1 /* 2 * Interface for controlling IO bandwidth on a request queue 3 * 4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 5 */ 6 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/blkdev.h> 10 #include <linux/bio.h> 11 #include <linux/blktrace_api.h> 12 #include <linux/blk-cgroup.h> 13 #include "blk.h" 14 15 /* Max dispatch from a group in 1 round */ 16 static int throtl_grp_quantum = 8; 17 18 /* Total max dispatch from all groups in one round */ 19 static int throtl_quantum = 32; 20 21 /* Throttling is performed over a slice and after that slice is renewed */ 22 #define DFL_THROTL_SLICE_HD (HZ / 10) 23 #define DFL_THROTL_SLICE_SSD (HZ / 50) 24 #define MAX_THROTL_SLICE (HZ) 25 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */ 26 #define MIN_THROTL_BPS (320 * 1024) 27 #define MIN_THROTL_IOPS (10) 28 #define DFL_LATENCY_TARGET (-1L) 29 #define DFL_IDLE_THRESHOLD (0) 30 31 #define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT) 32 33 static struct blkcg_policy blkcg_policy_throtl; 34 35 /* A workqueue to queue throttle related work */ 36 static struct workqueue_struct *kthrotld_workqueue; 37 38 /* 39 * To implement hierarchical throttling, throtl_grps form a tree and bios 40 * are dispatched upwards level by level until they reach the top and get 41 * issued. When dispatching bios from the children and local group at each 42 * level, if the bios are dispatched into a single bio_list, there's a risk 43 * of a local or child group which can queue many bios at once filling up 44 * the list starving others. 45 * 46 * To avoid such starvation, dispatched bios are queued separately 47 * according to where they came from. When they are again dispatched to 48 * the parent, they're popped in round-robin order so that no single source 49 * hogs the dispatch window. 50 * 51 * throtl_qnode is used to keep the queued bios separated by their sources. 52 * Bios are queued to throtl_qnode which in turn is queued to 53 * throtl_service_queue and then dispatched in round-robin order. 54 * 55 * It's also used to track the reference counts on blkg's. A qnode always 56 * belongs to a throtl_grp and gets queued on itself or the parent, so 57 * incrementing the reference of the associated throtl_grp when a qnode is 58 * queued and decrementing when dequeued is enough to keep the whole blkg 59 * tree pinned while bios are in flight. 60 */ 61 struct throtl_qnode { 62 struct list_head node; /* service_queue->queued[] */ 63 struct bio_list bios; /* queued bios */ 64 struct throtl_grp *tg; /* tg this qnode belongs to */ 65 }; 66 67 struct throtl_service_queue { 68 struct throtl_service_queue *parent_sq; /* the parent service_queue */ 69 70 /* 71 * Bios queued directly to this service_queue or dispatched from 72 * children throtl_grp's. 73 */ 74 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */ 75 unsigned int nr_queued[2]; /* number of queued bios */ 76 77 /* 78 * RB tree of active children throtl_grp's, which are sorted by 79 * their ->disptime. 80 */ 81 struct rb_root pending_tree; /* RB tree of active tgs */ 82 struct rb_node *first_pending; /* first node in the tree */ 83 unsigned int nr_pending; /* # queued in the tree */ 84 unsigned long first_pending_disptime; /* disptime of the first tg */ 85 struct timer_list pending_timer; /* fires on first_pending_disptime */ 86 }; 87 88 enum tg_state_flags { 89 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */ 90 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */ 91 }; 92 93 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 94 95 enum { 96 LIMIT_LOW, 97 LIMIT_MAX, 98 LIMIT_CNT, 99 }; 100 101 struct throtl_grp { 102 /* must be the first member */ 103 struct blkg_policy_data pd; 104 105 /* active throtl group service_queue member */ 106 struct rb_node rb_node; 107 108 /* throtl_data this group belongs to */ 109 struct throtl_data *td; 110 111 /* this group's service queue */ 112 struct throtl_service_queue service_queue; 113 114 /* 115 * qnode_on_self is used when bios are directly queued to this 116 * throtl_grp so that local bios compete fairly with bios 117 * dispatched from children. qnode_on_parent is used when bios are 118 * dispatched from this throtl_grp into its parent and will compete 119 * with the sibling qnode_on_parents and the parent's 120 * qnode_on_self. 121 */ 122 struct throtl_qnode qnode_on_self[2]; 123 struct throtl_qnode qnode_on_parent[2]; 124 125 /* 126 * Dispatch time in jiffies. This is the estimated time when group 127 * will unthrottle and is ready to dispatch more bio. It is used as 128 * key to sort active groups in service tree. 129 */ 130 unsigned long disptime; 131 132 unsigned int flags; 133 134 /* are there any throtl rules between this group and td? */ 135 bool has_rules[2]; 136 137 /* internally used bytes per second rate limits */ 138 uint64_t bps[2][LIMIT_CNT]; 139 /* user configured bps limits */ 140 uint64_t bps_conf[2][LIMIT_CNT]; 141 142 /* internally used IOPS limits */ 143 unsigned int iops[2][LIMIT_CNT]; 144 /* user configured IOPS limits */ 145 unsigned int iops_conf[2][LIMIT_CNT]; 146 147 /* Number of bytes disptached in current slice */ 148 uint64_t bytes_disp[2]; 149 /* Number of bio's dispatched in current slice */ 150 unsigned int io_disp[2]; 151 152 unsigned long last_low_overflow_time[2]; 153 154 uint64_t last_bytes_disp[2]; 155 unsigned int last_io_disp[2]; 156 157 unsigned long last_check_time; 158 159 unsigned long latency_target; /* us */ 160 unsigned long latency_target_conf; /* us */ 161 /* When did we start a new slice */ 162 unsigned long slice_start[2]; 163 unsigned long slice_end[2]; 164 165 unsigned long last_finish_time; /* ns / 1024 */ 166 unsigned long checked_last_finish_time; /* ns / 1024 */ 167 unsigned long avg_idletime; /* ns / 1024 */ 168 unsigned long idletime_threshold; /* us */ 169 unsigned long idletime_threshold_conf; /* us */ 170 171 unsigned int bio_cnt; /* total bios */ 172 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */ 173 unsigned long bio_cnt_reset_time; 174 }; 175 176 /* We measure latency for request size from <= 4k to >= 1M */ 177 #define LATENCY_BUCKET_SIZE 9 178 179 struct latency_bucket { 180 unsigned long total_latency; /* ns / 1024 */ 181 int samples; 182 }; 183 184 struct avg_latency_bucket { 185 unsigned long latency; /* ns / 1024 */ 186 bool valid; 187 }; 188 189 struct throtl_data 190 { 191 /* service tree for active throtl groups */ 192 struct throtl_service_queue service_queue; 193 194 struct request_queue *queue; 195 196 /* Total Number of queued bios on READ and WRITE lists */ 197 unsigned int nr_queued[2]; 198 199 unsigned int throtl_slice; 200 201 /* Work for dispatching throttled bios */ 202 struct work_struct dispatch_work; 203 unsigned int limit_index; 204 bool limit_valid[LIMIT_CNT]; 205 206 unsigned long low_upgrade_time; 207 unsigned long low_downgrade_time; 208 209 unsigned int scale; 210 211 struct latency_bucket tmp_buckets[LATENCY_BUCKET_SIZE]; 212 struct avg_latency_bucket avg_buckets[LATENCY_BUCKET_SIZE]; 213 struct latency_bucket __percpu *latency_buckets; 214 unsigned long last_calculate_time; 215 216 bool track_bio_latency; 217 }; 218 219 static void throtl_pending_timer_fn(unsigned long arg); 220 221 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd) 222 { 223 return pd ? container_of(pd, struct throtl_grp, pd) : NULL; 224 } 225 226 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg) 227 { 228 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl)); 229 } 230 231 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) 232 { 233 return pd_to_blkg(&tg->pd); 234 } 235 236 /** 237 * sq_to_tg - return the throl_grp the specified service queue belongs to 238 * @sq: the throtl_service_queue of interest 239 * 240 * Return the throtl_grp @sq belongs to. If @sq is the top-level one 241 * embedded in throtl_data, %NULL is returned. 242 */ 243 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) 244 { 245 if (sq && sq->parent_sq) 246 return container_of(sq, struct throtl_grp, service_queue); 247 else 248 return NULL; 249 } 250 251 /** 252 * sq_to_td - return throtl_data the specified service queue belongs to 253 * @sq: the throtl_service_queue of interest 254 * 255 * A service_queue can be embedded in either a throtl_grp or throtl_data. 256 * Determine the associated throtl_data accordingly and return it. 257 */ 258 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) 259 { 260 struct throtl_grp *tg = sq_to_tg(sq); 261 262 if (tg) 263 return tg->td; 264 else 265 return container_of(sq, struct throtl_data, service_queue); 266 } 267 268 /* 269 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to 270 * make the IO dispatch more smooth. 