1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Interface for controlling IO bandwidth on a request queue 4 * 5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/bio.h> 12 #include <linux/blktrace_api.h> 13 #include <linux/blk-cgroup.h> 14 #include "blk.h" 15 #include "blk-cgroup-rwstat.h" 16 17 /* Max dispatch from a group in 1 round */ 18 #define THROTL_GRP_QUANTUM 8 19 20 /* Total max dispatch from all groups in one round */ 21 #define THROTL_QUANTUM 32 22 23 /* Throttling is performed over a slice and after that slice is renewed */ 24 #define DFL_THROTL_SLICE_HD (HZ / 10) 25 #define DFL_THROTL_SLICE_SSD (HZ / 50) 26 #define MAX_THROTL_SLICE (HZ) 27 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */ 28 #define MIN_THROTL_BPS (320 * 1024) 29 #define MIN_THROTL_IOPS (10) 30 #define DFL_LATENCY_TARGET (-1L) 31 #define DFL_IDLE_THRESHOLD (0) 32 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */ 33 #define LATENCY_FILTERED_SSD (0) 34 /* 35 * For HD, very small latency comes from sequential IO. Such IO is helpless to 36 * help determine if its IO is impacted by others, hence we ignore the IO 37 */ 38 #define LATENCY_FILTERED_HD (1000L) /* 1ms */ 39 40 static struct blkcg_policy blkcg_policy_throtl; 41 42 /* A workqueue to queue throttle related work */ 43 static struct workqueue_struct *kthrotld_workqueue; 44 45 /* 46 * To implement hierarchical throttling, throtl_grps form a tree and bios 47 * are dispatched upwards level by level until they reach the top and get 48 * issued. When dispatching bios from the children and local group at each 49 * level, if the bios are dispatched into a single bio_list, there's a risk 50 * of a local or child group which can queue many bios at once filling up 51 * the list starving others. 52 * 53 * To avoid such starvation, dispatched bios are queued separately 54 * according to where they came from. When they are again dispatched to 55 * the parent, they're popped in round-robin order so that no single source 56 * hogs the dispatch window. 57 * 58 * throtl_qnode is used to keep the queued bios separated by their sources. 59 * Bios are queued to throtl_qnode which in turn is queued to 60 * throtl_service_queue and then dispatched in round-robin order. 61 * 62 * It's also used to track the reference counts on blkg's. A qnode always 63 * belongs to a throtl_grp and gets queued on itself or the parent, so 64 * incrementing the reference of the associated throtl_grp when a qnode is 65 * queued and decrementing when dequeued is enough to keep the whole blkg 66 * tree pinned while bios are in flight. 67 */ 68 struct throtl_qnode { 69 struct list_head node; /* service_queue->queued[] */ 70 struct bio_list bios; /* queued bios */ 71 struct throtl_grp *tg; /* tg this qnode belongs to */ 72 }; 73 74 struct throtl_service_queue { 75 struct throtl_service_queue *parent_sq; /* the parent service_queue */ 76 77 /* 78 * Bios queued directly to this service_queue or dispatched from 79 * children throtl_grp's. 80 */ 81 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */ 82 unsigned int nr_queued[2]; /* number of queued bios */ 83 84 /* 85 * RB tree of active children throtl_grp's, which are sorted by 86 * their ->disptime. 87 */ 88 struct rb_root_cached pending_tree; /* RB tree of active tgs */ 89 unsigned int nr_pending; /* # queued in the tree */ 90 unsigned long first_pending_disptime; /* disptime of the first tg */ 91 struct timer_list pending_timer; /* fires on first_pending_disptime */ 92 }; 93 94 enum tg_state_flags { 95 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */ 96 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */ 97 }; 98 99 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 100 101 enum { 102 LIMIT_LOW, 103 LIMIT_MAX, 104 LIMIT_CNT, 105 }; 106 107 struct throtl_grp { 108 /* must be the first member */ 109 struct blkg_policy_data pd; 110 111 /* active throtl group service_queue member */ 112 struct rb_node rb_node; 113 114 /* throtl_data this group belongs to */ 115 struct throtl_data *td; 116 117 /* this group's service queue */ 118 struct throtl_service_queue service_queue; 119 120 /* 121 * qnode_on_self is used when bios are directly queued to this 122 * throtl_grp so that local bios compete fairly with bios 123 * dispatched from children. qnode_on_parent is used when bios are 124 * dispatched from this throtl_grp into its parent and will compete 125 * with the sibling qnode_on_parents and the parent's 126 * qnode_on_self. 127 */ 128 struct throtl_qnode qnode_on_self[2]; 129 struct throtl_qnode qnode_on_parent[2]; 130 131 /* 132 * Dispatch time in jiffies. This is the estimated time when group 133 * will unthrottle and is ready to dispatch more bio. It is used as 134 * key to sort active groups in service tree. 135 */ 136 unsigned long disptime; 137 138 unsigned int flags; 139 140 /* are there any throtl rules between this group and td? */ 141 bool has_rules[2]; 142 143 /* internally used bytes per second rate limits */ 144 uint64_t bps[2][LIMIT_CNT]; 145 /* user configured bps limits */ 146 uint64_t bps_conf[2][LIMIT_CNT]; 147 148 /* internally used IOPS limits */ 149 unsigned int iops[2][LIMIT_CNT]; 150 /* user configured IOPS limits */ 151 unsigned int iops_conf[2][LIMIT_CNT]; 152 153 /* Number of bytes dispatched in current slice */ 154 uint64_t bytes_disp[2]; 155 /* Number of bio's dispatched in current slice */ 156 unsigned int io_disp[2]; 157 158 unsigned long last_low_overflow_time[2]; 159 160 uint64_t last_bytes_disp[2]; 161 unsigned int last_io_disp[2]; 162 163 unsigned long last_check_time; 164 165 unsigned long latency_target; /* us */ 166 unsigned long latency_target_conf; /* us */ 167 /* When did we start a new slice */ 168 unsigned long slice_start[2]; 169 unsigned long slice_end[2]; 170 171 unsigned long last_finish_time; /* ns / 1024 */ 172 unsigned long checked_last_finish_time; /* ns / 1024 */ 173 unsigned long avg_idletime; /* ns / 1024 */ 174 unsigned long idletime_threshold; /* us */ 175 unsigned long idletime_threshold_conf; /* us */ 176 177 unsigned int bio_cnt; /* total bios */ 178 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */ 179 unsigned long bio_cnt_reset_time; 180 181 struct blkg_rwstat stat_bytes; 182 struct blkg_rwstat stat_ios; 183 }; 184 185 /* We measure latency for request size from <= 4k to >= 1M */ 186 #define LATENCY_BUCKET_SIZE 9 187 188 struct latency_bucket { 189 unsigned long total_latency; /* ns / 1024 */ 190 int samples; 191 }; 192 193 struct avg_latency_bucket { 194 unsigned long latency; /* ns / 1024 */ 195 bool valid; 196 }; 197 198 struct throtl_data 199 { 200 /* service tree for active throtl groups */ 201 struct throtl_service_queue service_queue; 202 203 struct request_queue *queue; 204 205 /* Total Number of queued bios on READ and WRITE lists */ 206 unsigned int nr_queued[2]; 207 208 unsigned int throtl_slice; 209 210 /* Work for dispatching throttled bios */ 211 struct work_struct dispatch_work; 212 unsigned int limit_index; 213 bool limit_valid[LIMIT_CNT]; 214 215 unsigned long low_upgrade_time; 216 unsigned long low_downgrade_time; 217 218 unsigned int scale; 219 220 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE]; 221 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE]; 222 struct latency_bucket __percpu *latency_buckets[2]; 223 unsigned long last_calculate_time; 224 unsigned long filtered_latency; 225 226 bool track_bio_latency; 227 }; 228 229 static void throtl_pending_timer_fn(struct timer_list *t); 230 231 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd) 232 { 233 return pd ? container_of(pd, struct throtl_grp, pd) : NULL; 234 } 235 236 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg) 237 { 238 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl)); 239 } 240 241 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) 242 { 243 return pd_to_blkg(&tg->pd); 244 } 245 246 /** 247 * sq_to_tg - return the throl_grp the specified service queue belongs to 248 * @sq: the throtl_service_queue of interest 249 * 250 * Return the throtl_grp @sq belongs to. If @sq is the top-level one 251 * embedded in throtl_data, %NULL is returned. 252 */ 253 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) 254 { 255 if (sq && sq->parent_sq) 256 return container_of(sq, struct throtl_grp, service_queue); 257 else 258 return NULL; 259 } 260 261 /** 262 * sq_to_td - return throtl_data the specified service queue belongs to 263 * @sq: the throtl_service_queue of interest 264 * 265 * A service_queue can be embedded in either a throtl_grp or throtl_data. 266 * Determine the associated throtl_data accordingly and return it. 267 */ 268 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) 269 { 270 struct throtl_grp *tg = sq_to_tg(sq); 271 272 if (tg) 273 return tg->td; 274 else 275 return container_of(sq, struct throtl_data, service_queue); 276 } 277 278 /* 279 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to 280 * make the IO dispatch more smooth. 