xref: /openbmc/linux/block/blk-throttle.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Interface for controlling IO bandwidth on a request queue
3  *
4  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5  */
6 
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
13 
14 /* Max dispatch from a group in 1 round */
15 static int throtl_grp_quantum = 8;
16 
17 /* Total max dispatch from all groups in one round */
18 static int throtl_quantum = 32;
19 
20 /* Throttling is performed over 100ms slice and after that slice is renewed */
21 static unsigned long throtl_slice = HZ/10;	/* 100 ms */
22 
23 struct throtl_rb_root {
24 	struct rb_root rb;
25 	struct rb_node *left;
26 	unsigned int count;
27 	unsigned long min_disptime;
28 };
29 
30 #define THROTL_RB_ROOT	(struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
31 			.count = 0, .min_disptime = 0}
32 
33 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
34 
35 struct throtl_grp {
36 	/* List of throtl groups on the request queue*/
37 	struct hlist_node tg_node;
38 
39 	/* active throtl group service_tree member */
40 	struct rb_node rb_node;
41 
42 	/*
43 	 * Dispatch time in jiffies. This is the estimated time when group
44 	 * will unthrottle and is ready to dispatch more bio. It is used as
45 	 * key to sort active groups in service tree.
46 	 */
47 	unsigned long disptime;
48 
49 	struct blkio_group blkg;
50 	atomic_t ref;
51 	unsigned int flags;
52 
53 	/* Two lists for READ and WRITE */
54 	struct bio_list bio_lists[2];
55 
56 	/* Number of queued bios on READ and WRITE lists */
57 	unsigned int nr_queued[2];
58 
59 	/* bytes per second rate limits */
60 	uint64_t bps[2];
61 
62 	/* IOPS limits */
63 	unsigned int iops[2];
64 
65 	/* Number of bytes disptached in current slice */
66 	uint64_t bytes_disp[2];
67 	/* Number of bio's dispatched in current slice */
68 	unsigned int io_disp[2];
69 
70 	/* When did we start a new slice */
71 	unsigned long slice_start[2];
72 	unsigned long slice_end[2];
73 
74 	/* Some throttle limits got updated for the group */
75 	bool limits_changed;
76 };
77 
78 struct throtl_data
79 {
80 	/* List of throtl groups */
81 	struct hlist_head tg_list;
82 
83 	/* service tree for active throtl groups */
84 	struct throtl_rb_root tg_service_tree;
85 
86 	struct throtl_grp root_tg;
87 	struct request_queue *queue;
88 
89 	/* Total Number of queued bios on READ and WRITE lists */
90 	unsigned int nr_queued[2];
91 
92 	/*
93 	 * number of total undestroyed groups
94 	 */
95 	unsigned int nr_undestroyed_grps;
96 
97 	/* Work for dispatching throttled bios */
98 	struct delayed_work throtl_work;
99 
100 	atomic_t limits_changed;
101 };
102 
103 enum tg_state_flags {
104 	THROTL_TG_FLAG_on_rr = 0,	/* on round-robin busy list */
105 };
106 
107 #define THROTL_TG_FNS(name)						\
108 static inline void throtl_mark_tg_##name(struct throtl_grp *tg)		\
109 {									\
110 	(tg)->flags |= (1 << THROTL_TG_FLAG_##name);			\
111 }									\
112 static inline void throtl_clear_tg_##name(struct throtl_grp *tg)	\
113 {									\
114 	(tg)->flags &= ~(1 << THROTL_TG_FLAG_##name);			\
115 }									\
116 static inline int throtl_tg_##name(const struct throtl_grp *tg)		\
117 {									\
118 	return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0;	\
119 }
120 
121 THROTL_TG_FNS(on_rr);
122 
123 #define throtl_log_tg(td, tg, fmt, args...)				\
124 	blk_add_trace_msg((td)->queue, "throtl %s " fmt,		\
125 				blkg_path(&(tg)->blkg), ##args);      	\
126 
127 #define throtl_log(td, fmt, args...)	\
128 	blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
129 
130 static inline struct throtl_grp *tg_of_blkg(struct blkio_group *blkg)
131 {
132 	if (blkg)
133 		return container_of(blkg, struct throtl_grp, blkg);
134 
135 	return NULL;
136 }
137 
138 static inline int total_nr_queued(struct throtl_data *td)
139 {
140 	return (td->nr_queued[0] + td->nr_queued[1]);
141 }
142 
143 static inline struct throtl_grp *throtl_ref_get_tg(struct throtl_grp *tg)
144 {
145 	atomic_inc(&tg->ref);
146 	return tg;
147 }
148 
149 static void throtl_put_tg(struct throtl_grp *tg)
150 {
151 	BUG_ON(atomic_read(&tg->ref) <= 0);
152 	if (!atomic_dec_and_test(&tg->ref))
153 		return;
154 	kfree(tg);
155 }
156 
157 static struct throtl_grp * throtl_find_alloc_tg(struct throtl_data *td,
158 			struct cgroup *cgroup)
159 {
160 	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
161 	struct throtl_grp *tg = NULL;
162 	void *key = td;
163 	struct backing_dev_info *bdi = &td->queue->backing_dev_info;
164 	unsigned int major, minor;
165 
166 	/*
167 	 * TODO: Speed up blkiocg_lookup_group() by maintaining a radix
168 	 * tree of blkg (instead of traversing through hash list all
169 	 * the time.
