xref: /openbmc/linux/block/blk-throttle.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include "blk.h"
15 
16 /* Max dispatch from a group in 1 round */
17 static int throtl_grp_quantum = 8;
18 
19 /* Total max dispatch from all groups in one round */
20 static int throtl_quantum = 32;
21 
22 /* Throttling is performed over a slice and after that slice is renewed */
23 #define DFL_THROTL_SLICE_HD (HZ / 10)
24 #define DFL_THROTL_SLICE_SSD (HZ / 50)
25 #define MAX_THROTL_SLICE (HZ)
26 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
27 #define MIN_THROTL_BPS (320 * 1024)
28 #define MIN_THROTL_IOPS (10)
29 #define DFL_LATENCY_TARGET (-1L)
30 #define DFL_IDLE_THRESHOLD (0)
31 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
32 #define LATENCY_FILTERED_SSD (0)
33 /*
34  * For HD, very small latency comes from sequential IO. Such IO is helpless to
35  * help determine if its IO is impacted by others, hence we ignore the IO
36  */
37 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
38 
39 #define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)
40 
41 static struct blkcg_policy blkcg_policy_throtl;
42 
43 /* A workqueue to queue throttle related work */
44 static struct workqueue_struct *kthrotld_workqueue;
45 
46 /*
47  * To implement hierarchical throttling, throtl_grps form a tree and bios
48  * are dispatched upwards level by level until they reach the top and get
49  * issued.  When dispatching bios from the children and local group at each
50  * level, if the bios are dispatched into a single bio_list, there's a risk
51  * of a local or child group which can queue many bios at once filling up
52  * the list starving others.
53  *
54  * To avoid such starvation, dispatched bios are queued separately
55  * according to where they came from.  When they are again dispatched to
56  * the parent, they're popped in round-robin order so that no single source
57  * hogs the dispatch window.
58  *
59  * throtl_qnode is used to keep the queued bios separated by their sources.
60  * Bios are queued to throtl_qnode which in turn is queued to
61  * throtl_service_queue and then dispatched in round-robin order.
62  *
63  * It's also used to track the reference counts on blkg's.  A qnode always
64  * belongs to a throtl_grp and gets queued on itself or the parent, so
65  * incrementing the reference of the associated throtl_grp when a qnode is
66  * queued and decrementing when dequeued is enough to keep the whole blkg
67  * tree pinned while bios are in flight.
68  */
69 struct throtl_qnode {
70 	struct list_head	node;		/* service_queue->queued[] */
71 	struct bio_list		bios;		/* queued bios */
72 	struct throtl_grp	*tg;		/* tg this qnode belongs to */
73 };
74 
75 struct throtl_service_queue {
76 	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
77 
78 	/*
79 	 * Bios queued directly to this service_queue or dispatched from
80 	 * children throtl_grp's.
81 	 */
82 	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
83 	unsigned int		nr_queued[2];	/* number of queued bios */
84 
85 	/*
86 	 * RB tree of active children throtl_grp's, which are sorted by
87 	 * their ->disptime.
88 	 */
89 	struct rb_root		pending_tree;	/* RB tree of active tgs */
90 	struct rb_node		*first_pending;	/* first node in the tree */
91 	unsigned int		nr_pending;	/* # queued in the tree */
92 	unsigned long		first_pending_disptime;	/* disptime of the first tg */
93 	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
94 };
95 
96 enum tg_state_flags {
97 	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
98 	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
99 };
100 
101 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
102 
103 enum {
104 	LIMIT_LOW,
105 	LIMIT_MAX,
106 	LIMIT_CNT,
107 };
108 
109 struct throtl_grp {
110 	/* must be the first member */
111 	struct blkg_policy_data pd;
112 
113 	/* active throtl group service_queue member */
114 	struct rb_node rb_node;
115 
116 	/* throtl_data this group belongs to */
117 	struct throtl_data *td;
118 
119 	/* this group's service queue */
120 	struct throtl_service_queue service_queue;
121 
122 	/*
123 	 * qnode_on_self is used when bios are directly queued to this
124 	 * throtl_grp so that local bios compete fairly with bios
125 	 * dispatched from children.  qnode_on_parent is used when bios are
126 	 * dispatched from this throtl_grp into its parent and will compete
127 	 * with the sibling qnode_on_parents and the parent's
128 	 * qnode_on_self.
129 	 */
130 	struct throtl_qnode qnode_on_self[2];
131 	struct throtl_qnode qnode_on_parent[2];
132 
133 	/*
134 	 * Dispatch time in jiffies. This is the estimated time when group
135 	 * will unthrottle and is ready to dispatch more bio. It is used as
136 	 * key to sort active groups in service tree.
137 	 */
138 	unsigned long disptime;
139 
140 	unsigned int flags;
141 
142 	/* are there any throtl rules between this group and td? */
143 	bool has_rules[2];
144 
145 	/* internally used bytes per second rate limits */
146 	uint64_t bps[2][LIMIT_CNT];
147 	/* user configured bps limits */
148 	uint64_t bps_conf[2][LIMIT_CNT];
149 
150 	/* internally used IOPS limits */
151 	unsigned int iops[2][LIMIT_CNT];
152 	/* user configured IOPS limits */
153 	unsigned int iops_conf[2][LIMIT_CNT];
154 
155 	/* Number of bytes disptached in current slice */
156 	uint64_t bytes_disp[2];
157 	/* Number of bio's dispatched in current slice */
158 	unsigned int io_disp[2];
159 
160 	unsigned long last_low_overflow_time[2];
161 
162 	uint64_t last_bytes_disp[2];
163 	unsigned int last_io_disp[2];
164 
165 	unsigned long last_check_time;
166 
167 	unsigned long latency_target; /* us */
168 	unsigned long latency_target_conf; /* us */
169 	/* When did we start a new slice */
170 	unsigned long slice_start[2];
171 	unsigned long slice_end[2];
172 
173 	unsigned long last_finish_time; /* ns / 1024 */
174 	unsigned long checked_last_finish_time; /* ns / 1024 */
175 	unsigned long avg_idletime; /* ns / 1024 */
176 	unsigned long idletime_threshold; /* us */
177 	unsigned long idletime_threshold_conf; /* us */
178 
179 	unsigned int bio_cnt; /* total bios */
180 	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
181 	unsigned long bio_cnt_reset_time;
182 };
183 
184 /* We measure latency for request size from <= 4k to >= 1M */
185 #define LATENCY_BUCKET_SIZE 9
186 
187 struct latency_bucket {
188 	unsigned long total_latency; /* ns / 1024 */
189 	int samples;
190 };
191 
192 struct avg_latency_bucket {
193 	unsigned long latency; /* ns / 1024 */
194 	bool valid;
195 };
196 
197 struct throtl_data
198 {
199 	/* service tree for active throtl groups */
200 	struct throtl_service_queue service_queue;
201 
202 	struct request_queue *queue;
203 
204 	/* Total Number of queued bios on READ and WRITE lists */
205 	unsigned int nr_queued[2];
206 
207 	unsigned int throtl_slice;
208 
209 	/* Work for dispatching throttled bios */
210 	struct work_struct dispatch_work;
211 	unsigned int limit_index;
212 	bool limit_valid[LIMIT_CNT];
213 
214 	unsigned long low_upgrade_time;
215 	unsigned long low_downgrade_time;
216 
217 	unsigned int scale;
218 
219 	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
220 	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
221 	struct latency_bucket __percpu *latency_buckets[2];
222 	unsigned long last_calculate_time;
223 	unsigned long filtered_latency;
224 
225 	bool track_bio_latency;
226 };
227 
228 static void throtl_pending_timer_fn(struct timer_list *t);
229 
230 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
231 {
232 	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
233 }
234 
235 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
236 {
237 	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
238 }
239 
240 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
241 {
242 	return pd_to_blkg(&tg->pd);
243 }
244 
245 /**
246  * sq_to_tg - return the throl_grp the specified service queue belongs to
247  * @sq: the throtl_service_queue of interest
248  *
249  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
250  * embedded in throtl_data, %NULL is returned.