281 * Scale up: linearly scale up according to lapsed time since upgrade. For 282 * every throtl_slice, the limit scales up 1/2 .low limit till the 283 * limit hits .max limit 284 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit 285 */ 286 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td) 287 { 288 /* arbitrary value to avoid too big scale */ 289 if (td->scale < 4096 && time_after_eq(jiffies, 290 td->low_upgrade_time + td->scale * td->throtl_slice)) 291 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice; 292 293 return low + (low >> 1) * td->scale; 294 } 295 296 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) 297 { 298 struct blkcg_gq *blkg = tg_to_blkg(tg); 299 struct throtl_data *td; 300 uint64_t ret; 301 302 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 303 return U64_MAX; 304 305 td = tg->td; 306 ret = tg->bps[rw][td->limit_index]; 307 if (ret == 0 && td->limit_index == LIMIT_LOW) { 308 /* intermediate node or iops isn't 0 */ 309 if (!list_empty(&blkg->blkcg->css.children) || 310 tg->iops[rw][td->limit_index]) 311 return U64_MAX; 312 else 313 return MIN_THROTL_BPS; 314 } 315 316 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] && 317 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) { 318 uint64_t adjusted; 319 320 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td); 321 ret = min(tg->bps[rw][LIMIT_MAX], adjusted); 322 } 323 return ret; 324 } 325 326 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) 327 { 328 struct blkcg_gq *blkg = tg_to_blkg(tg); 329 struct throtl_data *td; 330 unsigned int ret; 331 332 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 333 return UINT_MAX; 334 335 td = tg->td; 336 ret = tg->iops[rw][td->limit_index]; 337 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) { 338 /* intermediate node or bps isn't 0 */ 339 if (!list_empty(&blkg->blkcg->css.children) || 340 tg->bps[rw][td->limit_index]) 341 return UINT_MAX; 342 else 343 return MIN_THROTL_IOPS; 344 } 345 346 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] && 347 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) { 348 uint64_t adjusted; 349 350 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td); 351 if (adjusted > UINT_MAX) 352 adjusted = UINT_MAX; 353 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted); 354 } 355 return ret; 356 } 357 358 #define request_bucket_index(sectors) \ 359 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1) 360 361 /** 362 * throtl_log - log debug message via blktrace 363 * @sq: the service_queue being reported 364 * @fmt: printf format string 365 * @args: printf args 366 * 367 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a 368 * throtl_grp; otherwise, just "throtl". 369 */ 370 #define throtl_log(sq, fmt, args...) do { \ 371 struct throtl_grp *__tg = sq_to_tg((sq)); \ 372 struct throtl_data *__td = sq_to_td((sq)); \ 373 \ 374 (void)__td; \ 375 if (likely(!blk_trace_note_message_enabled(__td->queue))) \ 376 break; \ 377 if ((__tg)) { \ 378 blk_add_cgroup_trace_msg(__td->queue, \ 379 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\ 380 } else { \ 381 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ 382 } \ 383 } while (0) 384 385 static inline unsigned int throtl_bio_data_size(struct bio *bio) 386 { 387 /* assume it's one sector */ 388 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 389 return 512; 390 return bio->bi_iter.bi_size; 391 } 392 393 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) 394 { 395 INIT_LIST_HEAD(&qn->node); 396 bio_list_init(&qn->bios); 397 qn->tg = tg; 398 } 399 400 /** 401 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it 402 * @bio: bio being added 403 * @qn: qnode to add bio to 404 * @queued: the service_queue->queued[] list @qn belongs to 405 * 406 * Add @bio to @qn and put @qn on @queued if it's not already on. 407 * @qn->tg's reference count is bumped when @qn is activated. See the 408 * comment on top of throtl_qnode definition for details. 409 */ 410 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, 411 struct list_head *queued) 412 { 413 bio_list_add(&qn->bios, bio); 414 if (list_empty(&qn->node)) { 415 list_add_tail(&qn->node, queued); 416 blkg_get(tg_to_blkg(qn->tg)); 417 } 418 } 419 420 /** 421 * throtl_peek_queued - peek the first bio on a qnode list 422 * @queued: the qnode list to peek 423 */ 424 static struct bio *throtl_peek_queued(struct list_head *queued) 425 { 426 struct throtl_qnode *qn; 427 struct bio *bio; 428 429 if (list_empty(queued)) 430 return NULL; 431 432 qn = list_first_entry(queued, struct throtl_qnode, node); 433 bio = bio_list_peek(&qn->bios); 434 WARN_ON_ONCE(!bio); 435 return bio; 436 } 437 438 /** 439 * throtl_pop_queued - pop the first bio form a qnode list 440 * @queued: the qnode list to pop a bio from 441 * @tg_to_put: optional out argument for throtl_grp to put 442 * 443 * Pop the first bio from the qnode list @queued. After popping, the first 444 * qnode is removed from @queued if empty or moved to the end of @queued so 445 * that the popping order is round-robin. 446 * 447 * When the first qnode is removed, its associated throtl_grp should be put 448 * too. If @tg_to_put is NULL, this function automatically puts it; 449 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is 450 * responsible for putting it. 451 */ 452 static struct bio *throtl_pop_queued(struct list_head *queued, 453 struct throtl_grp **tg_to_put) 454 { 455 struct throtl_qnode *qn; 456 struct bio *bio; 457 458 if (list_empty(queued)) 459 return NULL; 460 461 qn = list_first_entry(queued, struct throtl_qnode, node); 462 bio = bio_list_pop(&qn->bios); 463 WARN_ON_ONCE(!bio); 464 465 if (bio_list_empty(&qn->bios)) { 466 list_del_init(&qn->node); 467 if (tg_to_put) 468 *tg_to_put = qn->tg; 469 else 470 blkg_put(tg_to_blkg(qn->tg)); 471 } else { 472 list_move_tail(&qn->node, queued); 473 } 474 475 return bio; 476 } 477 478 /* init a service_queue, assumes the caller zeroed it */ 479 static void throtl_service_queue_init(struct throtl_service_queue *sq) 480 { 481 INIT_LIST_HEAD(&sq->queued[0]); 482 INIT_LIST_HEAD(&sq->queued[1]); 483 sq->pending_tree = RB_ROOT_CACHED; 484 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0); 485 } 486 487 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, 488 struct request_queue *q, 489 struct blkcg *blkcg) 490 { 491 struct throtl_grp *tg; 492 int rw; 493 494 tg = kzalloc_node(sizeof(*tg), gfp, q->node); 495 if (!tg) 496 return NULL; 497 498 if (blkg_rwstat_init(&tg->stat_bytes, gfp)) 499 goto err_free_tg; 500 501 if (blkg_rwstat_init(&tg->stat_ios, gfp)) 502 goto err_exit_stat_bytes; 503 504 throtl_service_queue_init(&tg->service_queue); 505 506 for (rw = READ; rw <= WRITE; rw++) { 507 throtl_qnode_init(&tg->qnode_on_self[rw], tg); 508 throtl_qnode_init(&tg->qnode_on_parent[rw], tg); 509 } 510 511 RB_CLEAR_NODE(&tg->rb_node); 512 tg->bps[READ][LIMIT_MAX] = U64_MAX; 513 tg->bps[WRITE][LIMIT_MAX] = U64_MAX; 514 tg->iops[READ][LIMIT_MAX] = UINT_MAX; 515 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX; 516 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX; 517 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX; 518 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX; 519 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX; 520 /* LIMIT_LOW will have default value 0 */ 521 522 tg->latency_target = DFL_LATENCY_TARGET; 523 tg->latency_target_conf = DFL_LATENCY_TARGET; 524 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 525 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD; 526 527 return &tg->pd; 528 529 err_exit_stat_bytes: 530 blkg_rwstat_exit(&tg->stat_bytes); 531 err_free_tg: 532 kfree(tg); 533 return NULL; 534 } 535 536 static void throtl_pd_init(struct blkg_policy_data *pd) 537 { 538 struct throtl_grp *tg = pd_to_tg(pd); 539 struct blkcg_gq *blkg = tg_to_blkg(tg); 540 struct throtl_data *td = blkg->q->td; 541 struct throtl_service_queue *sq = &tg->service_queue; 542 543 /* 544 * If on the default hierarchy, we switch to properly hierarchical 545 * behavior where limits on a given throtl_grp are applied to the 546 * whole subtree rather than just the group itself. e.g. If 16M 547 * read_bps limit is set on the root group, the whole system can't 548 * exceed 16M for the device. 549 * 550 * If not on the default hierarchy, the broken flat hierarchy 551 * behavior is retained where all throtl_grps are treated as if 552 * they're all separate root groups right below throtl_data. 553 * Limits of a group don't interact with limits of other groups 554 * regardless of the position of the group in the hierarchy. 555 */ 556 sq->parent_sq = &td->service_queue; 557 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) 558 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; 559 tg->td = td; 560 } 561 562 /* 563 * Set has_rules[] if @tg or any of its parents have limits configured. 564 * This doesn't require walking up to the top of the hierarchy as the 565 * parent's has_rules[] is guaranteed to be correct. 566 */ 567 static void tg_update_has_rules(struct throtl_grp *tg) 568 { 569 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); 570 struct throtl_data *td = tg->td; 571 int rw; 572 573 for (rw = READ; rw <= WRITE; rw++) 574 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) || 575 (td->limit_valid[td->limit_index] && 576 (tg_bps_limit(tg, rw) != U64_MAX || 577 tg_iops_limit(tg, rw) != UINT_MAX)); 578 } 579 580 static void throtl_pd_online(struct blkg_policy_data *pd) 581 { 582 struct throtl_grp *tg = pd_to_tg(pd); 583 /* 584 * We don't want new groups to escape the limits of its ancestors. 585 * Update has_rules[] after a new group is brought online. 