170 	 */
171 
172 	/*
173 	 * This is the common case when there are no blkio cgroups.
174  	 * Avoid lookup in this case
175  	 */
176 	if (blkcg == &blkio_root_cgroup)
177 		tg = &td->root_tg;
178 	else
179 		tg = tg_of_blkg(blkiocg_lookup_group(blkcg, key));
180 
181 	/* Fill in device details for root group */
182 	if (tg && !tg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
183 		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
184 		tg->blkg.dev = MKDEV(major, minor);
185 		goto done;
186 	}
187 
188 	if (tg)
189 		goto done;
190 
191 	tg = kzalloc_node(sizeof(*tg), GFP_ATOMIC, td->queue->node);
192 	if (!tg)
193 		goto done;
194 
195 	INIT_HLIST_NODE(&tg->tg_node);
196 	RB_CLEAR_NODE(&tg->rb_node);
197 	bio_list_init(&tg->bio_lists[0]);
198 	bio_list_init(&tg->bio_lists[1]);
199 
200 	/*
201 	 * Take the initial reference that will be released on destroy
202 	 * This can be thought of a joint reference by cgroup and
203 	 * request queue which will be dropped by either request queue
204 	 * exit or cgroup deletion path depending on who is exiting first.
205 	 */
206 	atomic_set(&tg->ref, 1);
207 
208 	/* Add group onto cgroup list */
209 	sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
210 	blkiocg_add_blkio_group(blkcg, &tg->blkg, (void *)td,
211 				MKDEV(major, minor), BLKIO_POLICY_THROTL);
212 
213 	tg->bps[READ] = blkcg_get_read_bps(blkcg, tg->blkg.dev);
214 	tg->bps[WRITE] = blkcg_get_write_bps(blkcg, tg->blkg.dev);
215 	tg->iops[READ] = blkcg_get_read_iops(blkcg, tg->blkg.dev);
216 	tg->iops[WRITE] = blkcg_get_write_iops(blkcg, tg->blkg.dev);
217 
218 	hlist_add_head(&tg->tg_node, &td->tg_list);
219 	td->nr_undestroyed_grps++;
220 done:
221 	return tg;
222 }
223 
224 static struct throtl_grp * throtl_get_tg(struct throtl_data *td)
225 {
226 	struct cgroup *cgroup;
227 	struct throtl_grp *tg = NULL;
228 
229 	rcu_read_lock();
230 	cgroup = task_cgroup(current, blkio_subsys_id);
231 	tg = throtl_find_alloc_tg(td, cgroup);
232 	if (!tg)
233 		tg = &td->root_tg;
234 	rcu_read_unlock();
235 	return tg;
236 }
237 
238 static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
239 {
240 	/* Service tree is empty */
241 	if (!root->count)
242 		return NULL;
243 
244 	if (!root->left)
245 		root->left = rb_first(&root->rb);
246 
247 	if (root->left)
248 		return rb_entry_tg(root->left);
249 
250 	return NULL;
251 }
252 
253 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
254 {
255 	rb_erase(n, root);
256 	RB_CLEAR_NODE(n);
257 }
258 
259 static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
260 {
261 	if (root->left == n)
262 		root->left = NULL;
263 	rb_erase_init(n, &root->rb);
264 	--root->count;
265 }
266 
267 static void update_min_dispatch_time(struct throtl_rb_root *st)
268 {
269 	struct throtl_grp *tg;
270 
271 	tg = throtl_rb_first(st);
272 	if (!tg)
273 		return;
274 
275 	st->min_disptime = tg->disptime;
276 }
277 
278 static void
279 tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
280 {
281 	struct rb_node **node = &st->rb.rb_node;
282 	struct rb_node *parent = NULL;
283 	struct throtl_grp *__tg;
284 	unsigned long key = tg->disptime;
285 	int left = 1;
286 
287 	while (*node != NULL) {
288 		parent = *node;
289 		__tg = rb_entry_tg(parent);
290 
291 		if (time_before(key, __tg->disptime))
292 			node = &parent->rb_left;
293 		else {
294 			node = &parent->rb_right;
295 			left = 0;
296 		}
297 	}
298 
299 	if (left)
300 		st->left = &tg->rb_node;
301 
302 	rb_link_node(&tg->rb_node, parent, node);
303 	rb_insert_color(&tg->rb_node, &st->rb);
304 }
305 
306 static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
307 {
308 	struct throtl_rb_root *st = &td->tg_service_tree;
309 
310 	tg_service_tree_add(st, tg);
311 	throtl_mark_tg_on_rr(tg);
312 	st->count++;
313 }
314 
315 static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
316 {
317 	if (!throtl_tg_on_rr(tg))
318 		__throtl_enqueue_tg(td, tg);
319 }
320 
321 static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
322 {
323 	throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
324 	throtl_clear_tg_on_rr(tg);
325 }
326 
327 static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
328 {
329 	if (throtl_tg_on_rr(tg))
330 		__throtl_dequeue_tg(td, tg);
331 }
332 
333 static void throtl_schedule_next_dispatch(struct throtl_data *td)
334 {
335 	struct throtl_rb_root *st = &td->tg_service_tree;
336 
337 	/*
338 	 * If there are more bios pending, schedule more work.
