1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Interface for controlling IO bandwidth on a request queue 4 * 5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/bio.h> 12 #include <linux/blktrace_api.h> 13 #include <linux/blk-cgroup.h> 14 #include "blk.h" 15 #include "blk-cgroup-rwstat.h" 16 17 /* Max dispatch from a group in 1 round */ 18 static int throtl_grp_quantum = 8; 19 20 /* Total max dispatch from all groups in one round */ 21 static int throtl_quantum = 32; 22 23 /* Throttling is performed over a slice and after that slice is renewed */ 24 #define DFL_THROTL_SLICE_HD (HZ / 10) 25 #define DFL_THROTL_SLICE_SSD (HZ / 50) 26 #define MAX_THROTL_SLICE (HZ) 27 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */ 28 #define MIN_THROTL_BPS (320 * 1024) 29 #define MIN_THROTL_IOPS (10) 30 #define DFL_LATENCY_TARGET (-1L) 31 #define DFL_IDLE_THRESHOLD (0) 32 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */ 33 #define LATENCY_FILTERED_SSD (0) 34 /* 35 * For HD, very small latency comes from sequential IO. Such IO is helpless to 36 * help determine if its IO is impacted by others, hence we ignore the IO 37 */ 38 #define LATENCY_FILTERED_HD (1000L) /* 1ms */ 39 40 static struct blkcg_policy blkcg_policy_throtl; 41 42 /* A workqueue to queue throttle related work */ 43 static struct workqueue_struct *kthrotld_workqueue; 44 45 /* 46 * To implement hierarchical throttling, throtl_grps form a tree and bios 47 * are dispatched upwards level by level until they reach the top and get 48 * issued. When dispatching bios from the children and local group at each 49 * level, if the bios are dispatched into a single bio_list, there's a risk 50 * of a local or child group which can queue many bios at once filling up 51 * the list starving others. 52 * 53 * To avoid such starvation, dispatched bios are queued separately 54 * according to where they came from. When they are again dispatched to 55 * the parent, they're popped in round-robin order so that no single source 56 * hogs the dispatch window. 57 * 58 * throtl_qnode is used to keep the queued bios separated by their sources. 59 * Bios are queued to throtl_qnode which in turn is queued to 60 * throtl_service_queue and then dispatched in round-robin order. 61 * 62 * It's also used to track the reference counts on blkg's. A qnode always 63 * belongs to a throtl_grp and gets queued on itself or the parent, so 64 * incrementing the reference of the associated throtl_grp when a qnode is 65 * queued and decrementing when dequeued is enough to keep the whole blkg 66 * tree pinned while bios are in flight. 67 */ 68 struct throtl_qnode { 69 struct list_head node; /* service_queue->queued[] */ 70 struct bio_list bios; /* queued bios */ 71 struct throtl_grp *tg; /* tg this qnode belongs to */ 72 }; 73 74 struct throtl_service_queue { 75 struct throtl_service_queue *parent_sq; /* the parent service_queue */ 76 77 /* 78 * Bios queued directly to this service_queue or dispatched from 79 * children throtl_grp's. 80 */ 81 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */ 82 unsigned int nr_queued[2]; /* number of queued bios */ 83 84 /* 85 * RB tree of active children throtl_grp's, which are sorted by 86 * their ->disptime. 87 */ 88 struct rb_root_cached pending_tree; /* RB tree of active tgs */ 89 unsigned int nr_pending; /* # queued in the tree */ 90 unsigned long first_pending_disptime; /* disptime of the first tg */ 91 struct timer_list pending_timer; /* fires on first_pending_disptime */ 92 }; 93 94 enum tg_state_flags { 95 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */ 96 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */ 97 }; 98 99 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 100 101 enum { 102 LIMIT_LOW, 103 LIMIT_MAX, 104 LIMIT_CNT, 105 }; 106 107 struct throtl_grp { 108 /* must be the first member */ 109 struct blkg_policy_data pd; 110 111 /* active throtl group service_queue member */ 112 struct rb_node rb_node; 113 114 /* throtl_data this group belongs to */ 115 struct throtl_data *td; 116 117 /* this group's service queue */ 118 struct throtl_service_queue service_queue; 119 120 /* 121 * qnode_on_self is used when bios are directly queued to this 122 * throtl_grp so that local bios compete fairly with bios 123 * dispatched from children. qnode_on_parent is used when bios are 124 * dispatched from this throtl_grp into its parent and will compete 125 * with the sibling qnode_on_parents and the parent's 126 * qnode_on_self. 127 */ 128 struct throtl_qnode qnode_on_self[2]; 129 struct throtl_qnode qnode_on_parent[2]; 130 131 /* 132 * Dispatch time in jiffies. This is the estimated time when group 133 * will unthrottle and is ready to dispatch more bio. It is used as 134 * key to sort active groups in service tree. 135 */ 136 unsigned long disptime; 137 138 unsigned int flags; 139 140 /* are there any throtl rules between this group and td? */ 141 bool has_rules[2]; 142 143 /* internally used bytes per second rate limits */ 144 uint64_t bps[2][LIMIT_CNT]; 145 /* user configured bps limits */ 146 uint64_t bps_conf[2][LIMIT_CNT]; 147 148 /* internally used IOPS limits */ 149 unsigned int iops[2][LIMIT_CNT]; 150 /* user configured IOPS limits */ 151 unsigned int iops_conf[2][LIMIT_CNT]; 152 153 /* Number of bytes disptached in current slice */ 154 uint64_t bytes_disp[2]; 155 /* Number of bio's dispatched in current slice */ 156 unsigned int io_disp[2]; 157 158 unsigned long last_low_overflow_time[2]; 159 160 uint64_t last_bytes_disp[2]; 161 unsigned int last_io_disp[2]; 162 163 unsigned long last_check_time; 164 165 unsigned long latency_target; /* us */ 166 unsigned long latency_target_conf; /* us */ 167 /* When did we start a new slice */ 168 unsigned long slice_start[2]; 169 unsigned long slice_end[2]; 170 171 unsigned long last_finish_time; /* ns / 1024 */ 172 unsigned long checked_last_finish_time; /* ns / 1024 */ 173 unsigned long avg_idletime; /* ns / 1024 */ 174 unsigned long idletime_threshold; /* us */ 175 unsigned long idletime_threshold_conf; /* us */ 176 177 unsigned int bio_cnt; /* total bios */ 178 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */ 179 unsigned long bio_cnt_reset_time; 180 181 struct blkg_rwstat stat_bytes; 182 struct blkg_rwstat stat_ios; 183 }; 184 185 /* We measure latency for request size from <= 4k to >= 1M */ 186 #define LATENCY_BUCKET_SIZE 9 187 188 struct latency_bucket { 189 unsigned long total_latency; /* ns / 1024 */ 190 int samples; 191 }; 192 193 struct avg_latency_bucket { 194 unsigned long latency; /* ns / 1024 */ 195 bool valid; 196 }; 197 198 struct throtl_data 199 { 200 /* service tree for active throtl groups */ 201 struct throtl_service_queue service_queue; 202 203 struct request_queue *queue; 204 205 /* Total Number of queued bios on READ and WRITE lists */ 206 unsigned int nr_queued[2]; 207 208 unsigned int throtl_slice; 209 210 /* Work for dispatching throttled bios */ 211 struct work_struct dispatch_work; 212 unsigned int limit_index; 213 bool limit_valid[LIMIT_CNT]; 214 215 unsigned long low_upgrade_time; 216 unsigned long low_downgrade_time; 217 218 unsigned int scale; 219 220 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE]; 221 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE]; 222 struct latency_bucket __percpu *latency_buckets[2]; 223 unsigned long last_calculate_time; 224 unsigned long filtered_latency; 225 226 bool track_bio_latency; 227 }; 228 229 static void throtl_pending_timer_fn(struct timer_list *t); 230 231 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd) 232 { 233 return pd ? container_of(pd, struct throtl_grp, pd) : NULL; 234 } 235 236 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg) 237 { 238 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl)); 239 } 240 241 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) 242 { 243 return pd_to_blkg(&tg->pd); 244 } 245 246 /** 247 * sq_to_tg - return the throl_grp the specified service queue belongs to 248 * @sq: the throtl_service_queue of interest 249 * 250 * Return the throtl_grp @sq belongs to. If @sq is the top-level one 251 * embedded in throtl_data, %NULL is returned. 252 */ 253 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) 254 { 255 if (sq && sq->parent_sq) 256 return container_of(sq, struct throtl_grp, service_queue); 257 else 258 return NULL; 259 } 260 261 /** 262 * sq_to_td - return throtl_data the specified service queue belongs to 263 * @sq: the throtl_service_queue of interest 264 * 265 * A service_queue can be embedded in either a throtl_grp or throtl_data. 266 * Determine the associated throtl_data accordingly and return it. 267 */ 268 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) 269 { 270 struct throtl_grp *tg = sq_to_tg(sq); 271 272 if (tg) 273 return tg->td; 274 else 275 return container_of(sq, struct throtl_data, service_queue); 276 } 277 278 /* 279 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to 280 * make the IO dispatch more smooth. 