xref: /openbmc/linux/block/blk-throttle.c (revision bb0eb050)
1 /*
2  * Interface for controlling IO bandwidth on a request queue
3  *
4  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5  */
6 
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include <linux/blk-cgroup.h>
13 #include "blk.h"
14 
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17 
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20 
21 /* Throttling is performed over a slice and after that slice is renewed */
22 #define DFL_THROTL_SLICE_HD (HZ / 10)
23 #define DFL_THROTL_SLICE_SSD (HZ / 50)
24 #define MAX_THROTL_SLICE (HZ)
25 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
26 #define MIN_THROTL_BPS (320 * 1024)
27 #define MIN_THROTL_IOPS (10)
28 #define DFL_LATENCY_TARGET (-1L)
29 #define DFL_IDLE_THRESHOLD (0)
30 
31 #define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)
32 
33 static struct blkcg_policy blkcg_policy_throtl;
34 
35 /* A workqueue to queue throttle related work */
36 static struct workqueue_struct *kthrotld_workqueue;
37 
38 /*
39  * To implement hierarchical throttling, throtl_grps form a tree and bios
40  * are dispatched upwards level by level until they reach the top and get
41  * issued.  When dispatching bios from the children and local group at each
42  * level, if the bios are dispatched into a single bio_list, there's a risk
43  * of a local or child group which can queue many bios at once filling up
44  * the list starving others.
45  *
46  * To avoid such starvation, dispatched bios are queued separately
47  * according to where they came from.  When they are again dispatched to
48  * the parent, they're popped in round-robin order so that no single source
49  * hogs the dispatch window.
50  *
51  * throtl_qnode is used to keep the queued bios separated by their sources.
52  * Bios are queued to throtl_qnode which in turn is queued to
53  * throtl_service_queue and then dispatched in round-robin order.
54  *
55  * It's also used to track the reference counts on blkg's.  A qnode always
56  * belongs to a throtl_grp and gets queued on itself or the parent, so
57  * incrementing the reference of the associated throtl_grp when a qnode is
58  * queued and decrementing when dequeued is enough to keep the whole blkg
59  * tree pinned while bios are in flight.
60  */
61 struct throtl_qnode {
62 	struct list_head	node;		/* service_queue->queued[] */
63 	struct bio_list		bios;		/* queued bios */
64 	struct throtl_grp	*tg;		/* tg this qnode belongs to */
65 };
66 
67 struct throtl_service_queue {
68 	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
69 
70 	/*
71 	 * Bios queued directly to this service_queue or dispatched from
72 	 * children throtl_grp's.
73 	 */
74 	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
75 	unsigned int		nr_queued[2];	/* number of queued bios */
76 
77 	/*
78 	 * RB tree of active children throtl_grp's, which are sorted by
79 	 * their ->disptime.
80 	 */
81 	struct rb_root		pending_tree;	/* RB tree of active tgs */
82 	struct rb_node		*first_pending;	/* first node in the tree */
83 	unsigned int		nr_pending;	/* # queued in the tree */
84 	unsigned long		first_pending_disptime;	/* disptime of the first tg */
85 	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
86 };
87 
88 enum tg_state_flags {
89 	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
90 	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
91 };
92 
93 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
94 
95 enum {
96 	LIMIT_LOW,
97 	LIMIT_MAX,
98 	LIMIT_CNT,
99 };
100 
101 struct throtl_grp {
102 	/* must be the first member */
103 	struct blkg_policy_data pd;
104 
105 	/* active throtl group service_queue member */
106 	struct rb_node rb_node;
107 
108 	/* throtl_data this group belongs to */
109 	struct throtl_data *td;
110 
111 	/* this group's service queue */
112 	struct throtl_service_queue service_queue;
113 
114 	/*
115 	 * qnode_on_self is used when bios are directly queued to this
116 	 * throtl_grp so that local bios compete fairly with bios
117 	 * dispatched from children.  qnode_on_parent is used when bios are
118 	 * dispatched from this throtl_grp into its parent and will compete
119 	 * with the sibling qnode_on_parents and the parent's
120 	 * qnode_on_self.
121 	 */
122 	struct throtl_qnode qnode_on_self[2];
123 	struct throtl_qnode qnode_on_parent[2];
124 
125 	/*
126 	 * Dispatch time in jiffies. This is the estimated time when group
127 	 * will unthrottle and is ready to dispatch more bio. It is used as
128 	 * key to sort active groups in service tree.
129 	 */
130 	unsigned long disptime;
131 
132 	unsigned int flags;
133 
134 	/* are there any throtl rules between this group and td? */
135 	bool has_rules[2];
136 
137 	/* internally used bytes per second rate limits */
138 	uint64_t bps[2][LIMIT_CNT];
139 	/* user configured bps limits */
140 	uint64_t bps_conf[2][LIMIT_CNT];
141 
142 	/* internally used IOPS limits */
143 	unsigned int iops[2][LIMIT_CNT];
144 	/* user configured IOPS limits */
145 	unsigned int iops_conf[2][LIMIT_CNT];
146 
147 	/* Number of bytes disptached in current slice */
148 	uint64_t bytes_disp[2];
149 	/* Number of bio's dispatched in current slice */
150 	unsigned int io_disp[2];
151 
152 	unsigned long last_low_overflow_time[2];
153 
154 	uint64_t last_bytes_disp[2];
155 	unsigned int last_io_disp[2];
156 
157 	unsigned long last_check_time;
158 
159 	unsigned long latency_target; /* us */
160 	unsigned long latency_target_conf; /* us */
161 	/* When did we start a new slice */
162 	unsigned long slice_start[2];
163 	unsigned long slice_end[2];
164 
165 	unsigned long last_finish_time; /* ns / 1024 */
166 	unsigned long checked_last_finish_time; /* ns / 1024 */
167 	unsigned long avg_idletime; /* ns / 1024 */
168 	unsigned long idletime_threshold; /* us */
169 	unsigned long idletime_threshold_conf; /* us */
170 
171 	unsigned int bio_cnt; /* total bios */
172 	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
173 	unsigned long bio_cnt_reset_time;
174 };
175 
176 /* We measure latency for request size from <= 4k to >= 1M */
177 #define LATENCY_BUCKET_SIZE 9
178 
179 struct latency_bucket {
180 	unsigned long total_latency; /* ns / 1024 */
181 	int samples;
182 };
183 
184 struct avg_latency_bucket {
185 	unsigned long latency; /* ns / 1024 */
186 	bool valid;
187 };
188 
189 struct throtl_data
190 {
191 	/* service tree for active throtl groups */
192 	struct throtl_service_queue service_queue;
193 
194 	struct request_queue *queue;
195 
196 	/* Total Number of queued bios on READ and WRITE lists */
197 	unsigned int nr_queued[2];
198 
199 	unsigned int throtl_slice;
200 
201 	/* Work for dispatching throttled bios */
202 	struct work_struct dispatch_work;
203 	unsigned int limit_index;
204 	bool limit_valid[LIMIT_CNT];
205 
206 	unsigned long low_upgrade_time;
207 	unsigned long low_downgrade_time;
208 
209 	unsigned int scale;
210 
211 	struct latency_bucket tmp_buckets[LATENCY_BUCKET_SIZE];
212 	struct avg_latency_bucket avg_buckets[LATENCY_BUCKET_SIZE];
213 	struct latency_bucket __percpu *latency_buckets;
214 	unsigned long last_calculate_time;
215 
216 	bool track_bio_latency;
217 };
218 
219 static void throtl_pending_timer_fn(unsigned long arg);
220 
221 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
222 {
223 	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
224 }
225 
226 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
227 {
228 	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
229 }
230 
231 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
232 {
233 	return pd_to_blkg(&tg->pd);
234 }
235 
236 /**
237  * sq_to_tg - return the throl_grp the specified service queue belongs to
238  * @sq: the throtl_service_queue of interest
239  *
240  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
241  * embedded in throtl_data, %NULL is returned.
242  */
243 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
244 {
245 	if (sq && sq->parent_sq)
246 		return container_of(sq, struct throtl_grp, service_queue);
247 	else
248 		return NULL;
249 }
250 
251 /**
252  * sq_to_td - return throtl_data the specified service queue belongs to
253  * @sq: the throtl_service_queue of interest
254  *
255  * A service_queue can be embedded in either a throtl_grp or throtl_data.
256  * Determine the associated throtl_data accordingly and return it.
257  */
258 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
259 {
260 	struct throtl_grp *tg = sq_to_tg(sq);
261 
262 	if (tg)
263 		return tg->td;
264 	else
265 		return container_of(sq, struct throtl_data, service_queue);
266 }
267 
268 /*
269  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
270  * make the IO dispatch more smooth.
271  * Scale up: linearly scale up according to lapsed time since upgrade. For
272  *           every throtl_slice, the limit scales up 1/2 .low limit till the
273  *           limit hits .max limit
274  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
275  */
276 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
277 {
278 	/* arbitrary value to avoid too big scale */
279 	if (td->scale < 4096 && time_after_eq(jiffies,
280 	    td->low_upgrade_time + td->scale * td->throtl_slice))
281 		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
282 
283 	return low + (low >> 1) * td->scale;
284 }
285 
286 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
287 {
288 	struct blkcg_gq *blkg = tg_to_blkg(tg);
289 	struct throtl_data *td;
290 	uint64_t ret;
291 
292 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
293 		return U64_MAX;
294 
295 	td = tg->td;
296 	ret = tg->bps[rw][td->limit_index];
297 	if (ret == 0 && td->limit_index == LIMIT_LOW) {
298 		/* intermediate node or iops isn't 0 */
299 		if (!list_empty(&blkg->blkcg->css.children) ||
300 		    tg->iops[rw][td->limit_index])
301 			return U64_MAX;
302 		else
303 			return MIN_THROTL_BPS;
304 	}
305 
306 	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
307 	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
308 		uint64_t adjusted;
309 
310 		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
311 		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
312 	}
313 	return ret;
314 }
315 
316 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
317 {
318 	struct blkcg_gq *blkg = tg_to_blkg(tg);
319 	struct throtl_data *td;
320 	unsigned int ret;
321 
322 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
323 		return UINT_MAX;
324 
325 	td = tg->td;
326 	ret = tg->iops[rw][td->limit_index];
327 	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
328 		/* intermediate node or bps isn't 0 */
329 		if (!list_empty(&blkg->blkcg->css.children) ||
330 		    tg->bps[rw][td->limit_index])
331 			return UINT_MAX;
332 		else
333 			return MIN_THROTL_IOPS;
334 	}
335 
336 	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
337 	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
338 		uint64_t adjusted;
339 
340 		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
341 		if (adjusted > UINT_MAX)
342 			adjusted = UINT_MAX;
343 		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
344 	}
345 	return ret;
346 }
347 
348 #define request_bucket_index(sectors) \
349 	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
350 
351 /**
352  * throtl_log - log debug message via blktrace
353  * @sq: the service_queue being reported
354  * @fmt: printf format string
355  * @args: printf args
356  *
357  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
358  * throtl_grp; otherwise, just "throtl".