251  */
252 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
253 {
254 	if (sq && sq->parent_sq)
255 		return container_of(sq, struct throtl_grp, service_queue);
256 	else
257 		return NULL;
258 }
259 
260 /**
261  * sq_to_td - return throtl_data the specified service queue belongs to
262  * @sq: the throtl_service_queue of interest
263  *
264  * A service_queue can be embedded in either a throtl_grp or throtl_data.
265  * Determine the associated throtl_data accordingly and return it.
266  */
267 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
268 {
269 	struct throtl_grp *tg = sq_to_tg(sq);
270 
271 	if (tg)
272 		return tg->td;
273 	else
274 		return container_of(sq, struct throtl_data, service_queue);
275 }
276 
277 /*
278  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
279  * make the IO dispatch more smooth.
280  * Scale up: linearly scale up according to lapsed time since upgrade. For
281  *           every throtl_slice, the limit scales up 1/2 .low limit till the
282  *           limit hits .max limit
283  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
284  */
285 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
286 {
287 	/* arbitrary value to avoid too big scale */
288 	if (td->scale < 4096 && time_after_eq(jiffies,
289 	    td->low_upgrade_time + td->scale * td->throtl_slice))
290 		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
291 
292 	return low + (low >> 1) * td->scale;
293 }
294 
295 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
296 {
297 	struct blkcg_gq *blkg = tg_to_blkg(tg);
298 	struct throtl_data *td;
299 	uint64_t ret;
300 
301 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
302 		return U64_MAX;
303 
304 	td = tg->td;
305 	ret = tg->bps[rw][td->limit_index];
306 	if (ret == 0 && td->limit_index == LIMIT_LOW) {
307 		/* intermediate node or iops isn't 0 */
308 		if (!list_empty(&blkg->blkcg->css.children) ||
309 		    tg->iops[rw][td->limit_index])
310 			return U64_MAX;
311 		else
312 			return MIN_THROTL_BPS;
313 	}
314 
315 	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
316 	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
317 		uint64_t adjusted;
318 
319 		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
320 		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
321 	}
322 	return ret;
323 }
324 
325 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
326 {
327 	struct blkcg_gq *blkg = tg_to_blkg(tg);
328 	struct throtl_data *td;
329 	unsigned int ret;
330 
331 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
332 		return UINT_MAX;
333 
334 	td = tg->td;
335 	ret = tg->iops[rw][td->limit_index];
336 	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
337 		/* intermediate node or bps isn't 0 */
338 		if (!list_empty(&blkg->blkcg->css.children) ||
339 		    tg->bps[rw][td->limit_index])
340 			return UINT_MAX;
341 		else
342 			return MIN_THROTL_IOPS;
343 	}
344 
345 	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
346 	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
347 		uint64_t adjusted;
348 
349 		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
350 		if (adjusted > UINT_MAX)
351 			adjusted = UINT_MAX;
352 		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
353 	}
354 	return ret;
355 }
356 
357 #define request_bucket_index(sectors) \
358 	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
359 
360 /**
361  * throtl_log - log debug message via blktrace
362  * @sq: the service_queue being reported
363  * @fmt: printf format string
364  * @args: printf args
365  *
366  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
367  * throtl_grp; otherwise, just "throtl".
368  */
369 #define throtl_log(sq, fmt, args...)	do {				\
370 	struct throtl_grp *__tg = sq_to_tg((sq));			\
371 	struct throtl_data *__td = sq_to_td((sq));			\
372 									\
373 	(void)__td;							\
374 	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
375 		break;							\
376 	if ((__tg)) {							\
377 		blk_add_cgroup_trace_msg(__td->queue,			\
378 			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
379 	} else {							\
380 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
381 	}								\
382 } while (0)
383 
384 static inline unsigned int throtl_bio_data_size(struct bio *bio)
385 {
386 	/* assume it's one sector */
387 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
388 		return 512;
389 	return bio->bi_iter.bi_size;
390 }
391 
392 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
393 {
394 	INIT_LIST_HEAD(&qn->node);
395 	bio_list_init(&qn->bios);
396 	qn->tg = tg;
397 }
398 
399 /**
400  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
401  * @bio: bio being added
402  * @qn: qnode to add bio to
403  * @queued: the service_queue->queued[] list @qn belongs to
404  *
405  * Add @bio to @qn and put @qn on @queued if it's not already on.
406  * @qn->tg's reference count is bumped when @qn is activated.  See the
407  * comment on top of throtl_qnode definition for details.
408  */
409 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
410 				 struct list_head *queued)
411 {
412 	bio_list_add(&qn->bios, bio);
413 	if (list_empty(&qn->node)) {
414 		list_add_tail(&qn->node, queued);
415 		blkg_get(tg_to_blkg(qn->tg));
416 	}
417 }
418 
419 /**
420  * throtl_peek_queued - peek the first bio on a qnode list
421  * @queued: the qnode list to peek
422  */
423 static struct bio *throtl_peek_queued(struct list_head *queued)
424 {
425 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
426 	struct bio *bio;
427 
428 	if (list_empty(queued))
429 		return NULL;
430 
431 	bio = bio_list_peek(&qn->bios);
432 	WARN_ON_ONCE(!bio);
433 	return bio;
434 }
435 
436 /**
437  * throtl_pop_queued - pop the first bio form a qnode list
438  * @queued: the qnode list to pop a bio from
439  * @tg_to_put: optional out argument for throtl_grp to put
440  *
441  * Pop the first bio from the qnode list @queued.  After popping, the first
442  * qnode is removed from @queued if empty or moved to the end of @queued so
443  * that the popping order is round-robin.
444  *
445  * When the first qnode is removed, its associated throtl_grp should be put
446  * too.  If @tg_to_put is NULL, this function automatically puts it;
447  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
448  * responsible for putting it.