281 * Scale up: linearly scale up according to lapsed time since upgrade. For 282 * every throtl_slice, the limit scales up 1/2 .low limit till the 283 * limit hits .max limit 284 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit 285 */ 286 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td) 287 { 288 /* arbitrary value to avoid too big scale */ 289 if (td->scale < 4096 && time_after_eq(jiffies, 290 td->low_upgrade_time + td->scale * td->throtl_slice)) 291 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice; 292 293 return low + (low >> 1) * td->scale; 294 } 295 296 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) 297 { 298 struct blkcg_gq *blkg = tg_to_blkg(tg); 299 struct throtl_data *td; 300 uint64_t ret; 301 302 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 303 return U64_MAX; 304 305 td = tg->td; 306 ret = tg->bps[rw][td->limit_index]; 307 if (ret == 0 && td->limit_index == LIMIT_LOW) { 308 /* intermediate node or iops isn't 0 */ 309 if (!list_empty(&blkg->blkcg->css.children) || 310 tg->iops[rw][td->limit_index]) 311 return U64_MAX; 312 else 313 return MIN_THROTL_BPS; 314 } 315 316 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] && 317 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) { 318 uint64_t adjusted; 319 320 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td); 321 ret = min(tg->bps[rw][LIMIT_MAX], adjusted); 322 } 323 return ret; 324 } 325 326 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) 327 { 328 struct blkcg_gq *blkg = tg_to_blkg(tg); 329 struct throtl_data *td; 330 unsigned int ret; 331 332 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 333 return UINT_MAX; 334 335 td = tg->td; 336 ret = tg->iops[rw][td->limit_index]; 337 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) { 338 /* intermediate node or bps isn't 0 */ 339 if (!list_empty(&blkg->blkcg->css.children) || 340 tg->bps[rw][td->limit_index]) 341 return UINT_MAX; 342 else 343 return MIN_THROTL_IOPS; 344 } 345 346 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] && 347 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) { 348 uint64_t adjusted; 349 350 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td); 351 if (adjusted > UINT_MAX) 352 adjusted = UINT_MAX; 353 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted); 354 } 355 return ret; 356 } 357 358 #define request_bucket_index(sectors) \ 359 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1) 360 361 /** 362 * throtl_log - log debug message via blktrace 363 * @sq: the service_queue being reported 364 * @fmt: printf format string 365 * @args: printf args 366 * 367 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a 368 * throtl_grp; otherwise, just "throtl". 369 */ 370 #define throtl_log(sq, fmt, args...) do { \ 371 struct throtl_grp *__tg = sq_to_tg((sq)); \ 372 struct throtl_data *__td = sq_to_td((sq)); \ 373 \ 374 (void)__td; \ 375 if (likely(!blk_trace_note_message_enabled(__td->queue))) \ 376 break; \ 377 if ((__tg)) { \ 378 blk_add_cgroup_trace_msg(__td->queue, \ 379 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\ 380 } else { \ 381 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ 382 } \ 383 } while (0) 384 385 static inline unsigned int throtl_bio_data_size(struct bio *bio) 386 { 387 /* assume it's one sector */ 388 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 389 return 512; 390 return bio->bi_iter.bi_size; 391 } 392 393 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) 394 { 395 INIT_LIST_HEAD(&qn->node); 396 bio_list_init(&qn->bios); 397 qn->tg = tg; 398 } 399 400 /** 401 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it 402 * @bio: bio being added 403 * @qn: qnode to add bio to 404 * @queued: the service_queue->queued[] list @qn belongs to 405 * 406 * Add @bio to @qn and put @qn on @queued if it's not already on. 407 * @qn->tg's reference count is bumped when @qn is activated. See the 408 * comment on top of throtl_qnode definition for details. 409 */ 410 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, 411 struct list_head *queued) 412 { 413 bio_list_add(&qn->bios, bio); 414 if (list_empty(&qn->node)) { 415 list_add_tail(&qn->node, queued); 416 blkg_get(tg_to_blkg(qn->tg)); 417 } 418 } 419 420 /** 421 * throtl_peek_queued - peek the first bio on a qnode list 422 * @queued: the qnode list to peek 423 */ 424 static struct bio *throtl_peek_queued(struct list_head *queued) 425 { 426 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); 427 struct bio *bio; 428 429 if (list_empty(queued)) 430 return NULL; 431 432 bio = bio_list_peek(&qn->bios); 433 WARN_ON_ONCE(!bio); 434 return bio; 435 } 436 437 /** 438 * throtl_pop_queued - pop the first bio form a qnode list 439 * @queued: the qnode list to pop a bio from 440 * @tg_to_put: optional out argument for throtl_grp to put 441 * 442 * Pop the first bio from the qnode list @queued. After popping, the first 443 * qnode is removed from @queued if empty or moved to the end of @queued so 444 * that the popping order is round-robin. 445 * 446 * When the first qnode is removed, its associated throtl_grp should be put 447 * too. If @tg_to_put is NULL, this function automatically puts it; 448 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is 449 * responsible for putting it. 450 */ 451 static struct bio *throtl_pop_queued(struct list_head *queued, 452 struct throtl_grp **tg_to_put) 453 { 454 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); 455 struct bio *bio; 456 457 if (list_empty(queued)) 458 return NULL; 459 460 bio = bio_list_pop(&qn->bios); 461 WARN_ON_ONCE(!bio); 462 463 if (bio_list_empty(&qn->bios)) { 464 list_del_init(&qn->node); 465 if (tg_to_put) 466 *tg_to_put = qn->tg; 467 else 468 blkg_put(tg_to_blkg(qn->tg)); 469 } else { 470 list_move_tail(&qn->node, queued); 471 } 472 473 return bio; 474 } 475 476 /* init a service_queue, assumes the caller zeroed it */ 477 static void throtl_service_queue_init(struct throtl_service_queue *sq) 478 { 479 INIT_LIST_HEAD(&sq->queued[0]); 480 INIT_LIST_HEAD(&sq->queued[1]); 481 sq->pending_tree = RB_ROOT_CACHED; 482 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0); 483 } 484 485 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, 486 struct request_queue *q, 487 struct blkcg *blkcg) 488 { 489 struct throtl_grp *tg; 490 int rw; 491 492 tg = kzalloc_node(sizeof(*tg), gfp, q->node); 493 if (!tg) 494 return NULL; 495 496 if (blkg_rwstat_init(&tg->stat_bytes, gfp)) 497 goto err_free_tg; 498 499 if (blkg_rwstat_init(&tg->stat_ios, gfp)) 500 goto err_exit_stat_bytes; 501 502 throtl_service_queue_init(&tg->service_queue); 503 504 for (rw = READ; rw <= WRITE; rw++) { 505 throtl_qnode_init(&tg->qnode_on_self[rw], tg); 506 throtl_qnode_init(&tg->qnode_on_parent[rw], tg); 507 } 508 509 RB_CLEAR_NODE(&tg->rb_node); 510 tg->bps[READ][LIMIT_MAX] = U64_MAX; 511 tg->bps[WRITE][LIMIT_MAX] = U64_MAX; 512 tg->iops[READ][LIMIT_MAX] = UINT_MAX; 513 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX; 514 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX; 515 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX; 516 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX; 517 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX; 518 /* LIMIT_LOW will have default value 0 */ 519 520 tg->latency_target = DFL_LATENCY_TARGET; 521 tg->latency_target_conf = DFL_LATENCY_TARGET; 522 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 523 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD; 524 525 return &tg->pd; 526 527 err_exit_stat_bytes: 528 blkg_rwstat_exit(&tg->stat_bytes); 529 err_free_tg: 530 kfree(tg); 531 return NULL; 532 } 533 534 static void throtl_pd_init(struct blkg_policy_data *pd) 535 { 536 struct throtl_grp *tg = pd_to_tg(pd); 537 struct blkcg_gq *blkg = tg_to_blkg(tg); 538 struct throtl_data *td = blkg->q->td; 539 struct throtl_service_queue *sq = &tg->service_queue; 540 541 /* 542 * If on the default hierarchy, we switch to properly hierarchical 543 * behavior where limits on a given throtl_grp are applied to the 544 * whole subtree rather than just the group itself. e.g. If 16M 545 * read_bps limit is set on the root group, the whole system can't 546 * exceed 16M for the device. 547 * 548 * If not on the default hierarchy, the broken flat hierarchy 549 * behavior is retained where all throtl_grps are treated as if 550 * they're all separate root groups right below throtl_data. 551 * Limits of a group don't interact with limits of other groups 552 * regardless of the position of the group in the hierarchy. 553 */ 554 sq->parent_sq = &td->service_queue; 555 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) 556 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; 557 tg->td = td; 558 } 559 560 /* 561 * Set has_rules[] if @tg or any of its parents have limits configured. 562 * This doesn't require walking up to the top of the hierarchy as the 563 * parent's has_rules[] is guaranteed to be correct. 564 */ 565 static void tg_update_has_rules(struct throtl_grp *tg) 566 { 567 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); 568 struct throtl_data *td = tg->td; 569 int rw; 570 571 for (rw = READ; rw <= WRITE; rw++) 572 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) || 573 (td->limit_valid[td->limit_index] && 574 (tg_bps_limit(tg, rw) != U64_MAX || 575 tg_iops_limit(tg, rw) != UINT_MAX)); 576 } 577 578 static void throtl_pd_online(struct blkg_policy_data *pd) 579 { 580 struct throtl_grp *tg = pd_to_tg(pd); 581 /* 582 * We don't want new groups to escape the limits of its ancestors. 583 * Update has_rules[] after a new group is brought online. 