359  */
360 #define throtl_log(sq, fmt, args...)	do {				\
361 	struct throtl_grp *__tg = sq_to_tg((sq));			\
362 	struct throtl_data *__td = sq_to_td((sq));			\
363 									\
364 	(void)__td;							\
365 	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
366 		break;							\
367 	if ((__tg)) {							\
368 		char __pbuf[128];					\
369 									\
370 		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
371 		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
372 	} else {							\
373 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
374 	}								\
375 } while (0)
376 
377 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
378 {
379 	INIT_LIST_HEAD(&qn->node);
380 	bio_list_init(&qn->bios);
381 	qn->tg = tg;
382 }
383 
384 /**
385  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
386  * @bio: bio being added
387  * @qn: qnode to add bio to
388  * @queued: the service_queue->queued[] list @qn belongs to
389  *
390  * Add @bio to @qn and put @qn on @queued if it's not already on.
391  * @qn->tg's reference count is bumped when @qn is activated.  See the
392  * comment on top of throtl_qnode definition for details.
393  */
394 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
395 				 struct list_head *queued)
396 {
397 	bio_list_add(&qn->bios, bio);
398 	if (list_empty(&qn->node)) {
399 		list_add_tail(&qn->node, queued);
400 		blkg_get(tg_to_blkg(qn->tg));
401 	}
402 }
403 
404 /**
405  * throtl_peek_queued - peek the first bio on a qnode list
406  * @queued: the qnode list to peek
407  */
408 static struct bio *throtl_peek_queued(struct list_head *queued)
409 {
410 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
411 	struct bio *bio;
412 
413 	if (list_empty(queued))
414 		return NULL;
415 
416 	bio = bio_list_peek(&qn->bios);
417 	WARN_ON_ONCE(!bio);
418 	return bio;
419 }
420 
421 /**
422  * throtl_pop_queued - pop the first bio form a qnode list
423  * @queued: the qnode list to pop a bio from
424  * @tg_to_put: optional out argument for throtl_grp to put
425  *
426  * Pop the first bio from the qnode list @queued.  After popping, the first
427  * qnode is removed from @queued if empty or moved to the end of @queued so
428  * that the popping order is round-robin.
429  *
430  * When the first qnode is removed, its associated throtl_grp should be put
431  * too.  If @tg_to_put is NULL, this function automatically puts it;
432  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
433  * responsible for putting it.
434  */
435 static struct bio *throtl_pop_queued(struct list_head *queued,
436 				     struct throtl_grp **tg_to_put)
437 {
438 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
439 	struct bio *bio;
440 
441 	if (list_empty(queued))
442 		return NULL;
443 
444 	bio = bio_list_pop(&qn->bios);
445 	WARN_ON_ONCE(!bio);
446 
447 	if (bio_list_empty(&qn->bios)) {
448 		list_del_init(&qn->node);
449 		if (tg_to_put)
450 			*tg_to_put = qn->tg;
451 		else
452 			blkg_put(tg_to_blkg(qn->tg));
453 	} else {
454 		list_move_tail(&qn->node, queued);
455 	}
456 
457 	return bio;
458 }
459 
460 /* init a service_queue, assumes the caller zeroed it */
461 static void throtl_service_queue_init(struct throtl_service_queue *sq)
462 {
463 	INIT_LIST_HEAD(&sq->queued[0]);
464 	INIT_LIST_HEAD(&sq->queued[1]);
465 	sq->pending_tree = RB_ROOT;
466 	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
467 		    (unsigned long)sq);
468 }
469 
470 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
471 {
472 	struct throtl_grp *tg;
473 	int rw;
474 
475 	tg = kzalloc_node(sizeof(*tg), gfp, node);
476 	if (!tg)
477 		return NULL;
478 
479 	throtl_service_queue_init(&tg->service_queue);
480 
481 	for (rw = READ; rw <= WRITE; rw++) {
482 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
483 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
484 	}
485 
486 	RB_CLEAR_NODE(&tg->rb_node);
487 	tg->bps[READ][LIMIT_MAX] = U64_MAX;
488 	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
489 	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
490 	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
491 	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
492 	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
493 	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
494 	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
495 	/* LIMIT_LOW will have default value 0 */
496 
497 	tg->latency_target = DFL_LATENCY_TARGET;
498 	tg->latency_target_conf = DFL_LATENCY_TARGET;
499 	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
500 	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
501 
502 	return &tg->pd;
503 }
504 
505 static void throtl_pd_init(struct blkg_policy_data *pd)
506 {
507 	struct throtl_grp *tg = pd_to_tg(pd);
508 	struct blkcg_gq *blkg = tg_to_blkg(tg);
509 	struct throtl_data *td = blkg->q->td;
510 	struct throtl_service_queue *sq = &tg->service_queue;
511 
512 	/*
513 	 * If on the default hierarchy, we switch to properly hierarchical
514 	 * behavior where limits on a given throtl_grp are applied to the
515 	 * whole subtree rather than just the group itself.  e.g. If 16M
516 	 * read_bps limit is set on the root group, the whole system can't
517 	 * exceed 16M for the device.
518 	 *
519 	 * If not on the default hierarchy, the broken flat hierarchy
520 	 * behavior is retained where all throtl_grps are treated as if
521 	 * they're all separate root groups right below throtl_data.
522 	 * Limits of a group don't interact with limits of other groups
523 	 * regardless of the position of the group in the hierarchy.
524 	 */
525 	sq->parent_sq = &td->service_queue;
526 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
527 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
528 	tg->td = td;
529 }
530 
531 /*
532  * Set has_rules[] if @tg or any of its parents have limits configured.
533  * This doesn't require walking up to the top of the hierarchy as the
534  * parent's has_rules[] is guaranteed to be correct.
535  */
536 static void tg_update_has_rules(struct throtl_grp *tg)
537 {
538 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
539 	struct throtl_data *td = tg->td;
540 	int rw;
541 
542 	for (rw = READ; rw <= WRITE; rw++)
543 		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
544 			(td->limit_valid[td->limit_index] &&
545 			 (tg_bps_limit(tg, rw) != U64_MAX ||
546 			  tg_iops_limit(tg, rw) != UINT_MAX));
547 }
548 
549 static void throtl_pd_online(struct blkg_policy_data *pd)
550 {
551 	struct throtl_grp *tg = pd_to_tg(pd);
552 	/*
553 	 * We don't want new groups to escape the limits of its ancestors.
554 	 * Update has_rules[] after a new group is brought online.