339 	 */
340 	if (!total_nr_queued(td))
341 		return;
342 
343 	BUG_ON(!st->count);
344 
345 	update_min_dispatch_time(st);
346 
347 	if (time_before_eq(st->min_disptime, jiffies))
348 		throtl_schedule_delayed_work(td->queue, 0);
349 	else
350 		throtl_schedule_delayed_work(td->queue,
351 				(st->min_disptime - jiffies));
352 }
353 
354 static inline void
355 throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
356 {
357 	tg->bytes_disp[rw] = 0;
358 	tg->io_disp[rw] = 0;
359 	tg->slice_start[rw] = jiffies;
360 	tg->slice_end[rw] = jiffies + throtl_slice;
361 	throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
362 			rw == READ ? 'R' : 'W', tg->slice_start[rw],
363 			tg->slice_end[rw], jiffies);
364 }
365 
366 static inline void throtl_set_slice_end(struct throtl_data *td,
367 		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
368 {
369 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
370 }
371 
372 static inline void throtl_extend_slice(struct throtl_data *td,
373 		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
374 {
375 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
376 	throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
377 			rw == READ ? 'R' : 'W', tg->slice_start[rw],
378 			tg->slice_end[rw], jiffies);
379 }
380 
381 /* Determine if previously allocated or extended slice is complete or not */
382 static bool
383 throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
384 {
385 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
386 		return 0;
387 
388 	return 1;
389 }
390 
391 /* Trim the used slices and adjust slice start accordingly */
392 static inline void
393 throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
394 {
395 	unsigned long nr_slices, time_elapsed, io_trim;
396 	u64 bytes_trim, tmp;
397 
398 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
399 
400 	/*
401 	 * If bps are unlimited (-1), then time slice don't get
402 	 * renewed. Don't try to trim the slice if slice is used. A new
403 	 * slice will start when appropriate.
404 	 */
405 	if (throtl_slice_used(td, tg, rw))
406 		return;
407 
408 	/*
409 	 * A bio has been dispatched. Also adjust slice_end. It might happen
410 	 * that initially cgroup limit was very low resulting in high
411 	 * slice_end, but later limit was bumped up and bio was dispached
412 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
413 	 * is bad because it does not allow new slice to start.
414 	 */
415 
416 	throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);
417 
418 	time_elapsed = jiffies - tg->slice_start[rw];
419 
420 	nr_slices = time_elapsed / throtl_slice;
421 
422 	if (!nr_slices)
423 		return;
424 	tmp = tg->bps[rw] * throtl_slice * nr_slices;
425 	do_div(tmp, HZ);
426 	bytes_trim = tmp;
427 
428 	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
429 
430 	if (!bytes_trim && !io_trim)
431 		return;
432 
433 	if (tg->bytes_disp[rw] >= bytes_trim)
434 		tg->bytes_disp[rw] -= bytes_trim;
435 	else
436 		tg->bytes_disp[rw] = 0;
437 
438 	if (tg->io_disp[rw] >= io_trim)
439 		tg->io_disp[rw] -= io_trim;
440 	else
441 		tg->io_disp[rw] = 0;
442 
443 	tg->slice_start[rw] += nr_slices * throtl_slice;
444 
445 	throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
446 			" start=%lu end=%lu jiffies=%lu",
447 			rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
448 			tg->slice_start[rw], tg->slice_end[rw], jiffies);
449 }
450 
451 static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
452 		struct bio *bio, unsigned long *wait)
453 {
454 	bool rw = bio_data_dir(bio);
455 	unsigned int io_allowed;
456 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
457 	u64 tmp;
458 
459 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
460 
461 	/* Slice has just started. Consider one slice interval */
462 	if (!jiffy_elapsed)
463 		jiffy_elapsed_rnd = throtl_slice;
464 
465 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
466 
467 	/*
468 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
469 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
470 	 * will allow dispatch after 1 second and after that slice should
471 	 * have been trimmed.