584 */ 585 tg_update_has_rules(tg); 586 } 587 588 static void blk_throtl_update_limit_valid(struct throtl_data *td) 589 { 590 struct cgroup_subsys_state *pos_css; 591 struct blkcg_gq *blkg; 592 bool low_valid = false; 593 594 rcu_read_lock(); 595 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 596 struct throtl_grp *tg = blkg_to_tg(blkg); 597 598 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] || 599 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) { 600 low_valid = true; 601 break; 602 } 603 } 604 rcu_read_unlock(); 605 606 td->limit_valid[LIMIT_LOW] = low_valid; 607 } 608 609 static void throtl_upgrade_state(struct throtl_data *td); 610 static void throtl_pd_offline(struct blkg_policy_data *pd) 611 { 612 struct throtl_grp *tg = pd_to_tg(pd); 613 614 tg->bps[READ][LIMIT_LOW] = 0; 615 tg->bps[WRITE][LIMIT_LOW] = 0; 616 tg->iops[READ][LIMIT_LOW] = 0; 617 tg->iops[WRITE][LIMIT_LOW] = 0; 618 619 blk_throtl_update_limit_valid(tg->td); 620 621 if (!tg->td->limit_valid[tg->td->limit_index]) 622 throtl_upgrade_state(tg->td); 623 } 624 625 static void throtl_pd_free(struct blkg_policy_data *pd) 626 { 627 struct throtl_grp *tg = pd_to_tg(pd); 628 629 del_timer_sync(&tg->service_queue.pending_timer); 630 blkg_rwstat_exit(&tg->stat_bytes); 631 blkg_rwstat_exit(&tg->stat_ios); 632 kfree(tg); 633 } 634 635 static struct throtl_grp * 636 throtl_rb_first(struct throtl_service_queue *parent_sq) 637 { 638 struct rb_node *n; 639 /* Service tree is empty */ 640 if (!parent_sq->nr_pending) 641 return NULL; 642 643 n = rb_first_cached(&parent_sq->pending_tree); 644 WARN_ON_ONCE(!n); 645 if (!n) 646 return NULL; 647 return rb_entry_tg(n); 648 } 649 650 static void throtl_rb_erase(struct rb_node *n, 651 struct throtl_service_queue *parent_sq) 652 { 653 rb_erase_cached(n, &parent_sq->pending_tree); 654 RB_CLEAR_NODE(n); 655 --parent_sq->nr_pending; 656 } 657 658 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) 659 { 660 struct throtl_grp *tg; 661 662 tg = throtl_rb_first(parent_sq); 663 if (!tg) 664 return; 665 666 parent_sq->first_pending_disptime = tg->disptime; 667 } 668 669 static void tg_service_queue_add(struct throtl_grp *tg) 670 { 671 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; 672 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node; 673 struct rb_node *parent = NULL; 674 struct throtl_grp *__tg; 675 unsigned long key = tg->disptime; 676 bool leftmost = true; 677 678 while (*node != NULL) { 679 parent = *node; 680 __tg = rb_entry_tg(parent); 681 682 if (time_before(key, __tg->disptime)) 683 node = &parent->rb_left; 684 else { 685 node = &parent->rb_right; 686 leftmost = false; 687 } 688 } 689 690 rb_link_node(&tg->rb_node, parent, node); 691 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree, 692 leftmost); 693 } 694 695 static void __throtl_enqueue_tg(struct throtl_grp *tg) 696 { 697 tg_service_queue_add(tg); 698 tg->flags |= THROTL_TG_PENDING; 699 tg->service_queue.parent_sq->nr_pending++; 700 } 701 702 static void throtl_enqueue_tg(struct throtl_grp *tg) 703 { 704 if (!(tg->flags & THROTL_TG_PENDING)) 705 __throtl_enqueue_tg(tg); 706 } 707 708 static void __throtl_dequeue_tg(struct throtl_grp *tg) 709 { 710 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); 711 tg->flags &= ~THROTL_TG_PENDING; 712 } 713 714 static void throtl_dequeue_tg(struct throtl_grp *tg) 715 { 716 if (tg->flags & THROTL_TG_PENDING) 717 __throtl_dequeue_tg(tg); 718 } 719 720 /* Call with queue lock held */ 721 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, 722 unsigned long expires) 723 { 724 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice; 725 726 /* 727 * Since we are adjusting the throttle limit dynamically, the sleep 728 * time calculated according to previous limit might be invalid. It's 729 * possible the cgroup sleep time is very long and no other cgroups 730 * have IO running so notify the limit changes. Make sure the cgroup 731 * doesn't sleep too long to avoid the missed notification. 732 */ 733 if (time_after(expires, max_expire)) 734 expires = max_expire; 735 mod_timer(&sq->pending_timer, expires); 736 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", 737 expires - jiffies, jiffies); 738 } 739 740 /** 741 * throtl_schedule_next_dispatch - schedule the next dispatch cycle 742 * @sq: the service_queue to schedule dispatch for 743 * @force: force scheduling 744 * 745 * Arm @sq->pending_timer so that the next dispatch cycle starts on the 746 * dispatch time of the first pending child. Returns %true if either timer 747 * is armed or there's no pending child left. %false if the current 748 * dispatch window is still open and the caller should continue 749 * dispatching. 750 * 751 * If @force is %true, the dispatch timer is always scheduled and this 752 * function is guaranteed to return %true. This is to be used when the 753 * caller can't dispatch itself and needs to invoke pending_timer 754 * unconditionally. Note that forced scheduling is likely to induce short 755 * delay before dispatch starts even if @sq->first_pending_disptime is not 756 * in the future and thus shouldn't be used in hot paths. 757 */ 758 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, 759 bool force) 760 { 761 /* any pending children left? */ 762 if (!sq->nr_pending) 763 return true; 764 765 update_min_dispatch_time(sq); 766 767 /* is the next dispatch time in the future? */ 768 if (force || time_after(sq->first_pending_disptime, jiffies)) { 769 throtl_schedule_pending_timer(sq, sq->first_pending_disptime); 770 return true; 771 } 772 773 /* tell the caller to continue dispatching */ 774 return false; 775 } 776 777 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, 778 bool rw, unsigned long start) 779 { 780 tg->bytes_disp[rw] = 0; 781 tg->io_disp[rw] = 0; 782 783 /* 784 * Previous slice has expired. We must have trimmed it after last 785 * bio dispatch. That means since start of last slice, we never used 786 * that bandwidth. Do try to make use of that bandwidth while giving 787 * credit. 788 */ 789 if (time_after_eq(start, tg->slice_start[rw])) 790 tg->slice_start[rw] = start; 791 792 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 793 throtl_log(&tg->service_queue, 794 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", 795 rw == READ ? 'R' : 'W', tg->slice_start[rw], 796 tg->slice_end[rw], jiffies); 797 } 798 799 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw) 800 { 801 tg->bytes_disp[rw] = 0; 802 tg->io_disp[rw] = 0; 803 tg->slice_start[rw] = jiffies; 804 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 805 throtl_log(&tg->service_queue, 806 "[%c] new slice start=%lu end=%lu jiffies=%lu", 807 rw == READ ? 'R' : 'W', tg->slice_start[rw], 808 tg->slice_end[rw], jiffies); 809 } 810 811 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, 812 unsigned long jiffy_end) 813 { 814 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 815 } 816 817 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, 818 unsigned long jiffy_end) 819 { 820 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 821 throtl_log(&tg->service_queue, 822 "[%c] extend slice start=%lu end=%lu jiffies=%lu", 823 rw == READ ? 'R' : 'W', tg->slice_start[rw], 824 tg->slice_end[rw], jiffies); 825 } 826 827 /* Determine if previously allocated or extended slice is complete or not */ 828 static bool throtl_slice_used(struct throtl_grp *tg, bool rw) 829 { 830 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 831 return false; 832 833 return true; 834 } 835 836 /* Trim the used slices and adjust slice start accordingly */ 837 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) 838 { 839 unsigned long nr_slices, time_elapsed, io_trim; 840 u64 bytes_trim, tmp; 841 842 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 843 844 /* 845 * If bps are unlimited (-1), then time slice don't get 846 * renewed. Don't try to trim the slice if slice is used. A new 847 * slice will start when appropriate. 848 */ 849 if (throtl_slice_used(tg, rw)) 850 return; 851 852 /* 853 * A bio has been dispatched. Also adjust slice_end. It might happen 854 * that initially cgroup limit was very low resulting in high 855 * slice_end, but later limit was bumped up and bio was dispached 856 * sooner, then we need to reduce slice_end. A high bogus slice_end 857 * is bad because it does not allow new slice to start. 858 */ 859 860 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); 861 862 time_elapsed = jiffies - tg->slice_start[rw]; 863 864 nr_slices = time_elapsed / tg->td->throtl_slice; 865 866 if (!nr_slices) 867 return; 868 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices; 869 do_div(tmp, HZ); 870 bytes_trim = tmp; 871 872 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) / 873 HZ; 874 875 if (!bytes_trim && !io_trim) 876 return; 877 878 if (tg->bytes_disp[rw] >= bytes_trim) 879 tg->bytes_disp[rw] -= bytes_trim; 880 else 881 tg->bytes_disp[rw] = 0; 882 883 if (tg->io_disp[rw] >= io_trim) 884 tg->io_disp[rw] -= io_trim; 885 else 886 tg->io_disp[rw] = 0; 887 888 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice; 889 890 throtl_log(&tg->service_queue, 891 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu", 892 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, 893 tg->slice_start[rw], tg->slice_end[rw], jiffies); 894 } 895 896 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, 897 unsigned long *wait) 898 { 899 bool rw = bio_data_dir(bio); 900 unsigned int io_allowed; 901 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 902 u64 tmp; 903 904 jiffy_elapsed = jiffies - tg->slice_start[rw]; 905 906 /* Round up to the next throttle slice, wait time must be nonzero */ 907 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice); 908 909 /* 910 * jiffy_elapsed_rnd should not be a big value as minimum iops can be 911 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 912 * will allow dispatch after 1 second and after that slice should 913 * have been trimmed. 