555 	 */
556 	tg_update_has_rules(tg);
557 }
558 
559 static void blk_throtl_update_limit_valid(struct throtl_data *td)
560 {
561 	struct cgroup_subsys_state *pos_css;
562 	struct blkcg_gq *blkg;
563 	bool low_valid = false;
564 
565 	rcu_read_lock();
566 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
567 		struct throtl_grp *tg = blkg_to_tg(blkg);
568 
569 		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
570 		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
571 			low_valid = true;
572 	}
573 	rcu_read_unlock();
574 
575 	td->limit_valid[LIMIT_LOW] = low_valid;
576 }
577 
578 static void throtl_upgrade_state(struct throtl_data *td);
579 static void throtl_pd_offline(struct blkg_policy_data *pd)
580 {
581 	struct throtl_grp *tg = pd_to_tg(pd);
582 
583 	tg->bps[READ][LIMIT_LOW] = 0;
584 	tg->bps[WRITE][LIMIT_LOW] = 0;
585 	tg->iops[READ][LIMIT_LOW] = 0;
586 	tg->iops[WRITE][LIMIT_LOW] = 0;
587 
588 	blk_throtl_update_limit_valid(tg->td);
589 
590 	if (!tg->td->limit_valid[tg->td->limit_index])
591 		throtl_upgrade_state(tg->td);
592 }
593 
594 static void throtl_pd_free(struct blkg_policy_data *pd)
595 {
596 	struct throtl_grp *tg = pd_to_tg(pd);
597 
598 	del_timer_sync(&tg->service_queue.pending_timer);
599 	kfree(tg);
600 }
601 
602 static struct throtl_grp *
603 throtl_rb_first(struct throtl_service_queue *parent_sq)
604 {
605 	/* Service tree is empty */
606 	if (!parent_sq->nr_pending)
607 		return NULL;
608 
609 	if (!parent_sq->first_pending)
610 		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
611 
612 	if (parent_sq->first_pending)
613 		return rb_entry_tg(parent_sq->first_pending);
614 
615 	return NULL;
616 }
617 
618 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
619 {
620 	rb_erase(n, root);
621 	RB_CLEAR_NODE(n);
622 }
623 
624 static void throtl_rb_erase(struct rb_node *n,
625 			    struct throtl_service_queue *parent_sq)
626 {
627 	if (parent_sq->first_pending == n)
628 		parent_sq->first_pending = NULL;
629 	rb_erase_init(n, &parent_sq->pending_tree);
630 	--parent_sq->nr_pending;
631 }
632 
633 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
634 {
635 	struct throtl_grp *tg;
636 
637 	tg = throtl_rb_first(parent_sq);
638 	if (!tg)
639 		return;
640 
641 	parent_sq->first_pending_disptime = tg->disptime;
642 }
643 
644 static void tg_service_queue_add(struct throtl_grp *tg)
645 {
646 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
647 	struct rb_node **node = &parent_sq->pending_tree.rb_node;
648 	struct rb_node *parent = NULL;
649 	struct throtl_grp *__tg;
650 	unsigned long key = tg->disptime;
651 	int left = 1;
652 
653 	while (*node != NULL) {
654 		parent = *node;
655 		__tg = rb_entry_tg(parent);
656 
657 		if (time_before(key, __tg->disptime))
658 			node = &parent->rb_left;
659 		else {
660 			node = &parent->rb_right;
661 			left = 0;
662 		}
663 	}
664 
665 	if (left)
666 		parent_sq->first_pending = &tg->rb_node;
667 
668 	rb_link_node(&tg->rb_node, parent, node);
669 	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
670 }
671 
672 static void __throtl_enqueue_tg(struct throtl_grp *tg)
673 {
674 	tg_service_queue_add(tg);
675 	tg->flags |= THROTL_TG_PENDING;
676 	tg->service_queue.parent_sq->nr_pending++;
677 }
678 
679 static void throtl_enqueue_tg(struct throtl_grp *tg)
680 {
681 	if (!(tg->flags & THROTL_TG_PENDING))
682 		__throtl_enqueue_tg(tg);
683 }
684 
685 static void __throtl_dequeue_tg(struct throtl_grp *tg)
686 {
687 	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
688 	tg->flags &= ~THROTL_TG_PENDING;
689 }
690 
691 static void throtl_dequeue_tg(struct throtl_grp *tg)
692 {
693 	if (tg->flags & THROTL_TG_PENDING)
694 		__throtl_dequeue_tg(tg);
695 }
696 
697 /* Call with queue lock held */
698 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
699 					  unsigned long expires)
700 {
701 	unsigned long max_expire = jiffies + 8 * sq_to_tg(sq)->td->throtl_slice;
702 
703 	/*
704 	 * Since we are adjusting the throttle limit dynamically, the sleep
705 	 * time calculated according to previous limit might be invalid. It's
706 	 * possible the cgroup sleep time is very long and no other cgroups
707 	 * have IO running so notify the limit changes. Make sure the cgroup
708 	 * doesn't sleep too long to avoid the missed notification.
709 	 */
710 	if (time_after(expires, max_expire))
711 		expires = max_expire;
712 	mod_timer(&sq->pending_timer, expires);
713 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
714 		   expires - jiffies, jiffies);
715 }
716 
717 /**
718  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
719  * @sq: the service_queue to schedule dispatch for
720  * @force: force scheduling
721  *
722  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
723  * dispatch time of the first pending child.  Returns %true if either timer
724  * is armed or there's no pending child left.  %false if the current
725  * dispatch window is still open and the caller should continue
726  * dispatching.
727  *
728  * If @force is %true, the dispatch timer is always scheduled and this
729  * function is guaranteed to return %true.  This is to be used when the
730  * caller can't dispatch itself and needs to invoke pending_timer
731  * unconditionally.  Note that forced scheduling is likely to induce short
732  * delay before dispatch starts even if @sq->first_pending_disptime is not
733  * in the future and thus shouldn't be used in hot paths.
734  */
735 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
736 					  bool force)
737 {
738 	/* any pending children left? */
739 	if (!sq->nr_pending)
740 		return true;
741 
742 	update_min_dispatch_time(sq);
743 
744 	/* is the next dispatch time in the future? */
745 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
746 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
747 		return true;
748 	}
749 
750 	/* tell the caller to continue dispatching */
751 	return false;
752 }
753 
754 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
755 		bool rw, unsigned long start)
756 {
757 	tg->bytes_disp[rw] = 0;
758 	tg->io_disp[rw] = 0;
759 
760 	/*
761 	 * Previous slice has expired. We must have trimmed it after last
762 	 * bio dispatch. That means since start of last slice, we never used
763 	 * that bandwidth. Do try to make use of that bandwidth while giving
764 	 * credit.
765 	 */
766 	if (time_after_eq(start, tg->slice_start[rw]))
767 		tg->slice_start[rw] = start;
768 
769 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
770 	throtl_log(&tg->service_queue,
771 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
772 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
773 		   tg->slice_end[rw], jiffies);
774 }
775 
776 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
777 {
778 	tg->bytes_disp[rw] = 0;
779 	tg->io_disp[rw] = 0;
780 	tg->slice_start[rw] = jiffies;
781 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
782 	throtl_log(&tg->service_queue,
783 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
784 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
785 		   tg->slice_end[rw], jiffies);
786 }
787 
788 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
789 					unsigned long jiffy_end)
790 {
791 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
792 }
793 
794 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
795 				       unsigned long jiffy_end)
796 {
797 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
798 	throtl_log(&tg->service_queue,
799 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
800 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
801 		   tg->slice_end[rw], jiffies);
802 }
803 
804 /* Determine if previously allocated or extended slice is complete or not */
805 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
806 {
807 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
808 		return false;
809 
810 	return 1;
811 }
812 
813 /* Trim the used slices and adjust slice start accordingly */
814 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
815 {
816 	unsigned long nr_slices, time_elapsed, io_trim;
817 	u64 bytes_trim, tmp;
818 
819 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
820 
821 	/*
822 	 * If bps are unlimited (-1), then time slice don't get
823 	 * renewed. Don't try to trim the slice if slice is used. A new
824 	 * slice will start when appropriate.
825 	 */
826 	if (throtl_slice_used(tg, rw))
827 		return;
828 
829 	/*
830 	 * A bio has been dispatched. Also adjust slice_end. It might happen
831 	 * that initially cgroup limit was very low resulting in high
832 	 * slice_end, but later limit was bumped up and bio was dispached
833 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
834 	 * is bad because it does not allow new slice to start.
835 	 */
836 
837 	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
838 
839 	time_elapsed = jiffies - tg->slice_start[rw];
840 
841 	nr_slices = time_elapsed / tg->td->throtl_slice;
842 
843 	if (!nr_slices)
844 		return;
845 	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
846 	do_div(tmp, HZ);
847 	bytes_trim = tmp;
848 
849 	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
850 		HZ;
851 
852 	if (!bytes_trim && !io_trim)
853 		return;
854 
855 	if (tg->bytes_disp[rw] >= bytes_trim)
856 		tg->bytes_disp[rw] -= bytes_trim;
857 	else
858 		tg->bytes_disp[rw] = 0;
859 
860 	if (tg->io_disp[rw] >= io_trim)
861 		tg->io_disp[rw] -= io_trim;
862 	else
863 		tg->io_disp[rw] = 0;
864 
865 	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
866 
867 	throtl_log(&tg->service_queue,
868 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
869 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
870 		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
871 }
872 
873 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
874 				  unsigned long *wait)
875 {
876 	bool rw = bio_data_dir(bio);
877 	unsigned int io_allowed;
878 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
879 	u64 tmp;
880 
881 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
882 
883 	/* Slice has just started. Consider one slice interval */
884 	if (!jiffy_elapsed)
885 		jiffy_elapsed_rnd = tg->td->throtl_slice;
886 
887 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
888 
889 	/*
890 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
891 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
892 	 * will allow dispatch after 1 second and after that slice should
893 	 * have been trimmed.
894 	 */
895 
896 	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
897 	do_div(tmp, HZ);
898 
899 	if (tmp > UINT_MAX)
900 		io_allowed = UINT_MAX;
901 	else
902 		io_allowed = tmp;
903 
904 	if (tg->io_disp[rw] + 1 <= io_allowed) {
905 		if (wait)
906 			*wait = 0;
907 		return true;
908 	}
909 
910 	/* Calc approx time to dispatch */
911 	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
912 
913 	if (jiffy_wait > jiffy_elapsed)
914 		jiffy_wait = jiffy_wait - jiffy_elapsed;
915 	else
916 		jiffy_wait = 1;
917 
918 	if (wait)
919 		*wait = jiffy_wait;
920 	return 0;
921 }
922 
923 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
924 				 unsigned long *wait)
925 {
926 	bool rw = bio_data_dir(bio);
927 	u64 bytes_allowed, extra_bytes, tmp;
928 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
929 
930 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
931 
932 	/* Slice has just started. Consider one slice interval */
933 	if (!jiffy_elapsed)
934 		jiffy_elapsed_rnd = tg->td->throtl_slice;
935 
936 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
937 
938 	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
939 	do_div(tmp, HZ);
940 	bytes_allowed = tmp;
941 
942 	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
943 		if (wait)
944 			*wait = 0;
945 		return true;
946 	}
947 
948 	/* Calc approx time to dispatch */
949 	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
950 	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
951 
952 	if (!jiffy_wait)
953 		jiffy_wait = 1;
954 
955 	/*
956 	 * This wait time is without taking into consideration the rounding
957 	 * up we did. Add that time also.
958 	 */
959 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
960 	if (wait)
961 		*wait = jiffy_wait;
962 	return 0;
963 }
964 
965 /*
966  * Returns whether one can dispatch a bio or not. Also returns approx number
967  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
968  */
969 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
970 			    unsigned long *wait)
971 {
972 	bool rw = bio_data_dir(bio);
973 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
974 
975 	/*
976  	 * Currently whole state machine of group depends on first bio
977 	 * queued in the group bio list. So one should not be calling
978 	 * this function with a different bio if there are other bios
979 	 * queued.
