xref: /openbmc/linux/block/blk-throttle.c (revision aac5987a)
1 /*
2  * Interface for controlling IO bandwidth on a request queue
3  *
4  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5  */
6 
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include <linux/blk-cgroup.h>
13 #include "blk.h"
14 
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17 
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20 
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10;	/* 100 ms */
23 
24 static struct blkcg_policy blkcg_policy_throtl;
25 
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct *kthrotld_workqueue;
28 
29 /*
30  * To implement hierarchical throttling, throtl_grps form a tree and bios
31  * are dispatched upwards level by level until they reach the top and get
32  * issued.  When dispatching bios from the children and local group at each
33  * level, if the bios are dispatched into a single bio_list, there's a risk
34  * of a local or child group which can queue many bios at once filling up
35  * the list starving others.
36  *
37  * To avoid such starvation, dispatched bios are queued separately
38  * according to where they came from.  When they are again dispatched to
39  * the parent, they're popped in round-robin order so that no single source
40  * hogs the dispatch window.
41  *
42  * throtl_qnode is used to keep the queued bios separated by their sources.
43  * Bios are queued to throtl_qnode which in turn is queued to
44  * throtl_service_queue and then dispatched in round-robin order.
45  *
46  * It's also used to track the reference counts on blkg's.  A qnode always
47  * belongs to a throtl_grp and gets queued on itself or the parent, so
48  * incrementing the reference of the associated throtl_grp when a qnode is
49  * queued and decrementing when dequeued is enough to keep the whole blkg
50  * tree pinned while bios are in flight.
51  */
52 struct throtl_qnode {
53 	struct list_head	node;		/* service_queue->queued[] */
54 	struct bio_list		bios;		/* queued bios */
55 	struct throtl_grp	*tg;		/* tg this qnode belongs to */
56 };
57 
58 struct throtl_service_queue {
59 	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
60 
61 	/*
62 	 * Bios queued directly to this service_queue or dispatched from
63 	 * children throtl_grp's.
64 	 */
65 	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
66 	unsigned int		nr_queued[2];	/* number of queued bios */
67 
68 	/*
69 	 * RB tree of active children throtl_grp's, which are sorted by
70 	 * their ->disptime.
71 	 */
72 	struct rb_root		pending_tree;	/* RB tree of active tgs */
73 	struct rb_node		*first_pending;	/* first node in the tree */
74 	unsigned int		nr_pending;	/* # queued in the tree */
75 	unsigned long		first_pending_disptime;	/* disptime of the first tg */
76 	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
77 };
78 
79 enum tg_state_flags {
80 	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
81 	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
82 };
83 
84 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
85 
86 struct throtl_grp {
87 	/* must be the first member */
88 	struct blkg_policy_data pd;
89 
90 	/* active throtl group service_queue member */
91 	struct rb_node rb_node;
92 
93 	/* throtl_data this group belongs to */
94 	struct throtl_data *td;
95 
96 	/* this group's service queue */
97 	struct throtl_service_queue service_queue;
98 
99 	/*
100 	 * qnode_on_self is used when bios are directly queued to this
101 	 * throtl_grp so that local bios compete fairly with bios
102 	 * dispatched from children.  qnode_on_parent is used when bios are
103 	 * dispatched from this throtl_grp into its parent and will compete
104 	 * with the sibling qnode_on_parents and the parent's
105 	 * qnode_on_self.
106 	 */
107 	struct throtl_qnode qnode_on_self[2];
108 	struct throtl_qnode qnode_on_parent[2];
109 
110 	/*
111 	 * Dispatch time in jiffies. This is the estimated time when group
112 	 * will unthrottle and is ready to dispatch more bio. It is used as
113 	 * key to sort active groups in service tree.
114 	 */
115 	unsigned long disptime;
116 
117 	unsigned int flags;
118 
119 	/* are there any throtl rules between this group and td? */
120 	bool has_rules[2];
121 
122 	/* bytes per second rate limits */
123 	uint64_t bps[2];
124 
125 	/* IOPS limits */
126 	unsigned int iops[2];
127 
128 	/* Number of bytes disptached in current slice */
129 	uint64_t bytes_disp[2];
130 	/* Number of bio's dispatched in current slice */
131 	unsigned int io_disp[2];
132 
133 	/* When did we start a new slice */
134 	unsigned long slice_start[2];
135 	unsigned long slice_end[2];
136 };
137 
138 struct throtl_data
139 {
140 	/* service tree for active throtl groups */
141 	struct throtl_service_queue service_queue;
142 
143 	struct request_queue *queue;
144 
145 	/* Total Number of queued bios on READ and WRITE lists */
146 	unsigned int nr_queued[2];
147 
148 	/* Work for dispatching throttled bios */
149 	struct work_struct dispatch_work;
150 };
151 
152 static void throtl_pending_timer_fn(unsigned long arg);
153 
154 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
155 {
156 	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
157 }
158 
159 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
160 {
161 	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
162 }
163 
164 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
165 {
166 	return pd_to_blkg(&tg->pd);
167 }
168 
169 /**
170  * sq_to_tg - return the throl_grp the specified service queue belongs to
171  * @sq: the throtl_service_queue of interest
172  *
173  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
174  * embedded in throtl_data, %NULL is returned.
175  */
176 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
177 {
178 	if (sq && sq->parent_sq)
179 		return container_of(sq, struct throtl_grp, service_queue);
180 	else
181 		return NULL;
182 }
183 
184 /**
185  * sq_to_td - return throtl_data the specified service queue belongs to
186  * @sq: the throtl_service_queue of interest
187  *
188  * A service_queue can be embedded in either a throtl_grp or throtl_data.
189  * Determine the associated throtl_data accordingly and return it.
190  */
191 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
192 {
193 	struct throtl_grp *tg = sq_to_tg(sq);
194 
195 	if (tg)
196 		return tg->td;
197 	else
198 		return container_of(sq, struct throtl_data, service_queue);
199 }
200 
201 /**
202  * throtl_log - log debug message via blktrace
203  * @sq: the service_queue being reported
204  * @fmt: printf format string
205  * @args: printf args
206  *
207  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
208  * throtl_grp; otherwise, just "throtl".