472 	 */
473 
474 	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
475 	do_div(tmp, HZ);
476 
477 	if (tmp > UINT_MAX)
478 		io_allowed = UINT_MAX;
479 	else
480 		io_allowed = tmp;
481 
482 	if (tg->io_disp[rw] + 1 <= io_allowed) {
483 		if (wait)
484 			*wait = 0;
485 		return 1;
486 	}
487 
488 	/* Calc approx time to dispatch */
489 	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
490 
491 	if (jiffy_wait > jiffy_elapsed)
492 		jiffy_wait = jiffy_wait - jiffy_elapsed;
493 	else
494 		jiffy_wait = 1;
495 
496 	if (wait)
497 		*wait = jiffy_wait;
498 	return 0;
499 }
500 
501 static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
502 		struct bio *bio, unsigned long *wait)
503 {
504 	bool rw = bio_data_dir(bio);
505 	u64 bytes_allowed, extra_bytes, tmp;
506 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
507 
508 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
509 
510 	/* Slice has just started. Consider one slice interval */
511 	if (!jiffy_elapsed)
512 		jiffy_elapsed_rnd = throtl_slice;
513 
514 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
515 
516 	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
517 	do_div(tmp, HZ);
518 	bytes_allowed = tmp;
519 
520 	if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
521 		if (wait)
522 			*wait = 0;
523 		return 1;
524 	}
525 
526 	/* Calc approx time to dispatch */
527 	extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
528 	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
529 
530 	if (!jiffy_wait)
531 		jiffy_wait = 1;
532 
533 	/*
534 	 * This wait time is without taking into consideration the rounding
535 	 * up we did. Add that time also.
536 	 */
537 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
538 	if (wait)
539 		*wait = jiffy_wait;
540 	return 0;
541 }
542 
543 /*
544  * Returns whether one can dispatch a bio or not. Also returns approx number
545  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
546  */
547 static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
548 				struct bio *bio, unsigned long *wait)
549 {
550 	bool rw = bio_data_dir(bio);
551 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
552 
553 	/*
554  	 * Currently whole state machine of group depends on first bio
555 	 * queued in the group bio list. So one should not be calling
556 	 * this function with a different bio if there are other bios
557 	 * queued.
558 	 */
559 	BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
560 
561 	/* If tg->bps = -1, then BW is unlimited */
562 	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
563 		if (wait)
564 			*wait = 0;
565 		return 1;
566 	}
567 
568 	/*
569 	 * If previous slice expired, start a new one otherwise renew/extend
570 	 * existing slice to make sure it is at least throtl_slice interval
571 	 * long since now.
572 	 */
573 	if (throtl_slice_used(td, tg, rw))
574 		throtl_start_new_slice(td, tg, rw);
575 	else {
576 		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
577 			throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
578 	}
579 
580 	if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
581 	    && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
582 		if (wait)
583 			*wait = 0;
584 		return 1;
585 	}
586 
587 	max_wait = max(bps_wait, iops_wait);
588 
589 	if (wait)
590 		*wait = max_wait;
591 
592 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
593 		throtl_extend_slice(td, tg, rw, jiffies + max_wait);
594 
595 	return 0;
596 }
597 
598 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
599 {
600 	bool rw = bio_data_dir(bio);
601 	bool sync = bio->bi_rw & REQ_SYNC;
602 
603 	/* Charge the bio to the group */
604 	tg->bytes_disp[rw] += bio->bi_size;
605 	tg->io_disp[rw]++;
606 
607 	/*
608 	 * TODO: This will take blkg->stats_lock. Figure out a way
609 	 * to avoid this cost.