980 	 */
981 	BUG_ON(tg->service_queue.nr_queued[rw] &&
982 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
983 
984 	/* If tg->bps = -1, then BW is unlimited */
985 	if (tg_bps_limit(tg, rw) == U64_MAX &&
986 	    tg_iops_limit(tg, rw) == UINT_MAX) {
987 		if (wait)
988 			*wait = 0;
989 		return true;
990 	}
991 
992 	/*
993 	 * If previous slice expired, start a new one otherwise renew/extend
994 	 * existing slice to make sure it is at least throtl_slice interval
995 	 * long since now. New slice is started only for empty throttle group.
996 	 * If there is queued bio, that means there should be an active
997 	 * slice and it should be extended instead.
998 	 */
999 	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1000 		throtl_start_new_slice(tg, rw);
1001 	else {
1002 		if (time_before(tg->slice_end[rw],
1003 		    jiffies + tg->td->throtl_slice))
1004 			throtl_extend_slice(tg, rw,
1005 				jiffies + tg->td->throtl_slice);
1006 	}
1007 
1008 	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
1009 	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1010 		if (wait)
1011 			*wait = 0;
1012 		return 1;
1013 	}
1014 
1015 	max_wait = max(bps_wait, iops_wait);
1016 
1017 	if (wait)
1018 		*wait = max_wait;
1019 
1020 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1021 		throtl_extend_slice(tg, rw, jiffies + max_wait);
1022 
1023 	return 0;
1024 }
1025 
1026 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1027 {
1028 	bool rw = bio_data_dir(bio);
1029 
1030 	/* Charge the bio to the group */
1031 	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
1032 	tg->io_disp[rw]++;
1033 	tg->last_bytes_disp[rw] += bio->bi_iter.bi_size;
1034 	tg->last_io_disp[rw]++;
1035 
1036 	/*
1037 	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1038 	 * more than once as a throttled bio will go through blk-throtl the
1039 	 * second time when it eventually gets issued.  Set it when a bio
1040 	 * is being charged to a tg.
1041 	 */
1042 	if (!bio_flagged(bio, BIO_THROTTLED))
1043 		bio_set_flag(bio, BIO_THROTTLED);
1044 }
1045 
1046 /**
1047  * throtl_add_bio_tg - add a bio to the specified throtl_grp
1048  * @bio: bio to add
1049  * @qn: qnode to use
1050  * @tg: the target throtl_grp
1051  *
1052  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1053  * tg->qnode_on_self[] is used.
1054  */
1055 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1056 			      struct throtl_grp *tg)
1057 {
1058 	struct throtl_service_queue *sq = &tg->service_queue;
1059 	bool rw = bio_data_dir(bio);
1060 
1061 	if (!qn)
1062 		qn = &tg->qnode_on_self[rw];
1063 
1064 	/*
1065 	 * If @tg doesn't currently have any bios queued in the same
1066 	 * direction, queueing @bio can change when @tg should be
1067 	 * dispatched.  Mark that @tg was empty.  This is automatically
1068 	 * cleaered on the next tg_update_disptime().
1069 	 */
1070 	if (!sq->nr_queued[rw])
1071 		tg->flags |= THROTL_TG_WAS_EMPTY;
1072 
1073 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1074 
1075 	sq->nr_queued[rw]++;
1076 	throtl_enqueue_tg(tg);
1077 }
1078 
1079 static void tg_update_disptime(struct throtl_grp *tg)
1080 {
1081 	struct throtl_service_queue *sq = &tg->service_queue;
1082 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1083 	struct bio *bio;
1084 
1085 	bio = throtl_peek_queued(&sq->queued[READ]);
1086 	if (bio)
1087 		tg_may_dispatch(tg, bio, &read_wait);
1088 
1089 	bio = throtl_peek_queued(&sq->queued[WRITE]);
1090 	if (bio)
1091 		tg_may_dispatch(tg, bio, &write_wait);
1092 
1093 	min_wait = min(read_wait, write_wait);
1094 	disptime = jiffies + min_wait;
1095 
1096 	/* Update dispatch time */
1097 	throtl_dequeue_tg(tg);
1098 	tg->disptime = disptime;
1099 	throtl_enqueue_tg(tg);
1100 
1101 	/* see throtl_add_bio_tg() */
1102 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1103 }
1104 
1105 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1106 					struct throtl_grp *parent_tg, bool rw)
1107 {
1108 	if (throtl_slice_used(parent_tg, rw)) {
1109 		throtl_start_new_slice_with_credit(parent_tg, rw,
1110 				child_tg->slice_start[rw]);
1111 	}
1112 
1113 }
1114 
1115 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1116 {
1117 	struct throtl_service_queue *sq = &tg->service_queue;
1118 	struct throtl_service_queue *parent_sq = sq->parent_sq;
1119 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1120 	struct throtl_grp *tg_to_put = NULL;
1121 	struct bio *bio;
1122 
1123 	/*
1124 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1125 	 * from @tg may put its reference and @parent_sq might end up
1126 	 * getting released prematurely.  Remember the tg to put and put it
1127 	 * after @bio is transferred to @parent_sq.
1128 	 */
1129 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1130 	sq->nr_queued[rw]--;
1131 
1132 	throtl_charge_bio(tg, bio);
1133 
1134 	/*
1135 	 * If our parent is another tg, we just need to transfer @bio to
1136 	 * the parent using throtl_add_bio_tg().  If our parent is
1137 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1138 	 * bio_lists[] and decrease total number queued.  The caller is
1139 	 * responsible for issuing these bios.
1140 	 */
1141 	if (parent_tg) {
1142 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1143 		start_parent_slice_with_credit(tg, parent_tg, rw);
1144 	} else {
1145 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1146 				     &parent_sq->queued[rw]);
1147 		BUG_ON(tg->td->nr_queued[rw] <= 0);
1148 		tg->td->nr_queued[rw]--;
1149 	}
1150 
1151 	throtl_trim_slice(tg, rw);
1152 
1153 	if (tg_to_put)
1154 		blkg_put(tg_to_blkg(tg_to_put));
1155 }
1156 
1157 static int throtl_dispatch_tg(struct throtl_grp *tg)
1158 {
1159 	struct throtl_service_queue *sq = &tg->service_queue;
1160 	unsigned int nr_reads = 0, nr_writes = 0;
1161 	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1162 	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1163 	struct bio *bio;
1164 
1165 	/* Try to dispatch 75% READS and 25% WRITES */
1166 
1167 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1168 	       tg_may_dispatch(tg, bio, NULL)) {
1169 
1170 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1171 		nr_reads++;
1172 
1173 		if (nr_reads >= max_nr_reads)
1174 			break;
1175 	}
1176 
1177 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1178 	       tg_may_dispatch(tg, bio, NULL)) {
1179 
1180 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1181 		nr_writes++;
1182 
1183 		if (nr_writes >= max_nr_writes)
1184 			break;
1185 	}
1186 
1187 	return nr_reads + nr_writes;
1188 }
1189 
1190 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1191 {
1192 	unsigned int nr_disp = 0;
1193 
1194 	while (1) {
1195 		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1196 		struct throtl_service_queue *sq = &tg->service_queue;
1197 
1198 		if (!tg)
1199 			break;
1200 
1201 		if (time_before(jiffies, tg->disptime))
1202 			break;
1203 
1204 		throtl_dequeue_tg(tg);
1205 
1206 		nr_disp += throtl_dispatch_tg(tg);
1207 
1208 		if (sq->nr_queued[0] || sq->nr_queued[1])
1209 			tg_update_disptime(tg);
1210 
1211 		if (nr_disp >= throtl_quantum)
1212 			break;
1213 	}
1214 
1215 	return nr_disp;
1216 }
1217 
1218 static bool throtl_can_upgrade(struct throtl_data *td,
1219 	struct throtl_grp *this_tg);
1220 /**
1221  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1222  * @arg: the throtl_service_queue being serviced
1223  *
1224  * This timer is armed when a child throtl_grp with active bio's become
1225  * pending and queued on the service_queue's pending_tree and expires when
1226  * the first child throtl_grp should be dispatched.  This function
1227  * dispatches bio's from the children throtl_grps to the parent
1228  * service_queue.
1229  *
1230  * If the parent's parent is another throtl_grp, dispatching is propagated
1231  * by either arming its pending_timer or repeating dispatch directly.  If
1232  * the top-level service_tree is reached, throtl_data->dispatch_work is
1233  * kicked so that the ready bio's are issued.
1234  */
1235 static void throtl_pending_timer_fn(unsigned long arg)
1236 {
1237 	struct throtl_service_queue *sq = (void *)arg;
1238 	struct throtl_grp *tg = sq_to_tg(sq);
1239 	struct throtl_data *td = sq_to_td(sq);
1240 	struct request_queue *q = td->queue;
1241 	struct throtl_service_queue *parent_sq;
1242 	bool dispatched;
1243 	int ret;
1244 
1245 	spin_lock_irq(q->queue_lock);
1246 	if (throtl_can_upgrade(td, NULL))
1247 		throtl_upgrade_state(td);
1248 
1249 again:
1250 	parent_sq = sq->parent_sq;
1251 	dispatched = false;
1252 
1253 	while (true) {
1254 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1255 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1256 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1257 
1258 		ret = throtl_select_dispatch(sq);
1259 		if (ret) {
1260 			throtl_log(sq, "bios disp=%u", ret);
1261 			dispatched = true;
1262 		}
1263 
1264 		if (throtl_schedule_next_dispatch(sq, false))
1265 			break;
1266 
1267 		/* this dispatch windows is still open, relax and repeat */
1268 		spin_unlock_irq(q->queue_lock);
1269 		cpu_relax();
1270 		spin_lock_irq(q->queue_lock);
1271 	}
1272 
1273 	if (!dispatched)
1274 		goto out_unlock;
1275 
1276 	if (parent_sq) {
1277 		/* @parent_sq is another throl_grp, propagate dispatch */
1278 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1279 			tg_update_disptime(tg);
1280 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1281 				/* window is already open, repeat dispatching */
1282 				sq = parent_sq;
1283 				tg = sq_to_tg(sq);
1284 				goto again;
1285 			}
1286 		}
1287 	} else {
1288 		/* reached the top-level, queue issueing */
1289 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1290 	}
1291 out_unlock:
1292 	spin_unlock_irq(q->queue_lock);
1293 }
1294 
1295 /**
1296  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1297  * @work: work item being executed
1298  *
1299  * This function is queued for execution when bio's reach the bio_lists[]
1300  * of throtl_data->service_queue.  Those bio's are ready and issued by this
1301  * function.