914 */ 915 916 tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd; 917 do_div(tmp, HZ); 918 919 if (tmp > UINT_MAX) 920 io_allowed = UINT_MAX; 921 else 922 io_allowed = tmp; 923 924 if (tg->io_disp[rw] + 1 <= io_allowed) { 925 if (wait) 926 *wait = 0; 927 return true; 928 } 929 930 /* Calc approx time to dispatch */ 931 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed; 932 933 if (wait) 934 *wait = jiffy_wait; 935 return false; 936 } 937 938 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, 939 unsigned long *wait) 940 { 941 bool rw = bio_data_dir(bio); 942 u64 bytes_allowed, extra_bytes, tmp; 943 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 944 unsigned int bio_size = throtl_bio_data_size(bio); 945 946 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 947 948 /* Slice has just started. Consider one slice interval */ 949 if (!jiffy_elapsed) 950 jiffy_elapsed_rnd = tg->td->throtl_slice; 951 952 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 953 954 tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd; 955 do_div(tmp, HZ); 956 bytes_allowed = tmp; 957 958 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) { 959 if (wait) 960 *wait = 0; 961 return true; 962 } 963 964 /* Calc approx time to dispatch */ 965 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed; 966 jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw)); 967 968 if (!jiffy_wait) 969 jiffy_wait = 1; 970 971 /* 972 * This wait time is without taking into consideration the rounding 973 * up we did. Add that time also. 974 */ 975 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 976 if (wait) 977 *wait = jiffy_wait; 978 return false; 979 } 980 981 /* 982 * Returns whether one can dispatch a bio or not. Also returns approx number 983 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 984 */ 985 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, 986 unsigned long *wait) 987 { 988 bool rw = bio_data_dir(bio); 989 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 990 991 /* 992 * Currently whole state machine of group depends on first bio 993 * queued in the group bio list. So one should not be calling 994 * this function with a different bio if there are other bios 995 * queued. 996 */ 997 BUG_ON(tg->service_queue.nr_queued[rw] && 998 bio != throtl_peek_queued(&tg->service_queue.queued[rw])); 999 1000 /* If tg->bps = -1, then BW is unlimited */ 1001 if (tg_bps_limit(tg, rw) == U64_MAX && 1002 tg_iops_limit(tg, rw) == UINT_MAX) { 1003 if (wait) 1004 *wait = 0; 1005 return true; 1006 } 1007 1008 /* 1009 * If previous slice expired, start a new one otherwise renew/extend 1010 * existing slice to make sure it is at least throtl_slice interval 1011 * long since now. New slice is started only for empty throttle group. 1012 * If there is queued bio, that means there should be an active 1013 * slice and it should be extended instead. 1014 */ 1015 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw])) 1016 throtl_start_new_slice(tg, rw); 1017 else { 1018 if (time_before(tg->slice_end[rw], 1019 jiffies + tg->td->throtl_slice)) 1020 throtl_extend_slice(tg, rw, 1021 jiffies + tg->td->throtl_slice); 1022 } 1023 1024 if (tg_with_in_bps_limit(tg, bio, &bps_wait) && 1025 tg_with_in_iops_limit(tg, bio, &iops_wait)) { 1026 if (wait) 1027 *wait = 0; 1028 return true; 1029 } 1030 1031 max_wait = max(bps_wait, iops_wait); 1032 1033 if (wait) 1034 *wait = max_wait; 1035 1036 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 1037 throtl_extend_slice(tg, rw, jiffies + max_wait); 1038 1039 return false; 1040 } 1041 1042 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 1043 { 1044 bool rw = bio_data_dir(bio); 1045 unsigned int bio_size = throtl_bio_data_size(bio); 1046 1047 /* Charge the bio to the group */ 1048 tg->bytes_disp[rw] += bio_size; 1049 tg->io_disp[rw]++; 1050 tg->last_bytes_disp[rw] += bio_size; 1051 tg->last_io_disp[rw]++; 1052 1053 /* 1054 * BIO_THROTTLED is used to prevent the same bio to be throttled 1055 * more than once as a throttled bio will go through blk-throtl the 1056 * second time when it eventually gets issued. Set it when a bio 1057 * is being charged to a tg. 1058 */ 1059 if (!bio_flagged(bio, BIO_THROTTLED)) 1060 bio_set_flag(bio, BIO_THROTTLED); 1061 } 1062 1063 /** 1064 * throtl_add_bio_tg - add a bio to the specified throtl_grp 1065 * @bio: bio to add 1066 * @qn: qnode to use 1067 * @tg: the target throtl_grp 1068 * 1069 * Add @bio to @tg's service_queue using @qn. If @qn is not specified, 1070 * tg->qnode_on_self[] is used. 1071 */ 1072 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, 1073 struct throtl_grp *tg) 1074 { 1075 struct throtl_service_queue *sq = &tg->service_queue; 1076 bool rw = bio_data_dir(bio); 1077 1078 if (!qn) 1079 qn = &tg->qnode_on_self[rw]; 1080 1081 /* 1082 * If @tg doesn't currently have any bios queued in the same 1083 * direction, queueing @bio can change when @tg should be 1084 * dispatched. Mark that @tg was empty. This is automatically 1085 * cleaered on the next tg_update_disptime(). 1086 */ 1087 if (!sq->nr_queued[rw]) 1088 tg->flags |= THROTL_TG_WAS_EMPTY; 1089 1090 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); 1091 1092 sq->nr_queued[rw]++; 1093 throtl_enqueue_tg(tg); 1094 } 1095 1096 static void tg_update_disptime(struct throtl_grp *tg) 1097 { 1098 struct throtl_service_queue *sq = &tg->service_queue; 1099 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 1100 struct bio *bio; 1101 1102 bio = throtl_peek_queued(&sq->queued[READ]); 1103 if (bio) 1104 tg_may_dispatch(tg, bio, &read_wait); 1105 1106 bio = throtl_peek_queued(&sq->queued[WRITE]); 1107 if (bio) 1108 tg_may_dispatch(tg, bio, &write_wait); 1109 1110 min_wait = min(read_wait, write_wait); 1111 disptime = jiffies + min_wait; 1112 1113 /* Update dispatch time */ 1114 throtl_dequeue_tg(tg); 1115 tg->disptime = disptime; 1116 throtl_enqueue_tg(tg); 1117 1118 /* see throtl_add_bio_tg() */ 1119 tg->flags &= ~THROTL_TG_WAS_EMPTY; 1120 } 1121 1122 static void start_parent_slice_with_credit(struct throtl_grp *child_tg, 1123 struct throtl_grp *parent_tg, bool rw) 1124 { 1125 if (throtl_slice_used(parent_tg, rw)) { 1126 throtl_start_new_slice_with_credit(parent_tg, rw, 1127 child_tg->slice_start[rw]); 1128 } 1129 1130 } 1131 1132 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) 1133 { 1134 struct throtl_service_queue *sq = &tg->service_queue; 1135 struct throtl_service_queue *parent_sq = sq->parent_sq; 1136 struct throtl_grp *parent_tg = sq_to_tg(parent_sq); 1137 struct throtl_grp *tg_to_put = NULL; 1138 struct bio *bio; 1139 1140 /* 1141 * @bio is being transferred from @tg to @parent_sq. Popping a bio 1142 * from @tg may put its reference and @parent_sq might end up 1143 * getting released prematurely. Remember the tg to put and put it 1144 * after @bio is transferred to @parent_sq. 1145 */ 1146 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); 1147 sq->nr_queued[rw]--; 1148 1149 throtl_charge_bio(tg, bio); 1150 1151 /* 1152 * If our parent is another tg, we just need to transfer @bio to 1153 * the parent using throtl_add_bio_tg(). If our parent is 1154 * @td->service_queue, @bio is ready to be issued. Put it on its 1155 * bio_lists[] and decrease total number queued. The caller is 1156 * responsible for issuing these bios. 1157 */ 1158 if (parent_tg) { 1159 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); 1160 start_parent_slice_with_credit(tg, parent_tg, rw); 1161 } else { 1162 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], 1163 &parent_sq->queued[rw]); 1164 BUG_ON(tg->td->nr_queued[rw] <= 0); 1165 tg->td->nr_queued[rw]--; 1166 } 1167 1168 throtl_trim_slice(tg, rw); 1169 1170 if (tg_to_put) 1171 blkg_put(tg_to_blkg(tg_to_put)); 1172 } 1173 1174 static int throtl_dispatch_tg(struct throtl_grp *tg) 1175 { 1176 struct throtl_service_queue *sq = &tg->service_queue; 1177 unsigned int nr_reads = 0, nr_writes = 0; 1178 unsigned int max_nr_reads = throtl_grp_quantum*3/4; 1179 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; 1180 struct bio *bio; 1181 1182 /* Try to dispatch 75% READS and 25% WRITES */ 1183 1184 while ((bio = throtl_peek_queued(&sq->queued[READ])) && 1185 tg_may_dispatch(tg, bio, NULL)) { 1186 1187 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1188 nr_reads++; 1189 1190 if (nr_reads >= max_nr_reads) 1191 break; 1192 } 1193 1194 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && 1195 tg_may_dispatch(tg, bio, NULL)) { 1196 1197 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1198 nr_writes++; 1199 1200 if (nr_writes >= max_nr_writes) 1201 break; 1202 } 1203 1204 return nr_reads + nr_writes; 1205 } 1206 1207 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) 1208 { 1209 unsigned int nr_disp = 0; 1210 1211 while (1) { 1212 struct throtl_grp *tg = throtl_rb_first(parent_sq); 1213 struct throtl_service_queue *sq; 1214 1215 if (!tg) 1216 break; 1217 1218 if (time_before(jiffies, tg->disptime)) 1219 break; 1220 1221 throtl_dequeue_tg(tg); 1222 1223 nr_disp += throtl_dispatch_tg(tg); 1224 1225 sq = &tg->service_queue; 1226 if (sq->nr_queued[0] || sq->nr_queued[1]) 1227 tg_update_disptime(tg); 1228 1229 if (nr_disp >= throtl_quantum) 1230 break; 1231 } 1232 1233 return nr_disp; 1234 } 1235 1236 static bool throtl_can_upgrade(struct throtl_data *td, 1237 struct throtl_grp *this_tg); 1238 /** 1239 * throtl_pending_timer_fn - timer function for service_queue->pending_timer 1240 * @t: the pending_timer member of the throtl_service_queue being serviced 1241 * 1242 * This timer is armed when a child throtl_grp with active bio's become 1243 * pending and queued on the service_queue's pending_tree and expires when 1244 * the first child throtl_grp should be dispatched. This function 1245 * dispatches bio's from the children throtl_grps to the parent 1246 * service_queue. 