449  */
450 static struct bio *throtl_pop_queued(struct list_head *queued,
451 				     struct throtl_grp **tg_to_put)
452 {
453 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
454 	struct bio *bio;
455 
456 	if (list_empty(queued))
457 		return NULL;
458 
459 	bio = bio_list_pop(&qn->bios);
460 	WARN_ON_ONCE(!bio);
461 
462 	if (bio_list_empty(&qn->bios)) {
463 		list_del_init(&qn->node);
464 		if (tg_to_put)
465 			*tg_to_put = qn->tg;
466 		else
467 			blkg_put(tg_to_blkg(qn->tg));
468 	} else {
469 		list_move_tail(&qn->node, queued);
470 	}
471 
472 	return bio;
473 }
474 
475 /* init a service_queue, assumes the caller zeroed it */
476 static void throtl_service_queue_init(struct throtl_service_queue *sq)
477 {
478 	INIT_LIST_HEAD(&sq->queued[0]);
479 	INIT_LIST_HEAD(&sq->queued[1]);
480 	sq->pending_tree = RB_ROOT;
481 	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
482 }
483 
484 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
485 {
486 	struct throtl_grp *tg;
487 	int rw;
488 
489 	tg = kzalloc_node(sizeof(*tg), gfp, node);
490 	if (!tg)
491 		return NULL;
492 
493 	throtl_service_queue_init(&tg->service_queue);
494 
495 	for (rw = READ; rw <= WRITE; rw++) {
496 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
497 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
498 	}
499 
500 	RB_CLEAR_NODE(&tg->rb_node);
501 	tg->bps[READ][LIMIT_MAX] = U64_MAX;
502 	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
503 	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
504 	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
505 	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
506 	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
507 	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
508 	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
509 	/* LIMIT_LOW will have default value 0 */
510 
511 	tg->latency_target = DFL_LATENCY_TARGET;
512 	tg->latency_target_conf = DFL_LATENCY_TARGET;
513 	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
514 	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
515 
516 	return &tg->pd;
517 }
518 
519 static void throtl_pd_init(struct blkg_policy_data *pd)
520 {
521 	struct throtl_grp *tg = pd_to_tg(pd);
522 	struct blkcg_gq *blkg = tg_to_blkg(tg);
523 	struct throtl_data *td = blkg->q->td;
524 	struct throtl_service_queue *sq = &tg->service_queue;
525 
526 	/*
527 	 * If on the default hierarchy, we switch to properly hierarchical
528 	 * behavior where limits on a given throtl_grp are applied to the
529 	 * whole subtree rather than just the group itself.  e.g. If 16M
530 	 * read_bps limit is set on the root group, the whole system can't
531 	 * exceed 16M for the device.
532 	 *
533 	 * If not on the default hierarchy, the broken flat hierarchy
534 	 * behavior is retained where all throtl_grps are treated as if
535 	 * they're all separate root groups right below throtl_data.
536 	 * Limits of a group don't interact with limits of other groups
537 	 * regardless of the position of the group in the hierarchy.
538 	 */
539 	sq->parent_sq = &td->service_queue;
540 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
541 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
542 	tg->td = td;
543 }
544 
545 /*
546  * Set has_rules[] if @tg or any of its parents have limits configured.
547  * This doesn't require walking up to the top of the hierarchy as the
548  * parent's has_rules[] is guaranteed to be correct.
549  */
550 static void tg_update_has_rules(struct throtl_grp *tg)
551 {
552 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
553 	struct throtl_data *td = tg->td;
554 	int rw;
555 
556 	for (rw = READ; rw <= WRITE; rw++)
557 		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
558 			(td->limit_valid[td->limit_index] &&
559 			 (tg_bps_limit(tg, rw) != U64_MAX ||
560 			  tg_iops_limit(tg, rw) != UINT_MAX));
561 }
562 
563 static void throtl_pd_online(struct blkg_policy_data *pd)
564 {
565 	struct throtl_grp *tg = pd_to_tg(pd);
566 	/*
567 	 * We don't want new groups to escape the limits of its ancestors.
568 	 * Update has_rules[] after a new group is brought online.
569 	 */
570 	tg_update_has_rules(tg);
571 }
572 
573 static void blk_throtl_update_limit_valid(struct throtl_data *td)
574 {
575 	struct cgroup_subsys_state *pos_css;
576 	struct blkcg_gq *blkg;
577 	bool low_valid = false;
578 
579 	rcu_read_lock();
580 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
581 		struct throtl_grp *tg = blkg_to_tg(blkg);
582 
583 		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
584 		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
585 			low_valid = true;
586 	}
587 	rcu_read_unlock();
588 
589 	td->limit_valid[LIMIT_LOW] = low_valid;
590 }
591 
592 static void throtl_upgrade_state(struct throtl_data *td);
593 static void throtl_pd_offline(struct blkg_policy_data *pd)
594 {
595 	struct throtl_grp *tg = pd_to_tg(pd);
596 
597 	tg->bps[READ][LIMIT_LOW] = 0;
598 	tg->bps[WRITE][LIMIT_LOW] = 0;
599 	tg->iops[READ][LIMIT_LOW] = 0;
600 	tg->iops[WRITE][LIMIT_LOW] = 0;
601 
602 	blk_throtl_update_limit_valid(tg->td);
603 
604 	if (!tg->td->limit_valid[tg->td->limit_index])
605 		throtl_upgrade_state(tg->td);
606 }
607 
608 static void throtl_pd_free(struct blkg_policy_data *pd)
609 {
610 	struct throtl_grp *tg = pd_to_tg(pd);
611 
612 	del_timer_sync(&tg->service_queue.pending_timer);
613 	kfree(tg);
614 }
615 
616 static struct throtl_grp *
617 throtl_rb_first(struct throtl_service_queue *parent_sq)
618 {
619 	/* Service tree is empty */
620 	if (!parent_sq->nr_pending)
621 		return NULL;
622 
623 	if (!parent_sq->first_pending)
624 		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
625 
626 	if (parent_sq->first_pending)
627 		return rb_entry_tg(parent_sq->first_pending);
628 
629 	return NULL;
630 }
631 
632 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
633 {
634 	rb_erase(n, root);
635 	RB_CLEAR_NODE(n);
636 }
637 
638 static void throtl_rb_erase(struct rb_node *n,
639 			    struct throtl_service_queue *parent_sq)
640 {
641 	if (parent_sq->first_pending == n)
642 		parent_sq->first_pending = NULL;
643 	rb_erase_init(n, &parent_sq->pending_tree);
644 	--parent_sq->nr_pending;
645 }
646 
647 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
648 {
649 	struct throtl_grp *tg;
650 
651 	tg = throtl_rb_first(parent_sq);
652 	if (!tg)
653 		return;
654 
655 	parent_sq->first_pending_disptime = tg->disptime;
656 }
657 
658 static void tg_service_queue_add(struct throtl_grp *tg)
659 {
660 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
661 	struct rb_node **node = &parent_sq->pending_tree.rb_node;
662 	struct rb_node *parent = NULL;
663 	struct throtl_grp *__tg;
664 	unsigned long key = tg->disptime;
665 	int left = 1;
666 
667 	while (*node != NULL) {
668 		parent = *node;
669 		__tg = rb_entry_tg(parent);
670 
671 		if (time_before(key, __tg->disptime))
672 			node = &parent->rb_left;
673 		else {
674 			node = &parent->rb_right;
675 			left = 0;
676 		}
677 	}
678 
679 	if (left)
680 		parent_sq->first_pending = &tg->rb_node;
681 
682 	rb_link_node(&tg->rb_node, parent, node);
683 	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
684 }
685 
686 static void __throtl_enqueue_tg(struct throtl_grp *tg)
687 {
688 	tg_service_queue_add(tg);
689 	tg->flags |= THROTL_TG_PENDING;
690 	tg->service_queue.parent_sq->nr_pending++;
691 }
692 
693 static void throtl_enqueue_tg(struct throtl_grp *tg)
694 {
695 	if (!(tg->flags & THROTL_TG_PENDING))
696 		__throtl_enqueue_tg(tg);
697 }
698 
699 static void __throtl_dequeue_tg(struct throtl_grp *tg)
700 {
701 	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
702 	tg->flags &= ~THROTL_TG_PENDING;
703 }
704 
705 static void throtl_dequeue_tg(struct throtl_grp *tg)
706 {
707 	if (tg->flags & THROTL_TG_PENDING)
708 		__throtl_dequeue_tg(tg);
709 }
710 
711 /* Call with queue lock held */
712 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
713 					  unsigned long expires)
714 {
715 	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
716 
717 	/*
718 	 * Since we are adjusting the throttle limit dynamically, the sleep
719 	 * time calculated according to previous limit might be invalid. It's
720 	 * possible the cgroup sleep time is very long and no other cgroups
721 	 * have IO running so notify the limit changes. Make sure the cgroup
722 	 * doesn't sleep too long to avoid the missed notification.