1302  */
1303 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1304 {
1305 	struct throtl_data *td = container_of(work, struct throtl_data,
1306 					      dispatch_work);
1307 	struct throtl_service_queue *td_sq = &td->service_queue;
1308 	struct request_queue *q = td->queue;
1309 	struct bio_list bio_list_on_stack;
1310 	struct bio *bio;
1311 	struct blk_plug plug;
1312 	int rw;
1313 
1314 	bio_list_init(&bio_list_on_stack);
1315 
1316 	spin_lock_irq(q->queue_lock);
1317 	for (rw = READ; rw <= WRITE; rw++)
1318 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1319 			bio_list_add(&bio_list_on_stack, bio);
1320 	spin_unlock_irq(q->queue_lock);
1321 
1322 	if (!bio_list_empty(&bio_list_on_stack)) {
1323 		blk_start_plug(&plug);
1324 		while((bio = bio_list_pop(&bio_list_on_stack)))
1325 			generic_make_request(bio);
1326 		blk_finish_plug(&plug);
1327 	}
1328 }
1329 
1330 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1331 			      int off)
1332 {
1333 	struct throtl_grp *tg = pd_to_tg(pd);
1334 	u64 v = *(u64 *)((void *)tg + off);
1335 
1336 	if (v == U64_MAX)
1337 		return 0;
1338 	return __blkg_prfill_u64(sf, pd, v);
1339 }
1340 
1341 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1342 			       int off)
1343 {
1344 	struct throtl_grp *tg = pd_to_tg(pd);
1345 	unsigned int v = *(unsigned int *)((void *)tg + off);
1346 
1347 	if (v == UINT_MAX)
1348 		return 0;
1349 	return __blkg_prfill_u64(sf, pd, v);
1350 }
1351 
1352 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1353 {
1354 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1355 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1356 	return 0;
1357 }
1358 
1359 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1360 {
1361 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1362 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1363 	return 0;
1364 }
1365 
1366 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1367 {
1368 	struct throtl_service_queue *sq = &tg->service_queue;
1369 	struct cgroup_subsys_state *pos_css;
1370 	struct blkcg_gq *blkg;
1371 
1372 	throtl_log(&tg->service_queue,
1373 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1374 		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1375 		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1376 
1377 	/*
1378 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1379 	 * considered to have rules if either the tg itself or any of its
1380 	 * ancestors has rules.  This identifies groups without any
1381 	 * restrictions in the whole hierarchy and allows them to bypass
1382 	 * blk-throttle.
1383 	 */
1384 	blkg_for_each_descendant_pre(blkg, pos_css,
1385 			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1386 		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1387 		struct throtl_grp *parent_tg;
1388 
1389 		tg_update_has_rules(this_tg);
1390 		/* ignore root/second level */
1391 		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1392 		    !blkg->parent->parent)
1393 			continue;
1394 		parent_tg = blkg_to_tg(blkg->parent);
1395 		/*
1396 		 * make sure all children has lower idle time threshold and
1397 		 * higher latency target
1398 		 */
1399 		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1400 				parent_tg->idletime_threshold);
1401 		this_tg->latency_target = max(this_tg->latency_target,
1402 				parent_tg->latency_target);
1403 	}
1404 
1405 	/*
1406 	 * We're already holding queue_lock and know @tg is valid.  Let's
1407 	 * apply the new config directly.
1408 	 *
1409 	 * Restart the slices for both READ and WRITES. It might happen
1410 	 * that a group's limit are dropped suddenly and we don't want to
1411 	 * account recently dispatched IO with new low rate.
1412 	 */
1413 	throtl_start_new_slice(tg, 0);
1414 	throtl_start_new_slice(tg, 1);
1415 
1416 	if (tg->flags & THROTL_TG_PENDING) {
1417 		tg_update_disptime(tg);
1418 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1419 	}
1420 }
1421 
1422 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1423 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1424 {
1425 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1426 	struct blkg_conf_ctx ctx;
1427 	struct throtl_grp *tg;
1428 	int ret;
1429 	u64 v;
1430 
1431 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1432 	if (ret)
1433 		return ret;
1434 
1435 	ret = -EINVAL;
1436 	if (sscanf(ctx.body, "%llu", &v) != 1)
1437 		goto out_finish;
1438 	if (!v)
1439 		v = U64_MAX;
1440 
1441 	tg = blkg_to_tg(ctx.blkg);
1442 
1443 	if (is_u64)
1444 		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1445 	else
1446 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1447 
1448 	tg_conf_updated(tg, false);
1449 	ret = 0;
1450 out_finish:
1451 	blkg_conf_finish(&ctx);
1452 	return ret ?: nbytes;
1453 }
1454 
1455 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1456 			       char *buf, size_t nbytes, loff_t off)
1457 {
1458 	return tg_set_conf(of, buf, nbytes, off, true);
1459 }
1460 
1461 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1462 				char *buf, size_t nbytes, loff_t off)
1463 {
1464 	return tg_set_conf(of, buf, nbytes, off, false);
1465 }
1466 
1467 static struct cftype throtl_legacy_files[] = {
1468 	{
1469 		.name = "throttle.read_bps_device",
1470 		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1471 		.seq_show = tg_print_conf_u64,
1472 		.write = tg_set_conf_u64,
1473 	},
1474 	{
1475 		.name = "throttle.write_bps_device",
1476 		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1477 		.seq_show = tg_print_conf_u64,
1478 		.write = tg_set_conf_u64,
1479 	},
1480 	{
1481 		.name = "throttle.read_iops_device",
1482 		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1483 		.seq_show = tg_print_conf_uint,
1484 		.write = tg_set_conf_uint,
1485 	},
1486 	{
1487 		.name = "throttle.write_iops_device",
1488 		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1489 		.seq_show = tg_print_conf_uint,
1490 		.write = tg_set_conf_uint,
1491 	},
1492 	{
1493 		.name = "throttle.io_service_bytes",
1494 		.private = (unsigned long)&blkcg_policy_throtl,
1495 		.seq_show = blkg_print_stat_bytes,
1496 	},
1497 	{
1498 		.name = "throttle.io_serviced",
1499 		.private = (unsigned long)&blkcg_policy_throtl,
1500 		.seq_show = blkg_print_stat_ios,
1501 	},
1502 	{ }	/* terminate */
1503 };
1504 
1505 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1506 			 int off)
1507 {
1508 	struct throtl_grp *tg = pd_to_tg(pd);
1509 	const char *dname = blkg_dev_name(pd->blkg);
1510 	char bufs[4][21] = { "max", "max", "max", "max" };
1511 	u64 bps_dft;
1512 	unsigned int iops_dft;
1513 	char idle_time[26] = "";
1514 	char latency_time[26] = "";
1515 
1516 	if (!dname)
1517 		return 0;
1518 
1519 	if (off == LIMIT_LOW) {
1520 		bps_dft = 0;
1521 		iops_dft = 0;
1522 	} else {
1523 		bps_dft = U64_MAX;
1524 		iops_dft = UINT_MAX;
1525 	}
1526 
1527 	if (tg->bps_conf[READ][off] == bps_dft &&
1528 	    tg->bps_conf[WRITE][off] == bps_dft &&
1529 	    tg->iops_conf[READ][off] == iops_dft &&
1530 	    tg->iops_conf[WRITE][off] == iops_dft &&
1531 	    (off != LIMIT_LOW ||
1532 	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1533 	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1534 		return 0;
1535 
1536 	if (tg->bps_conf[READ][off] != U64_MAX)
1537 		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1538 			tg->bps_conf[READ][off]);
1539 	if (tg->bps_conf[WRITE][off] != U64_MAX)
1540 		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1541 			tg->bps_conf[WRITE][off]);
1542 	if (tg->iops_conf[READ][off] != UINT_MAX)
1543 		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1544 			tg->iops_conf[READ][off]);
1545 	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1546 		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1547 			tg->iops_conf[WRITE][off]);
1548 	if (off == LIMIT_LOW) {
1549 		if (tg->idletime_threshold_conf == ULONG_MAX)
1550 			strcpy(idle_time, " idle=max");
1551 		else
1552 			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1553 				tg->idletime_threshold_conf);
1554 
1555 		if (tg->latency_target_conf == ULONG_MAX)
1556 			strcpy(latency_time, " latency=max");
1557 		else
1558 			snprintf(latency_time, sizeof(latency_time),
1559 				" latency=%lu", tg->latency_target_conf);
1560 	}
1561 
1562 	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1563 		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1564 		   latency_time);
1565 	return 0;
1566 }
1567 
1568 static int tg_print_limit(struct seq_file *sf, void *v)
1569 {
1570 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1571 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1572 	return 0;
1573 }
1574 
1575 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1576 			  char *buf, size_t nbytes, loff_t off)
1577 {
1578 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1579 	struct blkg_conf_ctx ctx;
1580 	struct throtl_grp *tg;
1581 	u64 v[4];
1582 	unsigned long idle_time;
1583 	unsigned long latency_time;
1584 	int ret;
1585 	int index = of_cft(of)->private;
1586 
