1025 
1026 	if (!qn)
1027 		qn = &tg->qnode_on_self[rw];
1028 
1029 	/*
1030 	 * If @tg doesn't currently have any bios queued in the same
1031 	 * direction, queueing @bio can change when @tg should be
1032 	 * dispatched.  Mark that @tg was empty.  This is automatically
1033 	 * cleaered on the next tg_update_disptime().
1034 	 */
1035 	if (!sq->nr_queued[rw])
1036 		tg->flags |= THROTL_TG_WAS_EMPTY;
1037 
1038 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1039 
1040 	sq->nr_queued[rw]++;
1041 	throtl_enqueue_tg(tg);
1042 }
1043 
1044 static void tg_update_disptime(struct throtl_grp *tg)
1045 {
1046 	struct throtl_service_queue *sq = &tg->service_queue;
1047 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1048 	struct bio *bio;
1049 
1050 	if ((bio = throtl_peek_queued(&sq->queued[READ])))
1051 		tg_may_dispatch(tg, bio, &read_wait);
1052 
1053 	if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1054 		tg_may_dispatch(tg, bio, &write_wait);
1055 
1056 	min_wait = min(read_wait, write_wait);
1057 	disptime = jiffies + min_wait;
1058 
1059 	/* Update dispatch time */
1060 	throtl_dequeue_tg(tg);
1061 	tg->disptime = disptime;
1062 	throtl_enqueue_tg(tg);
1063 
1064 	/* see throtl_add_bio_tg() */
1065 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1066 }
1067 
1068 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1069 					struct throtl_grp *parent_tg, bool rw)
1070 {
1071 	if (throtl_slice_used(parent_tg, rw)) {
1072 		throtl_start_new_slice_with_credit(parent_tg, rw,
1073 				child_tg->slice_start[rw]);
1074 	}
1075 
1076 }
1077 
1078 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1079 {
1080 	struct throtl_service_queue *sq = &tg->service_queue;
1081 	struct throtl_service_queue *parent_sq = sq->parent_sq;
1082 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1083 	struct throtl_grp *tg_to_put = NULL;
1084 	struct bio *bio;
1085 
1086 	/*
1087 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1088 	 * from @tg may put its reference and @parent_sq might end up
1089 	 * getting released prematurely.  Remember the tg to put and put it
1090 	 * after @bio is transferred to @parent_sq.
1091 	 */
1092 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1093 	sq->nr_queued[rw]--;
1094 
1095 	throtl_charge_bio(tg, bio);
1096 
1097 	/*
1098 	 * If our parent is another tg, we just need to transfer @bio to
1099 	 * the parent using throtl_add_bio_tg().  If our parent is
1100 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1101 	 * bio_lists[] and decrease total number queued.  The caller is
1102 	 * responsible for issuing these bios.
1103 	 */
1104 	if (parent_tg) {
1105 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1106 		start_parent_slice_with_credit(tg, parent_tg, rw);
1107 	} else {
1108 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1109 				     &parent_sq->queued[rw]);
1110 		BUG_ON(tg->td->nr_queued[rw] <= 0);
1111 		tg->td->nr_queued[rw]--;
1112 	}
1113 
1114 	throtl_trim_slice(tg, rw);
1115 
1116 	if (tg_to_put)
1117 		blkg_put(tg_to_blkg(tg_to_put));
1118 }
1119 
1120 static int throtl_dispatch_tg(struct throtl_grp *tg)
1121 {
1122 	struct throtl_service_queue *sq = &tg->service_queue;
1123 	unsigned int nr_reads = 0, nr_writes = 0;
1124 	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1125 	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1126 	struct bio *bio;
1127 
1128 	/* Try to dispatch 75% READS and 25% WRITES */
1129 
1130 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1131 	       tg_may_dispatch(tg, bio, NULL)) {
1132 
1133 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1134 		nr_reads++;
1135 
1136 		if (nr_reads >= max_nr_reads)
1137 			break;
1138 	}
1139 
1140 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1141 	       tg_may_dispatch(tg, bio, NULL)) {
1142 
1143 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1144 		nr_writes++;
1145 
1146 		if (nr_writes >= max_nr_writes)
1147 			break;
1148 	}
1149 
1150 	return nr_reads + nr_writes;
1151 }
1152 
1153 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1154 {
1155 	unsigned int nr_disp = 0;
1156 
1157 	while (1) {
1158 		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1159 		struct throtl_service_queue *sq = &tg->service_queue;
1160 
1161 		if (!tg)
1162 			break;
1163 
1164 		if (time_before(jiffies, tg->disptime))
1165 			break;
1166 
1167 		throtl_dequeue_tg(tg);
1168 
1169 		nr_disp += throtl_dispatch_tg(tg);
1170 
1171 		if (sq->nr_queued[0] || sq->nr_queued[1])
1172 			tg_update_disptime(tg);
1173 
1174 		if (nr_disp >= throtl_quantum)
1175 			break;
1176 	}
1177 
1178 	return nr_disp;
1179 }
1180 
1181 /**
1182  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1183  * @arg: the throtl_service_queue being serviced
1184  *
1185  * This timer is armed when a child throtl_grp with active bio's become
1186  * pending and queued on the service_queue's pending_tree and expires when
1187  * the first child throtl_grp should be dispatched.  This function
1188  * dispatches bio's from the children throtl_grps to the parent
1189  * service_queue.