723 	 */
724 	if (time_after(expires, max_expire))
725 		expires = max_expire;
726 	mod_timer(&sq->pending_timer, expires);
727 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
728 		   expires - jiffies, jiffies);
729 }
730 
731 /**
732  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
733  * @sq: the service_queue to schedule dispatch for
734  * @force: force scheduling
735  *
736  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
737  * dispatch time of the first pending child.  Returns %true if either timer
738  * is armed or there's no pending child left.  %false if the current
739  * dispatch window is still open and the caller should continue
740  * dispatching.
741  *
742  * If @force is %true, the dispatch timer is always scheduled and this
743  * function is guaranteed to return %true.  This is to be used when the
744  * caller can't dispatch itself and needs to invoke pending_timer
745  * unconditionally.  Note that forced scheduling is likely to induce short
746  * delay before dispatch starts even if @sq->first_pending_disptime is not
747  * in the future and thus shouldn't be used in hot paths.
748  */
749 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
750 					  bool force)
751 {
752 	/* any pending children left? */
753 	if (!sq->nr_pending)
754 		return true;
755 
756 	update_min_dispatch_time(sq);
757 
758 	/* is the next dispatch time in the future? */
759 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
760 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
761 		return true;
762 	}
763 
764 	/* tell the caller to continue dispatching */
765 	return false;
766 }
767 
768 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
769 		bool rw, unsigned long start)
770 {
771 	tg->bytes_disp[rw] = 0;
772 	tg->io_disp[rw] = 0;
773 
774 	/*
775 	 * Previous slice has expired. We must have trimmed it after last
776 	 * bio dispatch. That means since start of last slice, we never used
777 	 * that bandwidth. Do try to make use of that bandwidth while giving
778 	 * credit.
779 	 */
780 	if (time_after_eq(start, tg->slice_start[rw]))
781 		tg->slice_start[rw] = start;
782 
783 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
784 	throtl_log(&tg->service_queue,
785 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
786 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
787 		   tg->slice_end[rw], jiffies);
788 }
789 
790 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
791 {
792 	tg->bytes_disp[rw] = 0;
793 	tg->io_disp[rw] = 0;
794 	tg->slice_start[rw] = jiffies;
795 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
796 	throtl_log(&tg->service_queue,
797 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
798 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
799 		   tg->slice_end[rw], jiffies);
800 }
801 
802 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
803 					unsigned long jiffy_end)
804 {
805 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
806 }
807 
808 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
809 				       unsigned long jiffy_end)
810 {
811 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
812 	throtl_log(&tg->service_queue,
813 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
814 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
815 		   tg->slice_end[rw], jiffies);
816 }
817 
818 /* Determine if previously allocated or extended slice is complete or not */
819 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
820 {
821 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
822 		return false;
823 
824 	return 1;
825 }
826 
827 /* Trim the used slices and adjust slice start accordingly */
828 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
829 {
830 	unsigned long nr_slices, time_elapsed, io_trim;
831 	u64 bytes_trim, tmp;
832 
833 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
834 
835 	/*
836 	 * If bps are unlimited (-1), then time slice don't get
837 	 * renewed. Don't try to trim the slice if slice is used. A new
838 	 * slice will start when appropriate.
839 	 */
840 	if (throtl_slice_used(tg, rw))
841 		return;
842 
843 	/*
844 	 * A bio has been dispatched. Also adjust slice_end. It might happen
845 	 * that initially cgroup limit was very low resulting in high
846 	 * slice_end, but later limit was bumped up and bio was dispached
847 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
848 	 * is bad because it does not allow new slice to start.
849 	 */
850 
851 	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
852 
853 	time_elapsed = jiffies - tg->slice_start[rw];
854 
855 	nr_slices = time_elapsed / tg->td->throtl_slice;
856 
857 	if (!nr_slices)
858 		return;
859 	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
860 	do_div(tmp, HZ);
861 	bytes_trim = tmp;
862 
863 	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
864 		HZ;
865 
866 	if (!bytes_trim && !io_trim)
867 		return;
868 
869 	if (tg->bytes_disp[rw] >= bytes_trim)
870 		tg->bytes_disp[rw] -= bytes_trim;
871 	else
872 		tg->bytes_disp[rw] = 0;
873 
874 	if (tg->io_disp[rw] >= io_trim)
875 		tg->io_disp[rw] -= io_trim;
876 	else
877 		tg->io_disp[rw] = 0;
878 
879 	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
880 
881 	throtl_log(&tg->service_queue,
882 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
883 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
884 		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
885 }
886 
887 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
888 				  unsigned long *wait)
889 {
890 	bool rw = bio_data_dir(bio);
891 	unsigned int io_allowed;
892 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
893 	u64 tmp;
894 
895 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
896 
897 	/* Slice has just started. Consider one slice interval */
898 	if (!jiffy_elapsed)
899 		jiffy_elapsed_rnd = tg->td->throtl_slice;
900 
901 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
902 
903 	/*
904 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
905 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
906 	 * will allow dispatch after 1 second and after that slice should
907 	 * have been trimmed.
908 	 */
909 
910 	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
911 	do_div(tmp, HZ);
912 
913 	if (tmp > UINT_MAX)
914 		io_allowed = UINT_MAX;
915 	else
916 		io_allowed = tmp;
917 
918 	if (tg->io_disp[rw] + 1 <= io_allowed) {
919 		if (wait)
920 			*wait = 0;
921 		return true;
922 	}
923 
924 	/* Calc approx time to dispatch */
925 	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
926 
927 	if (jiffy_wait > jiffy_elapsed)
928 		jiffy_wait = jiffy_wait - jiffy_elapsed;
929 	else
930 		jiffy_wait = 1;
931 
932 	if (wait)
933 		*wait = jiffy_wait;
934 	return 0;
935 }
936 
937 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
938 				 unsigned long *wait)
939 {
940 	bool rw = bio_data_dir(bio);
941 	u64 bytes_allowed, extra_bytes, tmp;
942 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
943 	unsigned int bio_size = throtl_bio_data_size(bio);
944 
945 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
946 
947 	/* Slice has just started. Consider one slice interval */
948 	if (!jiffy_elapsed)
949 		jiffy_elapsed_rnd = tg->td->throtl_slice;
950 
951 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
952 
953 	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
954 	do_div(tmp, HZ);
955 	bytes_allowed = tmp;
956 
957 	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
958 		if (wait)
959 			*wait = 0;
960 		return true;
961 	}
962 
963 	/* Calc approx time to dispatch */
964 	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
965 	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
966 
967 	if (!jiffy_wait)
968 		jiffy_wait = 1;
969 
970 	/*
971 	 * This wait time is without taking into consideration the rounding
972 	 * up we did. Add that time also.