1587 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1588 	if (ret)
1589 		return ret;
1590 
1591 	tg = blkg_to_tg(ctx.blkg);
1592 
1593 	v[0] = tg->bps_conf[READ][index];
1594 	v[1] = tg->bps_conf[WRITE][index];
1595 	v[2] = tg->iops_conf[READ][index];
1596 	v[3] = tg->iops_conf[WRITE][index];
1597 
1598 	idle_time = tg->idletime_threshold_conf;
1599 	latency_time = tg->latency_target_conf;
1600 	while (true) {
1601 		char tok[27];	/* wiops=18446744073709551616 */
1602 		char *p;
1603 		u64 val = U64_MAX;
1604 		int len;
1605 
1606 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1607 			break;
1608 		if (tok[0] == '\0')
1609 			break;
1610 		ctx.body += len;
1611 
1612 		ret = -EINVAL;
1613 		p = tok;
1614 		strsep(&p, "=");
1615 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1616 			goto out_finish;
1617 
1618 		ret = -ERANGE;
1619 		if (!val)
1620 			goto out_finish;
1621 
1622 		ret = -EINVAL;
1623 		if (!strcmp(tok, "rbps"))
1624 			v[0] = val;
1625 		else if (!strcmp(tok, "wbps"))
1626 			v[1] = val;
1627 		else if (!strcmp(tok, "riops"))
1628 			v[2] = min_t(u64, val, UINT_MAX);
1629 		else if (!strcmp(tok, "wiops"))
1630 			v[3] = min_t(u64, val, UINT_MAX);
1631 		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1632 			idle_time = val;
1633 		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1634 			latency_time = val;
1635 		else
1636 			goto out_finish;
1637 	}
1638 
1639 	tg->bps_conf[READ][index] = v[0];
1640 	tg->bps_conf[WRITE][index] = v[1];
1641 	tg->iops_conf[READ][index] = v[2];
1642 	tg->iops_conf[WRITE][index] = v[3];
1643 
1644 	if (index == LIMIT_MAX) {
1645 		tg->bps[READ][index] = v[0];
1646 		tg->bps[WRITE][index] = v[1];
1647 		tg->iops[READ][index] = v[2];
1648 		tg->iops[WRITE][index] = v[3];
1649 	}
1650 	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1651 		tg->bps_conf[READ][LIMIT_MAX]);
1652 	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1653 		tg->bps_conf[WRITE][LIMIT_MAX]);
1654 	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1655 		tg->iops_conf[READ][LIMIT_MAX]);
1656 	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1657 		tg->iops_conf[WRITE][LIMIT_MAX]);
1658 	tg->idletime_threshold_conf = idle_time;
1659 	tg->latency_target_conf = latency_time;
1660 
1661 	/* force user to configure all settings for low limit  */
1662 	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1663 	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1664 	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1665 	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
1666 		tg->bps[READ][LIMIT_LOW] = 0;
1667 		tg->bps[WRITE][LIMIT_LOW] = 0;
1668 		tg->iops[READ][LIMIT_LOW] = 0;
1669 		tg->iops[WRITE][LIMIT_LOW] = 0;
1670 		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1671 		tg->latency_target = DFL_LATENCY_TARGET;
1672 	} else if (index == LIMIT_LOW) {
1673 		tg->idletime_threshold = tg->idletime_threshold_conf;
1674 		tg->latency_target = tg->latency_target_conf;
1675 	}
1676 
1677 	blk_throtl_update_limit_valid(tg->td);
1678 	if (tg->td->limit_valid[LIMIT_LOW]) {
1679 		if (index == LIMIT_LOW)
1680 			tg->td->limit_index = LIMIT_LOW;
1681 	} else
1682 		tg->td->limit_index = LIMIT_MAX;
1683 	tg_conf_updated(tg, index == LIMIT_LOW &&
1684 		tg->td->limit_valid[LIMIT_LOW]);
1685 	ret = 0;
1686 out_finish:
1687 	blkg_conf_finish(&ctx);
1688 	return ret ?: nbytes;
1689 }
1690 
1691 static struct cftype throtl_files[] = {
1692 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1693 	{
1694 		.name = "low",
1695 		.flags = CFTYPE_NOT_ON_ROOT,
1696 		.seq_show = tg_print_limit,
1697 		.write = tg_set_limit,
1698 		.private = LIMIT_LOW,
1699 	},
1700 #endif
1701 	{
1702 		.name = "max",
1703 		.flags = CFTYPE_NOT_ON_ROOT,
1704 		.seq_show = tg_print_limit,
1705 		.write = tg_set_limit,
1706 		.private = LIMIT_MAX,
1707 	},
1708 	{ }	/* terminate */
1709 };
1710 
1711 static void throtl_shutdown_wq(struct request_queue *q)
1712 {
1713 	struct throtl_data *td = q->td;
1714 
1715 	cancel_work_sync(&td->dispatch_work);
1716 }
1717 
1718 static struct blkcg_policy blkcg_policy_throtl = {
1719 	.dfl_cftypes		= throtl_files,
1720 	.legacy_cftypes		= throtl_legacy_files,
1721 
1722 	.pd_alloc_fn		= throtl_pd_alloc,
1723 	.pd_init_fn		= throtl_pd_init,
1724 	.pd_online_fn		= throtl_pd_online,
1725 	.pd_offline_fn		= throtl_pd_offline,
1726 	.pd_free_fn		= throtl_pd_free,
1727 };
1728 
1729 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1730 {
1731 	unsigned long rtime = jiffies, wtime = jiffies;
1732 
1733 	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1734 		rtime = tg->last_low_overflow_time[READ];
1735 	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1736 		wtime = tg->last_low_overflow_time[WRITE];
1737 	return min(rtime, wtime);
1738 }
1739 
1740 /* tg should not be an intermediate node */
1741 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1742 {
1743 	struct throtl_service_queue *parent_sq;
1744 	struct throtl_grp *parent = tg;
1745 	unsigned long ret = __tg_last_low_overflow_time(tg);
1746 
1747 	while (true) {
1748 		parent_sq = parent->service_queue.parent_sq;
1749 		parent = sq_to_tg(parent_sq);
1750 		if (!parent)
1751 			break;
1752 
1753 		/*
1754 		 * The parent doesn't have low limit, it always reaches low
1755 		 * limit. Its overflow time is useless for children
1756 		 */
1757 		if (!parent->bps[READ][LIMIT_LOW] &&
1758 		    !parent->iops[READ][LIMIT_LOW] &&
1759 		    !parent->bps[WRITE][LIMIT_LOW] &&
1760 		    !parent->iops[WRITE][LIMIT_LOW])
1761 			continue;
1762 		if (time_after(__tg_last_low_overflow_time(parent), ret))
1763 			ret = __tg_last_low_overflow_time(parent);
1764 	}
1765 	return ret;
1766 }
1767 
1768 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1769 {
1770 	/*
1771 	 * cgroup is idle if:
1772 	 * - single idle is too long, longer than a fixed value (in case user
1773 	 *   configure a too big threshold) or 4 times of idletime threshold
1774 	 * - average think time is more than threshold
1775 	 * - IO latency is largely below threshold
1776 	 */
1777 	unsigned long time;
1778 	bool ret;
1779 
1780 	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1781 	ret = tg->latency_target == DFL_LATENCY_TARGET ||
1782 	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1783 	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1784 	      tg->avg_idletime > tg->idletime_threshold ||
1785 	      (tg->latency_target && tg->bio_cnt &&
1786 		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1787 	throtl_log(&tg->service_queue,
1788 		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1789 		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1790 		tg->bio_cnt, ret, tg->td->scale);
1791 	return ret;
1792 }
1793 
1794 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1795 {
1796 	struct throtl_service_queue *sq = &tg->service_queue;
1797 	bool read_limit, write_limit;
1798 
1799 	/*
1800 	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1801 	 * reaches), it's ok to upgrade to next limit
1802 	 */
1803 	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1804 	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1805 	if (!read_limit && !write_limit)
1806 		return true;
1807 	if (read_limit && sq->nr_queued[READ] &&
1808 	    (!write_limit || sq->nr_queued[WRITE]))
1809 		return true;
1810 	if (write_limit && sq->nr_queued[WRITE] &&
1811 	    (!read_limit || sq->nr_queued[READ]))
1812 		return true;
1813 
1814 	if (time_after_eq(jiffies,
1815 		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1816 	    throtl_tg_is_idle(tg))
1817 		return true;
1818 	return false;
1819 }
1820 
1821 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1822 {
1823 	while (true) {
1824 		if (throtl_tg_can_upgrade(tg))
1825 			return true;
1826 		tg = sq_to_tg(tg->service_queue.parent_sq);
1827 		if (!tg || !tg_to_blkg(tg)->parent)
1828 			return false;
1829 	}
1830 	return false;
1831 }
1832 
1833 static bool throtl_can_upgrade(struct throtl_data *td,
1834 	struct throtl_grp *this_tg)
1835 {
1836 	struct cgroup_subsys_state *pos_css;
1837 	struct blkcg_gq *blkg;
1838 
1839 	if (td->limit_index != LIMIT_LOW)
1840 		return false;
1841 
1842 	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1843 		return false;
1844 
1845 	rcu_read_lock();
1846 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1847 		struct throtl_grp *tg = blkg_to_tg(blkg);
1848 
1849 		if (tg == this_tg)
1850 			continue;
1851 		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1852 			continue;
1853 		if (!throtl_hierarchy_can_upgrade(tg)) {
1854 			rcu_read_unlock();
1855 			return false;
1856 		}
1857 	}
1858 	rcu_read_unlock();
1859 	return true;
1860 }
1861 
1862 static void throtl_upgrade_check(struct throtl_grp *tg)
1863 {
1864 	unsigned long now = jiffies;
1865 
1866 	if (tg->td->limit_index != LIMIT_LOW)
1867 		return;
1868 
1869 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1870 		return;
1871 
1872 	tg->last_check_time = now;
1873 
1874 	if (!time_after_eq(now,
1875 	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1876 		return;