1247 * 1248 * If the parent's parent is another throtl_grp, dispatching is propagated 1249 * by either arming its pending_timer or repeating dispatch directly. If 1250 * the top-level service_tree is reached, throtl_data->dispatch_work is 1251 * kicked so that the ready bio's are issued. 1252 */ 1253 static void throtl_pending_timer_fn(struct timer_list *t) 1254 { 1255 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer); 1256 struct throtl_grp *tg = sq_to_tg(sq); 1257 struct throtl_data *td = sq_to_td(sq); 1258 struct request_queue *q = td->queue; 1259 struct throtl_service_queue *parent_sq; 1260 bool dispatched; 1261 int ret; 1262 1263 spin_lock_irq(&q->queue_lock); 1264 if (throtl_can_upgrade(td, NULL)) 1265 throtl_upgrade_state(td); 1266 1267 again: 1268 parent_sq = sq->parent_sq; 1269 dispatched = false; 1270 1271 while (true) { 1272 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", 1273 sq->nr_queued[READ] + sq->nr_queued[WRITE], 1274 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1275 1276 ret = throtl_select_dispatch(sq); 1277 if (ret) { 1278 throtl_log(sq, "bios disp=%u", ret); 1279 dispatched = true; 1280 } 1281 1282 if (throtl_schedule_next_dispatch(sq, false)) 1283 break; 1284 1285 /* this dispatch windows is still open, relax and repeat */ 1286 spin_unlock_irq(&q->queue_lock); 1287 cpu_relax(); 1288 spin_lock_irq(&q->queue_lock); 1289 } 1290 1291 if (!dispatched) 1292 goto out_unlock; 1293 1294 if (parent_sq) { 1295 /* @parent_sq is another throl_grp, propagate dispatch */ 1296 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1297 tg_update_disptime(tg); 1298 if (!throtl_schedule_next_dispatch(parent_sq, false)) { 1299 /* window is already open, repeat dispatching */ 1300 sq = parent_sq; 1301 tg = sq_to_tg(sq); 1302 goto again; 1303 } 1304 } 1305 } else { 1306 /* reached the top-level, queue issueing */ 1307 queue_work(kthrotld_workqueue, &td->dispatch_work); 1308 } 1309 out_unlock: 1310 spin_unlock_irq(&q->queue_lock); 1311 } 1312 1313 /** 1314 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work 1315 * @work: work item being executed 1316 * 1317 * This function is queued for execution when bio's reach the bio_lists[] 1318 * of throtl_data->service_queue. Those bio's are ready and issued by this 1319 * function. 1320 */ 1321 static void blk_throtl_dispatch_work_fn(struct work_struct *work) 1322 { 1323 struct throtl_data *td = container_of(work, struct throtl_data, 1324 dispatch_work); 1325 struct throtl_service_queue *td_sq = &td->service_queue; 1326 struct request_queue *q = td->queue; 1327 struct bio_list bio_list_on_stack; 1328 struct bio *bio; 1329 struct blk_plug plug; 1330 int rw; 1331 1332 bio_list_init(&bio_list_on_stack); 1333 1334 spin_lock_irq(&q->queue_lock); 1335 for (rw = READ; rw <= WRITE; rw++) 1336 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) 1337 bio_list_add(&bio_list_on_stack, bio); 1338 spin_unlock_irq(&q->queue_lock); 1339 1340 if (!bio_list_empty(&bio_list_on_stack)) { 1341 blk_start_plug(&plug); 1342 while ((bio = bio_list_pop(&bio_list_on_stack))) 1343 submit_bio_noacct(bio); 1344 blk_finish_plug(&plug); 1345 } 1346 } 1347 1348 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, 1349 int off) 1350 { 1351 struct throtl_grp *tg = pd_to_tg(pd); 1352 u64 v = *(u64 *)((void *)tg + off); 1353 1354 if (v == U64_MAX) 1355 return 0; 1356 return __blkg_prfill_u64(sf, pd, v); 1357 } 1358 1359 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, 1360 int off) 1361 { 1362 struct throtl_grp *tg = pd_to_tg(pd); 1363 unsigned int v = *(unsigned int *)((void *)tg + off); 1364 1365 if (v == UINT_MAX) 1366 return 0; 1367 return __blkg_prfill_u64(sf, pd, v); 1368 } 1369 1370 static int tg_print_conf_u64(struct seq_file *sf, void *v) 1371 { 1372 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, 1373 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1374 return 0; 1375 } 1376 1377 static int tg_print_conf_uint(struct seq_file *sf, void *v) 1378 { 1379 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, 1380 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1381 return 0; 1382 } 1383 1384 static void tg_conf_updated(struct throtl_grp *tg, bool global) 1385 { 1386 struct throtl_service_queue *sq = &tg->service_queue; 1387 struct cgroup_subsys_state *pos_css; 1388 struct blkcg_gq *blkg; 1389 1390 throtl_log(&tg->service_queue, 1391 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", 1392 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), 1393 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); 1394 1395 /* 1396 * Update has_rules[] flags for the updated tg's subtree. A tg is 1397 * considered to have rules if either the tg itself or any of its 1398 * ancestors has rules. This identifies groups without any 1399 * restrictions in the whole hierarchy and allows them to bypass 1400 * blk-throttle. 1401 */ 1402 blkg_for_each_descendant_pre(blkg, pos_css, 1403 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { 1404 struct throtl_grp *this_tg = blkg_to_tg(blkg); 1405 struct throtl_grp *parent_tg; 1406 1407 tg_update_has_rules(this_tg); 1408 /* ignore root/second level */ 1409 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || 1410 !blkg->parent->parent) 1411 continue; 1412 parent_tg = blkg_to_tg(blkg->parent); 1413 /* 1414 * make sure all children has lower idle time threshold and 1415 * higher latency target 1416 */ 1417 this_tg->idletime_threshold = min(this_tg->idletime_threshold, 1418 parent_tg->idletime_threshold); 1419 this_tg->latency_target = max(this_tg->latency_target, 1420 parent_tg->latency_target); 1421 } 1422 1423 /* 1424 * We're already holding queue_lock and know @tg is valid. Let's 1425 * apply the new config directly. 1426 * 1427 * Restart the slices for both READ and WRITES. It might happen 1428 * that a group's limit are dropped suddenly and we don't want to 1429 * account recently dispatched IO with new low rate. 1430 */ 1431 throtl_start_new_slice(tg, 0); 1432 throtl_start_new_slice(tg, 1); 1433 1434 if (tg->flags & THROTL_TG_PENDING) { 1435 tg_update_disptime(tg); 1436 throtl_schedule_next_dispatch(sq->parent_sq, true); 1437 } 1438 } 1439 1440 static ssize_t tg_set_conf(struct kernfs_open_file *of, 1441 char *buf, size_t nbytes, loff_t off, bool is_u64) 1442 { 1443 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1444 struct blkg_conf_ctx ctx; 1445 struct throtl_grp *tg; 1446 int ret; 1447 u64 v; 1448 1449 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1450 if (ret) 1451 return ret; 1452 1453 ret = -EINVAL; 1454 if (sscanf(ctx.body, "%llu", &v) != 1) 1455 goto out_finish; 1456 if (!v) 1457 v = U64_MAX; 1458 1459 tg = blkg_to_tg(ctx.blkg); 1460 1461 if (is_u64) 1462 *(u64 *)((void *)tg + of_cft(of)->private) = v; 1463 else 1464 *(unsigned int *)((void *)tg + of_cft(of)->private) = v; 1465 1466 tg_conf_updated(tg, false); 1467 ret = 0; 1468 out_finish: 1469 blkg_conf_finish(&ctx); 1470 return ret ?: nbytes; 1471 } 1472 1473 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, 1474 char *buf, size_t nbytes, loff_t off) 1475 { 1476 return tg_set_conf(of, buf, nbytes, off, true); 1477 } 1478 1479 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, 1480 char *buf, size_t nbytes, loff_t off) 1481 { 1482 return tg_set_conf(of, buf, nbytes, off, false); 1483 } 1484 1485 static int tg_print_rwstat(struct seq_file *sf, void *v) 1486 { 1487 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1488 blkg_prfill_rwstat, &blkcg_policy_throtl, 1489 seq_cft(sf)->private, true); 1490 return 0; 1491 } 1492 1493 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf, 1494 struct blkg_policy_data *pd, int off) 1495 { 1496 struct blkg_rwstat_sample sum; 1497 1498 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off, 1499 &sum); 1500 return __blkg_prfill_rwstat(sf, pd, &sum); 1501 } 1502 1503 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v) 1504 { 1505 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1506 tg_prfill_rwstat_recursive, &blkcg_policy_throtl, 1507 seq_cft(sf)->private, true); 1508 return 0; 1509 } 1510 1511 static struct cftype throtl_legacy_files[] = { 1512 { 1513 .name = "throttle.read_bps_device", 1514 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]), 1515 .seq_show = tg_print_conf_u64, 1516 .write = tg_set_conf_u64, 1517 }, 1518 { 1519 .name = "throttle.write_bps_device", 1520 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]), 1521 .seq_show = tg_print_conf_u64, 1522 .write = tg_set_conf_u64, 1523 }, 1524 { 1525 .name = "throttle.read_iops_device", 1526 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]), 1527 .seq_show = tg_print_conf_uint, 1528 .write = tg_set_conf_uint, 1529 }, 1530 { 1531 .name = "throttle.write_iops_device", 