1190  *
1191  * If the parent's parent is another throtl_grp, dispatching is propagated
1192  * by either arming its pending_timer or repeating dispatch directly.  If
1193  * the top-level service_tree is reached, throtl_data->dispatch_work is
1194  * kicked so that the ready bio's are issued.
1195  */
1196 static void throtl_pending_timer_fn(unsigned long arg)
1197 {
1198 	struct throtl_service_queue *sq = (void *)arg;
1199 	struct throtl_grp *tg = sq_to_tg(sq);
1200 	struct throtl_data *td = sq_to_td(sq);
1201 	struct request_queue *q = td->queue;
1202 	struct throtl_service_queue *parent_sq;
1203 	bool dispatched;
1204 	int ret;
1205 
1206 	spin_lock_irq(q->queue_lock);
1207 again:
1208 	parent_sq = sq->parent_sq;
1209 	dispatched = false;
1210 
1211 	while (true) {
1212 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1213 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1214 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1215 
1216 		ret = throtl_select_dispatch(sq);
1217 		if (ret) {
1218 			throtl_log(sq, "bios disp=%u", ret);
1219 			dispatched = true;
1220 		}
1221 
1222 		if (throtl_schedule_next_dispatch(sq, false))
1223 			break;
1224 
1225 		/* this dispatch windows is still open, relax and repeat */
1226 		spin_unlock_irq(q->queue_lock);
1227 		cpu_relax();
1228 		spin_lock_irq(q->queue_lock);
1229 	}
1230 
1231 	if (!dispatched)
1232 		goto out_unlock;
1233 
1234 	if (parent_sq) {
1235 		/* @parent_sq is another throl_grp, propagate dispatch */
1236 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1237 			tg_update_disptime(tg);
1238 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1239 				/* window is already open, repeat dispatching */
1240 				sq = parent_sq;
1241 				tg = sq_to_tg(sq);
1242 				goto again;
1243 			}
1244 		}
1245 	} else {
1246 		/* reached the top-level, queue issueing */
1247 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1248 	}
1249 out_unlock:
1250 	spin_unlock_irq(q->queue_lock);
1251 }
1252 
1253 /**
1254  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1255  * @work: work item being executed
1256  *
1257  * This function is queued for execution when bio's reach the bio_lists[]
1258  * of throtl_data->service_queue.  Those bio's are ready and issued by this
1259  * function.
1260  */
1261 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1262 {
1263 	struct throtl_data *td = container_of(work, struct throtl_data,
1264 					      dispatch_work);
1265 	struct throtl_service_queue *td_sq = &td->service_queue;
1266 	struct request_queue *q = td->queue;
1267 	struct bio_list bio_list_on_stack;
1268 	struct bio *bio;
1269 	struct blk_plug plug;
1270 	int rw;
1271 
1272 	bio_list_init(&bio_list_on_stack);
1273 
1274 	spin_lock_irq(q->queue_lock);
1275 	for (rw = READ; rw <= WRITE; rw++)
1276 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1277 			bio_list_add(&bio_list_on_stack, bio);
1278 	spin_unlock_irq(q->queue_lock);
1279 
1280 	if (!bio_list_empty(&bio_list_on_stack)) {
1281 		blk_start_plug(&plug);
1282 		while((bio = bio_list_pop(&bio_list_on_stack)))
1283 			generic_make_request(bio);
1284 		blk_finish_plug(&plug);
1285 	}
1286 }
1287 
1288 static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
1289 				struct blkg_policy_data *pd, int off)
1290 {