1877 
1878 	if (throtl_can_upgrade(tg->td, NULL))
1879 		throtl_upgrade_state(tg->td);
1880 }
1881 
1882 static void throtl_upgrade_state(struct throtl_data *td)
1883 {
1884 	struct cgroup_subsys_state *pos_css;
1885 	struct blkcg_gq *blkg;
1886 
1887 	throtl_log(&td->service_queue, "upgrade to max");
1888 	td->limit_index = LIMIT_MAX;
1889 	td->low_upgrade_time = jiffies;
1890 	td->scale = 0;
1891 	rcu_read_lock();
1892 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1893 		struct throtl_grp *tg = blkg_to_tg(blkg);
1894 		struct throtl_service_queue *sq = &tg->service_queue;
1895 
1896 		tg->disptime = jiffies - 1;
1897 		throtl_select_dispatch(sq);
1898 		throtl_schedule_next_dispatch(sq, false);
1899 	}
1900 	rcu_read_unlock();
1901 	throtl_select_dispatch(&td->service_queue);
1902 	throtl_schedule_next_dispatch(&td->service_queue, false);
1903 	queue_work(kthrotld_workqueue, &td->dispatch_work);
1904 }
1905 
1906 static void throtl_downgrade_state(struct throtl_data *td, int new)
1907 {
1908 	td->scale /= 2;
1909 
1910 	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1911 	if (td->scale) {
1912 		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1913 		return;
1914 	}
1915 
1916 	td->limit_index = new;
1917 	td->low_downgrade_time = jiffies;
1918 }
1919 
1920 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1921 {
1922 	struct throtl_data *td = tg->td;
1923 	unsigned long now = jiffies;
1924 
1925 	/*
1926 	 * If cgroup is below low limit, consider downgrade and throttle other
1927 	 * cgroups
1928 	 */
1929 	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1930 	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1931 					td->throtl_slice) &&
1932 	    (!throtl_tg_is_idle(tg) ||
1933 	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1934 		return true;
1935 	return false;
1936 }
1937 
1938 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1939 {
1940 	while (true) {
1941 		if (!throtl_tg_can_downgrade(tg))
1942 			return false;
1943 		tg = sq_to_tg(tg->service_queue.parent_sq);
1944 		if (!tg || !tg_to_blkg(tg)->parent)
1945 			break;
1946 	}
1947 	return true;
1948 }
1949 
1950 static void throtl_downgrade_check(struct throtl_grp *tg)
1951 {
1952 	uint64_t bps;
1953 	unsigned int iops;
1954 	unsigned long elapsed_time;
1955 	unsigned long now = jiffies;
1956 
1957 	if (tg->td->limit_index != LIMIT_MAX ||
1958 	    !tg->td->limit_valid[LIMIT_LOW])
1959 		return;
1960 	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1961 		return;
1962 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1963 		return;
1964 
1965 	elapsed_time = now - tg->last_check_time;
1966 	tg->last_check_time = now;
1967 
1968 	if (time_before(now, tg_last_low_overflow_time(tg) +
1969 			tg->td->throtl_slice))
1970 		return;
1971 
1972 	if (tg->bps[READ][LIMIT_LOW]) {
1973 		bps = tg->last_bytes_disp[READ] * HZ;
1974 		do_div(bps, elapsed_time);
1975 		if (bps >= tg->bps[READ][LIMIT_LOW])
1976 			tg->last_low_overflow_time[READ] = now;
1977 	}
1978 
1979 	if (tg->bps[WRITE][LIMIT_LOW]) {
1980 		bps = tg->last_bytes_disp[WRITE] * HZ;
1981 		do_div(bps, elapsed_time);
1982 		if (bps >= tg->bps[WRITE][LIMIT_LOW])
1983 			tg->last_low_overflow_time[WRITE] = now;
1984 	}
1985 
1986 	if (tg->iops[READ][LIMIT_LOW]) {
1987 		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1988 		if (iops >= tg->iops[READ][LIMIT_LOW])
1989 			tg->last_low_overflow_time[READ] = now;
1990 	}
1991 
1992 	if (tg->iops[WRITE][LIMIT_LOW]) {
1993 		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1994 		if (iops >= tg->iops[WRITE][LIMIT_LOW])
1995 			tg->last_low_overflow_time[WRITE] = now;
1996 	}
1997 
1998 	/*
1999 	 * If cgroup is below low limit, consider downgrade and throttle other
2000 	 * cgroups
2001 	 */
2002 	if (throtl_hierarchy_can_downgrade(tg))
2003 		throtl_downgrade_state(tg->td, LIMIT_LOW);
2004 
2005 	tg->last_bytes_disp[READ] = 0;
2006 	tg->last_bytes_disp[WRITE] = 0;
2007 	tg->last_io_disp[READ] = 0;
2008 	tg->last_io_disp[WRITE] = 0;
2009 }
2010 
2011 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2012 {
2013 	unsigned long now = ktime_get_ns() >> 10;
2014 	unsigned long last_finish_time = tg->last_finish_time;
2015 
2016 	if (now <= last_finish_time || last_finish_time == 0 ||
2017 	    last_finish_time == tg->checked_last_finish_time)
2018 		return;
2019 
2020 	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2021 	tg->checked_last_finish_time = last_finish_time;
2022 }
2023 
2024 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2025 static void throtl_update_latency_buckets(struct throtl_data *td)
2026 {
2027 	struct avg_latency_bucket avg_latency[LATENCY_BUCKET_SIZE];
2028 	int i, cpu;
2029 	unsigned long last_latency = 0;
2030 	unsigned long latency;
2031 
2032 	if (!blk_queue_nonrot(td->queue))
2033 		return;
2034 	if (time_before(jiffies, td->last_calculate_time + HZ))
2035 		return;
2036 	td->last_calculate_time = jiffies;
2037 
2038 	memset(avg_latency, 0, sizeof(avg_latency));
2039 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2040 		struct latency_bucket *tmp = &td->tmp_buckets[i];
2041 
2042 		for_each_possible_cpu(cpu) {
2043 			struct latency_bucket *bucket;
2044 
2045 			/* this isn't race free, but ok in practice */
2046 			bucket = per_cpu_ptr(td->latency_buckets, cpu);
2047 			tmp->total_latency += bucket[i].total_latency;
2048 			tmp->samples += bucket[i].samples;
2049 			bucket[i].total_latency = 0;
2050 			bucket[i].samples = 0;
2051 		}
2052 
2053 		if (tmp->samples >= 32) {
2054 			int samples = tmp->samples;
2055 
2056 			latency = tmp->total_latency;
2057 
2058 			tmp->total_latency = 0;
2059 			tmp->samples = 0;
2060 			latency /= samples;
2061 			if (latency == 0)
2062 				continue;
2063 			avg_latency[i].latency = latency;
2064 		}
2065 	}
2066 
2067 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2068 		if (!avg_latency[i].latency) {
2069 			if (td->avg_buckets[i].latency < last_latency)
2070 				td->avg_buckets[i].latency = last_latency;
2071 			continue;
2072 		}
2073 
2074 		if (!td->avg_buckets[i].valid)
2075 			latency = avg_latency[i].latency;
2076 		else
2077 			latency = (td->avg_buckets[i].latency * 7 +
2078 				avg_latency[i].latency) >> 3;
2079 
2080 		td->avg_buckets[i].latency = max(latency, last_latency);
2081 		td->avg_buckets[i].valid = true;
2082 		last_latency = td->avg_buckets[i].latency;
2083 	}
2084 
2085 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2086 		throtl_log(&td->service_queue,
2087 			"Latency bucket %d: latency=%ld, valid=%d", i,
2088 			td->avg_buckets[i].latency, td->avg_buckets[i].valid);
2089 }
2090 #else
2091 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2092 {
2093 }
2094 #endif
2095 
2096 static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
2097 {
2098 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2099 	int ret;
2100 
2101 	ret = bio_associate_current(bio);
2102 	if (ret == 0 || ret == -EBUSY)
2103 		bio->bi_cg_private = tg;
2104 	blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
2105 #else
2106 	bio_associate_current(bio);
2107 #endif
2108 }
2109 
2110 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2111 		    struct bio *bio)
2112 {
2113 	struct throtl_qnode *qn = NULL;
2114 	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2115 	struct throtl_service_queue *sq;
2116 	bool rw = bio_data_dir(bio);
2117 	bool throttled = false;
2118 	struct throtl_data *td = tg->td;
2119 
2120 	WARN_ON_ONCE(!rcu_read_lock_held());
2121 
2122 	/* see throtl_charge_bio() */
2123 	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2124 		goto out;
2125 
2126 	spin_lock_irq(q->queue_lock);
2127 
2128 	throtl_update_latency_buckets(td);
2129 
2130 	if (unlikely(blk_queue_bypass(q)))
2131 		goto out_unlock;
2132 
2133 	blk_throtl_assoc_bio(tg, bio);
2134 	blk_throtl_update_idletime(tg);
2135 
2136 	sq = &tg->service_queue;
2137 
2138 again:
2139 	while (true) {
2140 		if (tg->last_low_overflow_time[rw] == 0)
2141 			tg->last_low_overflow_time[rw] = jiffies;
2142 		throtl_downgrade_check(tg);
2143 		throtl_upgrade_check(tg);
2144 		/* throtl is FIFO - if bios are already queued, should queue */
2145 		if (sq->nr_queued[rw])
2146 			break;
2147 
2148 		/* if above limits, break to queue */
2149 		if (!tg_may_dispatch(tg, bio, NULL)) {
2150 			tg->last_low_overflow_time[rw] = jiffies;
2151 			if (throtl_can_upgrade(td, tg)) {
2152 				throtl_upgrade_state(td);
2153 				goto again;
2154 			}
2155 			break;
2156 		}
2157 
2158 		/* within limits, let's charge and dispatch directly */
2159 		throtl_charge_bio(tg, bio);
2160 
2161 		/*
2162 		 * We need to trim slice even when bios are not being queued
2163 		 * otherwise it might happen that a bio is not queued for
2164 		 * a long time and slice keeps on extending and trim is not
2165 		 * called for a long time. Now if limits are reduced suddenly
2166 		 * we take into account all the IO dispatched so far at new
2167 		 * low rate and * newly queued IO gets a really long dispatch
2168 		 * time.