586 */ 587 tg_update_has_rules(tg); 588 } 589 590 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 591 static void blk_throtl_update_limit_valid(struct throtl_data *td) 592 { 593 struct cgroup_subsys_state *pos_css; 594 struct blkcg_gq *blkg; 595 bool low_valid = false; 596 597 rcu_read_lock(); 598 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 599 struct throtl_grp *tg = blkg_to_tg(blkg); 600 601 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] || 602 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) { 603 low_valid = true; 604 break; 605 } 606 } 607 rcu_read_unlock(); 608 609 td->limit_valid[LIMIT_LOW] = low_valid; 610 } 611 #else 612 static inline void blk_throtl_update_limit_valid(struct throtl_data *td) 613 { 614 } 615 #endif 616 617 static void throtl_upgrade_state(struct throtl_data *td); 618 static void throtl_pd_offline(struct blkg_policy_data *pd) 619 { 620 struct throtl_grp *tg = pd_to_tg(pd); 621 622 tg->bps[READ][LIMIT_LOW] = 0; 623 tg->bps[WRITE][LIMIT_LOW] = 0; 624 tg->iops[READ][LIMIT_LOW] = 0; 625 tg->iops[WRITE][LIMIT_LOW] = 0; 626 627 blk_throtl_update_limit_valid(tg->td); 628 629 if (!tg->td->limit_valid[tg->td->limit_index]) 630 throtl_upgrade_state(tg->td); 631 } 632 633 static void throtl_pd_free(struct blkg_policy_data *pd) 634 { 635 struct throtl_grp *tg = pd_to_tg(pd); 636 637 del_timer_sync(&tg->service_queue.pending_timer); 638 blkg_rwstat_exit(&tg->stat_bytes); 639 blkg_rwstat_exit(&tg->stat_ios); 640 kfree(tg); 641 } 642 643 static struct throtl_grp * 644 throtl_rb_first(struct throtl_service_queue *parent_sq) 645 { 646 struct rb_node *n; 647 648 n = rb_first_cached(&parent_sq->pending_tree); 649 WARN_ON_ONCE(!n); 650 if (!n) 651 return NULL; 652 return rb_entry_tg(n); 653 } 654 655 static void throtl_rb_erase(struct rb_node *n, 656 struct throtl_service_queue *parent_sq) 657 { 658 rb_erase_cached(n, &parent_sq->pending_tree); 659 RB_CLEAR_NODE(n); 660 --parent_sq->nr_pending; 661 } 662 663 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) 664 { 665 struct throtl_grp *tg; 666 667 tg = throtl_rb_first(parent_sq); 668 if (!tg) 669 return; 670 671 parent_sq->first_pending_disptime = tg->disptime; 672 } 673 674 static void tg_service_queue_add(struct throtl_grp *tg) 675 { 676 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; 677 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node; 678 struct rb_node *parent = NULL; 679 struct throtl_grp *__tg; 680 unsigned long key = tg->disptime; 681 bool leftmost = true; 682 683 while (*node != NULL) { 684 parent = *node; 685 __tg = rb_entry_tg(parent); 686 687 if (time_before(key, __tg->disptime)) 688 node = &parent->rb_left; 689 else { 690 node = &parent->rb_right; 691 leftmost = false; 692 } 693 } 694 695 rb_link_node(&tg->rb_node, parent, node); 696 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree, 697 leftmost); 698 } 699 700 static void throtl_enqueue_tg(struct throtl_grp *tg) 701 { 702 if (!(tg->flags & THROTL_TG_PENDING)) { 703 tg_service_queue_add(tg); 704 tg->flags |= THROTL_TG_PENDING; 705 tg->service_queue.parent_sq->nr_pending++; 706 } 707 } 708 709 static void throtl_dequeue_tg(struct throtl_grp *tg) 710 { 711 if (tg->flags & THROTL_TG_PENDING) { 712 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); 713 tg->flags &= ~THROTL_TG_PENDING; 714 } 715 } 716 717 /* Call with queue lock held */ 718 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, 719 unsigned long expires) 720 { 721 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice; 722 723 /* 724 * Since we are adjusting the throttle limit dynamically, the sleep 725 * time calculated according to previous limit might be invalid. It's 726 * possible the cgroup sleep time is very long and no other cgroups 727 * have IO running so notify the limit changes. Make sure the cgroup 728 * doesn't sleep too long to avoid the missed notification. 729 */ 730 if (time_after(expires, max_expire)) 731 expires = max_expire; 732 mod_timer(&sq->pending_timer, expires); 733 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", 734 expires - jiffies, jiffies); 735 } 736 737 /** 738 * throtl_schedule_next_dispatch - schedule the next dispatch cycle 739 * @sq: the service_queue to schedule dispatch for 740 * @force: force scheduling 741 * 742 * Arm @sq->pending_timer so that the next dispatch cycle starts on the 743 * dispatch time of the first pending child. Returns %true if either timer 744 * is armed or there's no pending child left. %false if the current 745 * dispatch window is still open and the caller should continue 746 * dispatching. 747 * 748 * If @force is %true, the dispatch timer is always scheduled and this 749 * function is guaranteed to return %true. This is to be used when the 750 * caller can't dispatch itself and needs to invoke pending_timer 751 * unconditionally. Note that forced scheduling is likely to induce short 752 * delay before dispatch starts even if @sq->first_pending_disptime is not 753 * in the future and thus shouldn't be used in hot paths. 754 */ 755 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, 756 bool force) 757 { 758 /* any pending children left? */ 759 if (!sq->nr_pending) 760 return true; 761 762 update_min_dispatch_time(sq); 763 764 /* is the next dispatch time in the future? */ 765 if (force || time_after(sq->first_pending_disptime, jiffies)) { 766 throtl_schedule_pending_timer(sq, sq->first_pending_disptime); 767 return true; 768 } 769 770 /* tell the caller to continue dispatching */ 771 return false; 772 } 773 774 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, 775 bool rw, unsigned long start) 776 { 777 tg->bytes_disp[rw] = 0; 778 tg->io_disp[rw] = 0; 779 780 /* 781 * Previous slice has expired. We must have trimmed it after last 782 * bio dispatch. That means since start of last slice, we never used 783 * that bandwidth. Do try to make use of that bandwidth while giving 784 * credit. 785 */ 786 if (time_after_eq(start, tg->slice_start[rw])) 787 tg->slice_start[rw] = start; 788 789 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 790 throtl_log(&tg->service_queue, 791 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", 792 rw == READ ? 'R' : 'W', tg->slice_start[rw], 793 tg->slice_end[rw], jiffies); 794 } 795 796 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw) 797 { 798 tg->bytes_disp[rw] = 0; 799 tg->io_disp[rw] = 0; 800 tg->slice_start[rw] = jiffies; 801 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 802 throtl_log(&tg->service_queue, 803 "[%c] new slice start=%lu end=%lu jiffies=%lu", 804 rw == READ ? 'R' : 'W', tg->slice_start[rw], 805 tg->slice_end[rw], jiffies); 806 } 807 808 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, 809 unsigned long jiffy_end) 810 { 811 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 812 } 813 814 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, 815 unsigned long jiffy_end) 816 { 817 throtl_set_slice_end(tg, rw, jiffy_end); 818 throtl_log(&tg->service_queue, 819 "[%c] extend slice start=%lu end=%lu jiffies=%lu", 820 rw == READ ? 'R' : 'W', tg->slice_start[rw], 821 tg->slice_end[rw], jiffies); 822 } 823 824 /* Determine if previously allocated or extended slice is complete or not */ 825 static bool throtl_slice_used(struct throtl_grp *tg, bool rw) 826 { 827 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 828 return false; 829 830 return true; 831 } 832 833 /* Trim the used slices and adjust slice start accordingly */ 834 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) 835 { 836 unsigned long nr_slices, time_elapsed, io_trim; 837 u64 bytes_trim, tmp; 838 839 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 840 841 /* 842 * If bps are unlimited (-1), then time slice don't get 843 * renewed. Don't try to trim the slice if slice is used. A new 844 * slice will start when appropriate. 845 */ 846 if (throtl_slice_used(tg, rw)) 847 return; 848 849 /* 850 * A bio has been dispatched. Also adjust slice_end. It might happen 851 * that initially cgroup limit was very low resulting in high 852 * slice_end, but later limit was bumped up and bio was dispatched 853 * sooner, then we need to reduce slice_end. A high bogus slice_end 854 * is bad because it does not allow new slice to start. 855 */ 856 857 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); 858 859 time_elapsed = jiffies - tg->slice_start[rw]; 860 861 nr_slices = time_elapsed / tg->td->throtl_slice; 862 863 if (!nr_slices) 864 return; 865 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices; 866 do_div(tmp, HZ); 867 bytes_trim = tmp; 868 869 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) / 870 HZ; 871 872 if (!bytes_trim && !io_trim) 873 return; 874 875 if (tg->bytes_disp[rw] >= bytes_trim) 876 tg->bytes_disp[rw] -= bytes_trim; 877 else 878 tg->bytes_disp[rw] = 0; 879 880 if (tg->io_disp[rw] >= io_trim) 881 tg->io_disp[rw] -= io_trim; 882 else 883 tg->io_disp[rw] = 0; 884 885 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice; 886 887 throtl_log(&tg->service_queue, 888 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu", 889 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, 890 tg->slice_start[rw], tg->slice_end[rw], jiffies); 891 } 892 893 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, 894 u32 iops_limit, unsigned long *wait) 895 { 896 bool rw = bio_data_dir(bio); 897 unsigned int io_allowed; 898 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 899 u64 tmp; 900 901 if (iops_limit == UINT_MAX) { 902 if (wait) 903 *wait = 0; 904 return true; 905 } 906 907 jiffy_elapsed = jiffies - tg->slice_start[rw]; 908 909 /* Round up to the next throttle slice, wait time must be nonzero */ 910 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice); 911 912 /* 913 * jiffy_elapsed_rnd should not be a big value as minimum iops can be 914 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 915 * will allow dispatch after 1 second and after that slice should 916 * have been trimmed. 