209  */
210 #define throtl_log(sq, fmt, args...)	do {				\
211 	struct throtl_grp *__tg = sq_to_tg((sq));			\
212 	struct throtl_data *__td = sq_to_td((sq));			\
213 									\
214 	(void)__td;							\
215 	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
216 		break;							\
217 	if ((__tg)) {							\
218 		char __pbuf[128];					\
219 									\
220 		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
221 		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
222 	} else {							\
223 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
224 	}								\
225 } while (0)
226 
227 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
228 {
229 	INIT_LIST_HEAD(&qn->node);
230 	bio_list_init(&qn->bios);
231 	qn->tg = tg;
232 }
233 
234 /**
235  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
236  * @bio: bio being added
237  * @qn: qnode to add bio to
238  * @queued: the service_queue->queued[] list @qn belongs to
239  *
240  * Add @bio to @qn and put @qn on @queued if it's not already on.
241  * @qn->tg's reference count is bumped when @qn is activated.  See the
242  * comment on top of throtl_qnode definition for details.
243  */
244 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
245 				 struct list_head *queued)
246 {
247 	bio_list_add(&qn->bios, bio);
248 	if (list_empty(&qn->node)) {
249 		list_add_tail(&qn->node, queued);
250 		blkg_get(tg_to_blkg(qn->tg));
251 	}
252 }
253 
254 /**
255  * throtl_peek_queued - peek the first bio on a qnode list
256  * @queued: the qnode list to peek
257  */
258 static struct bio *throtl_peek_queued(struct list_head *queued)
259 {
260 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
261 	struct bio *bio;
262 
263 	if (list_empty(queued))
264 		return NULL;
265 
266 	bio = bio_list_peek(&qn->bios);
267 	WARN_ON_ONCE(!bio);
268 	return bio;
269 }
270 
271 /**
272  * throtl_pop_queued - pop the first bio form a qnode list
273  * @queued: the qnode list to pop a bio from
274  * @tg_to_put: optional out argument for throtl_grp to put
275  *
276  * Pop the first bio from the qnode list @queued.  After popping, the first
277  * qnode is removed from @queued if empty or moved to the end of @queued so
278  * that the popping order is round-robin.
279  *
280  * When the first qnode is removed, its associated throtl_grp should be put
281  * too.  If @tg_to_put is NULL, this function automatically puts it;
282  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
283  * responsible for putting it.
284  */
285 static struct bio *throtl_pop_queued(struct list_head *queued,
286 				     struct throtl_grp **tg_to_put)
287 {
288 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
289 	struct bio *bio;
290 
291 	if (list_empty(queued))
292 		return NULL;
293 
294 	bio = bio_list_pop(&qn->bios);
295 	WARN_ON_ONCE(!bio);
296 
297 	if (bio_list_empty(&qn->bios)) {
298 		list_del_init(&qn->node);
299 		if (tg_to_put)
300 			*tg_to_put = qn->tg;
301 		else
302 			blkg_put(tg_to_blkg(qn->tg));
303 	} else {
304 		list_move_tail(&qn->node, queued);
305 	}
306 
307 	return bio;
308 }
309 
310 /* init a service_queue, assumes the caller zeroed it */
311 static void throtl_service_queue_init(struct throtl_service_queue *sq)
312 {
313 	INIT_LIST_HEAD(&sq->queued[0]);
314 	INIT_LIST_HEAD(&sq->queued[1]);
315 	sq->pending_tree = RB_ROOT;
316 	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
317 		    (unsigned long)sq);
318 }
319 
320 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
321 {
322 	struct throtl_grp *tg;
323 	int rw;
324 
325 	tg = kzalloc_node(sizeof(*tg), gfp, node);
326 	if (!tg)
327 		return NULL;
328 
329 	throtl_service_queue_init(&tg->service_queue);
330 
331 	for (rw = READ; rw <= WRITE; rw++) {
332 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
333 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
334 	}
335 
336 	RB_CLEAR_NODE(&tg->rb_node);
337 	tg->bps[READ] = -1;
338 	tg->bps[WRITE] = -1;
339 	tg->iops[READ] = -1;
340 	tg->iops[WRITE] = -1;
341 
342 	return &tg->pd;
343 }
344 
345 static void throtl_pd_init(struct blkg_policy_data *pd)
346 {
347 	struct throtl_grp *tg = pd_to_tg(pd);
348 	struct blkcg_gq *blkg = tg_to_blkg(tg);
349 	struct throtl_data *td = blkg->q->td;
350 	struct throtl_service_queue *sq = &tg->service_queue;
351 
352 	/*
353 	 * If on the default hierarchy, we switch to properly hierarchical
354 	 * behavior where limits on a given throtl_grp are applied to the
355 	 * whole subtree rather than just the group itself.  e.g. If 16M
356 	 * read_bps limit is set on the root group, the whole system can't
357 	 * exceed 16M for the device.
358 	 *
359 	 * If not on the default hierarchy, the broken flat hierarchy
360 	 * behavior is retained where all throtl_grps are treated as if
361 	 * they're all separate root groups right below throtl_data.
362 	 * Limits of a group don't interact with limits of other groups
363 	 * regardless of the position of the group in the hierarchy.
364 	 */
365 	sq->parent_sq = &td->service_queue;
366 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
367 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
368 	tg->td = td;
369 }
370 
371 /*
372  * Set has_rules[] if @tg or any of its parents have limits configured.
373  * This doesn't require walking up to the top of the hierarchy as the
374  * parent's has_rules[] is guaranteed to be correct.
375  */
376 static void tg_update_has_rules(struct throtl_grp *tg)
377 {
378 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
379 	int rw;
380 
381 	for (rw = READ; rw <= WRITE; rw++)
382 		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
383 				    (tg->bps[rw] != -1 || tg->iops[rw] != -1);
384 }
385 
386 static void throtl_pd_online(struct blkg_policy_data *pd)
387 {
388 	/*
389 	 * We don't want new groups to escape the limits of its ancestors.
390 	 * Update has_rules[] after a new group is brought online.