1291 	struct throtl_grp *tg = pd_to_tg(pd);
1292 	struct blkg_rwstat rwstat = { }, tmp;
1293 	int i, cpu;
1294 
1295 	for_each_possible_cpu(cpu) {
1296 		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
1297 
1298 		tmp = blkg_rwstat_read((void *)sc + off);
1299 		for (i = 0; i < BLKG_RWSTAT_NR; i++)
1300 			rwstat.cnt[i] += tmp.cnt[i];
1301 	}
1302 
1303 	return __blkg_prfill_rwstat(sf, pd, &rwstat);
1304 }
1305 
1306 static int tg_print_cpu_rwstat(struct seq_file *sf, void *v)
1307 {
1308 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_cpu_rwstat,
1309 			  &blkcg_policy_throtl, seq_cft(sf)->private, true);
1310 	return 0;
1311 }
1312 
1313 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1314 			      int off)
1315 {
1316 	struct throtl_grp *tg = pd_to_tg(pd);
1317 	u64 v = *(u64 *)((void *)tg + off);
1318 
1319 	if (v == -1)
1320 		return 0;
1321 	return __blkg_prfill_u64(sf, pd, v);
1322 }
1323 
1324 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1325 			       int off)
1326 {
1327 	struct throtl_grp *tg = pd_to_tg(pd);
1328 	unsigned int v = *(unsigned int *)((void *)tg + off);
1329 
1330 	if (v == -1)
1331 		return 0;
1332 	return __blkg_prfill_u64(sf, pd, v);
1333 }
1334 
1335 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1336 {
1337 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1338 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1339 	return 0;
1340 }
1341 
1342 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1343 {
1344 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1345 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1346 	return 0;
1347 }
1348 
1349 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1350 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1351 {
1352 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1353 	struct blkg_conf_ctx ctx;
1354 	struct throtl_grp *tg;
1355 	struct throtl_service_queue *sq;
1356 	struct blkcg_gq *blkg;
1357 	struct cgroup_subsys_state *pos_css;
1358 	int ret;
1359 
1360 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1361 	if (ret)
1362 		return ret;
1363 
1364 	tg = blkg_to_tg(ctx.blkg);
1365 	sq = &tg->service_queue;
1366 
1367 	if (!ctx.v)
1368 		ctx.v = -1;
1369 
1370 	if (is_u64)
1371 		*(u64 *)((void *)tg + of_cft(of)->private) = ctx.v;
1372 	else
1373 		*(unsigned int *)((void *)tg + of_cft(of)->private) = ctx.v;
1374 
1375 	throtl_log(&tg->service_queue,
1376 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1377 		   tg->bps[READ], tg->bps[WRITE],
1378 		   tg->iops[READ], tg->iops[WRITE]);
1379 
1380 	/*
1381 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1382 	 * considered to have rules if either the tg itself or any of its
1383 	 * ancestors has rules.  This identifies groups without any
1384 	 * restrictions in the whole hierarchy and allows them to bypass
1385 	 * blk-throttle.
1386 	 */
1387 	blkg_for_each_descendant_pre(blkg, pos_css, ctx.blkg)
1388 		tg_update_has_rules(blkg_to_tg(blkg));
1389 
1390 	/*
1391 	 * We're already holding queue_lock and know @tg is valid.  Let's
1392 	 * apply the new config directly.
1393 	 *
1394 	 * Restart the slices for both READ and WRITES. It might happen
1395 	 * that a group's limit are dropped suddenly and we don't want to
1396 	 * account recently dispatched IO with new low rate.