917 */ 918 919 tmp = (u64)iops_limit * jiffy_elapsed_rnd; 920 do_div(tmp, HZ); 921 922 if (tmp > UINT_MAX) 923 io_allowed = UINT_MAX; 924 else 925 io_allowed = tmp; 926 927 if (tg->io_disp[rw] + 1 <= io_allowed) { 928 if (wait) 929 *wait = 0; 930 return true; 931 } 932 933 /* Calc approx time to dispatch */ 934 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed; 935 936 if (wait) 937 *wait = jiffy_wait; 938 return false; 939 } 940 941 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, 942 u64 bps_limit, unsigned long *wait) 943 { 944 bool rw = bio_data_dir(bio); 945 u64 bytes_allowed, extra_bytes, tmp; 946 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 947 unsigned int bio_size = throtl_bio_data_size(bio); 948 949 if (bps_limit == U64_MAX) { 950 if (wait) 951 *wait = 0; 952 return true; 953 } 954 955 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 956 957 /* Slice has just started. Consider one slice interval */ 958 if (!jiffy_elapsed) 959 jiffy_elapsed_rnd = tg->td->throtl_slice; 960 961 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 962 963 tmp = bps_limit * jiffy_elapsed_rnd; 964 do_div(tmp, HZ); 965 bytes_allowed = tmp; 966 967 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) { 968 if (wait) 969 *wait = 0; 970 return true; 971 } 972 973 /* Calc approx time to dispatch */ 974 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed; 975 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit); 976 977 if (!jiffy_wait) 978 jiffy_wait = 1; 979 980 /* 981 * This wait time is without taking into consideration the rounding 982 * up we did. Add that time also. 983 */ 984 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 985 if (wait) 986 *wait = jiffy_wait; 987 return false; 988 } 989 990 /* 991 * Returns whether one can dispatch a bio or not. Also returns approx number 992 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 993 */ 994 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, 995 unsigned long *wait) 996 { 997 bool rw = bio_data_dir(bio); 998 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 999 u64 bps_limit = tg_bps_limit(tg, rw); 1000 u32 iops_limit = tg_iops_limit(tg, rw); 1001 1002 /* 1003 * Currently whole state machine of group depends on first bio 1004 * queued in the group bio list. So one should not be calling 1005 * this function with a different bio if there are other bios 1006 * queued. 1007 */ 1008 BUG_ON(tg->service_queue.nr_queued[rw] && 1009 bio != throtl_peek_queued(&tg->service_queue.queued[rw])); 1010 1011 /* If tg->bps = -1, then BW is unlimited */ 1012 if (bps_limit == U64_MAX && iops_limit == UINT_MAX) { 1013 if (wait) 1014 *wait = 0; 1015 return true; 1016 } 1017 1018 /* 1019 * If previous slice expired, start a new one otherwise renew/extend 1020 * existing slice to make sure it is at least throtl_slice interval 1021 * long since now. New slice is started only for empty throttle group. 1022 * If there is queued bio, that means there should be an active 1023 * slice and it should be extended instead. 1024 */ 1025 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw])) 1026 throtl_start_new_slice(tg, rw); 1027 else { 1028 if (time_before(tg->slice_end[rw], 1029 jiffies + tg->td->throtl_slice)) 1030 throtl_extend_slice(tg, rw, 1031 jiffies + tg->td->throtl_slice); 1032 } 1033 1034 if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) && 1035 tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) { 1036 if (wait) 1037 *wait = 0; 1038 return true; 1039 } 1040 1041 max_wait = max(bps_wait, iops_wait); 1042 1043 if (wait) 1044 *wait = max_wait; 1045 1046 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 1047 throtl_extend_slice(tg, rw, jiffies + max_wait); 1048 1049 return false; 1050 } 1051 1052 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 1053 { 1054 bool rw = bio_data_dir(bio); 1055 unsigned int bio_size = throtl_bio_data_size(bio); 1056 1057 /* Charge the bio to the group */ 1058 tg->bytes_disp[rw] += bio_size; 1059 tg->io_disp[rw]++; 1060 tg->last_bytes_disp[rw] += bio_size; 1061 tg->last_io_disp[rw]++; 1062 1063 /* 1064 * BIO_THROTTLED is used to prevent the same bio to be throttled 1065 * more than once as a throttled bio will go through blk-throtl the 1066 * second time when it eventually gets issued. Set it when a bio 1067 * is being charged to a tg. 1068 */ 1069 if (!bio_flagged(bio, BIO_THROTTLED)) 1070 bio_set_flag(bio, BIO_THROTTLED); 1071 } 1072 1073 /** 1074 * throtl_add_bio_tg - add a bio to the specified throtl_grp 1075 * @bio: bio to add 1076 * @qn: qnode to use 1077 * @tg: the target throtl_grp 1078 * 1079 * Add @bio to @tg's service_queue using @qn. If @qn is not specified, 1080 * tg->qnode_on_self[] is used. 1081 */ 1082 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, 1083 struct throtl_grp *tg) 1084 { 1085 struct throtl_service_queue *sq = &tg->service_queue; 1086 bool rw = bio_data_dir(bio); 1087 1088 if (!qn) 1089 qn = &tg->qnode_on_self[rw]; 1090 1091 /* 1092 * If @tg doesn't currently have any bios queued in the same 1093 * direction, queueing @bio can change when @tg should be 1094 * dispatched. Mark that @tg was empty. This is automatically 1095 * cleared on the next tg_update_disptime(). 1096 */ 1097 if (!sq->nr_queued[rw]) 1098 tg->flags |= THROTL_TG_WAS_EMPTY; 1099 1100 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); 1101 1102 sq->nr_queued[rw]++; 1103 throtl_enqueue_tg(tg); 1104 } 1105 1106 static void tg_update_disptime(struct throtl_grp *tg) 1107 { 1108 struct throtl_service_queue *sq = &tg->service_queue; 1109 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 1110 struct bio *bio; 1111 1112 bio = throtl_peek_queued(&sq->queued[READ]); 1113 if (bio) 1114 tg_may_dispatch(tg, bio, &read_wait); 1115 1116 bio = throtl_peek_queued(&sq->queued[WRITE]); 1117 if (bio) 1118 tg_may_dispatch(tg, bio, &write_wait); 1119 1120 min_wait = min(read_wait, write_wait); 1121 disptime = jiffies + min_wait; 1122 1123 /* Update dispatch time */ 1124 throtl_dequeue_tg(tg); 1125 tg->disptime = disptime; 1126 throtl_enqueue_tg(tg); 1127 1128 /* see throtl_add_bio_tg() */ 1129 tg->flags &= ~THROTL_TG_WAS_EMPTY; 1130 } 1131 1132 static void start_parent_slice_with_credit(struct throtl_grp *child_tg, 1133 struct throtl_grp *parent_tg, bool rw) 1134 { 1135 if (throtl_slice_used(parent_tg, rw)) { 1136 throtl_start_new_slice_with_credit(parent_tg, rw, 1137 child_tg->slice_start[rw]); 1138 } 1139 1140 } 1141 1142 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) 1143 { 1144 struct throtl_service_queue *sq = &tg->service_queue; 1145 struct throtl_service_queue *parent_sq = sq->parent_sq; 1146 struct throtl_grp *parent_tg = sq_to_tg(parent_sq); 1147 struct throtl_grp *tg_to_put = NULL; 1148 struct bio *bio; 1149 1150 /* 1151 * @bio is being transferred from @tg to @parent_sq. Popping a bio 1152 * from @tg may put its reference and @parent_sq might end up 1153 * getting released prematurely. Remember the tg to put and put it 1154 * after @bio is transferred to @parent_sq. 1155 */ 1156 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); 1157 sq->nr_queued[rw]--; 1158 1159 throtl_charge_bio(tg, bio); 1160 1161 /* 1162 * If our parent is another tg, we just need to transfer @bio to 1163 * the parent using throtl_add_bio_tg(). If our parent is 1164 * @td->service_queue, @bio is ready to be issued. Put it on its 1165 * bio_lists[] and decrease total number queued. The caller is 1166 * responsible for issuing these bios. 1167 */ 1168 if (parent_tg) { 1169 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); 1170 start_parent_slice_with_credit(tg, parent_tg, rw); 1171 } else { 1172 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], 1173 &parent_sq->queued[rw]); 1174 BUG_ON(tg->td->nr_queued[rw] <= 0); 1175 tg->td->nr_queued[rw]--; 1176 } 1177 1178 throtl_trim_slice(tg, rw); 1179 1180 if (tg_to_put) 1181 blkg_put(tg_to_blkg(tg_to_put)); 1182 } 1183 1184 static int throtl_dispatch_tg(struct throtl_grp *tg) 1185 { 1186 struct throtl_service_queue *sq = &tg->service_queue; 1187 unsigned int nr_reads = 0, nr_writes = 0; 1188 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4; 1189 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads; 1190 struct bio *bio; 1191 1192 /* Try to dispatch 75% READS and 25% WRITES */ 1193 1194 while ((bio = throtl_peek_queued(&sq->queued[READ])) && 1195 tg_may_dispatch(tg, bio, NULL)) { 1196 1197 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1198 nr_reads++; 1199 1200 if (nr_reads >= max_nr_reads) 1201 break; 1202 } 1203 1204 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && 1205 tg_may_dispatch(tg, bio, NULL)) { 1206 1207 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1208 nr_writes++; 1209 1210 if (nr_writes >= max_nr_writes) 1211 break; 1212 } 1213 1214 return nr_reads + nr_writes; 1215 } 1216 1217 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) 1218 { 1219 unsigned int nr_disp = 0; 1220 1221 while (1) { 1222 struct throtl_grp *tg; 1223 struct throtl_service_queue *sq; 1224 1225 if (!parent_sq->nr_pending) 1226 break; 1227 1228 tg = throtl_rb_first(parent_sq); 1229 if (!tg) 1230 break; 1231 1232 if (time_before(jiffies, tg->disptime)) 1233 break; 1234 1235 throtl_dequeue_tg(tg); 1236 1237 nr_disp += throtl_dispatch_tg(tg); 1238 1239 sq = &tg->service_queue; 1240 if (sq->nr_queued[0] || sq->nr_queued[1]) 1241 tg_update_disptime(tg); 1242 1243 if (nr_disp >= THROTL_QUANTUM) 1244 break; 1245 } 1246 1247 return nr_disp; 1248 } 1249 1250 static bool throtl_can_upgrade(struct throtl_data *td, 1251 struct throtl_grp *this_tg); 1252 /** 1253 * throtl_pending_timer_fn - timer function for service_queue->pending_timer 1254 * @t: the pending_timer member of the throtl_service_queue being serviced 1255 * 1256 * This timer is armed when a child throtl_grp with active bio's become 1257 * pending and queued on the service_queue's pending_tree and expires when 1258 * the first child throtl_grp should be dispatched. This function 1259 * dispatches bio's from the children throtl_grps to the parent 1260 * service_queue. 