391 	 */
392 	tg_update_has_rules(pd_to_tg(pd));
393 }
394 
395 static void throtl_pd_free(struct blkg_policy_data *pd)
396 {
397 	struct throtl_grp *tg = pd_to_tg(pd);
398 
399 	del_timer_sync(&tg->service_queue.pending_timer);
400 	kfree(tg);
401 }
402 
403 static struct throtl_grp *
404 throtl_rb_first(struct throtl_service_queue *parent_sq)
405 {
406 	/* Service tree is empty */
407 	if (!parent_sq->nr_pending)
408 		return NULL;
409 
410 	if (!parent_sq->first_pending)
411 		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
412 
413 	if (parent_sq->first_pending)
414 		return rb_entry_tg(parent_sq->first_pending);
415 
416 	return NULL;
417 }
418 
419 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
420 {
421 	rb_erase(n, root);
422 	RB_CLEAR_NODE(n);
423 }
424 
425 static void throtl_rb_erase(struct rb_node *n,
426 			    struct throtl_service_queue *parent_sq)
427 {
428 	if (parent_sq->first_pending == n)
429 		parent_sq->first_pending = NULL;
430 	rb_erase_init(n, &parent_sq->pending_tree);
431 	--parent_sq->nr_pending;
432 }
433 
434 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
435 {
436 	struct throtl_grp *tg;
437 
438 	tg = throtl_rb_first(parent_sq);
439 	if (!tg)
440 		return;
441 
442 	parent_sq->first_pending_disptime = tg->disptime;
443 }
444 
445 static void tg_service_queue_add(struct throtl_grp *tg)
446 {
447 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
448 	struct rb_node **node = &parent_sq->pending_tree.rb_node;
449 	struct rb_node *parent = NULL;
450 	struct throtl_grp *__tg;
451 	unsigned long key = tg->disptime;
452 	int left = 1;
453 
454 	while (*node != NULL) {
455 		parent = *node;
456 		__tg = rb_entry_tg(parent);
457 
458 		if (time_before(key, __tg->disptime))
459 			node = &parent->rb_left;
460 		else {
461 			node = &parent->rb_right;
462 			left = 0;
463 		}
464 	}
465 
466 	if (left)
467 		parent_sq->first_pending = &tg->rb_node;
468 
469 	rb_link_node(&tg->rb_node, parent, node);
470 	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
471 }
472 
473 static void __throtl_enqueue_tg(struct throtl_grp *tg)
474 {
475 	tg_service_queue_add(tg);
476 	tg->flags |= THROTL_TG_PENDING;
477 	tg->service_queue.parent_sq->nr_pending++;
478 }
479 
480 static void throtl_enqueue_tg(struct throtl_grp *tg)
481 {
482 	if (!(tg->flags & THROTL_TG_PENDING))
483 		__throtl_enqueue_tg(tg);
484 }
485 
486 static void __throtl_dequeue_tg(struct throtl_grp *tg)
487 {
488 	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
489 	tg->flags &= ~THROTL_TG_PENDING;
490 }
491 
492 static void throtl_dequeue_tg(struct throtl_grp *tg)
493 {
494 	if (tg->flags & THROTL_TG_PENDING)
495 		__throtl_dequeue_tg(tg);
496 }
497 
498 /* Call with queue lock held */
499 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
500 					  unsigned long expires)
501 {
502 	mod_timer(&sq->pending_timer, expires);
503 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
504 		   expires - jiffies, jiffies);
505 }
506 
507 /**
508  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
509  * @sq: the service_queue to schedule dispatch for
510  * @force: force scheduling
511  *
512  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
513  * dispatch time of the first pending child.  Returns %true if either timer
514  * is armed or there's no pending child left.  %false if the current
515  * dispatch window is still open and the caller should continue
516  * dispatching.
517  *
518  * If @force is %true, the dispatch timer is always scheduled and this
519  * function is guaranteed to return %true.  This is to be used when the
520  * caller can't dispatch itself and needs to invoke pending_timer
521  * unconditionally.  Note that forced scheduling is likely to induce short
522  * delay before dispatch starts even if @sq->first_pending_disptime is not
523  * in the future and thus shouldn't be used in hot paths.
524  */
525 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
526 					  bool force)
527 {
528 	/* any pending children left? */
529 	if (!sq->nr_pending)
530 		return true;
531 
532 	update_min_dispatch_time(sq);
533 
534 	/* is the next dispatch time in the future? */
535 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
536 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
537 		return true;
538 	}
539 
540 	/* tell the caller to continue dispatching */
541 	return false;
542 }
543 
544 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
545 		bool rw, unsigned long start)
546 {
547 	tg->bytes_disp[rw] = 0;
548 	tg->io_disp[rw] = 0;
549 
550 	/*
551 	 * Previous slice has expired. We must have trimmed it after last
552 	 * bio dispatch. That means since start of last slice, we never used
553 	 * that bandwidth. Do try to make use of that bandwidth while giving
554 	 * credit.
555 	 */
556 	if (time_after_eq(start, tg->slice_start[rw]))
557 		tg->slice_start[rw] = start;
558 
559 	tg->slice_end[rw] = jiffies + throtl_slice;
560 	throtl_log(&tg->service_queue,
561 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
562 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
563 		   tg->slice_end[rw], jiffies);
564 }
565 
566 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
567 {
568 	tg->bytes_disp[rw] = 0;
569 	tg->io_disp[rw] = 0;
570 	tg->slice_start[rw] = jiffies;
571 	tg->slice_end[rw] = jiffies + throtl_slice;
572 	throtl_log(&tg->service_queue,
573 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
574 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
575 		   tg->slice_end[rw], jiffies);
576 }
577 
578 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
579 					unsigned long jiffy_end)
580 {
581 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
582 }
583 
584 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
585 				       unsigned long jiffy_end)
586 {
587 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
588 	throtl_log(&tg->service_queue,
589 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
590 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
591 		   tg->slice_end[rw], jiffies);
592 }
593 
594 /* Determine if previously allocated or extended slice is complete or not */
595 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
596 {
597 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
598 		return false;
599 
600 	return 1;
601 }
602 
603 /* Trim the used slices and adjust slice start accordingly */
604 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
605 {
606 	unsigned long nr_slices, time_elapsed, io_trim;
607 	u64 bytes_trim, tmp;
608 
609 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
610 
611 	/*
612 	 * If bps are unlimited (-1), then time slice don't get
613 	 * renewed. Don't try to trim the slice if slice is used. A new
614 	 * slice will start when appropriate.