1397 	 */
1398 	throtl_start_new_slice(tg, 0);
1399 	throtl_start_new_slice(tg, 1);
1400 
1401 	if (tg->flags & THROTL_TG_PENDING) {
1402 		tg_update_disptime(tg);
1403 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1404 	}
1405 
1406 	blkg_conf_finish(&ctx);
1407 	return nbytes;
1408 }
1409 
1410 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1411 			       char *buf, size_t nbytes, loff_t off)
1412 {
1413 	return tg_set_conf(of, buf, nbytes, off, true);
1414 }
1415 
1416 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1417 				char *buf, size_t nbytes, loff_t off)
1418 {
1419 	return tg_set_conf(of, buf, nbytes, off, false);
1420 }
1421 
1422 static struct cftype throtl_files[] = {
1423 	{
1424 		.name = "throttle.read_bps_device",
1425 		.private = offsetof(struct throtl_grp, bps[READ]),
1426 		.seq_show = tg_print_conf_u64,
1427 		.write = tg_set_conf_u64,
1428 	},
1429 	{
1430 		.name = "throttle.write_bps_device",
1431 		.private = offsetof(struct throtl_grp, bps[WRITE]),
1432 		.seq_show = tg_print_conf_u64,
1433 		.write = tg_set_conf_u64,
1434 	},
1435 	{
1436 		.name = "throttle.read_iops_device",
1437 		.private = offsetof(struct throtl_grp, iops[READ]),
1438 		.seq_show = tg_print_conf_uint,
1439 		.write = tg_set_conf_uint,
1440 	},
1441 	{
1442 		.name = "throttle.write_iops_device",
1443 		.private = offsetof(struct throtl_grp, iops[WRITE]),
1444 		.seq_show = tg_print_conf_uint,
1445 		.write = tg_set_conf_uint,
1446 	},
1447 	{
1448 		.name = "throttle.io_service_bytes",
1449 		.private = offsetof(struct tg_stats_cpu, service_bytes),
1450 		.seq_show = tg_print_cpu_rwstat,
1451 	},
1452 	{
1453 		.name = "throttle.io_serviced",
1454 		.private = offsetof(struct tg_stats_cpu, serviced),
1455 		.seq_show = tg_print_cpu_rwstat,
1456 	},
1457 	{ }	/* terminate */
1458 };
1459 
1460 static void throtl_shutdown_wq(struct request_queue *q)
1461 {
1462 	struct throtl_data *td = q->td;
1463 
1464 	cancel_work_sync(&td->dispatch_work);
1465 }
1466 
1467 static struct blkcg_policy blkcg_policy_throtl = {
1468 	.pd_size		= sizeof(struct throtl_grp),
1469 	.cftypes		= throtl_files,
1470 
1471 	.pd_init_fn		= throtl_pd_init,
1472 	.pd_online_fn		= throtl_pd_online,
1473 	.pd_exit_fn		= throtl_pd_exit,
1474 	.pd_reset_stats_fn	= throtl_pd_reset_stats,
1475 };
1476 
1477 bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1478 {
1479 	struct throtl_data *td = q->td;
1480 	struct throtl_qnode *qn = NULL;
1481 	struct throtl_grp *tg;
1482 	struct throtl_service_queue *sq;
1483 	bool rw = bio_data_dir(bio);
1484 	struct blkcg *blkcg;
1485 	bool throttled = false;
1486 
1487 	/* see throtl_charge_bio() */
1488 	if (bio->bi_rw & REQ_THROTTLED)
1489 		goto out;
1490 
1491 	/*
1492 	 * A throtl_grp pointer retrieved under rcu can be used to access
1493 	 * basic fields like stats and io rates. If a group has no rules,
1494 	 * just update the dispatch stats in lockless manner and return.
1495 	 */
1496 	rcu_read_lock();
1497 	blkcg = bio_blkcg(bio);
1498 	tg = throtl_lookup_tg(td, blkcg);
1499 	if (tg) {
1500 		if (!tg->has_rules[rw]) {
1501 			throtl_update_dispatch_stats(tg_to_blkg(tg),
1502 					bio->bi_iter.bi_size, bio->bi_rw);
1503 			goto out_unlock_rcu;
1504 		}
1505 	}
1506 
1507 	/*
1508 	 * Either group has not been allocated yet or it is not an unlimited
1509 	 * IO group
1510 	 */
1511 	spin_lock_irq(q->queue_lock);
1512 	tg = throtl_lookup_create_tg(td, blkcg);
1513 	if (unlikely(!tg))
1514 		goto out_unlock;
1515 
1516 	sq = &tg->service_queue;
1517 
1518 	while (true) {
1519 		/* throtl is FIFO - if bios are already queued, should queue */
1520 		if (sq->nr_queued[rw])
1521 			break;
1522 
1523 		/* if above limits, break to queue */
1524 		if (!tg_may_dispatch(tg, bio, NULL))
1525 			break;
1526 
1527 		/* within limits, let's charge and dispatch directly */
1528 		throtl_charge_bio(tg, bio);
1529 
1530 		/*
1531 		 * We need to trim slice even when bios are not being queued
1532 		 * otherwise it might happen that a bio is not queued for
1533 		 * a long time and slice keeps on extending and trim is not
1534 		 * called for a long time. Now if limits are reduced suddenly
1535 		 * we take into account all the IO dispatched so far at new
1536 		 * low rate and * newly queued IO gets a really long dispatch
1537 		 * time.
1538 		 *
1539 		 * So keep on trimming slice even if bio is not queued.
1540 		 */
1541 		throtl_trim_slice(tg, rw);
1542 
1543 		/*
1544 		 * @bio passed through this layer without being throttled.
1545 		 * Climb up the ladder.  If we''re already at the top, it
1546 		 * can be executed directly.