1261 * 1262 * If the parent's parent is another throtl_grp, dispatching is propagated 1263 * by either arming its pending_timer or repeating dispatch directly. If 1264 * the top-level service_tree is reached, throtl_data->dispatch_work is 1265 * kicked so that the ready bio's are issued. 1266 */ 1267 static void throtl_pending_timer_fn(struct timer_list *t) 1268 { 1269 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer); 1270 struct throtl_grp *tg = sq_to_tg(sq); 1271 struct throtl_data *td = sq_to_td(sq); 1272 struct request_queue *q = td->queue; 1273 struct throtl_service_queue *parent_sq; 1274 bool dispatched; 1275 int ret; 1276 1277 spin_lock_irq(&q->queue_lock); 1278 if (throtl_can_upgrade(td, NULL)) 1279 throtl_upgrade_state(td); 1280 1281 again: 1282 parent_sq = sq->parent_sq; 1283 dispatched = false; 1284 1285 while (true) { 1286 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", 1287 sq->nr_queued[READ] + sq->nr_queued[WRITE], 1288 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1289 1290 ret = throtl_select_dispatch(sq); 1291 if (ret) { 1292 throtl_log(sq, "bios disp=%u", ret); 1293 dispatched = true; 1294 } 1295 1296 if (throtl_schedule_next_dispatch(sq, false)) 1297 break; 1298 1299 /* this dispatch windows is still open, relax and repeat */ 1300 spin_unlock_irq(&q->queue_lock); 1301 cpu_relax(); 1302 spin_lock_irq(&q->queue_lock); 1303 } 1304 1305 if (!dispatched) 1306 goto out_unlock; 1307 1308 if (parent_sq) { 1309 /* @parent_sq is another throl_grp, propagate dispatch */ 1310 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1311 tg_update_disptime(tg); 1312 if (!throtl_schedule_next_dispatch(parent_sq, false)) { 1313 /* window is already open, repeat dispatching */ 1314 sq = parent_sq; 1315 tg = sq_to_tg(sq); 1316 goto again; 1317 } 1318 } 1319 } else { 1320 /* reached the top-level, queue issuing */ 1321 queue_work(kthrotld_workqueue, &td->dispatch_work); 1322 } 1323 out_unlock: 1324 spin_unlock_irq(&q->queue_lock); 1325 } 1326 1327 /** 1328 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work 1329 * @work: work item being executed 1330 * 1331 * This function is queued for execution when bios reach the bio_lists[] 1332 * of throtl_data->service_queue. Those bios are ready and issued by this 1333 * function. 1334 */ 1335 static void blk_throtl_dispatch_work_fn(struct work_struct *work) 1336 { 1337 struct throtl_data *td = container_of(work, struct throtl_data, 1338 dispatch_work); 1339 struct throtl_service_queue *td_sq = &td->service_queue; 1340 struct request_queue *q = td->queue; 1341 struct bio_list bio_list_on_stack; 1342 struct bio *bio; 1343 struct blk_plug plug; 1344 int rw; 1345 1346 bio_list_init(&bio_list_on_stack); 1347 1348 spin_lock_irq(&q->queue_lock); 1349 for (rw = READ; rw <= WRITE; rw++) 1350 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) 1351 bio_list_add(&bio_list_on_stack, bio); 1352 spin_unlock_irq(&q->queue_lock); 1353 1354 if (!bio_list_empty(&bio_list_on_stack)) { 1355 blk_start_plug(&plug); 1356 while ((bio = bio_list_pop(&bio_list_on_stack))) 1357 submit_bio_noacct(bio); 1358 blk_finish_plug(&plug); 1359 } 1360 } 1361 1362 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, 1363 int off) 1364 { 1365 struct throtl_grp *tg = pd_to_tg(pd); 1366 u64 v = *(u64 *)((void *)tg + off); 1367 1368 if (v == U64_MAX) 1369 return 0; 1370 return __blkg_prfill_u64(sf, pd, v); 1371 } 1372 1373 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, 1374 int off) 1375 { 1376 struct throtl_grp *tg = pd_to_tg(pd); 1377 unsigned int v = *(unsigned int *)((void *)tg + off); 1378 1379 if (v == UINT_MAX) 1380 return 0; 1381 return __blkg_prfill_u64(sf, pd, v); 1382 } 1383 1384 static int tg_print_conf_u64(struct seq_file *sf, void *v) 1385 { 1386 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, 1387 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1388 return 0; 1389 } 1390 1391 static int tg_print_conf_uint(struct seq_file *sf, void *v) 1392 { 1393 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, 1394 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1395 return 0; 1396 } 1397 1398 static void tg_conf_updated(struct throtl_grp *tg, bool global) 1399 { 1400 struct throtl_service_queue *sq = &tg->service_queue; 1401 struct cgroup_subsys_state *pos_css; 1402 struct blkcg_gq *blkg; 1403 1404 throtl_log(&tg->service_queue, 1405 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", 1406 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), 1407 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); 1408 1409 /* 1410 * Update has_rules[] flags for the updated tg's subtree. A tg is 1411 * considered to have rules if either the tg itself or any of its 1412 * ancestors has rules. This identifies groups without any 1413 * restrictions in the whole hierarchy and allows them to bypass 1414 * blk-throttle. 1415 */ 1416 blkg_for_each_descendant_pre(blkg, pos_css, 1417 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { 1418 struct throtl_grp *this_tg = blkg_to_tg(blkg); 1419 struct throtl_grp *parent_tg; 1420 1421 tg_update_has_rules(this_tg); 1422 /* ignore root/second level */ 1423 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || 1424 !blkg->parent->parent) 1425 continue; 1426 parent_tg = blkg_to_tg(blkg->parent); 1427 /* 1428 * make sure all children has lower idle time threshold and 1429 * higher latency target 1430 */ 1431 this_tg->idletime_threshold = min(this_tg->idletime_threshold, 1432 parent_tg->idletime_threshold); 1433 this_tg->latency_target = max(this_tg->latency_target, 1434 parent_tg->latency_target); 1435 } 1436 1437 /* 1438 * We're already holding queue_lock and know @tg is valid. Let's 1439 * apply the new config directly. 1440 * 1441 * Restart the slices for both READ and WRITES. It might happen 1442 * that a group's limit are dropped suddenly and we don't want to 1443 * account recently dispatched IO with new low rate. 1444 */ 1445 throtl_start_new_slice(tg, READ); 1446 throtl_start_new_slice(tg, WRITE); 1447 1448 if (tg->flags & THROTL_TG_PENDING) { 1449 tg_update_disptime(tg); 1450 throtl_schedule_next_dispatch(sq->parent_sq, true); 1451 } 1452 } 1453 1454 static ssize_t tg_set_conf(struct kernfs_open_file *of, 1455 char *buf, size_t nbytes, loff_t off, bool is_u64) 1456 { 1457 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1458 struct blkg_conf_ctx ctx; 1459 struct throtl_grp *tg; 1460 int ret; 1461 u64 v; 1462 1463 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1464 if (ret) 1465 return ret; 1466 1467 ret = -EINVAL; 1468 if (sscanf(ctx.body, "%llu", &v) != 1) 1469 goto out_finish; 1470 if (!v) 1471 v = U64_MAX; 1472 1473 tg = blkg_to_tg(ctx.blkg); 1474 1475 if (is_u64) 1476 *(u64 *)((void *)tg + of_cft(of)->private) = v; 1477 else 1478 *(unsigned int *)((void *)tg + of_cft(of)->private) = v; 1479 1480 tg_conf_updated(tg, false); 1481 ret = 0; 1482 out_finish: 1483 blkg_conf_finish(&ctx); 1484 return ret ?: nbytes; 1485 } 1486 1487 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, 1488 char *buf, size_t nbytes, loff_t off) 1489 { 1490 return tg_set_conf(of, buf, nbytes, off, true); 1491 } 1492 1493 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, 1494 char *buf, size_t nbytes, loff_t off) 1495 { 1496 return tg_set_conf(of, buf, nbytes, off, false); 1497 } 1498 1499 static int tg_print_rwstat(struct seq_file *sf, void *v) 1500 { 1501 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1502 blkg_prfill_rwstat, &blkcg_policy_throtl, 1503 seq_cft(sf)->private, true); 1504 return 0; 1505 } 1506 1507 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf, 1508 struct blkg_policy_data *pd, int off) 1509 { 1510 struct blkg_rwstat_sample sum; 1511 1512 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off, 1513 &sum); 1514 return __blkg_prfill_rwstat(sf, pd, &sum); 1515 } 1516 1517 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v) 1518 { 1519 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1520 tg_prfill_rwstat_recursive, &blkcg_policy_throtl, 1521 seq_cft(sf)->private, true); 1522 return 0; 1523 } 1524 1525 static struct cftype throtl_legacy_files[] = { 1526 { 1527 .name = "throttle.read_bps_device", 1528 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]), 1529 .seq_show = tg_print_conf_u64, 1530 .write = tg_set_conf_u64, 1531 }, 1532 { 1533 .name = "throttle.write_bps_device", 1534 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]), 1535 .seq_show = tg_print_conf_u64, 1536 .write = tg_set_conf_u64, 1537 }, 1538 { 1539 .name = "throttle.read_iops_device", 1540 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]), 1541 .seq_show = tg_print_conf_uint, 1542 .write = tg_set_conf_uint, 1543 }, 1544 { 1545 .name = "throttle.write_iops_device", 