615 	 */
616 	if (throtl_slice_used(tg, rw))
617 		return;
618 
619 	/*
620 	 * A bio has been dispatched. Also adjust slice_end. It might happen
621 	 * that initially cgroup limit was very low resulting in high
622 	 * slice_end, but later limit was bumped up and bio was dispached
623 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
624 	 * is bad because it does not allow new slice to start.
625 	 */
626 
627 	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
628 
629 	time_elapsed = jiffies - tg->slice_start[rw];
630 
631 	nr_slices = time_elapsed / throtl_slice;
632 
633 	if (!nr_slices)
634 		return;
635 	tmp = tg->bps[rw] * throtl_slice * nr_slices;
636 	do_div(tmp, HZ);
637 	bytes_trim = tmp;
638 
639 	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
640 
641 	if (!bytes_trim && !io_trim)
642 		return;
643 
644 	if (tg->bytes_disp[rw] >= bytes_trim)
645 		tg->bytes_disp[rw] -= bytes_trim;
646 	else
647 		tg->bytes_disp[rw] = 0;
648 
649 	if (tg->io_disp[rw] >= io_trim)
650 		tg->io_disp[rw] -= io_trim;
651 	else
652 		tg->io_disp[rw] = 0;
653 
654 	tg->slice_start[rw] += nr_slices * throtl_slice;
655 
656 	throtl_log(&tg->service_queue,
657 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
658 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
659 		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
660 }
661 
662 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
663 				  unsigned long *wait)
664 {
665 	bool rw = bio_data_dir(bio);
666 	unsigned int io_allowed;
667 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
668 	u64 tmp;
669 
670 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
671 
672 	/* Slice has just started. Consider one slice interval */
673 	if (!jiffy_elapsed)
674 		jiffy_elapsed_rnd = throtl_slice;
675 
676 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
677 
678 	/*
679 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
680 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
681 	 * will allow dispatch after 1 second and after that slice should
682 	 * have been trimmed.
683 	 */
684 
685 	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
686 	do_div(tmp, HZ);
687 
688 	if (tmp > UINT_MAX)
689 		io_allowed = UINT_MAX;
690 	else
691 		io_allowed = tmp;
692 
693 	if (tg->io_disp[rw] + 1 <= io_allowed) {
694 		if (wait)
695 			*wait = 0;
696 		return true;
697 	}
698 
699 	/* Calc approx time to dispatch */
700 	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
701 
702 	if (jiffy_wait > jiffy_elapsed)
703 		jiffy_wait = jiffy_wait - jiffy_elapsed;
704 	else
705 		jiffy_wait = 1;
706 
707 	if (wait)
708 		*wait = jiffy_wait;
709 	return 0;
710 }
711 
712 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
713 				 unsigned long *wait)
714 {
715 	bool rw = bio_data_dir(bio);
716 	u64 bytes_allowed, extra_bytes, tmp;
717 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
718 
719 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
720 
721 	/* Slice has just started. Consider one slice interval */
722 	if (!jiffy_elapsed)
723 		jiffy_elapsed_rnd = throtl_slice;
724 
725 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
726 
727 	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
728 	do_div(tmp, HZ);
729 	bytes_allowed = tmp;
730 
731 	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
732 		if (wait)
733 			*wait = 0;
734 		return true;
735 	}
736 
737 	/* Calc approx time to dispatch */
738 	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
739 	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
740 
741 	if (!jiffy_wait)
742 		jiffy_wait = 1;
743 
744 	/*
745 	 * This wait time is without taking into consideration the rounding
746 	 * up we did. Add that time also.
747 	 */
748 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
749 	if (wait)
750 		*wait = jiffy_wait;
751 	return 0;
752 }
753 
754 /*
755  * Returns whether one can dispatch a bio or not. Also returns approx number
756  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
757  */
758 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
759 			    unsigned long *wait)
760 {
761 	bool rw = bio_data_dir(bio);
762 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
763 
764 	/*
765  	 * Currently whole state machine of group depends on first bio
766 	 * queued in the group bio list. So one should not be calling
767 	 * this function with a different bio if there are other bios
768 	 * queued.
769 	 */
770 	BUG_ON(tg->service_queue.nr_queued[rw] &&
771 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
772 
773 	/* If tg->bps = -1, then BW is unlimited */
774 	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
775 		if (wait)
776 			*wait = 0;
777 		return true;
778 	}
779 
780 	/*
781 	 * If previous slice expired, start a new one otherwise renew/extend
782 	 * existing slice to make sure it is at least throtl_slice interval
783 	 * long since now. New slice is started only for empty throttle group.
784 	 * If there is queued bio, that means there should be an active
785 	 * slice and it should be extended instead.
786 	 */
787 	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
788 		throtl_start_new_slice(tg, rw);
789 	else {
790 		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
791 			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
792 	}
793 
794 	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
795 	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
796 		if (wait)
797 			*wait = 0;
798 		return 1;
799 	}
800 
801 	max_wait = max(bps_wait, iops_wait);
802 
803 	if (wait)
804 		*wait = max_wait;
805 
806 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
807 		throtl_extend_slice(tg, rw, jiffies + max_wait);
808 
809 	return 0;
810 }
811 
812 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
813 {
814 	bool rw = bio_data_dir(bio);
815 
816 	/* Charge the bio to the group */
817 	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
818 	tg->io_disp[rw]++;
819 
820 	/*
821 	 * BIO_THROTTLED is used to prevent the same bio to be throttled
822 	 * more than once as a throttled bio will go through blk-throtl the
823 	 * second time when it eventually gets issued.  Set it when a bio
824 	 * is being charged to a tg.
825 	 */
826 	if (!bio_flagged(bio, BIO_THROTTLED))
827 		bio_set_flag(bio, BIO_THROTTLED);
828 }
829 
830 /**
831  * throtl_add_bio_tg - add a bio to the specified throtl_grp
832  * @bio: bio to add
833  * @qn: qnode to use
834  * @tg: the target throtl_grp
835  *
836  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
837  * tg->qnode_on_self[] is used.