973 	 */
974 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
975 	if (wait)
976 		*wait = jiffy_wait;
977 	return 0;
978 }
979 
980 /*
981  * Returns whether one can dispatch a bio or not. Also returns approx number
982  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
983  */
984 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
985 			    unsigned long *wait)
986 {
987 	bool rw = bio_data_dir(bio);
988 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
989 
990 	/*
991  	 * Currently whole state machine of group depends on first bio
992 	 * queued in the group bio list. So one should not be calling
993 	 * this function with a different bio if there are other bios
994 	 * queued.
995 	 */
996 	BUG_ON(tg->service_queue.nr_queued[rw] &&
997 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
998 
999 	/* If tg->bps = -1, then BW is unlimited */
1000 	if (tg_bps_limit(tg, rw) == U64_MAX &&
1001 	    tg_iops_limit(tg, rw) == UINT_MAX) {
1002 		if (wait)
1003 			*wait = 0;
1004 		return true;
1005 	}
1006 
1007 	/*
1008 	 * If previous slice expired, start a new one otherwise renew/extend
1009 	 * existing slice to make sure it is at least throtl_slice interval
1010 	 * long since now. New slice is started only for empty throttle group.
1011 	 * If there is queued bio, that means there should be an active
1012 	 * slice and it should be extended instead.
1013 	 */
1014 	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1015 		throtl_start_new_slice(tg, rw);
1016 	else {
1017 		if (time_before(tg->slice_end[rw],
1018 		    jiffies + tg->td->throtl_slice))
1019 			throtl_extend_slice(tg, rw,
1020 				jiffies + tg->td->throtl_slice);
1021 	}
1022 
1023 	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
1024 	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1025 		if (wait)
1026 			*wait = 0;
1027 		return 1;
1028 	}
1029 
1030 	max_wait = max(bps_wait, iops_wait);
1031 
1032 	if (wait)
1033 		*wait = max_wait;
1034 
1035 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1036 		throtl_extend_slice(tg, rw, jiffies + max_wait);
1037 
1038 	return 0;
1039 }
1040 
1041 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1042 {
1043 	bool rw = bio_data_dir(bio);
1044 	unsigned int bio_size = throtl_bio_data_size(bio);
1045 
1046 	/* Charge the bio to the group */
1047 	tg->bytes_disp[rw] += bio_size;
1048 	tg->io_disp[rw]++;
1049 	tg->last_bytes_disp[rw] += bio_size;
1050 	tg->last_io_disp[rw]++;
1051 
1052 	/*
1053 	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1054 	 * more than once as a throttled bio will go through blk-throtl the
1055 	 * second time when it eventually gets issued.  Set it when a bio
1056 	 * is being charged to a tg.
1057 	 */
1058 	if (!bio_flagged(bio, BIO_THROTTLED))
1059 		bio_set_flag(bio, BIO_THROTTLED);
1060 }
1061 
1062 /**
1063  * throtl_add_bio_tg - add a bio to the specified throtl_grp
1064  * @bio: bio to add
1065  * @qn: qnode to use
1066  * @tg: the target throtl_grp
1067  *
1068  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1069  * tg->qnode_on_self[] is used.
1070  */
1071 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1072 			      struct throtl_grp *tg)
1073 {
1074 	struct throtl_service_queue *sq = &tg->service_queue;
1075 	bool rw = bio_data_dir(bio);
1076 
1077 	if (!qn)
1078 		qn = &tg->qnode_on_self[rw];
1079 
1080 	/*
1081 	 * If @tg doesn't currently have any bios queued in the same
1082 	 * direction, queueing @bio can change when @tg should be
1083 	 * dispatched.  Mark that @tg was empty.  This is automatically
1084 	 * cleaered on the next tg_update_disptime().
1085 	 */
1086 	if (!sq->nr_queued[rw])
1087 		tg->flags |= THROTL_TG_WAS_EMPTY;
1088 
1089 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1090 
1091 	sq->nr_queued[rw]++;
1092 	throtl_enqueue_tg(tg);
1093 }
1094 
1095 static void tg_update_disptime(struct throtl_grp *tg)
1096 {
1097 	struct throtl_service_queue *sq = &tg->service_queue;
1098 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1099 	struct bio *bio;
1100 
1101 	bio = throtl_peek_queued(&sq->queued[READ]);
1102 	if (bio)
1103 		tg_may_dispatch(tg, bio, &read_wait);
1104 
1105 	bio = throtl_peek_queued(&sq->queued[WRITE]);
1106 	if (bio)
1107 		tg_may_dispatch(tg, bio, &write_wait);
1108 
1109 	min_wait = min(read_wait, write_wait);
1110 	disptime = jiffies + min_wait;
1111 
1112 	/* Update dispatch time */
1113 	throtl_dequeue_tg(tg);
1114 	tg->disptime = disptime;
1115 	throtl_enqueue_tg(tg);
1116 
1117 	/* see throtl_add_bio_tg() */
1118 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1119 }
1120 
1121 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1122 					struct throtl_grp *parent_tg, bool rw)
1123 {
1124 	if (throtl_slice_used(parent_tg, rw)) {
1125 		throtl_start_new_slice_with_credit(parent_tg, rw,
1126 				child_tg->slice_start[rw]);
1127 	}
1128 
1129 }
1130 
1131 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1132 {
1133 	struct throtl_service_queue *sq = &tg->service_queue;
1134 	struct throtl_service_queue *parent_sq = sq->parent_sq;
1135 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1136 	struct throtl_grp *tg_to_put = NULL;
1137 	struct bio *bio;
1138 
1139 	/*
1140 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1141 	 * from @tg may put its reference and @parent_sq might end up
1142 	 * getting released prematurely.  Remember the tg to put and put it
1143 	 * after @bio is transferred to @parent_sq.
1144 	 */
1145 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1146 	sq->nr_queued[rw]--;
1147 
1148 	throtl_charge_bio(tg, bio);
1149 
1150 	/*
1151 	 * If our parent is another tg, we just need to transfer @bio to
1152 	 * the parent using throtl_add_bio_tg().  If our parent is
1153 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1154 	 * bio_lists[] and decrease total number queued.  The caller is
1155 	 * responsible for issuing these bios.