610 	 */
611 	blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, rw, sync);
612 }
613 
614 static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
615 			struct bio *bio)
616 {
617 	bool rw = bio_data_dir(bio);
618 
619 	bio_list_add(&tg->bio_lists[rw], bio);
620 	/* Take a bio reference on tg */
621 	throtl_ref_get_tg(tg);
622 	tg->nr_queued[rw]++;
623 	td->nr_queued[rw]++;
624 	throtl_enqueue_tg(td, tg);
625 }
626 
627 static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
628 {
629 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
630 	struct bio *bio;
631 
632 	if ((bio = bio_list_peek(&tg->bio_lists[READ])))
633 		tg_may_dispatch(td, tg, bio, &read_wait);
634 
635 	if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
636 		tg_may_dispatch(td, tg, bio, &write_wait);
637 
638 	min_wait = min(read_wait, write_wait);
639 	disptime = jiffies + min_wait;
640 
641 	/* Update dispatch time */
642 	throtl_dequeue_tg(td, tg);
643 	tg->disptime = disptime;
644 	throtl_enqueue_tg(td, tg);
645 }
646 
647 static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
648 				bool rw, struct bio_list *bl)
649 {
650 	struct bio *bio;
651 
652 	bio = bio_list_pop(&tg->bio_lists[rw]);
653 	tg->nr_queued[rw]--;
654 	/* Drop bio reference on tg */
655 	throtl_put_tg(tg);
656 
657 	BUG_ON(td->nr_queued[rw] <= 0);
658 	td->nr_queued[rw]--;
659 
660 	throtl_charge_bio(tg, bio);
661 	bio_list_add(bl, bio);
662 	bio->bi_rw |= REQ_THROTTLED;
663 
664 	throtl_trim_slice(td, tg, rw);
665 }
666 
667 static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
668 				struct bio_list *bl)
669 {
670 	unsigned int nr_reads = 0, nr_writes = 0;
671 	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
672 	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
673 	struct bio *bio;
674 
675 	/* Try to dispatch 75% READS and 25% WRITES */
676 
677 	while ((bio = bio_list_peek(&tg->bio_lists[READ]))
678 		&& tg_may_dispatch(td, tg, bio, NULL)) {
679 
680 		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
681 		nr_reads++;
682 
683 		if (nr_reads >= max_nr_reads)
684 			break;
685 	}
686 
687 	while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
688 		&& tg_may_dispatch(td, tg, bio, NULL)) {
689 
690 		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
691 		nr_writes++;
692 
693 		if (nr_writes >= max_nr_writes)
694 			break;
695 	}
696 
697 	return nr_reads + nr_writes;
698 }
699 
700 static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
701 {
702 	unsigned int nr_disp = 0;
703 	struct throtl_grp *tg;
704 	struct throtl_rb_root *st = &td->tg_service_tree;
705 
706 	while (1) {
707 		tg = throtl_rb_first(st);
708 
709 		if (!tg)
710 			break;
711 
712 		if (time_before(jiffies, tg->disptime))
713 			break;
714 
715 		throtl_dequeue_tg(td, tg);
716 
717 		nr_disp += throtl_dispatch_tg(td, tg, bl);
718 
719 		if (tg->nr_queued[0] || tg->nr_queued[1]) {
720 			tg_update_disptime(td, tg);
721 			throtl_enqueue_tg(td, tg);
722 		}
723 
724 		if (nr_disp >= throtl_quantum)
725 			break;
726 	}
727 
728 	return nr_disp;
729 }
730 
731 static void throtl_process_limit_change(struct throtl_data *td)
732 {
733 	struct throtl_grp *tg;
734 	struct hlist_node *pos, *n;
735 
736 	if (!atomic_read(&td->limits_changed))
737 		return;
738 
739 	throtl_log(td, "limit changed =%d", atomic_read(&td->limits_changed));
740 
741 	/*
742 	 * Make sure updates from throtl_update_blkio_group_read_bps() group
743 	 * of functions to tg->limits_changed are visible. We do not
744 	 * want update td->limits_changed to be visible but update to
745 	 * tg->limits_changed not being visible yet on this cpu. Hence
746 	 * the read barrier.