838  */
839 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
840 			      struct throtl_grp *tg)
841 {
842 	struct throtl_service_queue *sq = &tg->service_queue;
843 	bool rw = bio_data_dir(bio);
844 
845 	if (!qn)
846 		qn = &tg->qnode_on_self[rw];
847 
848 	/*
849 	 * If @tg doesn't currently have any bios queued in the same
850 	 * direction, queueing @bio can change when @tg should be
851 	 * dispatched.  Mark that @tg was empty.  This is automatically
852 	 * cleaered on the next tg_update_disptime().
853 	 */
854 	if (!sq->nr_queued[rw])
855 		tg->flags |= THROTL_TG_WAS_EMPTY;
856 
857 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
858 
859 	sq->nr_queued[rw]++;
860 	throtl_enqueue_tg(tg);
861 }
862 
863 static void tg_update_disptime(struct throtl_grp *tg)
864 {
865 	struct throtl_service_queue *sq = &tg->service_queue;
866 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
867 	struct bio *bio;
868 
869 	bio = throtl_peek_queued(&sq->queued[READ]);
870 	if (bio)
871 		tg_may_dispatch(tg, bio, &read_wait);
872 
873 	bio = throtl_peek_queued(&sq->queued[WRITE]);
874 	if (bio)
875 		tg_may_dispatch(tg, bio, &write_wait);
876 
877 	min_wait = min(read_wait, write_wait);
878 	disptime = jiffies + min_wait;
879 
880 	/* Update dispatch time */
881 	throtl_dequeue_tg(tg);
882 	tg->disptime = disptime;
883 	throtl_enqueue_tg(tg);
884 
885 	/* see throtl_add_bio_tg() */
886 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
887 }
888 
889 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
890 					struct throtl_grp *parent_tg, bool rw)
891 {
892 	if (throtl_slice_used(parent_tg, rw)) {
893 		throtl_start_new_slice_with_credit(parent_tg, rw,
894 				child_tg->slice_start[rw]);
895 	}
896 
897 }
898 
899 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
900 {
901 	struct throtl_service_queue *sq = &tg->service_queue;
902 	struct throtl_service_queue *parent_sq = sq->parent_sq;
903 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
904 	struct throtl_grp *tg_to_put = NULL;
905 	struct bio *bio;
906 
907 	/*
908 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
909 	 * from @tg may put its reference and @parent_sq might end up
910 	 * getting released prematurely.  Remember the tg to put and put it
911 	 * after @bio is transferred to @parent_sq.
912 	 */
913 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
914 	sq->nr_queued[rw]--;
915 
916 	throtl_charge_bio(tg, bio);
917 
918 	/*
919 	 * If our parent is another tg, we just need to transfer @bio to
920 	 * the parent using throtl_add_bio_tg().  If our parent is
921 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
922 	 * bio_lists[] and decrease total number queued.  The caller is
923 	 * responsible for issuing these bios.
924 	 */
925 	if (parent_tg) {
926 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
927 		start_parent_slice_with_credit(tg, parent_tg, rw);
928 	} else {
929 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
930 				     &parent_sq->queued[rw]);
931 		BUG_ON(tg->td->nr_queued[rw] <= 0);
932 		tg->td->nr_queued[rw]--;
933 	}
934 
935 	throtl_trim_slice(tg, rw);
936 
937 	if (tg_to_put)
938 		blkg_put(tg_to_blkg(tg_to_put));
939 }
940 
941 static int throtl_dispatch_tg(struct throtl_grp *tg)
942 {
943 	struct throtl_service_queue *sq = &tg->service_queue;
944 	unsigned int nr_reads = 0, nr_writes = 0;
945 	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
946 	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
947 	struct bio *bio;
948 
949 	/* Try to dispatch 75% READS and 25% WRITES */
950 
951 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
952 	       tg_may_dispatch(tg, bio, NULL)) {
953 
954 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
955 		nr_reads++;
956 
957 		if (nr_reads >= max_nr_reads)
958 			break;
959 	}
960 
961 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
962 	       tg_may_dispatch(tg, bio, NULL)) {
963 
964 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
965 		nr_writes++;
966 
967 		if (nr_writes >= max_nr_writes)
968 			break;
969 	}
970 
971 	return nr_reads + nr_writes;
972 }
973 
974 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
975 {
976 	unsigned int nr_disp = 0;
977 
978 	while (1) {
979 		struct throtl_grp *tg = throtl_rb_first(parent_sq);
980 		struct throtl_service_queue *sq = &tg->service_queue;
981 
982 		if (!tg)
983 			break;
984 
985 		if (time_before(jiffies, tg->disptime))
986 			break;
987 
988 		throtl_dequeue_tg(tg);
989 
990 		nr_disp += throtl_dispatch_tg(tg);
991 
992 		if (sq->nr_queued[0] || sq->nr_queued[1])
993 			tg_update_disptime(tg);
994 
995 		if (nr_disp >= throtl_quantum)
996 			break;
997 	}
998 
999 	return nr_disp;
1000 }
1001 
1002 /**
1003  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1004  * @arg: the throtl_service_queue being serviced
1005  *
1006  * This timer is armed when a child throtl_grp with active bio's become
1007  * pending and queued on the service_queue's pending_tree and expires when
1008  * the first child throtl_grp should be dispatched.  This function
1009  * dispatches bio's from the children throtl_grps to the parent
1010  * service_queue.
1011  *
1012  * If the parent's parent is another throtl_grp, dispatching is propagated
1013  * by either arming its pending_timer or repeating dispatch directly.  If
1014  * the top-level service_tree is reached, throtl_data->dispatch_work is
1015  * kicked so that the ready bio's are issued.