1156 	 */
1157 	if (parent_tg) {
1158 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1159 		start_parent_slice_with_credit(tg, parent_tg, rw);
1160 	} else {
1161 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1162 				     &parent_sq->queued[rw]);
1163 		BUG_ON(tg->td->nr_queued[rw] <= 0);
1164 		tg->td->nr_queued[rw]--;
1165 	}
1166 
1167 	throtl_trim_slice(tg, rw);
1168 
1169 	if (tg_to_put)
1170 		blkg_put(tg_to_blkg(tg_to_put));
1171 }
1172 
1173 static int throtl_dispatch_tg(struct throtl_grp *tg)
1174 {
1175 	struct throtl_service_queue *sq = &tg->service_queue;
1176 	unsigned int nr_reads = 0, nr_writes = 0;
1177 	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1178 	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1179 	struct bio *bio;
1180 
1181 	/* Try to dispatch 75% READS and 25% WRITES */
1182 
1183 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1184 	       tg_may_dispatch(tg, bio, NULL)) {
1185 
1186 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1187 		nr_reads++;
1188 
1189 		if (nr_reads >= max_nr_reads)
1190 			break;
1191 	}
1192 
1193 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1194 	       tg_may_dispatch(tg, bio, NULL)) {
1195 
1196 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1197 		nr_writes++;
1198 
1199 		if (nr_writes >= max_nr_writes)
1200 			break;
1201 	}
1202 
1203 	return nr_reads + nr_writes;
1204 }
1205 
1206 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1207 {
1208 	unsigned int nr_disp = 0;
1209 
1210 	while (1) {
1211 		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1212 		struct throtl_service_queue *sq = &tg->service_queue;
1213 
1214 		if (!tg)
1215 			break;
1216 
1217 		if (time_before(jiffies, tg->disptime))
1218 			break;
1219 
1220 		throtl_dequeue_tg(tg);
1221 
1222 		nr_disp += throtl_dispatch_tg(tg);
1223 
1224 		if (sq->nr_queued[0] || sq->nr_queued[1])
1225 			tg_update_disptime(tg);
1226 
1227 		if (nr_disp >= throtl_quantum)
1228 			break;
1229 	}
1230 
1231 	return nr_disp;
1232 }
1233 
1234 static bool throtl_can_upgrade(struct throtl_data *td,
1235 	struct throtl_grp *this_tg);
1236 /**
1237  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1238  * @arg: the throtl_service_queue being serviced
1239  *
1240  * This timer is armed when a child throtl_grp with active bio's become
1241  * pending and queued on the service_queue's pending_tree and expires when
1242  * the first child throtl_grp should be dispatched.  This function
1243  * dispatches bio's from the children throtl_grps to the parent
1244  * service_queue.
1245  *
1246  * If the parent's parent is another throtl_grp, dispatching is propagated
1247  * by either arming its pending_timer or repeating dispatch directly.  If
1248  * the top-level service_tree is reached, throtl_data->dispatch_work is
1249  * kicked so that the ready bio's are issued.
1250  */
1251 static void throtl_pending_timer_fn(struct timer_list *t)
1252 {
1253 	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1254 	struct throtl_grp *tg = sq_to_tg(sq);
1255 	struct throtl_data *td = sq_to_td(sq);
1256 	struct request_queue *q = td->queue;
1257 	struct throtl_service_queue *parent_sq;
1258 	bool dispatched;
1259 	int ret;
1260 
1261 	spin_lock_irq(q->queue_lock);
1262 	if (throtl_can_upgrade(td, NULL))
1263 		throtl_upgrade_state(td);
1264 
1265 again:
1266 	parent_sq = sq->parent_sq;
1267 	dispatched = false;
1268 
1269 	while (true) {
1270 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1271 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1272 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1273 
1274 		ret = throtl_select_dispatch(sq);
1275 		if (ret) {
1276 			throtl_log(sq, "bios disp=%u", ret);
1277 			dispatched = true;
1278 		}
1279 
1280 		if (throtl_schedule_next_dispatch(sq, false))
1281 			break;
1282 
1283 		/* this dispatch windows is still open, relax and repeat */
1284 		spin_unlock_irq(q->queue_lock);
1285 		cpu_relax();
1286 		spin_lock_irq(q->queue_lock);
1287 	}
1288 
1289 	if (!dispatched)
1290 		goto out_unlock;
1291 
1292 	if (parent_sq) {
1293 		/* @parent_sq is another throl_grp, propagate dispatch */
1294 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1295 			tg_update_disptime(tg);
1296 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1297 				/* window is already open, repeat dispatching */
1298 				sq = parent_sq;
1299 				tg = sq_to_tg(sq);
1300 				goto again;
1301 			}
1302 		}
1303 	} else {
1304 		/* reached the top-level, queue issueing */
1305 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1306 	}
1307 out_unlock:
1308 	spin_unlock_irq(q->queue_lock);
1309 }
1310 
1311 /**
1312  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1313  * @work: work item being executed
1314  *
1315  * This function is queued for execution when bio's reach the bio_lists[]
1316  * of throtl_data->service_queue.  Those bio's are ready and issued by this
1317  * function.
1318  */
1319 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1320 {
1321 	struct throtl_data *td = container_of(work, struct throtl_data,
1322 					      dispatch_work);
1323 	struct throtl_service_queue *td_sq = &td->service_queue;
1324 	struct request_queue *q = td->queue;
1325 	struct bio_list bio_list_on_stack;
1326 	struct bio *bio;
1327 	struct blk_plug plug;
1328 	int rw;
1329 
1330 	bio_list_init(&bio_list_on_stack);
1331 
1332 	spin_lock_irq(q->queue_lock);
1333 	for (rw = READ; rw <= WRITE; rw++)
1334 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1335 			bio_list_add(&bio_list_on_stack, bio);
1336 	spin_unlock_irq(q->queue_lock);
1337 
1338 	if (!bio_list_empty(&bio_list_on_stack)) {
1339 		blk_start_plug(&plug);
1340 		while((bio = bio_list_pop(&bio_list_on_stack)))
1341 			generic_make_request(bio);
1342 		blk_finish_plug(&plug);
1343 	}
1344 }
1345 
1346 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1347 			      int off)
1348 {
1349 	struct throtl_grp *tg = pd_to_tg(pd);
1350 	u64 v = *(u64 *)((void *)tg + off);
1351 
1352 	if (v == U64_MAX)
1353 		return 0;
1354 	return __blkg_prfill_u64(sf, pd, v);
1355 }
1356 
1357 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1358 			       int off)
1359 {
1360 	struct throtl_grp *tg = pd_to_tg(pd);
1361 	unsigned int v = *(unsigned int *)((void *)tg + off);
1362 
1363 	if (v == UINT_MAX)
1364 		return 0;
1365 	return __blkg_prfill_u64(sf, pd, v);
1366 }
1367 
1368 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1369 {
1370 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1371 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1372 	return 0;
1373 }
1374 
1375 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1376 {
1377 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1378 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1379 	return 0;
1380 }
1381 
1382 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1383 {
1384 	struct throtl_service_queue *sq = &tg->service_queue;
1385 	struct cgroup_subsys_state *pos_css;
1386 	struct blkcg_gq *blkg;
1387 
1388 	throtl_log(&tg->service_queue,
1389 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1390 		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1391 		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1392 
1393 	/*
1394 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1395 	 * considered to have rules if either the tg itself or any of its
1396 	 * ancestors has rules.  This identifies groups without any
1397 	 * restrictions in the whole hierarchy and allows them to bypass
1398 	 * blk-throttle.