747 	 */
748 	smp_rmb();
749 
750 	hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
751 		if (throtl_tg_on_rr(tg) && tg->limits_changed) {
752 			throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
753 				" riops=%u wiops=%u", tg->bps[READ],
754 				tg->bps[WRITE], tg->iops[READ],
755 				tg->iops[WRITE]);
756 			tg_update_disptime(td, tg);
757 			tg->limits_changed = false;
758 		}
759 	}
760 
761 	smp_mb__before_atomic_dec();
762 	atomic_dec(&td->limits_changed);
763 	smp_mb__after_atomic_dec();
764 }
765 
766 /* Dispatch throttled bios. Should be called without queue lock held. */
767 static int throtl_dispatch(struct request_queue *q)
768 {
769 	struct throtl_data *td = q->td;
770 	unsigned int nr_disp = 0;
771 	struct bio_list bio_list_on_stack;
772 	struct bio *bio;
773 
774 	spin_lock_irq(q->queue_lock);
775 
776 	throtl_process_limit_change(td);
777 
778 	if (!total_nr_queued(td))
779 		goto out;
780 
781 	bio_list_init(&bio_list_on_stack);
782 
783 	throtl_log(td, "dispatch nr_queued=%lu read=%u write=%u",
784 			total_nr_queued(td), td->nr_queued[READ],
785 			td->nr_queued[WRITE]);
786 
787 	nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
788 
789 	if (nr_disp)
790 		throtl_log(td, "bios disp=%u", nr_disp);
791 
792 	throtl_schedule_next_dispatch(td);
793 out:
794 	spin_unlock_irq(q->queue_lock);
795 
796 	/*
797 	 * If we dispatched some requests, unplug the queue to make sure
798 	 * immediate dispatch
799 	 */
800 	if (nr_disp) {
801 		while((bio = bio_list_pop(&bio_list_on_stack)))
802 			generic_make_request(bio);
803 		blk_unplug(q);
804 	}
805 	return nr_disp;
806 }
807 
808 void blk_throtl_work(struct work_struct *work)
809 {
810 	struct throtl_data *td = container_of(work, struct throtl_data,
811 					throtl_work.work);
812 	struct request_queue *q = td->queue;
813 
814 	throtl_dispatch(q);
815 }
816 
817 /* Call with queue lock held */
818 void throtl_schedule_delayed_work(struct request_queue *q, unsigned long delay)
819 {
820 
821 	struct throtl_data *td = q->td;
822 	struct delayed_work *dwork = &td->throtl_work;
823 
824 	if (total_nr_queued(td) > 0) {
825 		/*
826 		 * We might have a work scheduled to be executed in future.
827 		 * Cancel that and schedule a new one.
828 		 */
829 		__cancel_delayed_work(dwork);
830 		kblockd_schedule_delayed_work(q, dwork, delay);
831 		throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
832 				delay, jiffies);
833 	}
834 }
835 EXPORT_SYMBOL(throtl_schedule_delayed_work);
836 
837 static void
838 throtl_destroy_tg(struct throtl_data *td, struct throtl_grp *tg)
839 {
840 	/* Something wrong if we are trying to remove same group twice */
841 	BUG_ON(hlist_unhashed(&tg->tg_node));
842 
843 	hlist_del_init(&tg->tg_node);
844 
845 	/*
846 	 * Put the reference taken at the time of creation so that when all
847 	 * queues are gone, group can be destroyed.
848 	 */
849 	throtl_put_tg(tg);
850 	td->nr_undestroyed_grps--;
851 }
852 
853 static void throtl_release_tgs(struct throtl_data *td)
854 {
855 	struct hlist_node *pos, *n;
856 	struct throtl_grp *tg;
857 
858 	hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
859 		/*
860 		 * If cgroup removal path got to blk_group first and removed
861 		 * it from cgroup list, then it will take care of destroying
862 		 * cfqg also.
863 		 */
864 		if (!blkiocg_del_blkio_group(&tg->blkg))
865 			throtl_destroy_tg(td, tg);
866 	}
867 }
868 
869 static void throtl_td_free(struct throtl_data *td)
870 {
871 	kfree(td);
872 }
873 
874 /*
875  * Blk cgroup controller notification saying that blkio_group object is being
876  * delinked as associated cgroup object is going away. That also means that
877  * no new IO will come in this group. So get rid of this group as soon as
878  * any pending IO in the group is finished.
879  *
880  * This function is called under rcu_read_lock(). key is the rcu protected
881  * pointer. That means "key" is a valid throtl_data pointer as long as we are
882  * rcu read lock.
883  *
884  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
885  * it should not be NULL as even if queue was going away, cgroup deltion
886  * path got to it first.
887  */
888 void throtl_unlink_blkio_group(void *key, struct blkio_group *blkg)
889 {
890 	unsigned long flags;
891 	struct throtl_data *td = key;
892 
893 	spin_lock_irqsave(td->queue->queue_lock, flags);
894 	throtl_destroy_tg(td, tg_of_blkg(blkg));
895 	spin_unlock_irqrestore(td->queue->queue_lock, flags);
896 }
897 
898 /*
899  * For all update functions, key should be a valid pointer because these
900  * update functions are called under blkcg_lock, that means, blkg is
901  * valid and in turn key is valid. queue exit path can not race becuase
902  * of blkcg_lock
903  *
904  * Can not take queue lock in update functions as queue lock under blkcg_lock
905  * is not allowed. Under other paths we take blkcg_lock under queue_lock.