1532 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]), 1533 .seq_show = tg_print_conf_uint, 1534 .write = tg_set_conf_uint, 1535 }, 1536 { 1537 .name = "throttle.io_service_bytes", 1538 .private = offsetof(struct throtl_grp, stat_bytes), 1539 .seq_show = tg_print_rwstat, 1540 }, 1541 { 1542 .name = "throttle.io_service_bytes_recursive", 1543 .private = offsetof(struct throtl_grp, stat_bytes), 1544 .seq_show = tg_print_rwstat_recursive, 1545 }, 1546 { 1547 .name = "throttle.io_serviced", 1548 .private = offsetof(struct throtl_grp, stat_ios), 1549 .seq_show = tg_print_rwstat, 1550 }, 1551 { 1552 .name = "throttle.io_serviced_recursive", 1553 .private = offsetof(struct throtl_grp, stat_ios), 1554 .seq_show = tg_print_rwstat_recursive, 1555 }, 1556 { } /* terminate */ 1557 }; 1558 1559 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, 1560 int off) 1561 { 1562 struct throtl_grp *tg = pd_to_tg(pd); 1563 const char *dname = blkg_dev_name(pd->blkg); 1564 char bufs[4][21] = { "max", "max", "max", "max" }; 1565 u64 bps_dft; 1566 unsigned int iops_dft; 1567 char idle_time[26] = ""; 1568 char latency_time[26] = ""; 1569 1570 if (!dname) 1571 return 0; 1572 1573 if (off == LIMIT_LOW) { 1574 bps_dft = 0; 1575 iops_dft = 0; 1576 } else { 1577 bps_dft = U64_MAX; 1578 iops_dft = UINT_MAX; 1579 } 1580 1581 if (tg->bps_conf[READ][off] == bps_dft && 1582 tg->bps_conf[WRITE][off] == bps_dft && 1583 tg->iops_conf[READ][off] == iops_dft && 1584 tg->iops_conf[WRITE][off] == iops_dft && 1585 (off != LIMIT_LOW || 1586 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD && 1587 tg->latency_target_conf == DFL_LATENCY_TARGET))) 1588 return 0; 1589 1590 if (tg->bps_conf[READ][off] != U64_MAX) 1591 snprintf(bufs[0], sizeof(bufs[0]), "%llu", 1592 tg->bps_conf[READ][off]); 1593 if (tg->bps_conf[WRITE][off] != U64_MAX) 1594 snprintf(bufs[1], sizeof(bufs[1]), "%llu", 1595 tg->bps_conf[WRITE][off]); 1596 if (tg->iops_conf[READ][off] != UINT_MAX) 1597 snprintf(bufs[2], sizeof(bufs[2]), "%u", 1598 tg->iops_conf[READ][off]); 1599 if (tg->iops_conf[WRITE][off] != UINT_MAX) 1600 snprintf(bufs[3], sizeof(bufs[3]), "%u", 1601 tg->iops_conf[WRITE][off]); 1602 if (off == LIMIT_LOW) { 1603 if (tg->idletime_threshold_conf == ULONG_MAX) 1604 strcpy(idle_time, " idle=max"); 1605 else 1606 snprintf(idle_time, sizeof(idle_time), " idle=%lu", 1607 tg->idletime_threshold_conf); 1608 1609 if (tg->latency_target_conf == ULONG_MAX) 1610 strcpy(latency_time, " latency=max"); 1611 else 1612 snprintf(latency_time, sizeof(latency_time), 1613 " latency=%lu", tg->latency_target_conf); 1614 } 1615 1616 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n", 1617 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time, 1618 latency_time); 1619 return 0; 1620 } 1621 1622 static int tg_print_limit(struct seq_file *sf, void *v) 1623 { 1624 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, 1625 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1626 return 0; 1627 } 1628 1629 static ssize_t tg_set_limit(struct kernfs_open_file *of, 1630 char *buf, size_t nbytes, loff_t off) 1631 { 1632 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1633 struct blkg_conf_ctx ctx; 1634 struct throtl_grp *tg; 1635 u64 v[4]; 1636 unsigned long idle_time; 1637 unsigned long latency_time; 1638 int ret; 1639 int index = of_cft(of)->private; 1640 1641 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1642 if (ret) 1643 return ret; 1644 1645 tg = blkg_to_tg(ctx.blkg); 1646 1647 v[0] = tg->bps_conf[READ][index]; 1648 v[1] = tg->bps_conf[WRITE][index]; 1649 v[2] = tg->iops_conf[READ][index]; 1650 v[3] = tg->iops_conf[WRITE][index]; 1651 1652 idle_time = tg->idletime_threshold_conf; 1653 latency_time = tg->latency_target_conf; 1654 while (true) { 1655 char tok[27]; /* wiops=18446744073709551616 */ 1656 char *p; 1657 u64 val = U64_MAX; 1658 int len; 1659 1660 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) 1661 break; 1662 if (tok[0] == '\0') 1663 break; 1664 ctx.body += len; 1665 1666 ret = -EINVAL; 1667 p = tok; 1668 strsep(&p, "="); 1669 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) 1670 goto out_finish; 1671 1672 ret = -ERANGE; 1673 if (!val) 1674 goto out_finish; 1675 1676 ret = -EINVAL; 1677 if (!strcmp(tok, "rbps")) 1678 v[0] = val; 1679 else if (!strcmp(tok, "wbps")) 1680 v[1] = val; 1681 else if (!strcmp(tok, "riops")) 1682 v[2] = min_t(u64, val, UINT_MAX); 1683 else if (!strcmp(tok, "wiops")) 1684 v[3] = min_t(u64, val, UINT_MAX); 1685 else if (off == LIMIT_LOW && !strcmp(tok, "idle")) 1686 idle_time = val; 1687 else if (off == LIMIT_LOW && !strcmp(tok, "latency")) 1688 latency_time = val; 1689 else 1690 goto out_finish; 1691 } 1692 1693 tg->bps_conf[READ][index] = v[0]; 1694 tg->bps_conf[WRITE][index] = v[1]; 1695 tg->iops_conf[READ][index] = v[2]; 1696 tg->iops_conf[WRITE][index] = v[3]; 1697 1698 if (index == LIMIT_MAX) { 1699 tg->bps[READ][index] = v[0]; 1700 tg->bps[WRITE][index] = v[1]; 1701 tg->iops[READ][index] = v[2]; 1702 tg->iops[WRITE][index] = v[3]; 1703 } 1704 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW], 1705 tg->bps_conf[READ][LIMIT_MAX]); 1706 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW], 1707 tg->bps_conf[WRITE][LIMIT_MAX]); 1708 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW], 1709 tg->iops_conf[READ][LIMIT_MAX]); 1710 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW], 1711 tg->iops_conf[WRITE][LIMIT_MAX]); 1712 tg->idletime_threshold_conf = idle_time; 1713 tg->latency_target_conf = latency_time; 1714 1715 /* force user to configure all settings for low limit */ 1716 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] || 1717 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) || 1718 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD || 1719 tg->latency_target_conf == DFL_LATENCY_TARGET) { 1720 tg->bps[READ][LIMIT_LOW] = 0; 1721 tg->bps[WRITE][LIMIT_LOW] = 0; 1722 tg->iops[READ][LIMIT_LOW] = 0; 1723 tg->iops[WRITE][LIMIT_LOW] = 0; 1724 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 1725 tg->latency_target = DFL_LATENCY_TARGET; 1726 } else if (index == LIMIT_LOW) { 1727 tg->idletime_threshold = tg->idletime_threshold_conf; 1728 tg->latency_target = tg->latency_target_conf; 1729 } 1730 1731 blk_throtl_update_limit_valid(tg->td); 1732 if (tg->td->limit_valid[LIMIT_LOW]) { 1733 if (index == LIMIT_LOW) 1734 tg->td->limit_index = LIMIT_LOW; 1735 } else 1736 tg->td->limit_index = LIMIT_MAX; 1737 tg_conf_updated(tg, index == LIMIT_LOW && 1738 tg->td->limit_valid[LIMIT_LOW]); 1739 ret = 0; 1740 out_finish: 1741 blkg_conf_finish(&ctx); 1742 return ret ?: nbytes; 1743 } 1744 1745 static struct cftype throtl_files[] = { 1746 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 1747 { 1748 .name = "low", 1749 .flags = CFTYPE_NOT_ON_ROOT, 1750 .seq_show = tg_print_limit, 1751 .write = tg_set_limit, 1752 .private = LIMIT_LOW, 1753 }, 1754 #endif 1755 { 1756 .name = "max", 1757 .flags = CFTYPE_NOT_ON_ROOT, 1758 .seq_show = tg_print_limit, 1759 .write = tg_set_limit, 1760 .private = LIMIT_MAX, 1761 }, 1762 { } /* terminate */ 1763 }; 1764 1765 static void throtl_shutdown_wq(struct request_queue *q) 1766 { 1767 struct throtl_data *td = q->td; 1768 1769 cancel_work_sync(&td->dispatch_work); 1770 } 1771 1772 static struct blkcg_policy blkcg_policy_throtl = { 1773 .dfl_cftypes = throtl_files, 1774 .legacy_cftypes = throtl_legacy_files, 1775 1776 .pd_alloc_fn = throtl_pd_alloc, 1777 .pd_init_fn = throtl_pd_init, 1778 .pd_online_fn = throtl_pd_online, 1779 .pd_offline_fn = throtl_pd_offline, 1780 .pd_free_fn = throtl_pd_free, 1781 }; 1782 1783 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg) 1784 { 1785 unsigned long rtime = jiffies, wtime = jiffies; 1786 1787 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]) 1788 rtime = tg->last_low_overflow_time[READ]; 1789 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) 1790 wtime = tg->last_low_overflow_time[WRITE]; 1791 return min(rtime, wtime); 1792 } 1793 1794 /* tg should not be an intermediate node */ 1795 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg) 1796 { 1797 struct throtl_service_queue *parent_sq; 1798 struct throtl_grp *parent = tg; 1799 unsigned long ret = __tg_last_low_overflow_time(tg); 1800 1801 while (true) { 1802 parent_sq = parent->service_queue.parent_sq; 1803 parent = sq_to_tg(parent_sq); 1804 if (!parent) 1805 break; 1806 1807 /* 1808 * The parent doesn't have low limit, it always reaches low 1809 * limit. Its overflow time is useless for children 1810 */ 1811 if (!parent->bps[READ][LIMIT_LOW] && 1812 !parent->iops[READ][LIMIT_LOW] && 1813 !parent->bps[WRITE][LIMIT_LOW] && 1814 !parent->iops[WRITE][LIMIT_LOW]) 1815 continue; 1816 if (time_after(__tg_last_low_overflow_time(parent), ret)) 1817 ret = __tg_last_low_overflow_time(parent); 1818 } 1819 return ret; 1820 } 1821 1822 static bool throtl_tg_is_idle(struct throtl_grp *tg) 1823 { 1824 /* 1825 * cgroup is idle if: 1826 * - single idle is too long, longer than a fixed value (in case user 1827 * configure a too big threshold) or 4 times of idletime threshold 1828 * - average think time is more than threshold 1829 * - IO latency is largely below threshold 1830 */ 1831 unsigned long time; 1832 bool ret; 1833 1834 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold); 1835 ret = tg->latency_target == DFL_LATENCY_TARGET || 1836 tg->idletime_threshold == DFL_IDLE_THRESHOLD || 1837 (ktime_get_ns() >> 