271 * Scale up: linearly scale up according to lapsed time since upgrade. For 272 * every throtl_slice, the limit scales up 1/2 .low limit till the 273 * limit hits .max limit 274 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit 275 */ 276 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td) 277 { 278 /* arbitrary value to avoid too big scale */ 279 if (td->scale < 4096 && time_after_eq(jiffies, 280 td->low_upgrade_time + td->scale * td->throtl_slice)) 281 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice; 282 283 return low + (low >> 1) * td->scale; 284 } 285 286 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) 287 { 288 struct blkcg_gq *blkg = tg_to_blkg(tg); 289 struct throtl_data *td; 290 uint64_t ret; 291 292 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 293 return U64_MAX; 294 295 td = tg->td; 296 ret = tg->bps[rw][td->limit_index]; 297 if (ret == 0 && td->limit_index == LIMIT_LOW) { 298 /* intermediate node or iops isn't 0 */ 299 if (!list_empty(&blkg->blkcg->css.children) || 300 tg->iops[rw][td->limit_index]) 301 return U64_MAX; 302 else 303 return MIN_THROTL_BPS; 304 } 305 306 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] && 307 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) { 308 uint64_t adjusted; 309 310 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td); 311 ret = min(tg->bps[rw][LIMIT_MAX], adjusted); 312 } 313 return ret; 314 } 315 316 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) 317 { 318 struct blkcg_gq *blkg = tg_to_blkg(tg); 319 struct throtl_data *td; 320 unsigned int ret; 321 322 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 323 return UINT_MAX; 324 325 td = tg->td; 326 ret = tg->iops[rw][td->limit_index]; 327 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) { 328 /* intermediate node or bps isn't 0 */ 329 if (!list_empty(&blkg->blkcg->css.children) || 330 tg->bps[rw][td->limit_index]) 331 return UINT_MAX; 332 else 333 return MIN_THROTL_IOPS; 334 } 335 336 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] && 337 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) { 338 uint64_t adjusted; 339 340 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td); 341 if (adjusted > UINT_MAX) 342 adjusted = UINT_MAX; 343 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted); 344 } 345 return ret; 346 } 347 348 #define request_bucket_index(sectors) \ 349 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1) 350 351 /** 352 * throtl_log - log debug message via blktrace 353 * @sq: the service_queue being reported 354 * @fmt: printf format string 355 * @args: printf args 356 * 357 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a 358 * throtl_grp; otherwise, just "throtl". 359 */ 360 #define throtl_log(sq, fmt, args...) do { \ 361 struct throtl_grp *__tg = sq_to_tg((sq)); \ 362 struct throtl_data *__td = sq_to_td((sq)); \ 363 \ 364 (void)__td; \ 365 if (likely(!blk_trace_note_message_enabled(__td->queue))) \ 366 break; \ 367 if ((__tg)) { \ 368 char __pbuf[128]; \ 369 \ 370 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \ 371 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \ 372 } else { \ 373 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ 374 } \ 375 } while (0) 376 377 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) 378 { 379 INIT_LIST_HEAD(&qn->node); 380 bio_list_init(&qn->bios); 381 qn->tg = tg; 382 } 383 384 /** 385 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it 386 * @bio: bio being added 387 * @qn: qnode to add bio to 388 * @queued: the service_queue->queued[] list @qn belongs to 389 * 390 * Add @bio to @qn and put @qn on @queued if it's not already on. 391 * @qn->tg's reference count is bumped when @qn is activated. See the 392 * comment on top of throtl_qnode definition for details. 393 */ 394 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, 395 struct list_head *queued) 396 { 397 bio_list_add(&qn->bios, bio); 398 if (list_empty(&qn->node)) { 399 list_add_tail(&qn->node, queued); 400 blkg_get(tg_to_blkg(qn->tg)); 401 } 402 } 403 404 /** 405 * throtl_peek_queued - peek the first bio on a qnode list 406 * @queued: the qnode list to peek 407 */ 408 static struct bio *throtl_peek_queued(struct list_head *queued) 409 { 410 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); 411 struct bio *bio; 412 413 if (list_empty(queued)) 414 return NULL; 415 416 bio = bio_list_peek(&qn->bios); 417 WARN_ON_ONCE(!bio); 418 return bio; 419 } 420 421 /** 422 * throtl_pop_queued - pop the first bio form a qnode list 423 * @queued: the qnode list to pop a bio from 424 * @tg_to_put: optional out argument for throtl_grp to put 425 * 426 * Pop the first bio from the qnode list @queued. After popping, the first 427 * qnode is removed from @queued if empty or moved to the end of @queued so 428 * that the popping order is round-robin. 429 * 430 * When the first qnode is removed, its associated throtl_grp should be put 431 * too. If @tg_to_put is NULL, this function automatically puts it; 432 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is 433 * responsible for putting it. 434 */ 435 static struct bio *throtl_pop_queued(struct list_head *queued, 436 struct throtl_grp **tg_to_put) 437 { 438 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); 439 struct bio *bio; 440 441 if (list_empty(queued)) 442 return NULL; 443 444 bio = bio_list_pop(&qn->bios); 445 WARN_ON_ONCE(!bio); 446 447 if (bio_list_empty(&qn->bios)) { 448 list_del_init(&qn->node); 449 if (tg_to_put) 450 *tg_to_put = qn->tg; 451 else 452 blkg_put(tg_to_blkg(qn->tg)); 453 } else { 454 list_move_tail(&qn->node, queued); 455 } 456 457 return bio; 458 } 459 460 /* init a service_queue, assumes the caller zeroed it */ 461 static void throtl_service_queue_init(struct throtl_service_queue *sq) 462 { 463 INIT_LIST_HEAD(&sq->queued[0]); 464 INIT_LIST_HEAD(&sq->queued[1]); 465 sq->pending_tree = RB_ROOT; 466 setup_timer(&sq->pending_timer, throtl_pending_timer_fn, 467 (unsigned long)sq); 468 } 469 470 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node) 471 { 472 struct throtl_grp *tg; 473 int rw; 474 475 tg = kzalloc_node(sizeof(*tg), gfp, node); 476 if (!tg) 477 return NULL; 478 479 throtl_service_queue_init(&tg->service_queue); 480 481 for (rw = READ; rw <= WRITE; rw++) { 482 throtl_qnode_init(&tg->qnode_on_self[rw], tg); 483 throtl_qnode_init(&tg->qnode_on_parent[rw], tg); 484 } 485 486 RB_CLEAR_NODE(&tg->rb_node); 487 tg->bps[READ][LIMIT_MAX] = U64_MAX; 488 tg->bps[WRITE][LIMIT_MAX] = U64_MAX; 489 tg->iops[READ][LIMIT_MAX] = UINT_MAX; 490 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX; 491 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX; 492 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX; 493 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX; 494 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX; 495 /* LIMIT_LOW will have default value 0 */ 496 497 tg->latency_target = DFL_LATENCY_TARGET; 498 tg->latency_target_conf = DFL_LATENCY_TARGET; 499 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 500 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD; 501 502 return &tg->pd; 503 } 504 505 static void throtl_pd_init(struct blkg_policy_data *pd) 506 { 507 struct throtl_grp *tg = pd_to_tg(pd); 508 struct blkcg_gq *blkg = tg_to_blkg(tg); 509 struct throtl_data *td = blkg->q->td; 510 struct throtl_service_queue *sq = &tg->service_queue; 511 512 /* 513 * If on the default hierarchy, we switch to properly hierarchical 514 * behavior where limits on a given throtl_grp are applied to the 515 * whole subtree rather than just the group itself. e.g. If 16M 516 * read_bps limit is set on the root group, the whole system can't 517 * exceed 16M for the device. 518 * 519 * If not on the default hierarchy, the broken flat hierarchy 520 * behavior is retained where all throtl_grps are treated as if 521 * they're all separate root groups right below throtl_data. 522 * Limits of a group don't interact with limits of other groups 523 * regardless of the position of the group in the hierarchy. 524 */ 525 sq->parent_sq = &td->service_queue; 526 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) 527 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; 528 tg->td = td; 529 } 530 531 /* 532 * Set has_rules[] if @tg or any of its parents have limits configured. 533 * This doesn't require walking up to the top of the hierarchy as the 534 * parent's has_rules[] is guaranteed to be correct. 535 */ 536 static void tg_update_has_rules(struct throtl_grp *tg) 537 { 538 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); 539 struct throtl_data *td = tg->td; 540 int rw; 541 542 for (rw = READ; rw <= WRITE; rw++) 543 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) || 544 (td->limit_valid[td->limit_index] && 545 (tg_bps_limit(tg, rw) != U64_MAX || 546 tg_iops_limit(tg, rw) != UINT_MAX)); 547 } 548 549 static void throtl_pd_online(struct blkg_policy_data *pd) 550 { 551 struct throtl_grp *tg = pd_to_tg(pd); 552 /* 553 * We don't want new groups to escape the limits of its ancestors. 554 * Update has_rules[] after a new group is brought online. 