1546 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]), 1547 .seq_show = tg_print_conf_uint, 1548 .write = tg_set_conf_uint, 1549 }, 1550 { 1551 .name = "throttle.io_service_bytes", 1552 .private = offsetof(struct throtl_grp, stat_bytes), 1553 .seq_show = tg_print_rwstat, 1554 }, 1555 { 1556 .name = "throttle.io_service_bytes_recursive", 1557 .private = offsetof(struct throtl_grp, stat_bytes), 1558 .seq_show = tg_print_rwstat_recursive, 1559 }, 1560 { 1561 .name = "throttle.io_serviced", 1562 .private = offsetof(struct throtl_grp, stat_ios), 1563 .seq_show = tg_print_rwstat, 1564 }, 1565 { 1566 .name = "throttle.io_serviced_recursive", 1567 .private = offsetof(struct throtl_grp, stat_ios), 1568 .seq_show = tg_print_rwstat_recursive, 1569 }, 1570 { } /* terminate */ 1571 }; 1572 1573 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, 1574 int off) 1575 { 1576 struct throtl_grp *tg = pd_to_tg(pd); 1577 const char *dname = blkg_dev_name(pd->blkg); 1578 char bufs[4][21] = { "max", "max", "max", "max" }; 1579 u64 bps_dft; 1580 unsigned int iops_dft; 1581 char idle_time[26] = ""; 1582 char latency_time[26] = ""; 1583 1584 if (!dname) 1585 return 0; 1586 1587 if (off == LIMIT_LOW) { 1588 bps_dft = 0; 1589 iops_dft = 0; 1590 } else { 1591 bps_dft = U64_MAX; 1592 iops_dft = UINT_MAX; 1593 } 1594 1595 if (tg->bps_conf[READ][off] == bps_dft && 1596 tg->bps_conf[WRITE][off] == bps_dft && 1597 tg->iops_conf[READ][off] == iops_dft && 1598 tg->iops_conf[WRITE][off] == iops_dft && 1599 (off != LIMIT_LOW || 1600 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD && 1601 tg->latency_target_conf == DFL_LATENCY_TARGET))) 1602 return 0; 1603 1604 if (tg->bps_conf[READ][off] != U64_MAX) 1605 snprintf(bufs[0], sizeof(bufs[0]), "%llu", 1606 tg->bps_conf[READ][off]); 1607 if (tg->bps_conf[WRITE][off] != U64_MAX) 1608 snprintf(bufs[1], sizeof(bufs[1]), "%llu", 1609 tg->bps_conf[WRITE][off]); 1610 if (tg->iops_conf[READ][off] != UINT_MAX) 1611 snprintf(bufs[2], sizeof(bufs[2]), "%u", 1612 tg->iops_conf[READ][off]); 1613 if (tg->iops_conf[WRITE][off] != UINT_MAX) 1614 snprintf(bufs[3], sizeof(bufs[3]), "%u", 1615 tg->iops_conf[WRITE][off]); 1616 if (off == LIMIT_LOW) { 1617 if (tg->idletime_threshold_conf == ULONG_MAX) 1618 strcpy(idle_time, " idle=max"); 1619 else 1620 snprintf(idle_time, sizeof(idle_time), " idle=%lu", 1621 tg->idletime_threshold_conf); 1622 1623 if (tg->latency_target_conf == ULONG_MAX) 1624 strcpy(latency_time, " latency=max"); 1625 else 1626 snprintf(latency_time, sizeof(latency_time), 1627 " latency=%lu", tg->latency_target_conf); 1628 } 1629 1630 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n", 1631 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time, 1632 latency_time); 1633 return 0; 1634 } 1635 1636 static int tg_print_limit(struct seq_file *sf, void *v) 1637 { 1638 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, 1639 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1640 return 0; 1641 } 1642 1643 static ssize_t tg_set_limit(struct kernfs_open_file *of, 1644 char *buf, size_t nbytes, loff_t off) 1645 { 1646 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1647 struct blkg_conf_ctx ctx; 1648 struct throtl_grp *tg; 1649 u64 v[4]; 1650 unsigned long idle_time; 1651 unsigned long latency_time; 1652 int ret; 1653 int index = of_cft(of)->private; 1654 1655 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1656 if (ret) 1657 return ret; 1658 1659 tg = blkg_to_tg(ctx.blkg); 1660 1661 v[0] = tg->bps_conf[READ][index]; 1662 v[1] = tg->bps_conf[WRITE][index]; 1663 v[2] = tg->iops_conf[READ][index]; 1664 v[3] = tg->iops_conf[WRITE][index]; 1665 1666 idle_time = tg->idletime_threshold_conf; 1667 latency_time = tg->latency_target_conf; 1668 while (true) { 1669 char tok[27]; /* wiops=18446744073709551616 */ 1670 char *p; 1671 u64 val = U64_MAX; 1672 int len; 1673 1674 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) 1675 break; 1676 if (tok[0] == '\0') 1677 break; 1678 ctx.body += len; 1679 1680 ret = -EINVAL; 1681 p = tok; 1682 strsep(&p, "="); 1683 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) 1684 goto out_finish; 1685 1686 ret = -ERANGE; 1687 if (!val) 1688 goto out_finish; 1689 1690 ret = -EINVAL; 1691 if (!strcmp(tok, "rbps") && val > 1) 1692 v[0] = val; 1693 else if (!strcmp(tok, "wbps") && val > 1) 1694 v[1] = val; 1695 else if (!strcmp(tok, "riops") && val > 1) 1696 v[2] = min_t(u64, val, UINT_MAX); 1697 else if (!strcmp(tok, "wiops") && val > 1) 1698 v[3] = min_t(u64, val, UINT_MAX); 1699 else if (off == LIMIT_LOW && !strcmp(tok, "idle")) 1700 idle_time = val; 1701 else if (off == LIMIT_LOW && !strcmp(tok, "latency")) 1702 latency_time = val; 1703 else 1704 goto out_finish; 1705 } 1706 1707 tg->bps_conf[READ][index] = v[0]; 1708 tg->bps_conf[WRITE][index] = v[1]; 1709 tg->iops_conf[READ][index] = v[2]; 1710 tg->iops_conf[WRITE][index] = v[3]; 1711 1712 if (index == LIMIT_MAX) { 1713 tg->bps[READ][index] = v[0]; 1714 tg->bps[WRITE][index] = v[1]; 1715 tg->iops[READ][index] = v[2]; 1716 tg->iops[WRITE][index] = v[3]; 1717 } 1718 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW], 1719 tg->bps_conf[READ][LIMIT_MAX]); 1720 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW], 1721 tg->bps_conf[WRITE][LIMIT_MAX]); 1722 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW], 1723 tg->iops_conf[READ][LIMIT_MAX]); 1724 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW], 1725 tg->iops_conf[WRITE][LIMIT_MAX]); 1726 tg->idletime_threshold_conf = idle_time; 1727 tg->latency_target_conf = latency_time; 1728 1729 /* force user to configure all settings for low limit */ 1730 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] || 1731 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) || 1732 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD || 1733 tg->latency_target_conf == DFL_LATENCY_TARGET) { 1734 tg->bps[READ][LIMIT_LOW] = 0; 1735 tg->bps[WRITE][LIMIT_LOW] = 0; 1736 tg->iops[READ][LIMIT_LOW] = 0; 1737 tg->iops[WRITE][LIMIT_LOW] = 0; 1738 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 1739 tg->latency_target = DFL_LATENCY_TARGET; 1740 } else if (index == LIMIT_LOW) { 1741 tg->idletime_threshold = tg->idletime_threshold_conf; 1742 tg->latency_target = tg->latency_target_conf; 1743 } 1744 1745 blk_throtl_update_limit_valid(tg->td); 1746 if (tg->td->limit_valid[LIMIT_LOW]) { 1747 if (index == LIMIT_LOW) 1748 tg->td->limit_index = LIMIT_LOW; 1749 } else 1750 tg->td->limit_index = LIMIT_MAX; 1751 tg_conf_updated(tg, index == LIMIT_LOW && 1752 tg->td->limit_valid[LIMIT_LOW]); 1753 ret = 0; 1754 out_finish: 1755 blkg_conf_finish(&ctx); 1756 return ret ?: nbytes; 1757 } 1758 1759 static struct cftype throtl_files[] = { 1760 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 1761 { 1762 .name = "low", 1763 .flags = CFTYPE_NOT_ON_ROOT, 1764 .seq_show = tg_print_limit, 1765 .write = tg_set_limit, 1766 .private = LIMIT_LOW, 1767 }, 1768 #endif 1769 { 1770 .name = "max", 1771 .flags = CFTYPE_NOT_ON_ROOT, 1772 .seq_show = tg_print_limit, 1773 .write = tg_set_limit, 1774 .private = LIMIT_MAX, 1775 }, 1776 { } /* terminate */ 1777 }; 1778 1779 static void throtl_shutdown_wq(struct request_queue *q) 1780 { 1781 struct throtl_data *td = q->td; 1782 1783 cancel_work_sync(&td->dispatch_work); 1784 } 1785 1786 static struct blkcg_policy blkcg_policy_throtl = { 1787 .dfl_cftypes = throtl_files, 1788 .legacy_cftypes = throtl_legacy_files, 1789 1790 .pd_alloc_fn = throtl_pd_alloc, 1791 .pd_init_fn = throtl_pd_init, 1792 .pd_online_fn = throtl_pd_online, 1793 .pd_offline_fn = throtl_pd_offline, 1794 .pd_free_fn = throtl_pd_free, 1795 }; 1796 1797 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg) 1798 { 1799 unsigned long rtime = jiffies, wtime = jiffies; 1800 1801 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]) 1802 rtime = tg->last_low_overflow_time[READ]; 1803 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) 1804 wtime = tg->last_low_overflow_time[WRITE]; 1805 return min(rtime, wtime); 1806 } 1807 1808 /* tg should not be an intermediate node */ 1809 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg) 1810 { 1811 struct throtl_service_queue *parent_sq; 1812 struct throtl_grp *parent = tg; 1813 unsigned long ret = __tg_last_low_overflow_time(tg); 1814 1815 while (true) { 1816 parent_sq = parent->service_queue.parent_sq; 1817 parent = sq_to_tg(parent_sq); 1818 if (!parent) 1819 break; 1820 1821 /* 1822 * The parent doesn't have low limit, it always reaches low 1823 * limit. Its overflow time is useless for children 1824 */ 1825 if (!parent->bps[READ][LIMIT_LOW] && 1826 !parent->iops[READ][LIMIT_LOW] && 1827 !parent->bps[WRITE][LIMIT_LOW] && 1828 !parent->iops[WRITE][LIMIT_LOW]) 1829 continue; 1830 if (time_after(__tg_last_low_overflow_time(parent), ret)) 1831 ret = __tg_last_low_overflow_time(parent); 1832 } 1833 return ret; 1834 } 1835 1836 static bool throtl_tg_is_idle(struct throtl_grp *tg) 1837 { 1838 /* 1839 * cgroup is idle if: 1840 * - single idle is too long, longer than a fixed value (in case user 1841 * configure a too big threshold) or 4 times of idletime threshold 1842 * - average think time is more than threshold 1843 * - IO latency is largely below threshold 1844 */ 1845 unsigned long time; 1846 bool ret; 1847 1848 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold); 1849 ret = tg->latency_target == DFL_LATENCY_TARGET || 1850 tg->idletime_threshold == DFL_IDLE_THRESHOLD || 1851 (ktime_get_ns() >> 