1016  */
1017 static void throtl_pending_timer_fn(unsigned long arg)
1018 {
1019 	struct throtl_service_queue *sq = (void *)arg;
1020 	struct throtl_grp *tg = sq_to_tg(sq);
1021 	struct throtl_data *td = sq_to_td(sq);
1022 	struct request_queue *q = td->queue;
1023 	struct throtl_service_queue *parent_sq;
1024 	bool dispatched;
1025 	int ret;
1026 
1027 	spin_lock_irq(q->queue_lock);
1028 again:
1029 	parent_sq = sq->parent_sq;
1030 	dispatched = false;
1031 
1032 	while (true) {
1033 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1034 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1035 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1036 
1037 		ret = throtl_select_dispatch(sq);
1038 		if (ret) {
1039 			throtl_log(sq, "bios disp=%u", ret);
1040 			dispatched = true;
1041 		}
1042 
1043 		if (throtl_schedule_next_dispatch(sq, false))
1044 			break;
1045 
1046 		/* this dispatch windows is still open, relax and repeat */
1047 		spin_unlock_irq(q->queue_lock);
1048 		cpu_relax();
1049 		spin_lock_irq(q->queue_lock);
1050 	}
1051 
1052 	if (!dispatched)
1053 		goto out_unlock;
1054 
1055 	if (parent_sq) {
1056 		/* @parent_sq is another throl_grp, propagate dispatch */
1057 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1058 			tg_update_disptime(tg);
1059 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1060 				/* window is already open, repeat dispatching */
1061 				sq = parent_sq;
1062 				tg = sq_to_tg(sq);
1063 				goto again;
1064 			}
1065 		}
1066 	} else {
1067 		/* reached the top-level, queue issueing */
1068 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1069 	}
1070 out_unlock:
1071 	spin_unlock_irq(q->queue_lock);
1072 }
1073 
1074 /**
1075  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1076  * @work: work item being executed
1077  *
1078  * This function is queued for execution when bio's reach the bio_lists[]
1079  * of throtl_data->service_queue.  Those bio's are ready and issued by this
1080  * function.
1081  */
1082 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1083 {
1084 	struct throtl_data *td = container_of(work, struct throtl_data,
1085 					      dispatch_work);
1086 	struct throtl_service_queue *td_sq = &td->service_queue;
1087 	struct request_queue *q = td->queue;
1088 	struct bio_list bio_list_on_stack;
1089 	struct bio *bio;
1090 	struct blk_plug plug;
1091 	int rw;
1092 
1093 	bio_list_init(&bio_list_on_stack);
1094 
1095 	spin_lock_irq(q->queue_lock);
1096 	for (rw = READ; rw <= WRITE; rw++)
1097 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1098 			bio_list_add(&bio_list_on_stack, bio);
1099 	spin_unlock_irq(q->queue_lock);
1100 
1101 	if (!bio_list_empty(&bio_list_on_stack)) {
1102 		blk_start_plug(&plug);
1103 		while((bio = bio_list_pop(&bio_list_on_stack)))
1104 			generic_make_request(bio);
1105 		blk_finish_plug(&plug);
1106 	}
1107 }
1108 
1109 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1110 			      int off)
1111 {
1112 	struct throtl_grp *tg = pd_to_tg(pd);
1113 	u64 v = *(u64 *)((void *)tg + off);
1114 
1115 	if (v == -1)
1116 		return 0;
1117 	return __blkg_prfill_u64(sf, pd, v);
1118 }
1119 
1120 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1121 			       int off)
1122 {
1123 	struct throtl_grp *tg = pd_to_tg(pd);
1124 	unsigned int v = *(unsigned int *)((void *)tg + off);
1125 
1126 	if (v == -1)
1127 		return 0;
1128 	return __blkg_prfill_u64(sf, pd, v);
1129 }
1130 
1131 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1132 {
1133 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1134 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1135 	return 0;
1136 }
1137 
1138 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1139 {
1140 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1141 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1142 	return 0;
1143 }
1144 
1145 static void tg_conf_updated(struct throtl_grp *tg)
1146 {
1147 	struct throtl_service_queue *sq = &tg->service_queue;
1148 	struct cgroup_subsys_state *pos_css;
1149 	struct blkcg_gq *blkg;
1150 
1151 	throtl_log(&tg->service_queue,
1152 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1153 		   tg->bps[READ], tg->bps[WRITE],
1154 		   tg->iops[READ], tg->iops[WRITE]);
1155 
1156 	/*
1157 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1158 	 * considered to have rules if either the tg itself or any of its
1159 	 * ancestors has rules.  This identifies groups without any
1160 	 * restrictions in the whole hierarchy and allows them to bypass
1161 	 * blk-throttle.
1162 	 */
1163 	blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1164 		tg_update_has_rules(blkg_to_tg(blkg));
1165 
1166 	/*
1167 	 * We're already holding queue_lock and know @tg is valid.  Let's
1168 	 * apply the new config directly.
1169 	 *
1170 	 * Restart the slices for both READ and WRITES. It might happen
1171 	 * that a group's limit are dropped suddenly and we don't want to
1172 	 * account recently dispatched IO with new low rate.