555 */ 556 tg_update_has_rules(tg); 557 } 558 559 static void blk_throtl_update_limit_valid(struct throtl_data *td) 560 { 561 struct cgroup_subsys_state *pos_css; 562 struct blkcg_gq *blkg; 563 bool low_valid = false; 564 565 rcu_read_lock(); 566 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 567 struct throtl_grp *tg = blkg_to_tg(blkg); 568 569 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] || 570 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) 571 low_valid = true; 572 } 573 rcu_read_unlock(); 574 575 td->limit_valid[LIMIT_LOW] = low_valid; 576 } 577 578 static void throtl_upgrade_state(struct throtl_data *td); 579 static void throtl_pd_offline(struct blkg_policy_data *pd) 580 { 581 struct throtl_grp *tg = pd_to_tg(pd); 582 583 tg->bps[READ][LIMIT_LOW] = 0; 584 tg->bps[WRITE][LIMIT_LOW] = 0; 585 tg->iops[READ][LIMIT_LOW] = 0; 586 tg->iops[WRITE][LIMIT_LOW] = 0; 587 588 blk_throtl_update_limit_valid(tg->td); 589 590 if (!tg->td->limit_valid[tg->td->limit_index]) 591 throtl_upgrade_state(tg->td); 592 } 593 594 static void throtl_pd_free(struct blkg_policy_data *pd) 595 { 596 struct throtl_grp *tg = pd_to_tg(pd); 597 598 del_timer_sync(&tg->service_queue.pending_timer); 599 kfree(tg); 600 } 601 602 static struct throtl_grp * 603 throtl_rb_first(struct throtl_service_queue *parent_sq) 604 { 605 /* Service tree is empty */ 606 if (!parent_sq->nr_pending) 607 return NULL; 608 609 if (!parent_sq->first_pending) 610 parent_sq->first_pending = rb_first(&parent_sq->pending_tree); 611 612 if (parent_sq->first_pending) 613 return rb_entry_tg(parent_sq->first_pending); 614 615 return NULL; 616 } 617 618 static void rb_erase_init(struct rb_node *n, struct rb_root *root) 619 { 620 rb_erase(n, root); 621 RB_CLEAR_NODE(n); 622 } 623 624 static void throtl_rb_erase(struct rb_node *n, 625 struct throtl_service_queue *parent_sq) 626 { 627 if (parent_sq->first_pending == n) 628 parent_sq->first_pending = NULL; 629 rb_erase_init(n, &parent_sq->pending_tree); 630 --parent_sq->nr_pending; 631 } 632 633 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) 634 { 635 struct throtl_grp *tg; 636 637 tg = throtl_rb_first(parent_sq); 638 if (!tg) 639 return; 640 641 parent_sq->first_pending_disptime = tg->disptime; 642 } 643 644 static void tg_service_queue_add(struct throtl_grp *tg) 645 { 646 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; 647 struct rb_node **node = &parent_sq->pending_tree.rb_node; 648 struct rb_node *parent = NULL; 649 struct throtl_grp *__tg; 650 unsigned long key = tg->disptime; 651 int left = 1; 652 653 while (*node != NULL) { 654 parent = *node; 655 __tg = rb_entry_tg(parent); 656 657 if (time_before(key, __tg->disptime)) 658 node = &parent->rb_left; 659 else { 660 node = &parent->rb_right; 661 left = 0; 662 } 663 } 664 665 if (left) 666 parent_sq->first_pending = &tg->rb_node; 667 668 rb_link_node(&tg->rb_node, parent, node); 669 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree); 670 } 671 672 static void __throtl_enqueue_tg(struct throtl_grp *tg) 673 { 674 tg_service_queue_add(tg); 675 tg->flags |= THROTL_TG_PENDING; 676 tg->service_queue.parent_sq->nr_pending++; 677 } 678 679 static void throtl_enqueue_tg(struct throtl_grp *tg) 680 { 681 if (!(tg->flags & THROTL_TG_PENDING)) 682 __throtl_enqueue_tg(tg); 683 } 684 685 static void __throtl_dequeue_tg(struct throtl_grp *tg) 686 { 687 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); 688 tg->flags &= ~THROTL_TG_PENDING; 689 } 690 691 static void throtl_dequeue_tg(struct throtl_grp *tg) 692 { 693 if (tg->flags & THROTL_TG_PENDING) 694 __throtl_dequeue_tg(tg); 695 } 696 697 /* Call with queue lock held */ 698 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, 699 unsigned long expires) 700 { 701 unsigned long max_expire = jiffies + 8 * sq_to_tg(sq)->td->throtl_slice; 702 703 /* 704 * Since we are adjusting the throttle limit dynamically, the sleep 705 * time calculated according to previous limit might be invalid. It's 706 * possible the cgroup sleep time is very long and no other cgroups 707 * have IO running so notify the limit changes. Make sure the cgroup 708 * doesn't sleep too long to avoid the missed notification. 709 */ 710 if (time_after(expires, max_expire)) 711 expires = max_expire; 712 mod_timer(&sq->pending_timer, expires); 713 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", 714 expires - jiffies, jiffies); 715 } 716 717 /** 718 * throtl_schedule_next_dispatch - schedule the next dispatch cycle 719 * @sq: the service_queue to schedule dispatch for 720 * @force: force scheduling 721 * 722 * Arm @sq->pending_timer so that the next dispatch cycle starts on the 723 * dispatch time of the first pending child. Returns %true if either timer 724 * is armed or there's no pending child left. %false if the current 725 * dispatch window is still open and the caller should continue 726 * dispatching. 727 * 728 * If @force is %true, the dispatch timer is always scheduled and this 729 * function is guaranteed to return %true. This is to be used when the 730 * caller can't dispatch itself and needs to invoke pending_timer 731 * unconditionally. Note that forced scheduling is likely to induce short 732 * delay before dispatch starts even if @sq->first_pending_disptime is not 733 * in the future and thus shouldn't be used in hot paths. 734 */ 735 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, 736 bool force) 737 { 738 /* any pending children left? */ 739 if (!sq->nr_pending) 740 return true; 741 742 update_min_dispatch_time(sq); 743 744 /* is the next dispatch time in the future? */ 745 if (force || time_after(sq->first_pending_disptime, jiffies)) { 746 throtl_schedule_pending_timer(sq, sq->first_pending_disptime); 747 return true; 748 } 749 750 /* tell the caller to continue dispatching */ 751 return false; 752 } 753 754 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, 755 bool rw, unsigned long start) 756 { 757 tg->bytes_disp[rw] = 0; 758 tg->io_disp[rw] = 0; 759 760 /* 761 * Previous slice has expired. We must have trimmed it after last 762 * bio dispatch. That means since start of last slice, we never used 763 * that bandwidth. Do try to make use of that bandwidth while giving 764 * credit. 765 */ 766 if (time_after_eq(start, tg->slice_start[rw])) 767 tg->slice_start[rw] = start; 768 769 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 770 throtl_log(&tg->service_queue, 771 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", 772 rw == READ ? 'R' : 'W', tg->slice_start[rw], 773 tg->slice_end[rw], jiffies); 774 } 775 776 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw) 777 { 778 tg->bytes_disp[rw] = 0; 779 tg->io_disp[rw] = 0; 780 tg->slice_start[rw] = jiffies; 781 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 782 throtl_log(&tg->service_queue, 783 "[%c] new slice start=%lu end=%lu jiffies=%lu", 784 rw == READ ? 'R' : 'W', tg->slice_start[rw], 785 tg->slice_end[rw], jiffies); 786 } 787 788 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, 789 unsigned long jiffy_end) 790 { 791 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 792 } 793 794 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, 795 unsigned long jiffy_end) 796 { 797 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 798 throtl_log(&tg->service_queue, 799 "[%c] extend slice start=%lu end=%lu jiffies=%lu", 800 rw == READ ? 'R' : 'W', tg->slice_start[rw], 801 tg->slice_end[rw], jiffies); 802 } 803 804 /* Determine if previously allocated or extended slice is complete or not */ 805 static bool throtl_slice_used(struct throtl_grp *tg, bool rw) 806 { 807 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 808 return false; 809 810 return 1; 811 } 812 813 /* Trim the used slices and adjust slice start accordingly */ 814 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) 815 { 816 unsigned long nr_slices, time_elapsed, io_trim; 817 u64 bytes_trim, tmp; 818 819 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 820 821 /* 822 * If bps are unlimited (-1), then time slice don't get 823 * renewed. Don't try to trim the slice if slice is used. A new 824 * slice will start when appropriate. 825 */ 826 if (throtl_slice_used(tg, rw)) 827 return; 828 829 /* 830 * A bio has been dispatched. Also adjust slice_end. It might happen 831 * that initially cgroup limit was very low resulting in high 832 * slice_end, but later limit was bumped up and bio was dispached 833 * sooner, then we need to reduce slice_end. A high bogus slice_end 834 * is bad because it does not allow new slice to start. 835 */ 836 837 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); 838 839 time_elapsed = jiffies - tg->slice_start[rw]; 840 841 nr_slices = time_elapsed / tg->td->throtl_slice; 842 843 if (!nr_slices) 844 return; 845 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices; 846 do_div(tmp, HZ); 847 bytes_trim = tmp; 848 849 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) / 850 HZ; 851 852 if (!bytes_trim && !io_trim) 853 return; 854 855 if (tg->bytes_disp[rw] >= bytes_trim) 856 tg->bytes_disp[rw] -= bytes_trim; 857 else 858 tg->bytes_disp[rw] = 0; 859 860 if (tg->io_disp[rw] >= io_trim) 861 tg->io_disp[rw] -= io_trim; 862 else 863 tg->io_disp[rw] = 0; 864 865 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice; 866 867 throtl_log(&tg->service_queue, 868 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu", 869 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, 870 tg->slice_start[rw], tg->slice_end[rw], jiffies); 871 } 872 873 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, 874 unsigned long *wait) 875 { 876 bool rw = bio_data_dir(bio); 877 unsigned int io_allowed; 878 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 879 u64 tmp; 880 881 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 882 883 /* Slice has just started. Consider one slice interval */ 884 if (!jiffy_elapsed) 885 jiffy_elapsed_rnd = tg->td->throtl_slice; 886 887 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 888 889 /* 890 * jiffy_elapsed_rnd should not be a big value as minimum iops can be 891 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 892 * will allow dispatch after 1 second and after that slice should 893 * have been trimmed. 