10) - tg->last_finish_time > time || 1838 tg->avg_idletime > tg->idletime_threshold || 1839 (tg->latency_target && tg->bio_cnt && 1840 tg->bad_bio_cnt * 5 < tg->bio_cnt); 1841 throtl_log(&tg->service_queue, 1842 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d", 1843 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt, 1844 tg->bio_cnt, ret, tg->td->scale); 1845 return ret; 1846 } 1847 1848 static bool throtl_tg_can_upgrade(struct throtl_grp *tg) 1849 { 1850 struct throtl_service_queue *sq = &tg->service_queue; 1851 bool read_limit, write_limit; 1852 1853 /* 1854 * if cgroup reaches low limit (if low limit is 0, the cgroup always 1855 * reaches), it's ok to upgrade to next limit 1856 */ 1857 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]; 1858 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]; 1859 if (!read_limit && !write_limit) 1860 return true; 1861 if (read_limit && sq->nr_queued[READ] && 1862 (!write_limit || sq->nr_queued[WRITE])) 1863 return true; 1864 if (write_limit && sq->nr_queued[WRITE] && 1865 (!read_limit || sq->nr_queued[READ])) 1866 return true; 1867 1868 if (time_after_eq(jiffies, 1869 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) && 1870 throtl_tg_is_idle(tg)) 1871 return true; 1872 return false; 1873 } 1874 1875 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg) 1876 { 1877 while (true) { 1878 if (throtl_tg_can_upgrade(tg)) 1879 return true; 1880 tg = sq_to_tg(tg->service_queue.parent_sq); 1881 if (!tg || !tg_to_blkg(tg)->parent) 1882 return false; 1883 } 1884 return false; 1885 } 1886 1887 static bool throtl_can_upgrade(struct throtl_data *td, 1888 struct throtl_grp *this_tg) 1889 { 1890 struct cgroup_subsys_state *pos_css; 1891 struct blkcg_gq *blkg; 1892 1893 if (td->limit_index != LIMIT_LOW) 1894 return false; 1895 1896 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice)) 1897 return false; 1898 1899 rcu_read_lock(); 1900 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1901 struct throtl_grp *tg = blkg_to_tg(blkg); 1902 1903 if (tg == this_tg) 1904 continue; 1905 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1906 continue; 1907 if (!throtl_hierarchy_can_upgrade(tg)) { 1908 rcu_read_unlock(); 1909 return false; 1910 } 1911 } 1912 rcu_read_unlock(); 1913 return true; 1914 } 1915 1916 static void throtl_upgrade_check(struct throtl_grp *tg) 1917 { 1918 unsigned long now = jiffies; 1919 1920 if (tg->td->limit_index != LIMIT_LOW) 1921 return; 1922 1923 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1924 return; 1925 1926 tg->last_check_time = now; 1927 1928 if (!time_after_eq(now, 1929 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice)) 1930 return; 1931 1932 if (throtl_can_upgrade(tg->td, NULL)) 1933 throtl_upgrade_state(tg->td); 1934 } 1935 1936 static void throtl_upgrade_state(struct throtl_data *td) 1937 { 1938 struct cgroup_subsys_state *pos_css; 1939 struct blkcg_gq *blkg; 1940 1941 throtl_log(&td->service_queue, "upgrade to max"); 1942 td->limit_index = LIMIT_MAX; 1943 td->low_upgrade_time = jiffies; 1944 td->scale = 0; 1945 rcu_read_lock(); 1946 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1947 struct throtl_grp *tg = blkg_to_tg(blkg); 1948 struct throtl_service_queue *sq = &tg->service_queue; 1949 1950 tg->disptime = jiffies - 1; 1951 throtl_select_dispatch(sq); 1952 throtl_schedule_next_dispatch(sq, true); 1953 } 1954 rcu_read_unlock(); 1955 throtl_select_dispatch(&td->service_queue); 1956 throtl_schedule_next_dispatch(&td->service_queue, true); 1957 queue_work(kthrotld_workqueue, &td->dispatch_work); 1958 } 1959 1960 static void throtl_downgrade_state(struct throtl_data *td, int new) 1961 { 1962 td->scale /= 2; 1963 1964 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale); 1965 if (td->scale) { 1966 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice; 1967 return; 1968 } 1969 1970 td->limit_index = new; 1971 td->low_downgrade_time = jiffies; 1972 } 1973 1974 static bool throtl_tg_can_downgrade(struct throtl_grp *tg) 1975 { 1976 struct throtl_data *td = tg->td; 1977 unsigned long now = jiffies; 1978 1979 /* 1980 * If cgroup is below low limit, consider downgrade and throttle other 1981 * cgroups 1982 */ 1983 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) && 1984 time_after_eq(now, tg_last_low_overflow_time(tg) + 1985 td->throtl_slice) && 1986 (!throtl_tg_is_idle(tg) || 1987 !list_empty(&tg_to_blkg(tg)->blkcg->css.children))) 1988 return true; 1989 return false; 1990 } 1991 1992 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg) 1993 { 1994 while (true) { 1995 if (!throtl_tg_can_downgrade(tg)) 1996 return false; 1997 tg = sq_to_tg(tg->service_queue.parent_sq); 1998 if (!tg || !tg_to_blkg(tg)->parent) 1999 break; 2000 } 2001 return true; 2002 } 2003 2004 static void throtl_downgrade_check(struct throtl_grp *tg) 2005 { 2006 uint64_t bps; 2007 unsigned int iops; 2008 unsigned long elapsed_time; 2009 unsigned long now = jiffies; 2010 2011 if (tg->td->limit_index != LIMIT_MAX || 2012 !tg->td->limit_valid[LIMIT_LOW]) 2013 return; 2014 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 2015 return; 2016 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 2017 return; 2018 2019 elapsed_time = now - tg->last_check_time; 2020 tg->last_check_time = now; 2021 2022 if (time_before(now, tg_last_low_overflow_time(tg) + 2023 tg->td->throtl_slice)) 2024 return; 2025 2026 if (tg->bps[READ][LIMIT_LOW]) { 2027 bps = tg->last_bytes_disp[READ] * HZ; 2028 do_div(bps, elapsed_time); 2029 if (bps >= tg->bps[READ][LIMIT_LOW]) 2030 tg->last_low_overflow_time[READ] = now; 2031 } 2032 2033 if (tg->bps[WRITE][LIMIT_LOW]) { 2034 bps = tg->last_bytes_disp[WRITE] * HZ; 2035 do_div(bps, elapsed_time); 2036 if (bps >= tg->bps[WRITE][LIMIT_LOW]) 2037 tg->last_low_overflow_time[WRITE] = now; 2038 } 2039 2040 if (tg->iops[READ][LIMIT_LOW]) { 2041 iops = tg->last_io_disp[READ] * HZ / elapsed_time; 2042 if (iops >= tg->iops[READ][LIMIT_LOW]) 2043 tg->last_low_overflow_time[READ] = now; 2044 } 2045 2046 if (tg->iops[WRITE][LIMIT_LOW]) { 2047 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time; 2048 if (iops >= tg->iops[WRITE][LIMIT_LOW]) 2049 tg->last_low_overflow_time[WRITE] = now; 2050 } 2051 2052 /* 2053 * If cgroup is below low limit, consider downgrade and throttle other 2054 * cgroups 2055 */ 2056 if (throtl_hierarchy_can_downgrade(tg)) 2057 throtl_downgrade_state(tg->td, LIMIT_LOW); 2058 2059 tg->last_bytes_disp[READ] = 0; 2060 tg->last_bytes_disp[WRITE] = 0; 2061 tg->last_io_disp[READ] = 0; 2062 tg->last_io_disp[WRITE] = 0; 2063 } 2064 2065 static void blk_throtl_update_idletime(struct throtl_grp *tg) 2066 { 2067 unsigned long now = ktime_get_ns() >> 10; 2068 unsigned long last_finish_time = tg->last_finish_time; 2069 2070 if (now <= last_finish_time || last_finish_time == 0 || 2071 last_finish_time == tg->checked_last_finish_time) 2072 return; 2073 2074 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3; 2075 tg->checked_last_finish_time = last_finish_time; 2076 } 2077 2078 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2079 static void throtl_update_latency_buckets(struct throtl_data *td) 2080 { 2081 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE]; 2082 int i, cpu, rw; 2083 unsigned long last_latency[2] = { 0 }; 2084 unsigned long latency[2]; 2085 2086 if (!blk_queue_nonrot(td->queue)) 2087 return; 2088 if (time_before(jiffies, td->last_calculate_time + HZ)) 2089 return; 2090 td->last_calculate_time = jiffies; 2091 2092 memset(avg_latency, 0, sizeof(avg_latency)); 2093 for (rw = READ; rw <= WRITE; rw++) { 2094 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2095 struct latency_bucket *tmp = &td->tmp_buckets[rw][i]; 2096 2097 for_each_possible_cpu(cpu) { 2098 struct latency_bucket *bucket; 2099 2100 /* this isn't race free, but ok in practice */ 2101 bucket = per_cpu_ptr(td->latency_buckets[rw], 2102 cpu); 2103 tmp->total_latency += bucket[i].total_latency; 2104 tmp->samples += bucket[i].samples; 2105 bucket[i].total_latency = 0; 2106 bucket[i].samples = 0; 2107 } 2108 2109 if (tmp->samples >= 32) { 2110 int samples = tmp->samples; 2111 2112 latency[rw] = tmp->total_latency; 2113 2114 tmp->total_latency = 0; 2115 tmp->samples = 0; 2116 latency[rw] /= samples; 2117 if (latency[rw] == 0) 2118 continue; 2119 avg_latency[rw][i].latency = latency[rw]; 2120 } 2121 } 2122 } 2123 2124 for (rw = READ; rw <= WRITE; rw++) { 2125 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2126 if (!avg_latency[rw][i].latency) { 2127 if (td->avg_buckets[rw][i].latency < last_latency[rw]) 2128 td->avg_buckets[rw][i].latency = 2129 last_latency[rw]; 2130 continue; 2131 } 2132 2133 if (!td->avg_buckets[rw][i].valid) 2134 latency[rw] = avg_latency[rw][i].latency; 2135 else 2136 latency[rw] = (td->avg_buckets[rw][i].latency * 7 + 2137 avg_latency[rw][i].latency) >> 3; 2138 2139 td->avg_buckets[rw][i].latency = max(latency[rw], 2140 last_latency[rw]); 2141 td->avg_buckets[rw][i].valid = true; 2142 last_latency[rw] = td->avg_buckets[rw][i].latency; 2143 } 2144 } 2145 2146 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) 2147 throtl_log(&td->service_queue, 2148 "Latency bucket %d: read latency=%ld, read valid=%d, " 2149 "write latency=%ld, write valid=%d", i, 2150 td->avg_buckets[READ][i].latency, 2151 td->avg_buckets[READ][i].valid, 2152 td->avg_buckets[WRITE][i].latency, 2153 td->avg_buckets[WRITE][i].valid); 2154 } 2155 #else 2156 static inline