1173 	 */
1174 	throtl_start_new_slice(tg, 0);
1175 	throtl_start_new_slice(tg, 1);
1176 
1177 	if (tg->flags & THROTL_TG_PENDING) {
1178 		tg_update_disptime(tg);
1179 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1180 	}
1181 }
1182 
1183 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1184 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1185 {
1186 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1187 	struct blkg_conf_ctx ctx;
1188 	struct throtl_grp *tg;
1189 	int ret;
1190 	u64 v;
1191 
1192 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1193 	if (ret)
1194 		return ret;
1195 
1196 	ret = -EINVAL;
1197 	if (sscanf(ctx.body, "%llu", &v) != 1)
1198 		goto out_finish;
1199 	if (!v)
1200 		v = -1;
1201 
1202 	tg = blkg_to_tg(ctx.blkg);
1203 
1204 	if (is_u64)
1205 		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1206 	else
1207 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1208 
1209 	tg_conf_updated(tg);
1210 	ret = 0;
1211 out_finish:
1212 	blkg_conf_finish(&ctx);
1213 	return ret ?: nbytes;
1214 }
1215 
1216 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1217 			       char *buf, size_t nbytes, loff_t off)
1218 {
1219 	return tg_set_conf(of, buf, nbytes, off, true);
1220 }
1221 
1222 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1223 				char *buf, size_t nbytes, loff_t off)
1224 {
1225 	return tg_set_conf(of, buf, nbytes, off, false);
1226 }
1227 
1228 static struct cftype throtl_legacy_files[] = {
1229 	{
1230 		.name = "throttle.read_bps_device",
1231 		.private = offsetof(struct throtl_grp, bps[READ]),
1232 		.seq_show = tg_print_conf_u64,
1233 		.write = tg_set_conf_u64,
1234 	},
1235 	{
1236 		.name = "throttle.write_bps_device",
1237 		.private = offsetof(struct throtl_grp, bps[WRITE]),
1238 		.seq_show = tg_print_conf_u64,
1239 		.write = tg_set_conf_u64,
1240 	},
1241 	{
1242 		.name = "throttle.read_iops_device",
1243 		.private = offsetof(struct throtl_grp, iops[READ]),
1244 		.seq_show = tg_print_conf_uint,
1245 		.write = tg_set_conf_uint,
1246 	},
1247 	{
1248 		.name = "throttle.write_iops_device",
1249 		.private = offsetof(struct throtl_grp, iops[WRITE]),
1250 		.seq_show = tg_print_conf_uint,
1251 		.write = tg_set_conf_uint,
1252 	},
1253 	{
1254 		.name = "throttle.io_service_bytes",
1255 		.private = (unsigned long)&blkcg_policy_throtl,
1256 		.seq_show = blkg_print_stat_bytes,
1257 	},
1258 	{
1259 		.name = "throttle.io_serviced",
1260 		.private = (unsigned long)&blkcg_policy_throtl,
1261 		.seq_show = blkg_print_stat_ios,
1262 	},
1263 	{ }	/* terminate */
1264 };
1265 
1266 static u64 tg_prfill_max(struct seq_file *sf, struct blkg_policy_data *pd,
1267 			 int off)
1268 {
1269 	struct throtl_grp *tg = pd_to_tg(pd);
1270 	const char *dname = blkg_dev_name(pd->blkg);
1271 	char bufs[4][21] = { "max", "max", "max", "max" };
1272 
1273 	if (!dname)
1274 		return 0;
1275 	if (tg->bps[READ] == -1 && tg->bps[WRITE] == -1 &&
1276 	    tg->iops[READ] == -1 && tg->iops[WRITE] == -1)
1277 		return 0;
1278 
1279 	if (tg->bps[READ] != -1)
1280 		snprintf(bufs[0], sizeof(bufs[0]), "%llu", tg->bps[READ]);
1281 	if (tg->bps[WRITE] != -1)
1282 		snprintf(bufs[1], sizeof(bufs[1]), "%llu", tg->bps[WRITE]);
1283 	if (tg->iops[READ] != -1)
1284 		snprintf(bufs[2], sizeof(bufs[2]), "%u", tg->iops[READ]);
1285 	if (tg->iops[WRITE] != -1)
1286 		snprintf(bufs[3], sizeof(bufs[3]), "%u", tg->iops[WRITE]);
1287 
1288 	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
1289 		   dname, bufs[0], bufs[1], bufs[2], bufs[3]);
1290 	return 0;
1291 }
1292 
1293 static int tg_print_max(struct seq_file *sf, void *v)
1294 {
1295 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_max,
1296 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1297 	return 0;
1298 }
1299 
1300 static ssize_t tg_set_max(struct kernfs_open_file *of,
1301 			  char *buf, size_t nbytes, loff_t off)
1302 {
1303 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1304 	struct blkg_conf_ctx ctx;
1305 	struct throtl_grp *tg;
1306 	u64 v[4];
1307 	int ret;
1308 
1309 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1310 	if (ret)
1311 		return ret;
1312 
1313 	tg = blkg_to_tg(ctx.blkg);
1314 
1315 	v[0] = tg->bps[READ];
1316 	v[1] = tg->bps[WRITE];
1317 	v[2] = tg->iops[READ];
1318 	v[3] = tg->iops[WRITE];
1319 
1320 	while (true) {
1321 		char tok[27];	/* wiops=18446744073709551616 */
1322 		char *p;
1323 		u64 val = -1;
1324 		int len;
1325 
1326 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1327 			break;
1328 		if (tok[0] == '\0')
1329 			break;
1330 		ctx.body += len;
1331 
1332 		ret = -EINVAL;
1333 		p = tok;
1334 		strsep(&p, "=");
1335 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1336 			goto out_finish;
1337 
1338 		ret = -ERANGE;
1339 		if (!val)
1340 			goto out_finish;
1341 
1342 		ret = -EINVAL;
1343 		if (!strcmp(tok, "rbps"))
1344 			v[0] = val;
1345 		else if (!strcmp(tok, "wbps"))
1346 			v[1] = val;
1347 		else if (!strcmp(tok, "riops"))
1348 			v[2] = min_t(u64, val, UINT_MAX);
1349 		else if (!strcmp(tok, "wiops"))
1350 			v[3] = min_t(u64, val, UINT_MAX);
1351 		else
1352 			goto out_finish;
1353 	}
1354 
1355 	tg->bps[READ] = v[0];
1356 	tg->bps[WRITE] = v[1];
1357 	tg->iops[READ] = v[2];
1358 	tg->iops[WRITE] = v[3];
1359 
1360 	tg_conf_updated(tg);
1361 	ret = 0;
1362 out_finish:
1363 	blkg_conf_finish(&ctx);
1364 	return ret ?: nbytes;
1365 }
1366 
1367 static struct cftype throtl_files[] = {
1368 	{
1369 		.name = "max",
1370 		.flags = CFTYPE_NOT_ON_ROOT,
1371 		.seq_show = tg_print_max,
1372 		.write = tg_set_max,
1373 	},
1374 	{ }	/* terminate */
1375 };
1376 
1377 static void throtl_shutdown_wq(struct request_queue *q)
1378 {
1379 	struct throtl_data *td = q->td;
1380 
1381 	cancel_work_sync(&td->dispatch_work);
1382 }
1383 
1384 static struct blkcg_policy blkcg_policy_throtl = {
1385 	.dfl_cftypes		= throtl_files,
1386 	.legacy_cftypes		= throtl_legacy_files,
1387 
1388 	.pd_alloc_fn		= throtl_pd_alloc,
1389 	.pd_init_fn		= throtl_pd_init,
1390 	.pd_online_fn		= throtl_pd_online,
1391 	.pd_free_fn		= throtl_pd_free,
1392 };
1393 
1394 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
1395 		    struct bio *bio)
1396 {
1397 	struct throtl_qnode *qn = NULL;
1398 	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
1399 	struct throtl_service_queue *sq;
1400 	bool rw = bio_data_dir(bio);
1401 	bool throttled = false;
1402 
1403 	WARN_ON_ONCE(!rcu_read_lock_held());
1404 
1405 	/* see throtl_charge_bio() */
1406 	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
1407 		goto out;
1408 
1409 	spin_lock_irq(q->queue_lock);
1410 
1411 	if (unlikely(blk_queue_bypass(q)))
1412 		goto out_unlock;
1413 
1414 	sq = &tg->service_queue;
1415 
1416 	while (true) {
1417 		/* throtl is FIFO - if bios are already queued, should queue */
1418 		if (sq->nr_queued[rw])
1419 			break;
1420 
1421 		/* if above limits, break to queue */
1422 		if (!tg_may_dispatch(tg, bio, NULL))
1423 			break;
1424 
1425 		/* within limits, let's charge and dispatch directly */
1426 		throtl_charge_bio(tg, bio);
1427 
1428 		/*
1429 		 * We need to trim slice even when bios are not being queued
1430 		 * otherwise it might happen that a bio is not queued for
1431 		 * a long time and slice keeps on extending and trim is not
1432 		 * called for a long time. Now if limits are reduced suddenly
1433 		 * we take into account all the IO dispatched so far at new
1434 		 * low rate and * newly queued IO gets a really long dispatch
1435 		 * time.