894 */ 895 896 tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd; 897 do_div(tmp, HZ); 898 899 if (tmp > UINT_MAX) 900 io_allowed = UINT_MAX; 901 else 902 io_allowed = tmp; 903 904 if (tg->io_disp[rw] + 1 <= io_allowed) { 905 if (wait) 906 *wait = 0; 907 return true; 908 } 909 910 /* Calc approx time to dispatch */ 911 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1; 912 913 if (jiffy_wait > jiffy_elapsed) 914 jiffy_wait = jiffy_wait - jiffy_elapsed; 915 else 916 jiffy_wait = 1; 917 918 if (wait) 919 *wait = jiffy_wait; 920 return 0; 921 } 922 923 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, 924 unsigned long *wait) 925 { 926 bool rw = bio_data_dir(bio); 927 u64 bytes_allowed, extra_bytes, tmp; 928 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 929 930 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 931 932 /* Slice has just started. Consider one slice interval */ 933 if (!jiffy_elapsed) 934 jiffy_elapsed_rnd = tg->td->throtl_slice; 935 936 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 937 938 tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd; 939 do_div(tmp, HZ); 940 bytes_allowed = tmp; 941 942 if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) { 943 if (wait) 944 *wait = 0; 945 return true; 946 } 947 948 /* Calc approx time to dispatch */ 949 extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed; 950 jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw)); 951 952 if (!jiffy_wait) 953 jiffy_wait = 1; 954 955 /* 956 * This wait time is without taking into consideration the rounding 957 * up we did. Add that time also. 958 */ 959 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 960 if (wait) 961 *wait = jiffy_wait; 962 return 0; 963 } 964 965 /* 966 * Returns whether one can dispatch a bio or not. Also returns approx number 967 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 968 */ 969 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, 970 unsigned long *wait) 971 { 972 bool rw = bio_data_dir(bio); 973 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 974 975 /* 976 * Currently whole state machine of group depends on first bio 977 * queued in the group bio list. So one should not be calling 978 * this function with a different bio if there are other bios 979 * queued. 980 */ 981 BUG_ON(tg->service_queue.nr_queued[rw] && 982 bio != throtl_peek_queued(&tg->service_queue.queued[rw])); 983 984 /* If tg->bps = -1, then BW is unlimited */ 985 if (tg_bps_limit(tg, rw) == U64_MAX && 986 tg_iops_limit(tg, rw) == UINT_MAX) { 987 if (wait) 988 *wait = 0; 989 return true; 990 } 991 992 /* 993 * If previous slice expired, start a new one otherwise renew/extend 994 * existing slice to make sure it is at least throtl_slice interval 995 * long since now. New slice is started only for empty throttle group. 996 * If there is queued bio, that means there should be an active 997 * slice and it should be extended instead. 998 */ 999 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw])) 1000 throtl_start_new_slice(tg, rw); 1001 else { 1002 if (time_before(tg->slice_end[rw], 1003 jiffies + tg->td->throtl_slice)) 1004 throtl_extend_slice(tg, rw, 1005 jiffies + tg->td->throtl_slice); 1006 } 1007 1008 if (tg_with_in_bps_limit(tg, bio, &bps_wait) && 1009 tg_with_in_iops_limit(tg, bio, &iops_wait)) { 1010 if (wait) 1011 *wait = 0; 1012 return 1; 1013 } 1014 1015 max_wait = max(bps_wait, iops_wait); 1016 1017 if (wait) 1018 *wait = max_wait; 1019 1020 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 1021 throtl_extend_slice(tg, rw, jiffies + max_wait); 1022 1023 return 0; 1024 } 1025 1026 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 1027 { 1028 bool rw = bio_data_dir(bio); 1029 1030 /* Charge the bio to the group */ 1031 tg->bytes_disp[rw] += bio->bi_iter.bi_size; 1032 tg->io_disp[rw]++; 1033 tg->last_bytes_disp[rw] += bio->bi_iter.bi_size; 1034 tg->last_io_disp[rw]++; 1035 1036 /* 1037 * BIO_THROTTLED is used to prevent the same bio to be throttled 1038 * more than once as a throttled bio will go through blk-throtl the 1039 * second time when it eventually gets issued. Set it when a bio 1040 * is being charged to a tg. 1041 */ 1042 if (!bio_flagged(bio, BIO_THROTTLED)) 1043 bio_set_flag(bio, BIO_THROTTLED); 1044 } 1045 1046 /** 1047 * throtl_add_bio_tg - add a bio to the specified throtl_grp 1048 * @bio: bio to add 1049 * @qn: qnode to use 1050 * @tg: the target throtl_grp 1051 * 1052 * Add @bio to @tg's service_queue using @qn. If @qn is not specified, 1053 * tg->qnode_on_self[] is used. 1054 */ 1055 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, 1056 struct throtl_grp *tg) 1057 { 1058 struct throtl_service_queue *sq = &tg->service_queue; 1059 bool rw = bio_data_dir(bio); 1060 1061 if (!qn) 1062 qn = &tg->qnode_on_self[rw]; 1063 1064 /* 1065 * If @tg doesn't currently have any bios queued in the same 1066 * direction, queueing @bio can change when @tg should be 1067 * dispatched. Mark that @tg was empty. This is automatically 1068 * cleaered on the next tg_update_disptime(). 1069 */ 1070 if (!sq->nr_queued[rw]) 1071 tg->flags |= THROTL_TG_WAS_EMPTY; 1072 1073 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); 1074 1075 sq->nr_queued[rw]++; 1076 throtl_enqueue_tg(tg); 1077 } 1078 1079 static void tg_update_disptime(struct throtl_grp *tg) 1080 { 1081 struct throtl_service_queue *sq = &tg->service_queue; 1082 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 1083 struct bio *bio; 1084 1085 bio = throtl_peek_queued(&sq->queued[READ]); 1086 if (bio) 1087 tg_may_dispatch(tg, bio, &read_wait); 1088 1089 bio = throtl_peek_queued(&sq->queued[WRITE]); 1090 if (bio) 1091 tg_may_dispatch(tg, bio, &write_wait); 1092 1093 min_wait = min(read_wait, write_wait); 1094 disptime = jiffies + min_wait; 1095 1096 /* Update dispatch time */ 1097 throtl_dequeue_tg(tg); 1098 tg->disptime = disptime; 1099 throtl_enqueue_tg(tg); 1100 1101 /* see throtl_add_bio_tg() */ 1102 tg->flags &= ~THROTL_TG_WAS_EMPTY; 1103 } 1104 1105 static void start_parent_slice_with_credit(struct throtl_grp *child_tg, 1106 struct throtl_grp *parent_tg, bool rw) 1107 { 1108 if (throtl_slice_used(parent_tg, rw)) { 1109 throtl_start_new_slice_with_credit(parent_tg, rw, 1110 child_tg->slice_start[rw]); 1111 } 1112 1113 } 1114 1115 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) 1116 { 1117 struct throtl_service_queue *sq = &tg->service_queue; 1118 struct throtl_service_queue *parent_sq = sq->parent_sq; 1119 struct throtl_grp *parent_tg = sq_to_tg(parent_sq); 1120 struct throtl_grp *tg_to_put = NULL; 1121 struct bio *bio; 1122 1123 /* 1124 * @bio is being transferred from @tg to @parent_sq. Popping a bio 1125 * from @tg may put its reference and @parent_sq might end up 1126 * getting released prematurely. Remember the tg to put and put it 1127 * after @bio is transferred to @parent_sq. 1128 */ 1129 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); 1130 sq->nr_queued[rw]--; 1131 1132 throtl_charge_bio(tg, bio); 1133 1134 /* 1135 * If our parent is another tg, we just need to transfer @bio to 1136 * the parent using throtl_add_bio_tg(). If our parent is 1137 * @td->service_queue, @bio is ready to be issued. Put it on its 1138 * bio_lists[] and decrease total number queued. The caller is 1139 * responsible for issuing these bios. 1140 */ 1141 if (parent_tg) { 1142 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); 1143 start_parent_slice_with_credit(tg, parent_tg, rw); 1144 } else { 1145 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], 1146 &parent_sq->queued[rw]); 1147 BUG_ON(tg->td->nr_queued[rw] <= 0); 1148 tg->td->nr_queued[rw]--; 1149 } 1150 1151 throtl_trim_slice(tg, rw); 1152 1153 if (tg_to_put) 1154 blkg_put(tg_to_blkg(tg_to_put)); 1155 } 1156 1157 static int throtl_dispatch_tg(struct throtl_grp *tg) 1158 { 1159 struct throtl_service_queue *sq = &tg->service_queue; 1160 unsigned int nr_reads = 0, nr_writes = 0; 1161 unsigned int max_nr_reads = throtl_grp_quantum*3/4; 1162 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; 1163 struct bio *bio; 1164 1165 /* Try to dispatch 75% READS and 25% WRITES */ 1166 1167 while ((bio = throtl_peek_queued(&sq->queued[READ])) && 1168 tg_may_dispatch(tg, bio, NULL)) { 1169 1170 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1171 nr_reads++; 1172 1173 if (nr_reads >= max_nr_reads) 1174 break; 1175 } 1176 1177 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && 1178 tg_may_dispatch(tg, bio, NULL)) { 1179 1180 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1181 nr_writes++; 1182 1183 if (nr_writes >= max_nr_writes) 1184 break; 1185 } 1186 1187 return nr_reads + nr_writes; 1188 } 1189 1190 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) 1191 { 1192 unsigned int nr_disp = 0; 1193 1194 while (1) { 1195 struct throtl_grp *tg = throtl_rb_first(parent_sq); 1196 struct throtl_service_queue *sq = &tg->service_queue; 1197 1198 if (!tg) 1199 break; 1200 1201 if (time_before(jiffies, tg->disptime)) 1202 break; 1203 1204 throtl_dequeue_tg(tg); 1205 1206 nr_disp += throtl_dispatch_tg(tg); 1207 1208 if (sq->nr_queued[0] || sq->nr_queued[1]) 1209 tg_update_disptime(tg); 1210 1211 if (nr_disp >= throtl_quantum) 1212 break; 1213 } 1214 1215 return nr_disp; 1216 } 1217 1218 static bool throtl_can_upgrade(struct throtl_data *td, 1219 struct throtl_grp *this_tg); 1220 /** 1221 * throtl_pending_timer_fn - timer function for service_queue->pending_timer 1222 * @arg: the throtl_service_queue being serviced 1223 * 1224 * This timer is armed when a child throtl_grp with active bio's become 1225 * pending and queued on the service_queue's pending_tree and expires when 1226 * the first child throtl_grp should be dispatched. This function 1227 * dispatches bio's from the children throtl_grps to the parent 1228 * service_queue. 