906  */
907 static void throtl_update_blkio_group_read_bps(void *key,
908 				struct blkio_group *blkg, u64 read_bps)
909 {
910 	struct throtl_data *td = key;
911 
912 	tg_of_blkg(blkg)->bps[READ] = read_bps;
913 	/* Make sure read_bps is updated before setting limits_changed */
914 	smp_wmb();
915 	tg_of_blkg(blkg)->limits_changed = true;
916 
917 	/* Make sure tg->limits_changed is updated before td->limits_changed */
918 	smp_mb__before_atomic_inc();
919 	atomic_inc(&td->limits_changed);
920 	smp_mb__after_atomic_inc();
921 
922 	/* Schedule a work now to process the limit change */
923 	throtl_schedule_delayed_work(td->queue, 0);
924 }
925 
926 static void throtl_update_blkio_group_write_bps(void *key,
927 				struct blkio_group *blkg, u64 write_bps)
928 {
929 	struct throtl_data *td = key;
930 
931 	tg_of_blkg(blkg)->bps[WRITE] = write_bps;
932 	smp_wmb();
933 	tg_of_blkg(blkg)->limits_changed = true;
934 	smp_mb__before_atomic_inc();
935 	atomic_inc(&td->limits_changed);
936 	smp_mb__after_atomic_inc();
937 	throtl_schedule_delayed_work(td->queue, 0);
938 }
939 
940 static void throtl_update_blkio_group_read_iops(void *key,
941 			struct blkio_group *blkg, unsigned int read_iops)
942 {
943 	struct throtl_data *td = key;
944 
945 	tg_of_blkg(blkg)->iops[READ] = read_iops;
946 	smp_wmb();
947 	tg_of_blkg(blkg)->limits_changed = true;
948 	smp_mb__before_atomic_inc();
949 	atomic_inc(&td->limits_changed);
950 	smp_mb__after_atomic_inc();
951 	throtl_schedule_delayed_work(td->queue, 0);
952 }
953 
954 static void throtl_update_blkio_group_write_iops(void *key,
955 			struct blkio_group *blkg, unsigned int write_iops)
956 {
957 	struct throtl_data *td = key;
958 
959 	tg_of_blkg(blkg)->iops[WRITE] = write_iops;
960 	smp_wmb();
961 	tg_of_blkg(blkg)->limits_changed = true;
962 	smp_mb__before_atomic_inc();
963 	atomic_inc(&td->limits_changed);
964 	smp_mb__after_atomic_inc();
965 	throtl_schedule_delayed_work(td->queue, 0);
966 }
967 
968 void throtl_shutdown_timer_wq(struct request_queue *q)
969 {
970 	struct throtl_data *td = q->td;
971 
972 	cancel_delayed_work_sync(&td->throtl_work);
973 }
974 
975 static struct blkio_policy_type blkio_policy_throtl = {
976 	.ops = {
977 		.blkio_unlink_group_fn = throtl_unlink_blkio_group,
978 		.blkio_update_group_read_bps_fn =
979 					throtl_update_blkio_group_read_bps,
980 		.blkio_update_group_write_bps_fn =
981 					throtl_update_blkio_group_write_bps,
982 		.blkio_update_group_read_iops_fn =
983 					throtl_update_blkio_group_read_iops,
984 		.blkio_update_group_write_iops_fn =
985 					throtl_update_blkio_group_write_iops,
986 	},
987 	.plid = BLKIO_POLICY_THROTL,
988 };
989 
990 int blk_throtl_bio(struct request_queue *q, struct bio **biop)
991 {
992 	struct throtl_data *td = q->td;
993 	struct throtl_grp *tg;
994 	struct bio *bio = *biop;
995 	bool rw = bio_data_dir(bio), update_disptime = true;
996 
997 	if (bio->bi_rw & REQ_THROTTLED) {
998 		bio->bi_rw &= ~REQ_THROTTLED;
999 		return 0;
1000 	}
1001 
1002 	spin_lock_irq(q->queue_lock);
1003 	tg = throtl_get_tg(td);
1004 
1005 	if (tg->nr_queued[rw]) {
1006 		/*
1007 		 * There is already another bio queued in same dir. No
1008 		 * need to update dispatch time.
1009 		 * Still update the disptime if rate limits on this group
1010 		 * were changed.