10) - tg->last_finish_time > time || 1852 tg->avg_idletime > tg->idletime_threshold || 1853 (tg->latency_target && tg->bio_cnt && 1854 tg->bad_bio_cnt * 5 < tg->bio_cnt); 1855 throtl_log(&tg->service_queue, 1856 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d", 1857 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt, 1858 tg->bio_cnt, ret, tg->td->scale); 1859 return ret; 1860 } 1861 1862 static bool throtl_tg_can_upgrade(struct throtl_grp *tg) 1863 { 1864 struct throtl_service_queue *sq = &tg->service_queue; 1865 bool read_limit, write_limit; 1866 1867 /* 1868 * if cgroup reaches low limit (if low limit is 0, the cgroup always 1869 * reaches), it's ok to upgrade to next limit 1870 */ 1871 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]; 1872 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]; 1873 if (!read_limit && !write_limit) 1874 return true; 1875 if (read_limit && sq->nr_queued[READ] && 1876 (!write_limit || sq->nr_queued[WRITE])) 1877 return true; 1878 if (write_limit && sq->nr_queued[WRITE] && 1879 (!read_limit || sq->nr_queued[READ])) 1880 return true; 1881 1882 if (time_after_eq(jiffies, 1883 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) && 1884 throtl_tg_is_idle(tg)) 1885 return true; 1886 return false; 1887 } 1888 1889 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg) 1890 { 1891 while (true) { 1892 if (throtl_tg_can_upgrade(tg)) 1893 return true; 1894 tg = sq_to_tg(tg->service_queue.parent_sq); 1895 if (!tg || !tg_to_blkg(tg)->parent) 1896 return false; 1897 } 1898 return false; 1899 } 1900 1901 static bool throtl_can_upgrade(struct throtl_data *td, 1902 struct throtl_grp *this_tg) 1903 { 1904 struct cgroup_subsys_state *pos_css; 1905 struct blkcg_gq *blkg; 1906 1907 if (td->limit_index != LIMIT_LOW) 1908 return false; 1909 1910 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice)) 1911 return false; 1912 1913 rcu_read_lock(); 1914 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1915 struct throtl_grp *tg = blkg_to_tg(blkg); 1916 1917 if (tg == this_tg) 1918 continue; 1919 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1920 continue; 1921 if (!throtl_hierarchy_can_upgrade(tg)) { 1922 rcu_read_unlock(); 1923 return false; 1924 } 1925 } 1926 rcu_read_unlock(); 1927 return true; 1928 } 1929 1930 static void throtl_upgrade_check(struct throtl_grp *tg) 1931 { 1932 unsigned long now = jiffies; 1933 1934 if (tg->td->limit_index != LIMIT_LOW) 1935 return; 1936 1937 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1938 return; 1939 1940 tg->last_check_time = now; 1941 1942 if (!time_after_eq(now, 1943 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice)) 1944 return; 1945 1946 if (throtl_can_upgrade(tg->td, NULL)) 1947 throtl_upgrade_state(tg->td); 1948 } 1949 1950 static void throtl_upgrade_state(struct throtl_data *td) 1951 { 1952 struct cgroup_subsys_state *pos_css; 1953 struct blkcg_gq *blkg; 1954 1955 throtl_log(&td->service_queue, "upgrade to max"); 1956 td->limit_index = LIMIT_MAX; 1957 td->low_upgrade_time = jiffies; 1958 td->scale = 0; 1959 rcu_read_lock(); 1960 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1961 struct throtl_grp *tg = blkg_to_tg(blkg); 1962 struct throtl_service_queue *sq = &tg->service_queue; 1963 1964 tg->disptime = jiffies - 1; 1965 throtl_select_dispatch(sq); 1966 throtl_schedule_next_dispatch(sq, true); 1967 } 1968 rcu_read_unlock(); 1969 throtl_select_dispatch(&td->service_queue); 1970 throtl_schedule_next_dispatch(&td->service_queue, true); 1971 queue_work(kthrotld_workqueue, &td->dispatch_work); 1972 } 1973 1974 static void throtl_downgrade_state(struct throtl_data *td) 1975 { 1976 td->scale /= 2; 1977 1978 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale); 1979 if (td->scale) { 1980 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice; 1981 return; 1982 } 1983 1984 td->limit_index = LIMIT_LOW; 1985 td->low_downgrade_time = jiffies; 1986 } 1987 1988 static bool throtl_tg_can_downgrade(struct throtl_grp *tg) 1989 { 1990 struct throtl_data *td = tg->td; 1991 unsigned long now = jiffies; 1992 1993 /* 1994 * If cgroup is below low limit, consider downgrade and throttle other 1995 * cgroups 1996 */ 1997 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) && 1998 time_after_eq(now, tg_last_low_overflow_time(tg) + 1999 td->throtl_slice) && 2000 (!throtl_tg_is_idle(tg) || 2001 !list_empty(&tg_to_blkg(tg)->blkcg->css.children))) 2002 return true; 2003 return false; 2004 } 2005 2006 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg) 2007 { 2008 while (true) { 2009 if (!throtl_tg_can_downgrade(tg)) 2010 return false; 2011 tg = sq_to_tg(tg->service_queue.parent_sq); 2012 if (!tg || !tg_to_blkg(tg)->parent) 2013 break; 2014 } 2015 return true; 2016 } 2017 2018 static void throtl_downgrade_check(struct throtl_grp *tg) 2019 { 2020 uint64_t bps; 2021 unsigned int iops; 2022 unsigned long elapsed_time; 2023 unsigned long now = jiffies; 2024 2025 if (tg->td->limit_index != LIMIT_MAX || 2026 !tg->td->limit_valid[LIMIT_LOW]) 2027 return; 2028 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 2029 return; 2030 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 2031 return; 2032 2033 elapsed_time = now - tg->last_check_time; 2034 tg->last_check_time = now; 2035 2036 if (time_before(now, tg_last_low_overflow_time(tg) + 2037 tg->td->throtl_slice)) 2038 return; 2039 2040 if (tg->bps[READ][LIMIT_LOW]) { 2041 bps = tg->last_bytes_disp[READ] * HZ; 2042 do_div(bps, elapsed_time); 2043 if (bps >= tg->bps[READ][LIMIT_LOW]) 2044 tg->last_low_overflow_time[READ] = now; 2045 } 2046 2047 if (tg->bps[WRITE][LIMIT_LOW]) { 2048 bps = tg->last_bytes_disp[WRITE] * HZ; 2049 do_div(bps, elapsed_time); 2050 if (bps >= tg->bps[WRITE][LIMIT_LOW]) 2051 tg->last_low_overflow_time[WRITE] = now; 2052 } 2053 2054 if (tg->iops[READ][LIMIT_LOW]) { 2055 iops = tg->last_io_disp[READ] * HZ / elapsed_time; 2056 if (iops >= tg->iops[READ][LIMIT_LOW]) 2057 tg->last_low_overflow_time[READ] = now; 2058 } 2059 2060 if (tg->iops[WRITE][LIMIT_LOW]) { 2061 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time; 2062 if (iops >= tg->iops[WRITE][LIMIT_LOW]) 2063 tg->last_low_overflow_time[WRITE] = now; 2064 } 2065 2066 /* 2067 * If cgroup is below low limit, consider downgrade and throttle other 2068 * cgroups 2069 */ 2070 if (throtl_hierarchy_can_downgrade(tg)) 2071 throtl_downgrade_state(tg->td); 2072 2073 tg->last_bytes_disp[READ] = 0; 2074 tg->last_bytes_disp[WRITE] = 0; 2075 tg->last_io_disp[READ] = 0; 2076 tg->last_io_disp[WRITE] = 0; 2077 } 2078 2079 static void blk_throtl_update_idletime(struct throtl_grp *tg) 2080 { 2081 unsigned long now; 2082 unsigned long last_finish_time = tg->last_finish_time; 2083 2084 if (last_finish_time == 0) 2085 return; 2086 2087 now = ktime_get_ns() >> 10; 2088 if (now <= last_finish_time || 2089 last_finish_time == tg->checked_last_finish_time) 2090 return; 2091 2092 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3; 2093 tg->checked_last_finish_time = last_finish_time; 2094 } 2095 2096 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2097 static void throtl_update_latency_buckets(struct throtl_data *td) 2098 { 2099 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE]; 2100 int i, cpu, rw; 2101 unsigned long last_latency[2] = { 0 }; 2102 unsigned long latency[2]; 2103 2104 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW]) 2105 return; 2106 if (time_before(jiffies, td->last_calculate_time + HZ)) 2107 return; 2108 td->last_calculate_time = jiffies; 2109 2110 memset(avg_latency, 0, sizeof(avg_latency)); 2111 for (rw = READ; rw <= WRITE; rw++) { 2112 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2113 struct latency_bucket *tmp = &td->tmp_buckets[rw][i]; 2114 2115 for_each_possible_cpu(cpu) { 2116 struct latency_bucket *bucket; 2117 2118 /* this isn't race free, but ok in practice */ 2119 bucket = per_cpu_ptr(td->latency_buckets[rw], 2120 cpu); 2121 tmp->total_latency += bucket[i].total_latency; 2122 tmp->samples += bucket[i].samples; 2123 bucket[i].total_latency = 0; 2124 bucket[i].samples = 0; 2125 } 2126 2127 if (tmp->samples >= 32) { 2128 int samples = tmp->samples; 2129 2130 latency[rw] = tmp->total_latency; 2131 2132 tmp->total_latency = 0; 2133 tmp->samples = 0; 2134 latency[rw] /= samples; 2135 if (latency[rw] == 0) 2136 continue; 2137 avg_latency[rw][i].latency = latency[rw]; 2138 } 2139 } 2140 } 2141 2142 for (rw = READ; rw <= WRITE; rw++) { 2143 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2144 if (!avg_latency[rw][i].latency) { 2145 if (td->avg_buckets[rw][i].latency < last_latency[rw]) 2146 td->avg_buckets[rw][i].latency = 2147 last_latency[rw]; 2148 continue; 2149 } 2150 2151 if (!td->avg_buckets[rw][i].valid) 2152 latency[rw] = avg_latency[rw][i].latency; 2153 else 2154 latency[rw] = (td->avg_buckets[rw][i].latency * 7 + 2155 avg_latency[rw][i].latency) >> 3; 2156 2157 td->avg_buckets[rw][i].latency = max(latency[rw], 2158 last_latency[rw]); 2159 td->avg_buckets[rw][i].valid = true; 2160 last_latency[rw] = td->avg_buckets[rw][i].latency; 2161 } 2162 } 2163 2164 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) 2165 throtl_log(&td->service_queue, 2166 "Latency bucket %d: read latency=%ld, read valid=%d, " 2167 "write latency=%ld, write valid=%d", i, 2168 td->avg_buckets[READ][i].latency, 2169 td->avg_buckets[READ][i].valid, 2170 td->avg_buckets[WRITE][i].latency, 2171 td->avg_buckets[WRITE][i].valid); 2172 } 2173 #else 2174 static inline void