1229 * 1230 * If the parent's parent is another throtl_grp, dispatching is propagated 1231 * by either arming its pending_timer or repeating dispatch directly. If 1232 * the top-level service_tree is reached, throtl_data->dispatch_work is 1233 * kicked so that the ready bio's are issued. 1234 */ 1235 static void throtl_pending_timer_fn(unsigned long arg) 1236 { 1237 struct throtl_service_queue *sq = (void *)arg; 1238 struct throtl_grp *tg = sq_to_tg(sq); 1239 struct throtl_data *td = sq_to_td(sq); 1240 struct request_queue *q = td->queue; 1241 struct throtl_service_queue *parent_sq; 1242 bool dispatched; 1243 int ret; 1244 1245 spin_lock_irq(q->queue_lock); 1246 if (throtl_can_upgrade(td, NULL)) 1247 throtl_upgrade_state(td); 1248 1249 again: 1250 parent_sq = sq->parent_sq; 1251 dispatched = false; 1252 1253 while (true) { 1254 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", 1255 sq->nr_queued[READ] + sq->nr_queued[WRITE], 1256 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1257 1258 ret = throtl_select_dispatch(sq); 1259 if (ret) { 1260 throtl_log(sq, "bios disp=%u", ret); 1261 dispatched = true; 1262 } 1263 1264 if (throtl_schedule_next_dispatch(sq, false)) 1265 break; 1266 1267 /* this dispatch windows is still open, relax and repeat */ 1268 spin_unlock_irq(q->queue_lock); 1269 cpu_relax(); 1270 spin_lock_irq(q->queue_lock); 1271 } 1272 1273 if (!dispatched) 1274 goto out_unlock; 1275 1276 if (parent_sq) { 1277 /* @parent_sq is another throl_grp, propagate dispatch */ 1278 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1279 tg_update_disptime(tg); 1280 if (!throtl_schedule_next_dispatch(parent_sq, false)) { 1281 /* window is already open, repeat dispatching */ 1282 sq = parent_sq; 1283 tg = sq_to_tg(sq); 1284 goto again; 1285 } 1286 } 1287 } else { 1288 /* reached the top-level, queue issueing */ 1289 queue_work(kthrotld_workqueue, &td->dispatch_work); 1290 } 1291 out_unlock: 1292 spin_unlock_irq(q->queue_lock); 1293 } 1294 1295 /** 1296 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work 1297 * @work: work item being executed 1298 * 1299 * This function is queued for execution when bio's reach the bio_lists[] 1300 * of throtl_data->service_queue. Those bio's are ready and issued by this 1301 * function. 1302 */ 1303 static void blk_throtl_dispatch_work_fn(struct work_struct *work) 1304 { 1305 struct throtl_data *td = container_of(work, struct throtl_data, 1306 dispatch_work); 1307 struct throtl_service_queue *td_sq = &td->service_queue; 1308 struct request_queue *q = td->queue; 1309 struct bio_list bio_list_on_stack; 1310 struct bio *bio; 1311 struct blk_plug plug; 1312 int rw; 1313 1314 bio_list_init(&bio_list_on_stack); 1315 1316 spin_lock_irq(q->queue_lock); 1317 for (rw = READ; rw <= WRITE; rw++) 1318 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) 1319 bio_list_add(&bio_list_on_stack, bio); 1320 spin_unlock_irq(q->queue_lock); 1321 1322 if (!bio_list_empty(&bio_list_on_stack)) { 1323 blk_start_plug(&plug); 1324 while((bio = bio_list_pop(&bio_list_on_stack))) 1325 generic_make_request(bio); 1326 blk_finish_plug(&plug); 1327 } 1328 } 1329 1330 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, 1331 int off) 1332 { 1333 struct throtl_grp *tg = pd_to_tg(pd); 1334 u64 v = *(u64 *)((void *)tg + off); 1335 1336 if (v == U64_MAX) 1337 return 0; 1338 return __blkg_prfill_u64(sf, pd, v); 1339 } 1340 1341 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, 1342 int off) 1343 { 1344 struct throtl_grp *tg = pd_to_tg(pd); 1345 unsigned int v = *(unsigned int *)((void *)tg + off); 1346 1347 if (v == UINT_MAX) 1348 return 0; 1349 return __blkg_prfill_u64(sf, pd, v); 1350 } 1351 1352 static int tg_print_conf_u64(struct seq_file *sf, void *v) 1353 { 1354 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, 1355 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1356 return 0; 1357 } 1358 1359 static int tg_print_conf_uint(struct seq_file *sf, void *v) 1360 { 1361 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, 1362 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1363 return 0; 1364 } 1365 1366 static void tg_conf_updated(struct throtl_grp *tg, bool global) 1367 { 1368 struct throtl_service_queue *sq = &tg->service_queue; 1369 struct cgroup_subsys_state *pos_css; 1370 struct blkcg_gq *blkg; 1371 1372 throtl_log(&tg->service_queue, 1373 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", 1374 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), 1375 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); 1376 1377 /* 1378 * Update has_rules[] flags for the updated tg's subtree. A tg is 1379 * considered to have rules if either the tg itself or any of its 1380 * ancestors has rules. This identifies groups without any 1381 * restrictions in the whole hierarchy and allows them to bypass 1382 * blk-throttle. 1383 */ 1384 blkg_for_each_descendant_pre(blkg, pos_css, 1385 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { 1386 struct throtl_grp *this_tg = blkg_to_tg(blkg); 1387 struct throtl_grp *parent_tg; 1388 1389 tg_update_has_rules(this_tg); 1390 /* ignore root/second level */ 1391 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || 1392 !blkg->parent->parent) 1393 continue; 1394 parent_tg = blkg_to_tg(blkg->parent); 1395 /* 1396 * make sure all children has lower idle time threshold and 1397 * higher latency target 1398 */ 1399 this_tg->idletime_threshold = min(this_tg->idletime_threshold, 1400 parent_tg->idletime_threshold); 1401 this_tg->latency_target = max(this_tg->latency_target, 1402 parent_tg->latency_target); 1403 } 1404 1405 /* 1406 * We're already holding queue_lock and know @tg is valid. Let's 1407 * apply the new config directly. 1408 * 1409 * Restart the slices for both READ and WRITES. It might happen 1410 * that a group's limit are dropped suddenly and we don't want to 1411 * account recently dispatched IO with new low rate. 1412 */ 1413 throtl_start_new_slice(tg, 0); 1414 throtl_start_new_slice(tg, 1); 1415 1416 if (tg->flags & THROTL_TG_PENDING) { 1417 tg_update_disptime(tg); 1418 throtl_schedule_next_dispatch(sq->parent_sq, true); 1419 } 1420 } 1421 1422 static ssize_t tg_set_conf(struct kernfs_open_file *of, 1423 char *buf, size_t nbytes, loff_t off, bool is_u64) 1424 { 1425 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1426 struct blkg_conf_ctx ctx; 1427 struct throtl_grp *tg; 1428 int ret; 1429 u64 v; 1430 1431 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1432 if (ret) 1433 return ret; 1434 1435 ret = -EINVAL; 1436 if (sscanf(ctx.body, "%llu", &v) != 1) 1437 goto out_finish; 1438 if (!v) 1439 v = U64_MAX; 1440 1441 tg = blkg_to_tg(ctx.blkg); 1442 1443 if (is_u64) 1444 *(u64 *)((void *)tg + of_cft(of)->private) = v; 1445 else 1446 *(unsigned int *)((void *)tg + of_cft(of)->private) = v; 1447 1448 tg_conf_updated(tg, false); 1449 ret = 0; 1450 out_finish: 1451 blkg_conf_finish(&ctx); 1452 return ret ?: nbytes; 1453 } 1454 1455 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, 1456 char *buf, size_t nbytes, loff_t off) 1457 { 1458 return tg_set_conf(of, buf, nbytes, off, true); 1459 } 1460 1461 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, 1462 char *buf, size_t nbytes, loff_t off) 1463 { 1464 return tg_set_conf(of, buf, nbytes, off, false); 1465 } 1466 1467 static struct cftype throtl_legacy_files[] = { 1468 { 1469 .name = "throttle.read_bps_device", 1470 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]), 1471 .seq_show = tg_print_conf_u64, 1472 .write = tg_set_conf_u64, 1473 }, 1474 { 1475 .name = "throttle.write_bps_device", 1476 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]), 1477 .seq_show = tg_print_conf_u64, 1478 .write = tg_set_conf_u64, 1479 }, 1480 { 1481 .name = "throttle.read_iops_device", 1482 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]), 1483 .seq_show = tg_print_conf_uint, 1484 .write = tg_set_conf_uint, 1485 }, 1486 { 1487 .name = "throttle.write_iops_device", 1488 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]), 1489 .seq_show = tg_print_conf_uint, 1490 .write = tg_set_conf_uint, 1491 }, 1492 { 1493 .name = "throttle.io_service_bytes", 1494 .private = (unsigned long)&blkcg_policy_throtl, 1495 .seq_show = blkg_print_stat_bytes, 1496 }, 1497 { 1498 .name = "throttle.io_serviced", 1499 .private = (unsigned long)&blkcg_policy_throtl, 1500 .seq_show = blkg_print_stat_ios, 1501 }, 1502 { } /* terminate */ 1503 }; 1504 1505 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, 1506 int off) 1507 { 1508 struct throtl_grp *tg = pd_to_tg(pd); 1509 const char *dname = blkg_dev_name(pd->blkg); 1510 char bufs[4][21] = { "max", "max", "max", "max" }; 1511 u64 bps_dft; 1512 unsigned int iops_dft; 1513 char idle_time[26] = ""; 1514 char latency_time[26] = ""; 1515 1516 if (!dname) 1517 return 0; 1518 1519 if (off == LIMIT_LOW) { 1520 bps_dft = 0; 1521 iops_dft = 0; 1522 } else { 1523 bps_dft = U64_MAX; 1524 iops_dft = UINT_MAX; 1525 } 1526 1527 if (tg->bps_conf[READ][off] == bps_dft && 1528 tg->bps_conf[WRITE][off] == bps_dft && 1529 tg->iops_conf[READ][off] == iops_dft && 1530 