1011 		 */
1012 		if (!tg->limits_changed)
1013 			update_disptime = false;
1014 		else
1015 			tg->limits_changed = false;
1016 
1017 		goto queue_bio;
1018 	}
1019 
1020 	/* Bio is with-in rate limit of group */
1021 	if (tg_may_dispatch(td, tg, bio, NULL)) {
1022 		throtl_charge_bio(tg, bio);
1023 		goto out;
1024 	}
1025 
1026 queue_bio:
1027 	throtl_log_tg(td, tg, "[%c] bio. bdisp=%u sz=%u bps=%llu"
1028 			" iodisp=%u iops=%u queued=%d/%d",
1029 			rw == READ ? 'R' : 'W',
1030 			tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1031 			tg->io_disp[rw], tg->iops[rw],
1032 			tg->nr_queued[READ], tg->nr_queued[WRITE]);
1033 
1034 	throtl_add_bio_tg(q->td, tg, bio);
1035 	*biop = NULL;
1036 
1037 	if (update_disptime) {
1038 		tg_update_disptime(td, tg);
1039 		throtl_schedule_next_dispatch(td);
1040 	}
1041 
1042 out:
1043 	spin_unlock_irq(q->queue_lock);
1044 	return 0;
1045 }
1046 
1047 int blk_throtl_init(struct request_queue *q)
1048 {
1049 	struct throtl_data *td;
1050 	struct throtl_grp *tg;
1051 
1052 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1053 	if (!td)
1054 		return -ENOMEM;
1055 
1056 	INIT_HLIST_HEAD(&td->tg_list);
1057 	td->tg_service_tree = THROTL_RB_ROOT;
1058 	atomic_set(&td->limits_changed, 0);
1059 
1060 	/* Init root group */
1061 	tg = &td->root_tg;
1062 	INIT_HLIST_NODE(&tg->tg_node);
1063 	RB_CLEAR_NODE(&tg->rb_node);
1064 	bio_list_init(&tg->bio_lists[0]);
1065 	bio_list_init(&tg->bio_lists[1]);
1066 
1067 	/* Practically unlimited BW */
1068 	tg->bps[0] = tg->bps[1] = -1;
1069 	tg->iops[0] = tg->iops[1] = -1;
1070 
1071 	/*
1072 	 * Set root group reference to 2. One reference will be dropped when
1073 	 * all groups on tg_list are being deleted during queue exit. Other
1074 	 * reference will remain there as we don't want to delete this group
1075 	 * as it is statically allocated and gets destroyed when throtl_data
1076 	 * goes away.
1077 	 */
1078 	atomic_set(&tg->ref, 2);
1079 	hlist_add_head(&tg->tg_node, &td->tg_list);
1080 	td->nr_undestroyed_grps++;
1081 
1082 	INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1083 
1084 	rcu_read_lock();
1085 	blkiocg_add_blkio_group(&blkio_root_cgroup, &tg->blkg, (void *)td,
1086 					0, BLKIO_POLICY_THROTL);
1087 	rcu_read_unlock();
1088 
1089 	/* Attach throtl data to request queue */
1090 	td->queue = q;
1091 	q->td = td;
1092 	return 0;
1093 }
1094 
1095 void blk_throtl_exit(struct request_queue *q)
1096 {
1097 	struct throtl_data *td = q->td;
1098 	bool wait = false;
1099 
1100 	BUG_ON(!td);
1101 
1102 	throtl_shutdown_timer_wq(q);
1103 
1104 	spin_lock_irq(q->queue_lock);
1105 	throtl_release_tgs(td);
1106 
1107 	/* If there are other groups */
1108 	if (td->nr_undestroyed_grps > 0)
1109 		wait = true;
1110 
1111 	spin_unlock_irq(q->queue_lock);
1112 
1113 	/*
1114 	 * Wait for tg->blkg->key accessors to exit their grace periods.
1115 	 * Do this wait only if there are other undestroyed groups out
1116 	 * there (other than root group). This can happen if cgroup deletion
1117 	 * path claimed the responsibility of cleaning up a group before
1118 	 * queue cleanup code get to the group.
1119 	 *
1120 	 * Do not call synchronize_rcu() unconditionally as there are drivers
1121 	 * which create/delete request queue hundreds of times during scan/boot
1122 	 * and synchronize_rcu() can take significant time and slow down boot.
1123 	 */
1124 	if (wait)
1125 		synchronize_rcu();
1126 
1127 	/*
1128 	 * Just being safe to make sure after previous flush if some body did
1129 	 * update limits through cgroup and another work got queued, cancel
1130 	 * it.
1131 	 */
1132 	throtl_shutdown_timer_wq(q);
1133 	throtl_td_free(td);
1134 }
1135 
1136 static int __init throtl_init(void)
1137 {
1138 	blkio_policy_register(&blkio_policy_throtl);
1139 	return 0;
1140 }
1141 
1142 module_init(throtl_init);
1143