throtl_update_latency_buckets(struct throtl_data *td) 2175 { 2176 } 2177 #endif 2178 2179 bool blk_throtl_bio(struct bio *bio) 2180 { 2181 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 2182 struct blkcg_gq *blkg = bio->bi_blkg; 2183 struct throtl_qnode *qn = NULL; 2184 struct throtl_grp *tg = blkg_to_tg(blkg); 2185 struct throtl_service_queue *sq; 2186 bool rw = bio_data_dir(bio); 2187 bool throttled = false; 2188 struct throtl_data *td = tg->td; 2189 2190 rcu_read_lock(); 2191 2192 /* see throtl_charge_bio() */ 2193 if (bio_flagged(bio, BIO_THROTTLED)) 2194 goto out; 2195 2196 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) { 2197 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf, 2198 bio->bi_iter.bi_size); 2199 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1); 2200 } 2201 2202 if (!tg->has_rules[rw]) 2203 goto out; 2204 2205 spin_lock_irq(&q->queue_lock); 2206 2207 throtl_update_latency_buckets(td); 2208 2209 blk_throtl_update_idletime(tg); 2210 2211 sq = &tg->service_queue; 2212 2213 again: 2214 while (true) { 2215 if (tg->last_low_overflow_time[rw] == 0) 2216 tg->last_low_overflow_time[rw] = jiffies; 2217 throtl_downgrade_check(tg); 2218 throtl_upgrade_check(tg); 2219 /* throtl is FIFO - if bios are already queued, should queue */ 2220 if (sq->nr_queued[rw]) 2221 break; 2222 2223 /* if above limits, break to queue */ 2224 if (!tg_may_dispatch(tg, bio, NULL)) { 2225 tg->last_low_overflow_time[rw] = jiffies; 2226 if (throtl_can_upgrade(td, tg)) { 2227 throtl_upgrade_state(td); 2228 goto again; 2229 } 2230 break; 2231 } 2232 2233 /* within limits, let's charge and dispatch directly */ 2234 throtl_charge_bio(tg, bio); 2235 2236 /* 2237 * We need to trim slice even when bios are not being queued 2238 * otherwise it might happen that a bio is not queued for 2239 * a long time and slice keeps on extending and trim is not 2240 * called for a long time. Now if limits are reduced suddenly 2241 * we take into account all the IO dispatched so far at new 2242 * low rate and * newly queued IO gets a really long dispatch 2243 * time. 2244 * 2245 * So keep on trimming slice even if bio is not queued. 2246 */ 2247 throtl_trim_slice(tg, rw); 2248 2249 /* 2250 * @bio passed through this layer without being throttled. 2251 * Climb up the ladder. If we're already at the top, it 2252 * can be executed directly. 2253 */ 2254 qn = &tg->qnode_on_parent[rw]; 2255 sq = sq->parent_sq; 2256 tg = sq_to_tg(sq); 2257 if (!tg) 2258 goto out_unlock; 2259 } 2260 2261 /* out-of-limit, queue to @tg */ 2262 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", 2263 rw == READ ? 'R' : 'W', 2264 tg->bytes_disp[rw], bio->bi_iter.bi_size, 2265 tg_bps_limit(tg, rw), 2266 tg->io_disp[rw], tg_iops_limit(tg, rw), 2267 sq->nr_queued[READ], sq->nr_queued[WRITE]); 2268 2269 tg->last_low_overflow_time[rw] = jiffies; 2270 2271 td->nr_queued[rw]++; 2272 throtl_add_bio_tg(bio, qn, tg); 2273 throttled = true; 2274 2275 /* 2276 * Update @tg's dispatch time and force schedule dispatch if @tg 2277 * was empty before @bio. The forced scheduling isn't likely to 2278 * cause undue delay as @bio is likely to be dispatched directly if 2279 * its @tg's disptime is not in the future. 2280 */ 2281 if (tg->flags & THROTL_TG_WAS_EMPTY) { 2282 tg_update_disptime(tg); 2283 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); 2284 } 2285 2286 out_unlock: 2287 spin_unlock_irq(&q->queue_lock); 2288 out: 2289 bio_set_flag(bio, BIO_THROTTLED); 2290 2291 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2292 if (throttled || !td->track_bio_latency) 2293 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY; 2294 #endif 2295 rcu_read_unlock(); 2296 return throttled; 2297 } 2298 2299 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2300 static void throtl_track_latency(struct throtl_data *td, sector_t size, 2301 int op, unsigned long time) 2302 { 2303 struct latency_bucket *latency; 2304 int index; 2305 2306 if (!td || td->limit_index != LIMIT_LOW || 2307 !(op == REQ_OP_READ || op == REQ_OP_WRITE) || 2308 !blk_queue_nonrot(td->queue)) 2309 return; 2310 2311 index = request_bucket_index(size); 2312 2313 latency = get_cpu_ptr(td->latency_buckets[op]); 2314 latency[index].total_latency += time; 2315 latency[index].samples++; 2316 put_cpu_ptr(td->latency_buckets[op]); 2317 } 2318 2319 void blk_throtl_stat_add(struct request *rq, u64 time_ns) 2320 { 2321 struct request_queue *q = rq->q; 2322 struct throtl_data *td = q->td; 2323 2324 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq), 2325 time_ns >> 10); 2326 } 2327 2328 void blk_throtl_bio_endio(struct bio *bio) 2329 { 2330 struct blkcg_gq *blkg; 2331 struct throtl_grp *tg; 2332 u64 finish_time_ns; 2333 unsigned long finish_time; 2334 unsigned long start_time; 2335 unsigned long lat; 2336 int rw = bio_data_dir(bio); 2337 2338 blkg = bio->bi_blkg; 2339 if (!blkg) 2340 return; 2341 tg = blkg_to_tg(blkg); 2342 if (!tg->td->limit_valid[LIMIT_LOW]) 2343 return; 2344 2345 finish_time_ns = ktime_get_ns(); 2346 tg->last_finish_time = finish_time_ns >> 10; 2347 2348 start_time = bio_issue_time(&bio->bi_issue) >> 10; 2349 finish_time = __bio_issue_time(finish_time_ns) >> 10; 2350 if (!start_time || finish_time <= start_time) 2351 return; 2352 2353 lat = finish_time - start_time; 2354 /* this is only for bio based driver */ 2355 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY)) 2356 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue), 2357 bio_op(bio), lat); 2358 2359 if (tg->latency_target && lat >= tg->td->filtered_latency) { 2360 int bucket; 2361 unsigned int threshold; 2362 2363 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue)); 2364 threshold = tg->td->avg_buckets[rw][bucket].latency + 2365 tg->latency_target; 2366 if (lat > threshold) 2367 tg->bad_bio_cnt++; 2368 /* 2369 * Not race free, could get wrong count, which means cgroups 2370 * will be throttled 2371 */ 2372 tg->bio_cnt++; 2373 } 2374 2375 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) { 2376 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies; 2377 tg->bio_cnt /= 2; 2378 tg->bad_bio_cnt /= 2; 2379 } 2380 } 2381 #endif 2382 2383 int blk_throtl_init(struct request_queue *q) 2384 { 2385 struct throtl_data *td; 2386 int ret; 2387 2388 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 2389 if (!td) 2390 return -ENOMEM; 2391 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) * 2392 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2393 if (!td->latency_buckets[READ]) { 2394 kfree(td); 2395 return -ENOMEM; 2396 } 2397 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) * 2398 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2399 if (!td->latency_buckets[WRITE]) { 2400 free_percpu(td->latency_buckets[READ]); 2401 kfree(td); 2402 return -ENOMEM; 2403 } 2404 2405 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); 2406 throtl_service_queue_init(&td->service_queue); 2407 2408 q->td = td; 2409 td->queue = q; 2410 2411 td->limit_valid[LIMIT_MAX] = true; 2412 td->limit_index = LIMIT_MAX; 2413 td->low_upgrade_time = jiffies; 2414 td->low_downgrade_time = jiffies; 2415 2416 /* activate policy */ 2417 ret = blkcg_activate_policy(q, &blkcg_policy_throtl); 2418 if (ret) { 2419 free_percpu(td->latency_buckets[READ]); 2420 free_percpu(td->latency_buckets[WRITE]); 2421 kfree(td); 2422 } 2423 return ret; 2424 } 2425 2426 void blk_throtl_exit(struct request_queue *q) 2427 { 2428 BUG_ON(!q->td); 2429 throtl_shutdown_wq(q); 2430 blkcg_deactivate_policy(q, &blkcg_policy_throtl); 2431 free_percpu(q->td->latency_buckets[READ]); 2432 free_percpu(q->td->latency_buckets[WRITE]); 2433 kfree(q->td); 2434 } 2435 2436 void blk_throtl_register_queue(struct request_queue *q) 2437 { 2438 struct throtl_data *td; 2439 int i; 2440 2441 td = q->td; 2442 BUG_ON(!td); 2443 2444 if (blk_queue_nonrot(q)) { 2445 td->throtl_slice = DFL_THROTL_SLICE_SSD; 2446 td->filtered_latency = LATENCY_FILTERED_SSD; 2447 } else { 2448 td->throtl_slice = DFL_THROTL_SLICE_HD; 2449 td->filtered_latency = LATENCY_FILTERED_HD; 2450 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2451 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY; 2452 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY; 2453 } 2454 } 2455 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW 2456 /* if no low limit, use previous default */ 2457 td->throtl_slice = DFL_THROTL_SLICE_HD; 2458 #endif 2459 2460 td->track_bio_latency = !queue_is_mq(q); 2461 if (!td->track_bio_latency) 2462 blk_stat_enable_accounting(q); 2463 } 2464 2465 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2466 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page) 2467 { 2468 if (!q->td) 2469 return -EINVAL; 2470 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice)); 2471 } 2472 2473 ssize_t blk_throtl_sample_time_store(struct request_queue *q, 2474 const char *page, size_t count) 2475 { 2476 unsigned long v; 2477 unsigned long t; 2478 2479 if (!q->td) 2480 return -EINVAL; 2481 if (kstrtoul(page, 10, &v)) 2482 return -EINVAL; 2483 t = msecs_to_jiffies(v); 2484 if (t == 0 || t > MAX_THROTL_SLICE) 2485 return -EINVAL; 2486 q->td->throtl_slice = t; 2487 return count; 2488 } 2489 #endif 2490 2491 static int __init throtl_init(void) 2492 { 2493 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 2494 if (!kthrotld_workqueue) 2495 panic("Failed to create kthrotld\n"); 2496 2497 return blkcg_policy_register(&blkcg_policy_throtl); 2498 } 2499 2500 module_init(throtl_init); 2501