1399 	 */
1400 	blkg_for_each_descendant_pre(blkg, pos_css,
1401 			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1402 		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1403 		struct throtl_grp *parent_tg;
1404 
1405 		tg_update_has_rules(this_tg);
1406 		/* ignore root/second level */
1407 		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1408 		    !blkg->parent->parent)
1409 			continue;
1410 		parent_tg = blkg_to_tg(blkg->parent);
1411 		/*
1412 		 * make sure all children has lower idle time threshold and
1413 		 * higher latency target
1414 		 */
1415 		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1416 				parent_tg->idletime_threshold);
1417 		this_tg->latency_target = max(this_tg->latency_target,
1418 				parent_tg->latency_target);
1419 	}
1420 
1421 	/*
1422 	 * We're already holding queue_lock and know @tg is valid.  Let's
1423 	 * apply the new config directly.
1424 	 *
1425 	 * Restart the slices for both READ and WRITES. It might happen
1426 	 * that a group's limit are dropped suddenly and we don't want to
1427 	 * account recently dispatched IO with new low rate.
1428 	 */
1429 	throtl_start_new_slice(tg, 0);
1430 	throtl_start_new_slice(tg, 1);
1431 
1432 	if (tg->flags & THROTL_TG_PENDING) {
1433 		tg_update_disptime(tg);
1434 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1435 	}
1436 }
1437 
1438 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1439 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1440 {
1441 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1442 	struct blkg_conf_ctx ctx;
1443 	struct throtl_grp *tg;
1444 	int ret;
1445 	u64 v;
1446 
1447 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1448 	if (ret)
1449 		return ret;
1450 
1451 	ret = -EINVAL;
1452 	if (sscanf(ctx.body, "%llu", &v) != 1)
1453 		goto out_finish;
1454 	if (!v)
1455 		v = U64_MAX;
1456 
1457 	tg = blkg_to_tg(ctx.blkg);
1458 
1459 	if (is_u64)
1460 		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1461 	else
1462 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1463 
1464 	tg_conf_updated(tg, false);
1465 	ret = 0;
1466 out_finish:
1467 	blkg_conf_finish(&ctx);
1468 	return ret ?: nbytes;
1469 }
1470 
1471 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1472 			       char *buf, size_t nbytes, loff_t off)
1473 {
1474 	return tg_set_conf(of, buf, nbytes, off, true);
1475 }
1476 
1477 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1478 				char *buf, size_t nbytes, loff_t off)
1479 {
1480 	return tg_set_conf(of, buf, nbytes, off, false);
1481 }
1482 
1483 static struct cftype throtl_legacy_files[] = {
1484 	{
1485 		.name = "throttle.read_bps_device",
1486 		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1487 		.seq_show = tg_print_conf_u64,
1488 		.write = tg_set_conf_u64,
1489 	},
1490 	{
1491 		.name = "throttle.write_bps_device",
1492 		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1493 		.seq_show = tg_print_conf_u64,
1494 		.write = tg_set_conf_u64,
1495 	},
1496 	{
1497 		.name = "throttle.read_iops_device",
1498 		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1499 		.seq_show = tg_print_conf_uint,
1500 		.write = tg_set_conf_uint,
1501 	},
1502 	{
1503 		.name = "throttle.write_iops_device",
1504 		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1505 		.seq_show = tg_print_conf_uint,
1506 		.write = tg_set_conf_uint,
1507 	},
1508 	{
1509 		.name = "throttle.io_service_bytes",
1510 		.private = (unsigned long)&blkcg_policy_throtl,
1511 		.seq_show = blkg_print_stat_bytes,
1512 	},
1513 	{
1514 		.name = "throttle.io_service_bytes_recursive",
1515 		.private = (unsigned long)&blkcg_policy_throtl,
1516 		.seq_show = blkg_print_stat_bytes_recursive,
1517 	},
1518 	{
1519 		.name = "throttle.io_serviced",
1520 		.private = (unsigned long)&blkcg_policy_throtl,
1521 		.seq_show = blkg_print_stat_ios,
1522 	},
1523 	{
1524 		.name = "throttle.io_serviced_recursive",
1525 		.private = (unsigned long)&blkcg_policy_throtl,
1526 		.seq_show = blkg_print_stat_ios_recursive,
1527 	},
1528 	{ }	/* terminate */
1529 };
1530 
1531 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1532 			 int off)
1533 {
1534 	struct throtl_grp *tg = pd_to_tg(pd);
1535 	const char *dname = blkg_dev_name(pd->blkg);
1536 	char bufs[4][21] = { "max", "max", "max", "max" };
1537 	u64 bps_dft;
1538 	unsigned int iops_dft;
1539 	char idle_time[26] = "";
1540 	char latency_time[26] = "";
1541 
1542 	if (!dname)
1543 		return 0;
1544 
1545 	if (off == LIMIT_LOW) {
1546 		bps_dft = 0;
1547 		iops_dft = 0;
1548 	} else {
1549 		bps_dft = U64_MAX;
1550 		iops_dft = UINT_MAX;
1551 	}
1552 
1553 	if (tg->bps_conf[READ][off] == bps_dft &&
1554 	    tg->bps_conf[WRITE][off] == bps_dft &&
1555 	    tg->iops_conf[READ][off] == iops_dft &&
1556 	    tg->iops_conf[WRITE][off] == iops_dft &&
1557 	    (off != LIMIT_LOW ||
1558 	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1559 	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1560 		return 0;
1561 
1562 	if (tg->bps_conf[READ][off] != U64_MAX)
1563 		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1564 			tg->bps_conf[READ][off]);
1565 	if (tg->bps_conf[WRITE][off] != U64_MAX)
1566 		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1567 			tg->bps_conf[WRITE][off]);
1568 	if (tg->iops_conf[READ][off] != UINT_MAX)
1569 		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1570 			tg->iops_conf[READ][off]);
1571 	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1572 		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1573 			tg->iops_conf[WRITE][off]);
1574 	if (off == LIMIT_LOW) {
1575 		if (tg->idletime_threshold_conf == ULONG_MAX)
1576 			strcpy(idle_time, " idle=max");
1577 		else
1578 			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1579 				tg->idletime_threshold_conf);
1580 
1581 		if (tg->latency_target_conf == ULONG_MAX)
1582 			strcpy(latency_time, " latency=max");
1583 		else
1584 			snprintf(latency_time, sizeof(latency_time),
1585 				" latency=%lu", tg->latency_target_conf);
1586 	}
1587 
1588 	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1589 		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1590 		   latency_time);
1591 	return 0;
1592 }
1593 
1594 static int tg_print_limit(struct seq_file *sf, void *v)
1595 {
1596 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1597 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1598 	return 0;
1599 }
1600 