1436 		 *
1437 		 * So keep on trimming slice even if bio is not queued.
1438 		 */
1439 		throtl_trim_slice(tg, rw);
1440 
1441 		/*
1442 		 * @bio passed through this layer without being throttled.
1443 		 * Climb up the ladder.  If we''re already at the top, it
1444 		 * can be executed directly.
1445 		 */
1446 		qn = &tg->qnode_on_parent[rw];
1447 		sq = sq->parent_sq;
1448 		tg = sq_to_tg(sq);
1449 		if (!tg)
1450 			goto out_unlock;
1451 	}
1452 
1453 	/* out-of-limit, queue to @tg */
1454 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1455 		   rw == READ ? 'R' : 'W',
1456 		   tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
1457 		   tg->io_disp[rw], tg->iops[rw],
1458 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1459 
1460 	bio_associate_current(bio);
1461 	tg->td->nr_queued[rw]++;
1462 	throtl_add_bio_tg(bio, qn, tg);
1463 	throttled = true;
1464 
1465 	/*
1466 	 * Update @tg's dispatch time and force schedule dispatch if @tg
1467 	 * was empty before @bio.  The forced scheduling isn't likely to
1468 	 * cause undue delay as @bio is likely to be dispatched directly if
1469 	 * its @tg's disptime is not in the future.
1470 	 */
1471 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1472 		tg_update_disptime(tg);
1473 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1474 	}
1475 
1476 out_unlock:
1477 	spin_unlock_irq(q->queue_lock);
1478 out:
1479 	/*
1480 	 * As multiple blk-throtls may stack in the same issue path, we
1481 	 * don't want bios to leave with the flag set.  Clear the flag if
1482 	 * being issued.
1483 	 */
1484 	if (!throttled)
1485 		bio_clear_flag(bio, BIO_THROTTLED);
1486 	return throttled;
1487 }
1488 
1489 /*
1490  * Dispatch all bios from all children tg's queued on @parent_sq.  On
1491  * return, @parent_sq is guaranteed to not have any active children tg's
1492  * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1493  */
1494 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1495 {
1496 	struct throtl_grp *tg;
1497 
1498 	while ((tg = throtl_rb_first(parent_sq))) {
1499 		struct throtl_service_queue *sq = &tg->service_queue;
1500 		struct bio *bio;
1501 
1502 		throtl_dequeue_tg(tg);
1503 
1504 		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1505 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1506 		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1507 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1508 	}
1509 }
1510 
1511 /**
1512  * blk_throtl_drain - drain throttled bios
1513  * @q: request_queue to drain throttled bios for
1514  *
1515  * Dispatch all currently throttled bios on @q through ->make_request_fn().
1516  */
1517 void blk_throtl_drain(struct request_queue *q)
1518 	__releases(q->queue_lock) __acquires(q->queue_lock)
1519 {
1520 	struct throtl_data *td = q->td;
1521 	struct blkcg_gq *blkg;
1522 	struct cgroup_subsys_state *pos_css;
1523 	struct bio *bio;
1524 	int rw;
1525 
1526 	queue_lockdep_assert_held(q);
1527 	rcu_read_lock();
1528 
1529 	/*
1530 	 * Drain each tg while doing post-order walk on the blkg tree, so
1531 	 * that all bios are propagated to td->service_queue.  It'd be
1532 	 * better to walk service_queue tree directly but blkg walk is
1533 	 * easier.
1534 	 */
1535 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1536 		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1537 
1538 	/* finally, transfer bios from top-level tg's into the td */
1539 	tg_drain_bios(&td->service_queue);
1540 
1541 	rcu_read_unlock();
1542 	spin_unlock_irq(q->queue_lock);
1543 
1544 	/* all bios now should be in td->service_queue, issue them */
1545 	for (rw = READ; rw <= WRITE; rw++)
1546 		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1547 						NULL)))
1548 			generic_make_request(bio);
1549 
1550 	spin_lock_irq(q->queue_lock);
1551 }
1552 
1553 int blk_throtl_init(struct request_queue *q)
1554 {
1555 	struct throtl_data *td;
1556 	int ret;
1557 
1558 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1559 	if (!td)
1560 		return -ENOMEM;
1561 
1562 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1563 	throtl_service_queue_init(&td->service_queue);
1564 
1565 	q->td = td;
1566 	td->queue = q;
1567 
1568 	/* activate policy */
1569 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1570 	if (ret)
1571 		kfree(td);
1572 	return ret;
1573 }
1574 
1575 void blk_throtl_exit(struct request_queue *q)
1576 {
1577 	BUG_ON(!q->td);
1578 	throtl_shutdown_wq(q);
1579 	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1580 	kfree(q->td);
1581 }
1582 
1583 static int __init throtl_init(void)
1584 {
1585 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1586 	if (!kthrotld_workqueue)
1587 		panic("Failed to create kthrotld\n");
1588 
1589 	return blkcg_policy_register(&blkcg_policy_throtl);
1590 }
1591 
1592 module_init(throtl_init);
1593