tg->iops_conf[WRITE][off] == iops_dft && 1531 (off != LIMIT_LOW || 1532 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD && 1533 tg->latency_target_conf == DFL_LATENCY_TARGET))) 1534 return 0; 1535 1536 if (tg->bps_conf[READ][off] != U64_MAX) 1537 snprintf(bufs[0], sizeof(bufs[0]), "%llu", 1538 tg->bps_conf[READ][off]); 1539 if (tg->bps_conf[WRITE][off] != U64_MAX) 1540 snprintf(bufs[1], sizeof(bufs[1]), "%llu", 1541 tg->bps_conf[WRITE][off]); 1542 if (tg->iops_conf[READ][off] != UINT_MAX) 1543 snprintf(bufs[2], sizeof(bufs[2]), "%u", 1544 tg->iops_conf[READ][off]); 1545 if (tg->iops_conf[WRITE][off] != UINT_MAX) 1546 snprintf(bufs[3], sizeof(bufs[3]), "%u", 1547 tg->iops_conf[WRITE][off]); 1548 if (off == LIMIT_LOW) { 1549 if (tg->idletime_threshold_conf == ULONG_MAX) 1550 strcpy(idle_time, " idle=max"); 1551 else 1552 snprintf(idle_time, sizeof(idle_time), " idle=%lu", 1553 tg->idletime_threshold_conf); 1554 1555 if (tg->latency_target_conf == ULONG_MAX) 1556 strcpy(latency_time, " latency=max"); 1557 else 1558 snprintf(latency_time, sizeof(latency_time), 1559 " latency=%lu", tg->latency_target_conf); 1560 } 1561 1562 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n", 1563 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time, 1564 latency_time); 1565 return 0; 1566 } 1567 1568 static int tg_print_limit(struct seq_file *sf, void *v) 1569 { 1570 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, 1571 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1572 return 0; 1573 } 1574 1575 static ssize_t tg_set_limit(struct kernfs_open_file *of, 1576 char *buf, size_t nbytes, loff_t off) 1577 { 1578 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1579 struct blkg_conf_ctx ctx; 1580 struct throtl_grp *tg; 1581 u64 v[4]; 1582 unsigned long idle_time; 1583 unsigned long latency_time; 1584 int ret; 1585 int index = of_cft(of)->private; 1586 1587 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1588 if (ret) 1589 return ret; 1590 1591 tg = blkg_to_tg(ctx.blkg); 1592 1593 v[0] = tg->bps_conf[READ][index]; 1594 v[1] = tg->bps_conf[WRITE][index]; 1595 v[2] = tg->iops_conf[READ][index]; 1596 v[3] = tg->iops_conf[WRITE][index]; 1597 1598 idle_time = tg->idletime_threshold_conf; 1599 latency_time = tg->latency_target_conf; 1600 while (true) { 1601 char tok[27]; /* wiops=18446744073709551616 */ 1602 char *p; 1603 u64 val = U64_MAX; 1604 int len; 1605 1606 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) 1607 break; 1608 if (tok[0] == '\0') 1609 break; 1610 ctx.body += len; 1611 1612 ret = -EINVAL; 1613 p = tok; 1614 strsep(&p, "="); 1615 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) 1616 goto out_finish; 1617 1618 ret = -ERANGE; 1619 if (!val) 1620 goto out_finish; 1621 1622 ret = -EINVAL; 1623 if (!strcmp(tok, "rbps")) 1624 v[0] = val; 1625 else if (!strcmp(tok, "wbps")) 1626 v[1] = val; 1627 else if (!strcmp(tok, "riops")) 1628 v[2] = min_t(u64, val, UINT_MAX); 1629 else if (!strcmp(tok, "wiops")) 1630 v[3] = min_t(u64, val, UINT_MAX); 1631 else if (off == LIMIT_LOW && !strcmp(tok, "idle")) 1632 idle_time = val; 1633 else if (off == LIMIT_LOW && !strcmp(tok, "latency")) 1634 latency_time = val; 1635 else 1636 goto out_finish; 1637 } 1638 1639 tg->bps_conf[READ][index] = v[0]; 1640 tg->bps_conf[WRITE][index] = v[1]; 1641 tg->iops_conf[READ][index] = v[2]; 1642 tg->iops_conf[WRITE][index] = v[3]; 1643 1644 if (index == LIMIT_MAX) { 1645 tg->bps[READ][index] = v[0]; 1646 tg->bps[WRITE][index] = v[1]; 1647 tg->iops[READ][index] = v[2]; 1648 tg->iops[WRITE][index] = v[3]; 1649 } 1650 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW], 1651 tg->bps_conf[READ][LIMIT_MAX]); 1652 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW], 1653 tg->bps_conf[WRITE][LIMIT_MAX]); 1654 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW], 1655 tg->iops_conf[READ][LIMIT_MAX]); 1656 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW], 1657 tg->iops_conf[WRITE][LIMIT_MAX]); 1658 tg->idletime_threshold_conf = idle_time; 1659 tg->latency_target_conf = latency_time; 1660 1661 /* force user to configure all settings for low limit */ 1662 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] || 1663 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) || 1664 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD || 1665 tg->latency_target_conf == DFL_LATENCY_TARGET) { 1666 tg->bps[READ][LIMIT_LOW] = 0; 1667 tg->bps[WRITE][LIMIT_LOW] = 0; 1668 tg->iops[READ][LIMIT_LOW] = 0; 1669 tg->iops[WRITE][LIMIT_LOW] = 0; 1670 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 1671 tg->latency_target = DFL_LATENCY_TARGET; 1672 } else if (index == LIMIT_LOW) { 1673 tg->idletime_threshold = tg->idletime_threshold_conf; 1674 tg->latency_target = tg->latency_target_conf; 1675 } 1676 1677 blk_throtl_update_limit_valid(tg->td); 1678 if (tg->td->limit_valid[LIMIT_LOW]) { 1679 if (index == LIMIT_LOW) 1680 tg->td->limit_index = LIMIT_LOW; 1681 } else 1682 tg->td->limit_index = LIMIT_MAX; 1683 tg_conf_updated(tg, index == LIMIT_LOW && 1684 tg->td->limit_valid[LIMIT_LOW]); 1685 ret = 0; 1686 out_finish: 1687 blkg_conf_finish(&ctx); 1688 return ret ?: nbytes; 1689 } 1690 1691 static struct cftype throtl_files[] = { 1692 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 1693 { 1694 .name = "low", 1695 .flags = CFTYPE_NOT_ON_ROOT, 1696 .seq_show = tg_print_limit, 1697 .write = tg_set_limit, 1698 .private = LIMIT_LOW, 1699 }, 1700 #endif 1701 { 1702 .name = "max", 1703 .flags = CFTYPE_NOT_ON_ROOT, 1704 .seq_show = tg_print_limit, 1705 .write = tg_set_limit, 1706 .private = LIMIT_MAX, 1707 }, 1708 { } /* terminate */ 1709 }; 1710 1711 static void throtl_shutdown_wq(struct request_queue *q) 1712 { 1713 struct throtl_data *td = q->td; 1714 1715 cancel_work_sync(&td->dispatch_work); 1716 } 1717 1718 static struct blkcg_policy blkcg_policy_throtl = { 1719 .dfl_cftypes = throtl_files, 1720 .legacy_cftypes = throtl_legacy_files, 1721 1722 .pd_alloc_fn = throtl_pd_alloc, 1723 .pd_init_fn = throtl_pd_init, 1724 .pd_online_fn = throtl_pd_online, 1725 .pd_offline_fn = throtl_pd_offline, 1726 .pd_free_fn = throtl_pd_free, 1727 }; 1728 1729 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg) 1730 { 1731 unsigned long rtime = jiffies, wtime = jiffies; 1732 1733 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]) 1734 rtime = tg->last_low_overflow_time[READ]; 1735 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) 1736 wtime = tg->last_low_overflow_time[WRITE]; 1737 return min(rtime, wtime); 1738 } 1739 1740 /* tg should not be an intermediate node */ 1741 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg) 1742 { 1743 struct throtl_service_queue *parent_sq; 1744 struct throtl_grp *parent = tg; 1745 unsigned long ret = __tg_last_low_overflow_time(tg); 1746 1747 while (true) { 1748 parent_sq = parent->service_queue.parent_sq; 1749 parent = sq_to_tg(parent_sq); 1750 if (!parent) 1751 break; 1752 1753 /* 1754 * The parent doesn't have low limit, it always reaches low 1755 * limit. Its overflow time is useless for children 1756 */ 1757 if (!parent->bps[READ][LIMIT_LOW] && 1758 !parent->iops[READ][LIMIT_LOW] && 1759 !parent->bps[WRITE][LIMIT_LOW] && 1760 !parent->iops[WRITE][LIMIT_LOW]) 1761 continue; 1762 if (time_after(__tg_last_low_overflow_time(parent), ret)) 1763 ret = __tg_last_low_overflow_time(parent); 1764 } 1765 return ret; 1766 } 1767 1768 static bool throtl_tg_is_idle(struct throtl_grp *tg) 1769 { 1770 /* 1771 * cgroup is idle if: 1772 * - single idle is too long, longer than a fixed value (in case user 1773 * configure a too big threshold) or 4 times of idletime threshold 1774 * - average think time is more than threshold 1775 * - IO latency is largely below threshold 1776 */ 1777 unsigned long time; 1778 bool ret; 1779 1780 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold); 1781 ret = tg->latency_target == DFL_LATENCY_TARGET || 1782 tg->idletime_threshold == DFL_IDLE_THRESHOLD || 1783 (ktime_get_ns() >> 10) - tg->last_finish_time > time || 1784 tg->avg_idletime > tg->idletime_threshold || 1785 (tg->latency_target && tg->bio_cnt && 1786 tg->bad_bio_cnt * 5 < tg->bio_cnt); 1787 throtl_log(&tg->service_queue, 1788 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d", 1789 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt, 1790 tg->bio_cnt, ret, tg->td->scale); 1791 return ret; 1792 } 1793 1794 static bool throtl_tg_can_upgrade(struct throtl_grp *tg) 1795 { 1796 struct throtl_service_queue *sq = &tg->service_queue; 1797 bool read_limit, write_limit; 1798 1799 /* 1800 * if cgroup reaches low limit (if low limit is 0, the cgroup always 1801 * reaches), it's ok to upgrade to next limit 1802 */ 1803 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]; 1804 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]; 1805 if (!read_limit && !write_limit) 1806 return true; 1807 if (read_limit && sq->nr_queued[READ] && 1808 (!write_limit || sq->nr_queued[WRITE])) 1809 return true; 1810 if (write_limit && sq->nr_queued[WRITE] && 1811 (!read_limit || sq->nr_queued[READ])) 1812 return true; 1813 1814 if (time_after_eq(jiffies, 1815 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) && 1816 throtl_tg_is_idle(tg)) 1817 return true; 1818 return false; 1819 } 1820 1821 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg) 1822 { 1823 while (true) { 1824 if (throtl_tg_can_upgrade(tg)) 1825 return true; 1826 tg = sq_to_tg(tg->service_queue.parent_sq); 1827 if (!tg || !tg_to_blkg(tg)->parent) 1828 return false; 1829 } 1830 return false; 1831 } 1832 1833 static bool throtl_can_upgrade(struct throtl_data *td, 1834 struct throtl_grp *this_tg) 1835 { 1836 struct cgroup_subsys_state *pos_css; 1837 struct blkcg_gq *blkg; 1838 1839 if (td->limit_index != LIMIT_LOW) 1840 return false; 1841 1842 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice)) 1843 return false; 1844 1845 rcu_read_lock(); 1846 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1847 struct throtl_grp *tg = blkg_to_tg(blkg); 1848 1849 if (tg == this_tg) 1850 continue; 1851 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1852 continue; 1853 if (!throtl_hierarchy_can_upgrade(tg)) { 1854 rcu_read_unlock(); 1855 return false; 1856 } 1857 } 1858 rcu_read_unlock(); 1859 return true; 1860 } 1861 1862 static void throtl_upgrade_check(struct throtl_grp *tg) 1863 { 1864 unsigned long now = jiffies; 1865 1866 if (tg->td->limit_index != LIMIT_LOW) 1867 return; 1868 1869 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1870 return; 1871 1872 tg->last_check_time = now; 1873 1874 if (!time_after_eq(now, 1875 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice)) 1876 return; 1877 1878 if (throtl_can_upgrade(tg->td, NULL)) 1879 throtl_upgrade_state(tg->td); 1880 } 1881 1882 static void throtl_upgrade_state(struct throtl_data *td) 1883 { 1884 struct cgroup_subsys_state *pos_css; 1885 struct blkcg_gq *blkg; 1886 1887 throtl_log(&td->service_queue, "upgrade to max"); 1888 td->limit_index = LIMIT_MAX; 1889 td->low_upgrade_time = jiffies; 1890 td->scale = 0; 1891 rcu_read_lock(); 1892 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1893 struct throtl_grp *tg = blkg_to_tg(blkg); 1894 struct throtl_service_queue *sq = &tg->service_queue; 1895 1896 tg->disptime = jiffies - 1; 1897 throtl_select_dispatch(sq); 1898 throtl_schedule_next_dispatch(sq, false); 1899 } 1900 rcu_read_unlock(); 1901 throtl_select_dispatch(&td->service_queue); 1902 throtl_schedule_next_dispatch(&td->service_queue, false); 1903 queue_work(kthrotld_workqueue, &td->dispatch_work); 1904 } 1905 1906 static void throtl_downgrade_state(struct throtl_data *td, int new) 1907 { 1908 td->scale /= 2; 1909 1910 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale); 1911 if (td->scale) { 1912 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice; 1913 return; 1914 } 1915 1916 td->limit_index = new; 1917 td->low_downgrade_time = jiffies; 1918 } 1919 1920 static bool throtl_tg_can_downgrade(struct throtl_grp *tg) 1921 { 1922 struct throtl_data *td = tg->td; 1923 unsigned long now = jiffies; 1924 1925 /* 1926 * If cgroup is below low limit, consider downgrade and throttle other 1927 * cgroups 1928 */ 1929 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) && 1930 time_after_eq(now, tg_last_low_overflow_time(tg) + 1931 td->throtl_slice) && 1932 (!throtl_tg_is_idle(tg) || 1933 !list_empty(&tg_to_blkg(tg)->blkcg->css.children))) 1934 return true; 1935 return false; 1936 } 1937 1938 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg) 1939 { 1940 while (true) { 1941 if (!throtl_tg_can_downgrade(tg)) 1942 return false; 1943 tg = sq_to_tg(tg->service_queue.parent_sq); 1944 if (!tg || !tg_to_blkg(tg)->parent) 1945 break; 1946 } 1947 return true; 1948 } 1949 1950 static void throtl_downgrade_check(struct throtl_grp *tg) 1951 { 1952 uint64_t bps; 1953 unsigned int iops; 1954 unsigned long elapsed_time; 1955 unsigned long now = jiffies; 1956 1957 if (tg->td->limit_index != LIMIT_MAX || 1958 !tg->td->limit_valid[LIMIT_LOW]) 1959 return; 1960 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1961 return; 1962 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1963 return; 1964 1965 elapsed_time = now - tg->last_check_time; 1966 tg->last_check_time = now; 1967 1968 if (time_before(now, tg_last_low_overflow_time(tg) + 1969 tg->td->throtl_slice)) 1970 return; 1971 1972 if (tg->bps[READ][LIMIT_LOW]) { 1973 bps = tg->last_bytes_disp[READ] * HZ; 1974 do_div(bps, elapsed_time); 1975 if (bps >= tg->bps[READ][LIMIT_LOW]) 1976 tg->last_low_overflow_time[READ] = now; 1977 } 1978 1979 if (tg->bps[WRITE][LIMIT_LOW]) { 1980 bps = tg->last_bytes_disp[WRITE] * HZ; 1981 do_div(bps, elapsed_time); 1982 if (bps >= tg->bps[WRITE][LIMIT_LOW]) 1983 tg->last_low_overflow_time[WRITE] = now; 1984 } 1985 1986 if (tg->iops[READ][LIMIT_LOW]) { 1987 iops = tg->last_io_disp[READ] * HZ / elapsed_time; 1988 if (iops >= tg->iops[READ][LIMIT_LOW]) 1989 tg->last_low_overflow_time[READ] = now; 1990 } 1991 1992 if (tg->iops[WRITE][LIMIT_LOW]) { 1993 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time; 1994 if (iops >= tg->iops[WRITE][LIMIT_LOW]) 1995 tg->last_low_overflow_time[WRITE] = now; 1996 } 1997 1998 /* 1999 * If cgroup is below low limit, consider downgrade and throttle other 2000 * cgroups 2001 */ 2002 if (throtl_hierarchy_can_downgrade(tg)) 2003 throtl_downgrade_state(tg->td, LIMIT_LOW); 2004 2005 tg->last_bytes_disp[READ] = 0; 2006 tg->last_bytes_disp[WRITE] = 0; 2007 tg->last_io_disp[READ] = 0; 2008 tg->last_io_disp[WRITE] = 0; 2009 } 2010 2011 static void blk_throtl_update_idletime(struct throtl_grp *tg) 2012 { 2013 unsigned long now = ktime_get_ns() >> 10; 2014 unsigned long last_finish_time = tg->last_finish_time; 2015 2016 if (now <= last_finish_time || last_finish_time == 0 || 2017 last_finish_time == tg->checked_last_finish_time) 2018 return; 2019 2020 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3; 2021 tg->checked_last_finish_time = last_finish_time; 2022 } 2023 2024 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2025 static void throtl_update_latency_buckets(struct throtl_data *td) 2026 { 2027 struct avg_latency_bucket avg_latency[LATENCY_BUCKET_SIZE]; 2028 int i, cpu; 2029 unsigned long last_latency = 0; 2030 unsigned long latency; 2031 2032 if (!blk_queue_nonrot(td->queue)) 2033 return; 2034 if (time_before(jiffies, td->last_calculate_time + HZ)) 2035 return; 2036 td->last_calculate_time = jiffies; 2037 2038 memset(avg_latency, 0, sizeof(avg_latency)); 2039 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2040 struct latency_bucket *tmp = &td->tmp_buckets[i]; 2041 2042 for_each_possible_cpu(cpu) { 2043 struct latency_bucket *bucket; 2044 2045 /* this isn't race free, but ok in practice */ 2046 bucket = per_cpu_ptr(td->latency_buckets, cpu); 2047 tmp->total_latency += bucket[i].total_latency; 2048 tmp->samples += bucket[i].samples; 2049 bucket[i].total_latency = 0; 2050 bucket[i].samples = 0; 2051 } 2052 2053 if (tmp->samples >= 32) { 2054 int samples = tmp->samples; 2055 2056 latency = tmp->total_latency; 2057 2058 tmp->total_latency = 0; 2059 tmp->samples = 0; 2060 latency /= samples; 2061 if (latency == 0) 2062 continue; 2063 avg_latency[i].latency = latency; 2064 } 2065 } 2066 2067 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2068 if (!avg_latency[i].latency) { 2069 if (td->avg_buckets[i].latency < last_latency) 2070 td->avg_buckets[i].latency = last_latency; 2071 continue; 2072 } 2073 2074 if (!td->avg_buckets[i].valid) 2075 latency = avg_latency[i].latency; 2076 else 2077 latency = (td->avg_buckets[i].latency * 7 + 2078 avg_latency[i].latency) >> 3; 2079 2080 td->avg_buckets[i].latency = max(latency, last_latency); 2081 td->avg_buckets[i].valid = true; 2082 last_latency = td->avg_buckets[i].latency; 2083 } 2084 2085 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) 2086 throtl_log(&td->service_queue, 2087 "Latency bucket %d: latency=%ld, valid=%d", i, 2088 td->avg_buckets[i].latency, td->avg_buckets[i].valid); 2089 } 2090 #else 2091 static inline void throtl_update_latency_buckets(struct throtl_data *td) 2092 { 2093 } 2094 #endif 2095 2096 static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio) 2097 { 2098 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2099 int ret; 2100 2101 ret = bio_associate_current(bio); 2102 if (ret == 0 || ret == -EBUSY) 2103 bio->bi_cg_private = tg; 2104 blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio)); 2105 #else 2106 bio_associate_current(bio); 2107 #endif 2108 } 2109 2110 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg, 2111 struct bio *bio) 2112 { 2113 struct throtl_qnode *qn = NULL; 2114 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg); 2115 struct throtl_service_queue *sq; 2116 bool rw = bio_data_dir(bio); 2117 bool throttled = false; 2118 struct throtl_data *td = tg->td; 2119 2120 WARN_ON_ONCE(!rcu_read_lock_held()); 2121 2122 /* see throtl_charge_bio() */ 2123 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw]) 2124 goto out; 2125 2126 spin_lock_irq(q->queue_lock); 2127 2128 throtl_update_latency_buckets(td); 2129 2130 if (unlikely(blk_queue_bypass(q))) 2131 goto out_unlock; 2132 2133 blk_throtl_assoc_bio(tg, bio); 2134 blk_throtl_update_idletime(tg); 2135 2136 sq = &tg->service_queue; 2137 2138 again: 2139 while (true) { 2140 if (tg->last_low_overflow_time[rw] == 0) 2141 tg->last_low_overflow_time[rw] = jiffies; 2142 throtl_downgrade_check(tg); 2143 throtl_upgrade_check(tg); 2144 /* throtl is FIFO - if bios are already queued, should queue */ 2145 if (sq->nr_queued[rw]) 2146 break; 2147 2148 /* if above limits, break to queue */ 2149 if (!tg_may_dispatch(tg, bio, NULL)) { 2150 tg->last_low_overflow_time[rw] = jiffies; 2151 if (throtl_can_upgrade(td, tg)) { 2152 throtl_upgrade_state(td); 2153 goto again; 2154 } 2155 break; 2156 } 2157 2158 /* within limits, let's charge and dispatch directly */ 2159 throtl_charge_bio(tg, bio); 2160 2161 /* 2162 * We need to trim slice even when bios are not being queued 2163 * otherwise it might happen that a bio is not queued for 2164 * a long time and slice keeps on extending and trim is not 2165 * called for a long time. Now if limits are reduced suddenly 2166 * we take into account all the IO dispatched so far at new 2167 * low rate and * newly queued IO gets a really long dispatch 2168 * time. 2169 * 2170 * So keep on trimming slice even if bio is not queued. 