void throtl_update_latency_buckets(struct throtl_data *td) 2157 { 2158 } 2159 #endif 2160 2161 bool blk_throtl_bio(struct bio *bio) 2162 { 2163 struct request_queue *q = bio->bi_disk->queue; 2164 struct blkcg_gq *blkg = bio->bi_blkg; 2165 struct throtl_qnode *qn = NULL; 2166 struct throtl_grp *tg = blkg_to_tg(blkg); 2167 struct throtl_service_queue *sq; 2168 bool rw = bio_data_dir(bio); 2169 bool throttled = false; 2170 struct throtl_data *td = tg->td; 2171 2172 rcu_read_lock(); 2173 2174 /* see throtl_charge_bio() */ 2175 if (bio_flagged(bio, BIO_THROTTLED)) 2176 goto out; 2177 2178 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) { 2179 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf, 2180 bio->bi_iter.bi_size); 2181 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1); 2182 } 2183 2184 if (!tg->has_rules[rw]) 2185 goto out; 2186 2187 spin_lock_irq(&q->queue_lock); 2188 2189 throtl_update_latency_buckets(td); 2190 2191 blk_throtl_update_idletime(tg); 2192 2193 sq = &tg->service_queue; 2194 2195 again: 2196 while (true) { 2197 if (tg->last_low_overflow_time[rw] == 0) 2198 tg->last_low_overflow_time[rw] = jiffies; 2199 throtl_downgrade_check(tg); 2200 throtl_upgrade_check(tg); 2201 /* throtl is FIFO - if bios are already queued, should queue */ 2202 if (sq->nr_queued[rw]) 2203 break; 2204 2205 /* if above limits, break to queue */ 2206 if (!tg_may_dispatch(tg, bio, NULL)) { 2207 tg->last_low_overflow_time[rw] = jiffies; 2208 if (throtl_can_upgrade(td, tg)) { 2209 throtl_upgrade_state(td); 2210 goto again; 2211 } 2212 break; 2213 } 2214 2215 /* within limits, let's charge and dispatch directly */ 2216 throtl_charge_bio(tg, bio); 2217 2218 /* 2219 * We need to trim slice even when bios are not being queued 2220 * otherwise it might happen that a bio is not queued for 2221 * a long time and slice keeps on extending and trim is not 2222 * called for a long time. Now if limits are reduced suddenly 2223 * we take into account all the IO dispatched so far at new 2224 * low rate and * newly queued IO gets a really long dispatch 2225 * time. 2226 * 2227 * So keep on trimming slice even if bio is not queued. 2228 */ 2229 throtl_trim_slice(tg, rw); 2230 2231 /* 2232 * @bio passed through this layer without being throttled. 2233 * Climb up the ladder. If we''re already at the top, it 2234 * can be executed directly. 2235 */ 2236 qn = &tg->qnode_on_parent[rw]; 2237 sq = sq->parent_sq; 2238 tg = sq_to_tg(sq); 2239 if (!tg) 2240 goto out_unlock; 2241 } 2242 2243 /* out-of-limit, queue to @tg */ 2244 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", 2245 rw == READ ? 'R' : 'W', 2246 tg->bytes_disp[rw], bio->bi_iter.bi_size, 2247 tg_bps_limit(tg, rw), 2248 tg->io_disp[rw], tg_iops_limit(tg, rw), 2249 sq->nr_queued[READ], sq->nr_queued[WRITE]); 2250 2251 tg->last_low_overflow_time[rw] = jiffies; 2252 2253 td->nr_queued[rw]++; 2254 throtl_add_bio_tg(bio, qn, tg); 2255 throttled = true; 2256 2257 /* 2258 * Update @tg's dispatch time and force schedule dispatch if @tg 2259 * was empty before @bio. The forced scheduling isn't likely to 2260 * cause undue delay as @bio is likely to be dispatched directly if 2261 * its @tg's disptime is not in the future. 2262 */ 2263 if (tg->flags & THROTL_TG_WAS_EMPTY) { 2264 tg_update_disptime(tg); 2265 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); 2266 } 2267 2268 out_unlock: 2269 spin_unlock_irq(&q->queue_lock); 2270 out: 2271 bio_set_flag(bio, BIO_THROTTLED); 2272 2273 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2274 if (throttled || !td->track_bio_latency) 2275 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY; 2276 #endif 2277 rcu_read_unlock(); 2278 return throttled; 2279 } 2280 2281 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2282 static void throtl_track_latency(struct throtl_data *td, sector_t size, 2283 int op, unsigned long time) 2284 { 2285 struct latency_bucket *latency; 2286 int index; 2287 2288 if (!td || td->limit_index != LIMIT_LOW || 2289 !(op == REQ_OP_READ || op == REQ_OP_WRITE) || 2290 !blk_queue_nonrot(td->queue)) 2291 return; 2292 2293 index = request_bucket_index(size); 2294 2295 latency = get_cpu_ptr(td->latency_buckets[op]); 2296 latency[index].total_latency += time; 2297 latency[index].samples++; 2298 put_cpu_ptr(td->latency_buckets[op]); 2299 } 2300 2301 void blk_throtl_stat_add(struct request *rq, u64 time_ns) 2302 { 2303 struct request_queue *q = rq->q; 2304 struct throtl_data *td = q->td; 2305 2306 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq), 2307 time_ns >> 10); 2308 } 2309 2310 void blk_throtl_bio_endio(struct bio *bio) 2311 { 2312 struct blkcg_gq *blkg; 2313 struct throtl_grp *tg; 2314 u64 finish_time_ns; 2315 unsigned long finish_time; 2316 unsigned long start_time; 2317 unsigned long lat; 2318 int rw = bio_data_dir(bio); 2319 2320 blkg = bio->bi_blkg; 2321 if (!blkg) 2322 return; 2323 tg = blkg_to_tg(blkg); 2324 2325 finish_time_ns = ktime_get_ns(); 2326 tg->last_finish_time = finish_time_ns >> 10; 2327 2328 start_time = bio_issue_time(&bio->bi_issue) >> 10; 2329 finish_time = __bio_issue_time(finish_time_ns) >> 10; 2330 if (!start_time || finish_time <= start_time) 2331 return; 2332 2333 lat = finish_time - start_time; 2334 /* this is only for bio based driver */ 2335 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY)) 2336 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue), 2337 bio_op(bio), lat); 2338 2339 if (tg->latency_target && lat >= tg->td->filtered_latency) { 2340 int bucket; 2341 unsigned int threshold; 2342 2343 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue)); 2344 threshold = tg->td->avg_buckets[rw][bucket].latency + 2345 tg->latency_target; 2346 if (lat > threshold) 2347 tg->bad_bio_cnt++; 2348 /* 2349 * Not race free, could get wrong count, which means cgroups 2350 * will be throttled 2351 */ 2352 tg->bio_cnt++; 2353 } 2354 2355 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) { 2356 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies; 2357 tg->bio_cnt /= 2; 2358 tg->bad_bio_cnt /= 2; 2359 } 2360 } 2361 #endif 2362 2363 int blk_throtl_init(struct request_queue *q) 2364 { 2365 struct throtl_data *td; 2366 int ret; 2367 2368 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 2369 if (!td) 2370 return -ENOMEM; 2371 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) * 2372 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2373 if (!td->latency_buckets[READ]) { 2374 kfree(td); 2375 return -ENOMEM; 2376 } 2377 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) * 2378 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2379 if (!td->latency_buckets[WRITE]) { 2380 free_percpu(td->latency_buckets[READ]); 2381 kfree(td); 2382 return -ENOMEM; 2383 } 2384 2385 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); 2386 throtl_service_queue_init(&td->service_queue); 2387 2388 q->td = td; 2389 td->queue = q; 2390 2391 td->limit_valid[LIMIT_MAX] = true; 2392 td->limit_index = LIMIT_MAX; 2393 td->low_upgrade_time = jiffies; 2394 td->low_downgrade_time = jiffies; 2395 2396 /* activate policy */ 2397 ret = blkcg_activate_policy(q, &blkcg_policy_throtl); 2398 if (ret) { 2399 free_percpu(td->latency_buckets[READ]); 2400 free_percpu(td->latency_buckets[WRITE]); 2401 kfree(td); 2402 } 2403 return ret; 2404 } 2405 2406 void blk_throtl_exit(struct request_queue *q) 2407 { 2408 BUG_ON(!q->td); 2409 throtl_shutdown_wq(q); 2410 blkcg_deactivate_policy(q, &blkcg_policy_throtl); 2411 free_percpu(q->td->latency_buckets[READ]); 2412 free_percpu(q->td->latency_buckets[WRITE]); 2413 kfree(q->td); 2414 } 2415 2416 void blk_throtl_register_queue(struct request_queue *q) 2417 { 2418 struct throtl_data *td; 2419 int i; 2420 2421 td = q->td; 2422 BUG_ON(!td); 2423 2424 if (blk_queue_nonrot(q)) { 2425 td->throtl_slice = DFL_THROTL_SLICE_SSD; 2426 td->filtered_latency = LATENCY_FILTERED_SSD; 2427 } else { 2428 td->throtl_slice = DFL_THROTL_SLICE_HD; 2429 td->filtered_latency = LATENCY_FILTERED_HD; 2430 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2431 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY; 2432 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY; 2433 } 2434 } 2435 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW 2436 /* if no low limit, use previous default */ 2437 td->throtl_slice = DFL_THROTL_SLICE_HD; 2438 #endif 2439 2440 td->track_bio_latency = !queue_is_mq(q); 2441 if (!td->track_bio_latency) 2442 blk_stat_enable_accounting(q); 2443 } 2444 2445 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2446 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page) 2447 { 2448 if (!q->td) 2449 return -EINVAL; 2450 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice)); 2451 } 2452 2453 ssize_t blk_throtl_sample_time_store(struct request_queue *q, 2454 const char *page, size_t count) 2455 { 2456 unsigned long v; 2457 unsigned long t; 2458 2459 if (!q->td) 2460 return -EINVAL; 2461 if (kstrtoul(page, 10, &v)) 2462 return -EINVAL; 2463 t = msecs_to_jiffies(v); 2464 if (t == 0 || t > MAX_THROTL_SLICE) 2465 return -EINVAL; 2466 q->td->throtl_slice = t; 2467 return count; 2468 } 2469 #endif 2470 2471 static int __init throtl_init(void) 2472 { 2473 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 2474 if (!kthrotld_workqueue) 2475 panic("Failed to create kthrotld\n"); 2476 2477 return blkcg_policy_register(&blkcg_policy_throtl); 2478 } 2479 2480 module_init(throtl_init); 2481