2169 		 *
2170 		 * So keep on trimming slice even if bio is not queued.
2171 		 */
2172 		throtl_trim_slice(tg, rw);
2173 
2174 		/*
2175 		 * @bio passed through this layer without being throttled.
2176 		 * Climb up the ladder.  If we''re already at the top, it
2177 		 * can be executed directly.
2178 		 */
2179 		qn = &tg->qnode_on_parent[rw];
2180 		sq = sq->parent_sq;
2181 		tg = sq_to_tg(sq);
2182 		if (!tg)
2183 			goto out_unlock;
2184 	}
2185 
2186 	/* out-of-limit, queue to @tg */
2187 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2188 		   rw == READ ? 'R' : 'W',
2189 		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2190 		   tg_bps_limit(tg, rw),
2191 		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2192 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2193 
2194 	tg->last_low_overflow_time[rw] = jiffies;
2195 
2196 	td->nr_queued[rw]++;
2197 	throtl_add_bio_tg(bio, qn, tg);
2198 	throttled = true;
2199 
2200 	/*
2201 	 * Update @tg's dispatch time and force schedule dispatch if @tg
2202 	 * was empty before @bio.  The forced scheduling isn't likely to
2203 	 * cause undue delay as @bio is likely to be dispatched directly if
2204 	 * its @tg's disptime is not in the future.
2205 	 */
2206 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2207 		tg_update_disptime(tg);
2208 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2209 	}
2210 
2211 out_unlock:
2212 	spin_unlock_irq(q->queue_lock);
2213 out:
2214 	/*
2215 	 * As multiple blk-throtls may stack in the same issue path, we
2216 	 * don't want bios to leave with the flag set.  Clear the flag if
2217 	 * being issued.
2218 	 */
2219 	if (!throttled)
2220 		bio_clear_flag(bio, BIO_THROTTLED);
2221 
2222 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2223 	if (throttled || !td->track_bio_latency)
2224 		bio->bi_issue_stat.stat |= SKIP_LATENCY;
2225 #endif
2226 	return throttled;
2227 }
2228 
2229 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2230 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2231 	int op, unsigned long time)
2232 {
2233 	struct latency_bucket *latency;
2234 	int index;
2235 
2236 	if (!td || td->limit_index != LIMIT_LOW || op != REQ_OP_READ ||
2237 	    !blk_queue_nonrot(td->queue))
2238 		return;
2239 
2240 	index = request_bucket_index(size);
2241 
2242 	latency = get_cpu_ptr(td->latency_buckets);
2243 	latency[index].total_latency += time;
2244 	latency[index].samples++;
2245 	put_cpu_ptr(td->latency_buckets);
2246 }
2247 
2248 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2249 {
2250 	struct request_queue *q = rq->q;
2251 	struct throtl_data *td = q->td;
2252 
2253 	throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
2254 		req_op(rq), time_ns >> 10);
2255 }
2256 
2257 void blk_throtl_bio_endio(struct bio *bio)
2258 {
2259 	struct throtl_grp *tg;
2260 	u64 finish_time_ns;
2261 	unsigned long finish_time;
2262 	unsigned long start_time;
2263 	unsigned long lat;
2264 
2265 	tg = bio->bi_cg_private;
2266 	if (!tg)
2267 		return;
2268 	bio->bi_cg_private = NULL;
2269 
2270 	finish_time_ns = ktime_get_ns();
2271 	tg->last_finish_time = finish_time_ns >> 10;
2272 
2273 	start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
2274 	finish_time = __blk_stat_time(finish_time_ns) >> 10;
2275 	if (!start_time || finish_time <= start_time)
2276 		return;
2277 
2278 	lat = finish_time - start_time;
2279 	/* this is only for bio based driver */
2280 	if (!(bio->bi_issue_stat.stat & SKIP_LATENCY))
2281 		throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
2282 			bio_op(bio), lat);
2283 
2284 	if (tg->latency_target) {
2285 		int bucket;
2286 		unsigned int threshold;
2287 
2288 		bucket = request_bucket_index(
2289 			blk_stat_size(&bio->bi_issue_stat));
2290 		threshold = tg->td->avg_buckets[bucket].latency +
2291 			tg->latency_target;
2292 		if (lat > threshold)
2293 			tg->bad_bio_cnt++;
2294 		/*
2295 		 * Not race free, could get wrong count, which means cgroups
2296 		 * will be throttled
2297 		 */
2298 		tg->bio_cnt++;
2299 	}
2300 
2301 	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2302 		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2303 		tg->bio_cnt /= 2;
2304 		tg->bad_bio_cnt /= 2;
2305 	}
2306 }
2307 #endif
2308 
2309 /*
2310  * Dispatch all bios from all children tg's queued on @parent_sq.  On
2311  * return, @parent_sq is guaranteed to not have any active children tg's
2312  * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2313  */
2314 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2315 {
2316 	struct throtl_grp *tg;
2317 
2318 	while ((tg = throtl_rb_first(parent_sq))) {
2319 		struct throtl_service_queue *sq = &tg->service_queue;
2320 		struct bio *bio;
2321 
2322 		throtl_dequeue_tg(tg);
2323 
2324 		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2325 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2326 		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2327 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2328 	}
2329 }
2330 
2331 /**
2332  * blk_throtl_drain - drain throttled bios
2333  * @q: request_queue to drain throttled bios for
2334  *
2335  * Dispatch all currently throttled bios on @q through ->make_request_fn().
2336  */
2337 void blk_throtl_drain(struct request_queue *q)
2338 	__releases(q->queue_lock) __acquires(q->queue_lock)
2339 {
2340 	struct throtl_data *td = q->td;
2341 	struct blkcg_gq *blkg;
2342 	struct cgroup_subsys_state *pos_css;
2343 	struct bio *bio;
2344 	int rw;
2345 
2346 	queue_lockdep_assert_held(q);
2347 	rcu_read_lock();
2348 
2349 	/*
2350 	 * Drain each tg while doing post-order walk on the blkg tree, so
2351 	 * that all bios are propagated to td->service_queue.  It'd be
2352 	 * better to walk service_queue tree directly but blkg walk is
2353 	 * easier.
2354 	 */
2355 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2356 		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2357 
2358 	/* finally, transfer bios from top-level tg's into the td */
2359 	tg_drain_bios(&td->service_queue);
2360 
2361 	rcu_read_unlock();
2362 	spin_unlock_irq(q->queue_lock);
2363 
2364 	/* all bios now should be in td->service_queue, issue them */
2365 	for (rw = READ; rw <= WRITE; rw++)
2366 		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2367 						NULL)))
2368 			generic_make_request(bio);
2369 
2370 	spin_lock_irq(q->queue_lock);
2371 }
2372 
2373 int blk_throtl_init(struct request_queue *q)
2374 {
2375 	struct throtl_data *td;
2376 	int ret;
2377 
2378 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2379 	if (!td)
2380 		return -ENOMEM;
2381 	td->latency_buckets = __alloc_percpu(sizeof(struct latency_bucket) *
2382 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2383 	if (!td->latency_buckets) {
2384 		kfree(td);
2385 		return -ENOMEM;
2386 	}
2387 
2388 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2389 	throtl_service_queue_init(&td->service_queue);
2390 
2391 	q->td = td;
2392 	td->queue = q;
2393 
2394 	td->limit_valid[LIMIT_MAX] = true;
2395 	td->limit_index = LIMIT_MAX;
2396 	td->low_upgrade_time = jiffies;
2397 	td->low_downgrade_time = jiffies;
2398 
2399 	/* activate policy */
2400 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2401 	if (ret) {
2402 		free_percpu(td->latency_buckets);
2403 		kfree(td);
2404 	}
2405 	return ret;
2406 }
2407 
2408 void blk_throtl_exit(struct request_queue *q)
2409 {
2410 	BUG_ON(!q->td);
2411 	throtl_shutdown_wq(q);
2412 	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2413 	free_percpu(q->td->latency_buckets);
2414 	kfree(q->td);
2415 }
2416 
2417 void blk_throtl_register_queue(struct request_queue *q)
2418 {
2419 	struct throtl_data *td;
2420 
2421 	td = q->td;
2422 	BUG_ON(!td);
2423 
2424 	if (blk_queue_nonrot(q))
2425 		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2426 	else
2427 		td->throtl_slice = DFL_THROTL_SLICE_HD;
2428 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2429 	/* if no low limit, use previous default */
2430 	td->throtl_slice = DFL_THROTL_SLICE_HD;
2431 #endif
2432 
2433 	td->track_bio_latency = !q->mq_ops && !q->request_fn;
2434 	if (!td->track_bio_latency)
2435 		blk_stat_enable_accounting(q);
2436 }
2437 
2438 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2439 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2440 {
2441 	if (!q->td)
2442 		return -EINVAL;
2443 	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2444 }
2445 
2446 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2447 	const char *page, size_t count)
2448 {
2449 	unsigned long v;
2450 	unsigned long t;
2451 
2452 	if (!q->td)
2453 		return -EINVAL;
2454 	if (kstrtoul(page, 10, &v))
2455 		return -EINVAL;
2456 	t = msecs_to_jiffies(v);
2457 	if (t == 0 || t > MAX_THROTL_SLICE)
2458 		return -EINVAL;
2459 	q->td->throtl_slice = t;
2460 	return count;
2461 }
2462 #endif
2463 
2464 static int __init throtl_init(void)
2465 {
2466 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2467 	if (!kthrotld_workqueue)
2468 		panic("Failed to create kthrotld\n");
2469 
2470 	return blkcg_policy_register(&blkcg_policy_throtl);
2471 }
2472 
2473 module_init(throtl_init);
2474