2171 */ 2172 throtl_trim_slice(tg, rw); 2173 2174 /* 2175 * @bio passed through this layer without being throttled. 2176 * Climb up the ladder. If we''re already at the top, it 2177 * can be executed directly. 2178 */ 2179 qn = &tg->qnode_on_parent[rw]; 2180 sq = sq->parent_sq; 2181 tg = sq_to_tg(sq); 2182 if (!tg) 2183 goto out_unlock; 2184 } 2185 2186 /* out-of-limit, queue to @tg */ 2187 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", 2188 rw == READ ? 'R' : 'W', 2189 tg->bytes_disp[rw], bio->bi_iter.bi_size, 2190 tg_bps_limit(tg, rw), 2191 tg->io_disp[rw], tg_iops_limit(tg, rw), 2192 sq->nr_queued[READ], sq->nr_queued[WRITE]); 2193 2194 tg->last_low_overflow_time[rw] = jiffies; 2195 2196 td->nr_queued[rw]++; 2197 throtl_add_bio_tg(bio, qn, tg); 2198 throttled = true; 2199 2200 /* 2201 * Update @tg's dispatch time and force schedule dispatch if @tg 2202 * was empty before @bio. The forced scheduling isn't likely to 2203 * cause undue delay as @bio is likely to be dispatched directly if 2204 * its @tg's disptime is not in the future. 2205 */ 2206 if (tg->flags & THROTL_TG_WAS_EMPTY) { 2207 tg_update_disptime(tg); 2208 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); 2209 } 2210 2211 out_unlock: 2212 spin_unlock_irq(q->queue_lock); 2213 out: 2214 /* 2215 * As multiple blk-throtls may stack in the same issue path, we 2216 * don't want bios to leave with the flag set. Clear the flag if 2217 * being issued. 2218 */ 2219 if (!throttled) 2220 bio_clear_flag(bio, BIO_THROTTLED); 2221 2222 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2223 if (throttled || !td->track_bio_latency) 2224 bio->bi_issue_stat.stat |= SKIP_LATENCY; 2225 #endif 2226 return throttled; 2227 } 2228 2229 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2230 static void throtl_track_latency(struct throtl_data *td, sector_t size, 2231 int op, unsigned long time) 2232 { 2233 struct latency_bucket *latency; 2234 int index; 2235 2236 if (!td || td->limit_index != LIMIT_LOW || op != REQ_OP_READ || 2237 !blk_queue_nonrot(td->queue)) 2238 return; 2239 2240 index = request_bucket_index(size); 2241 2242 latency = get_cpu_ptr(td->latency_buckets); 2243 latency[index].total_latency += time; 2244 latency[index].samples++; 2245 put_cpu_ptr(td->latency_buckets); 2246 } 2247 2248 void blk_throtl_stat_add(struct request *rq, u64 time_ns) 2249 { 2250 struct request_queue *q = rq->q; 2251 struct throtl_data *td = q->td; 2252 2253 throtl_track_latency(td, blk_stat_size(&rq->issue_stat), 2254 req_op(rq), time_ns >> 10); 2255 } 2256 2257 void blk_throtl_bio_endio(struct bio *bio) 2258 { 2259 struct throtl_grp *tg; 2260 u64 finish_time_ns; 2261 unsigned long finish_time; 2262 unsigned long start_time; 2263 unsigned long lat; 2264 2265 tg = bio->bi_cg_private; 2266 if (!tg) 2267 return; 2268 bio->bi_cg_private = NULL; 2269 2270 finish_time_ns = ktime_get_ns(); 2271 tg->last_finish_time = finish_time_ns >> 10; 2272 2273 start_time = blk_stat_time(&bio->bi_issue_stat) >> 10; 2274 finish_time = __blk_stat_time(finish_time_ns) >> 10; 2275 if (!start_time || finish_time <= start_time) 2276 return; 2277 2278 lat = finish_time - start_time; 2279 /* this is only for bio based driver */ 2280 if (!(bio->bi_issue_stat.stat & SKIP_LATENCY)) 2281 throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat), 2282 bio_op(bio), lat); 2283 2284 if (tg->latency_target) { 2285 int bucket; 2286 unsigned int threshold; 2287 2288 bucket = request_bucket_index( 2289 blk_stat_size(&bio->bi_issue_stat)); 2290 threshold = tg->td->avg_buckets[bucket].latency + 2291 tg->latency_target; 2292 if (lat > threshold) 2293 tg->bad_bio_cnt++; 2294 /* 2295 * Not race free, could get wrong count, which means cgroups 2296 * will be throttled 2297 */ 2298 tg->bio_cnt++; 2299 } 2300 2301 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) { 2302 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies; 2303 tg->bio_cnt /= 2; 2304 tg->bad_bio_cnt /= 2; 2305 } 2306 } 2307 #endif 2308 2309 /* 2310 * Dispatch all bios from all children tg's queued on @parent_sq. On 2311 * return, @parent_sq is guaranteed to not have any active children tg's 2312 * and all bios from previously active tg's are on @parent_sq->bio_lists[]. 2313 */ 2314 static void tg_drain_bios(struct throtl_service_queue *parent_sq) 2315 { 2316 struct throtl_grp *tg; 2317 2318 while ((tg = throtl_rb_first(parent_sq))) { 2319 struct throtl_service_queue *sq = &tg->service_queue; 2320 struct bio *bio; 2321 2322 throtl_dequeue_tg(tg); 2323 2324 while ((bio = throtl_peek_queued(&sq->queued[READ]))) 2325 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 2326 while ((bio = throtl_peek_queued(&sq->queued[WRITE]))) 2327 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 2328 } 2329 } 2330 2331 /** 2332 * blk_throtl_drain - drain throttled bios 2333 * @q: request_queue to drain throttled bios for 2334 * 2335 * Dispatch all currently throttled bios on @q through ->make_request_fn(). 2336 */ 2337 void blk_throtl_drain(struct request_queue *q) 2338 __releases(q->queue_lock) __acquires(q->queue_lock) 2339 { 2340 struct throtl_data *td = q->td; 2341 struct blkcg_gq *blkg; 2342 struct cgroup_subsys_state *pos_css; 2343 struct bio *bio; 2344 int rw; 2345 2346 queue_lockdep_assert_held(q); 2347 rcu_read_lock(); 2348 2349 /* 2350 * Drain each tg while doing post-order walk on the blkg tree, so 2351 * that all bios are propagated to td->service_queue. It'd be 2352 * better to walk service_queue tree directly but blkg walk is 2353 * easier. 2354 */ 2355 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) 2356 tg_drain_bios(&blkg_to_tg(blkg)->service_queue); 2357 2358 /* finally, transfer bios from top-level tg's into the td */ 2359 tg_drain_bios(&td->service_queue); 2360 2361 rcu_read_unlock(); 2362 spin_unlock_irq(q->queue_lock); 2363 2364 /* all bios now should be in td->service_queue, issue them */ 2365 for (rw = READ; rw <= WRITE; rw++) 2366 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw], 2367 NULL))) 2368 generic_make_request(bio); 2369 2370 spin_lock_irq(q->queue_lock); 2371 } 2372 2373 int blk_throtl_init(struct request_queue *q) 2374 { 2375 struct throtl_data *td; 2376 int ret; 2377 2378 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 2379 if (!td) 2380 return -ENOMEM; 2381 td->latency_buckets = __alloc_percpu(sizeof(struct latency_bucket) * 2382 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2383 if (!td->latency_buckets) { 2384 kfree(td); 2385 return -ENOMEM; 2386 } 2387 2388 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); 2389 throtl_service_queue_init(&td->service_queue); 2390 2391 q->td = td; 2392 td->queue = q; 2393 2394 td->limit_valid[LIMIT_MAX] = true; 2395 td->limit_index = LIMIT_MAX; 2396 td->low_upgrade_time = jiffies; 2397 td->low_downgrade_time = jiffies; 2398 2399 /* activate policy */ 2400 ret = blkcg_activate_policy(q, &blkcg_policy_throtl); 2401 if (ret) { 2402 free_percpu(td->latency_buckets); 2403 kfree(td); 2404 } 2405 return ret; 2406 } 2407 2408 void blk_throtl_exit(struct request_queue *q) 2409 { 2410 BUG_ON(!q->td); 2411 throtl_shutdown_wq(q); 2412 blkcg_deactivate_policy(q, &blkcg_policy_throtl); 2413 free_percpu(q->td->latency_buckets); 2414 kfree(q->td); 2415 } 2416 2417 void blk_throtl_register_queue(struct request_queue *q) 2418 { 2419 struct throtl_data *td; 2420 2421 td = q->td; 2422 BUG_ON(!td); 2423 2424 if (blk_queue_nonrot(q)) 2425 td->throtl_slice = DFL_THROTL_SLICE_SSD; 2426 else 2427 td->throtl_slice = DFL_THROTL_SLICE_HD; 2428 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW 2429 /* if no low limit, use previous default */ 2430 td->throtl_slice = DFL_THROTL_SLICE_HD; 2431 #endif 2432 2433 td->track_bio_latency = !q->mq_ops && !q->request_fn; 2434 if (!td->track_bio_latency) 2435 blk_stat_enable_accounting(q); 2436 } 2437 2438 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2439 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page) 2440 { 2441 if (!q->td) 2442 return -EINVAL; 2443 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice)); 2444 } 2445 2446 ssize_t blk_throtl_sample_time_store(struct request_queue *q, 2447 const char *page, size_t count) 2448 { 2449 unsigned long v; 2450 unsigned long t; 2451 2452 if (!q->td) 2453 return -EINVAL; 2454 if (kstrtoul(page, 10, &v)) 2455 return -EINVAL; 2456 t = msecs_to_jiffies(v); 2457 if (t == 0 || t > MAX_THROTL_SLICE) 2458 return -EINVAL; 2459 q->td->throtl_slice = t; 2460 return count; 2461 } 2462 #endif 2463 2464 static int __init throtl_init(void) 2465 { 2466 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 2467 if (!kthrotld_workqueue) 2468 panic("Failed to create kthrotld\n"); 2469 2470 return blkcg_policy_register(&blkcg_policy_throtl); 2471 } 2472 2473 module_init(throtl_init); 2474