1547 		 */
1548 		qn = &tg->qnode_on_parent[rw];
1549 		sq = sq->parent_sq;
1550 		tg = sq_to_tg(sq);
1551 		if (!tg)
1552 			goto out_unlock;
1553 	}
1554 
1555 	/* out-of-limit, queue to @tg */
1556 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1557 		   rw == READ ? 'R' : 'W',
1558 		   tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
1559 		   tg->io_disp[rw], tg->iops[rw],
1560 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1561 
1562 	bio_associate_current(bio);
1563 	tg->td->nr_queued[rw]++;
1564 	throtl_add_bio_tg(bio, qn, tg);
1565 	throttled = true;
1566 
1567 	/*
1568 	 * Update @tg's dispatch time and force schedule dispatch if @tg
1569 	 * was empty before @bio.  The forced scheduling isn't likely to
1570 	 * cause undue delay as @bio is likely to be dispatched directly if
1571 	 * its @tg's disptime is not in the future.
1572 	 */
1573 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1574 		tg_update_disptime(tg);
1575 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1576 	}
1577 
1578 out_unlock:
1579 	spin_unlock_irq(q->queue_lock);
1580 out_unlock_rcu:
1581 	rcu_read_unlock();
1582 out:
1583 	/*
1584 	 * As multiple blk-throtls may stack in the same issue path, we
1585 	 * don't want bios to leave with the flag set.  Clear the flag if
1586 	 * being issued.
1587 	 */
1588 	if (!throttled)
1589 		bio->bi_rw &= ~REQ_THROTTLED;
1590 	return throttled;
1591 }
1592 
1593 /*
1594  * Dispatch all bios from all children tg's queued on @parent_sq.  On
1595  * return, @parent_sq is guaranteed to not have any active children tg's
1596  * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1597  */
1598 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1599 {
1600 	struct throtl_grp *tg;
1601 
1602 	while ((tg = throtl_rb_first(parent_sq))) {
1603 		struct throtl_service_queue *sq = &tg->service_queue;
1604 		struct bio *bio;
1605 
1606 		throtl_dequeue_tg(tg);
1607 
1608 		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1609 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1610 		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1611 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1612 	}
1613 }
1614 
1615 /**
1616  * blk_throtl_drain - drain throttled bios
1617  * @q: request_queue to drain throttled bios for
1618  *
1619  * Dispatch all currently throttled bios on @q through ->make_request_fn().
1620  */
1621 void blk_throtl_drain(struct request_queue *q)
1622 	__releases(q->queue_lock) __acquires(q->queue_lock)
1623 {
1624 	struct throtl_data *td = q->td;
1625 	struct blkcg_gq *blkg;
1626 	struct cgroup_subsys_state *pos_css;
1627 	struct bio *bio;
1628 	int rw;
1629 
1630 	queue_lockdep_assert_held(q);
1631 	rcu_read_lock();
1632 
1633 	/*
1634 	 * Drain each tg while doing post-order walk on the blkg tree, so
1635 	 * that all bios are propagated to td->service_queue.  It'd be
1636 	 * better to walk service_queue tree directly but blkg walk is
1637 	 * easier.
1638 	 */
1639 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1640 		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1641 
1642 	/* finally, transfer bios from top-level tg's into the td */
1643 	tg_drain_bios(&td->service_queue);
1644 
1645 	rcu_read_unlock();
1646 	spin_unlock_irq(q->queue_lock);
1647 
1648 	/* all bios now should be in td->service_queue, issue them */
1649 	for (rw = READ; rw <= WRITE; rw++)
1650 		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1651 						NULL)))
1652 			generic_make_request(bio);
1653 
1654 	spin_lock_irq(q->queue_lock);
1655 }
1656 
1657 int blk_throtl_init(struct request_queue *q)
1658 {
1659 	struct throtl_data *td;
1660 	int ret;
1661 
1662 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1663 	if (!td)
1664 		return -ENOMEM;
1665 
1666 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1667 	throtl_service_queue_init(&td->service_queue, NULL);
1668 
1669 	q->td = td;
1670 	td->queue = q;
1671 
1672 	/* activate policy */
1673 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1674 	if (ret)
1675 		kfree(td);
1676 	return ret;
1677 }
1678 
1679 void blk_throtl_exit(struct request_queue *q)
1680 {
1681 	BUG_ON(!q->td);
1682 	throtl_shutdown_wq(q);
1683 	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1684 	kfree(q->td);
1685 }
1686 
1687 static int __init throtl_init(void)
1688 {
1689 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1690 	if (!kthrotld_workqueue)
1691 		panic("Failed to create kthrotld\n");
1692 
1693 	return blkcg_policy_register(&blkcg_policy_throtl);
1694 }
1695 
1696 module_init(throtl_init);
1697