1601 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1602 			  char *buf, size_t nbytes, loff_t off)
1603 {
1604 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1605 	struct blkg_conf_ctx ctx;
1606 	struct throtl_grp *tg;
1607 	u64 v[4];
1608 	unsigned long idle_time;
1609 	unsigned long latency_time;
1610 	int ret;
1611 	int index = of_cft(of)->private;
1612 
1613 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1614 	if (ret)
1615 		return ret;
1616 
1617 	tg = blkg_to_tg(ctx.blkg);
1618 
1619 	v[0] = tg->bps_conf[READ][index];
1620 	v[1] = tg->bps_conf[WRITE][index];
1621 	v[2] = tg->iops_conf[READ][index];
1622 	v[3] = tg->iops_conf[WRITE][index];
1623 
1624 	idle_time = tg->idletime_threshold_conf;
1625 	latency_time = tg->latency_target_conf;
1626 	while (true) {
1627 		char tok[27];	/* wiops=18446744073709551616 */
1628 		char *p;
1629 		u64 val = U64_MAX;
1630 		int len;
1631 
1632 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1633 			break;
1634 		if (tok[0] == '\0')
1635 			break;
1636 		ctx.body += len;
1637 
1638 		ret = -EINVAL;
1639 		p = tok;
1640 		strsep(&p, "=");
1641 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1642 			goto out_finish;
1643 
1644 		ret = -ERANGE;
1645 		if (!val)
1646 			goto out_finish;
1647 
1648 		ret = -EINVAL;
1649 		if (!strcmp(tok, "rbps"))
1650 			v[0] = val;
1651 		else if (!strcmp(tok, "wbps"))
1652 			v[1] = val;
1653 		else if (!strcmp(tok, "riops"))
1654 			v[2] = min_t(u64, val, UINT_MAX);
1655 		else if (!strcmp(tok, "wiops"))
1656 			v[3] = min_t(u64, val, UINT_MAX);
1657 		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1658 			idle_time = val;
1659 		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1660 			latency_time = val;
1661 		else
1662 			goto out_finish;
1663 	}
1664 
1665 	tg->bps_conf[READ][index] = v[0];
1666 	tg->bps_conf[WRITE][index] = v[1];
1667 	tg->iops_conf[READ][index] = v[2];
1668 	tg->iops_conf[WRITE][index] = v[3];
1669 
1670 	if (index == LIMIT_MAX) {
1671 		tg->bps[READ][index] = v[0];
1672 		tg->bps[WRITE][index] = v[1];
1673 		tg->iops[READ][index] = v[2];
1674 		tg->iops[WRITE][index] = v[3];
1675 	}
1676 	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1677 		tg->bps_conf[READ][LIMIT_MAX]);
1678 	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1679 		tg->bps_conf[WRITE][LIMIT_MAX]);
1680 	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1681 		tg->iops_conf[READ][LIMIT_MAX]);
1682 	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1683 		tg->iops_conf[WRITE][LIMIT_MAX]);
1684 	tg->idletime_threshold_conf = idle_time;
1685 	tg->latency_target_conf = latency_time;
1686 
1687 	/* force user to configure all settings for low limit  */
1688 	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1689 	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1690 	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1691 	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
1692 		tg->bps[READ][LIMIT_LOW] = 0;
1693 		tg->bps[WRITE][LIMIT_LOW] = 0;
1694 		tg->iops[READ][LIMIT_LOW] = 0;
1695 		tg->iops[WRITE][LIMIT_LOW] = 0;
1696 		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1697 		tg->latency_target = DFL_LATENCY_TARGET;
1698 	} else if (index == LIMIT_LOW) {
1699 		tg->idletime_threshold = tg->idletime_threshold_conf;
1700 		tg->latency_target = tg->latency_target_conf;
1701 	}
1702 
1703 	blk_throtl_update_limit_valid(tg->td);
1704 	if (tg->td->limit_valid[LIMIT_LOW]) {
1705 		if (index == LIMIT_LOW)
1706 			tg->td->limit_index = LIMIT_LOW;
1707 	} else
1708 		tg->td->limit_index = LIMIT_MAX;
1709 	tg_conf_updated(tg, index == LIMIT_LOW &&
1710 		tg->td->limit_valid[LIMIT_LOW]);
1711 	ret = 0;
1712 out_finish:
1713 	blkg_conf_finish(&ctx);
1714 	return ret ?: nbytes;
1715 }
1716 
1717 static struct cftype throtl_files[] = {
1718 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1719 	{
1720 		.name = "low",
1721 		.flags = CFTYPE_NOT_ON_ROOT,
1722 		.seq_show = tg_print_limit,
1723 		.write = tg_set_limit,
1724 		.private = LIMIT_LOW,
1725 	},
1726 #endif
1727 	{
1728 		.name = "max",
1729 		.flags = CFTYPE_NOT_ON_ROOT,
1730 		.seq_show = tg_print_limit,
1731 		.write = tg_set_limit,
1732 		.private = LIMIT_MAX,
1733 	},
1734 	{ }	/* terminate */
1735 };
1736 
1737 static void throtl_shutdown_wq(struct request_queue *q)
1738 {
1739 	struct throtl_data *td = q->td;
1740 
1741 	cancel_work_sync(&td->dispatch_work);
1742 }
1743 
1744 static struct blkcg_policy blkcg_policy_throtl = {
1745 	.dfl_cftypes		= throtl_files,
1746 	.legacy_cftypes		= throtl_legacy_files,
1747 
1748 	.pd_alloc_fn		= throtl_pd_alloc,
1749 	.pd_init_fn		= throtl_pd_init,
1750 	.pd_online_fn		= throtl_pd_online,
1751 	.pd_offline_fn		= throtl_pd_offline,
1752 	.pd_free_fn		= throtl_pd_free,
1753 };
1754 
1755 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1756 {
1757 	unsigned long rtime = jiffies, wtime = jiffies;
1758 
1759 	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1760 		rtime = tg->last_low_overflow_time[READ];
1761 	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1762 		wtime = tg->last_low_overflow_time[WRITE];
1763 	return min(rtime, wtime);
1764 }
1765 
1766 /* tg should not be an intermediate node */
1767 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1768 {
1769 	struct throtl_service_queue *parent_sq;
1770 	struct throtl_grp *parent = tg;
1771 	unsigned long ret = __tg_last_low_overflow_time(tg);
1772 
1773 	while (true) {
1774 		parent_sq = parent->service_queue.parent_sq;
1775 		parent = sq_to_tg(parent_sq);
1776 		if (!parent)
1777 			break;
1778 
1779 		/*
1780 		 * The parent doesn't have low limit, it always reaches low
1781 		 * limit. Its overflow time is useless for children
1782 		 */
1783 		if (!parent->bps[READ][LIMIT_LOW] &&
1784 		    !parent->iops[READ][LIMIT_LOW] &&
1785 		    !parent->bps[WRITE][LIMIT_LOW] &&
1786 		    !parent->iops[WRITE][LIMIT_LOW])
1787 			continue;
1788 		if (time_after(__tg_last_low_overflow_time(parent), ret))
1789 			ret = __tg_last_low_overflow_time(parent);
1790 	}
1791 	return ret;
1792 }
1793 
1794 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1795 {
1796 	/*
1797 	 * cgroup is idle if:
1798 	 * - single idle is too long, longer than a fixed value (in case user
1799 	 *   configure a too big threshold) or 4 times of idletime threshold
1800 	 * - average think time is more than threshold
1801 	 * - IO latency is largely below threshold
1802 	 */
1803 	unsigned long time;
1804 	bool ret;
1805 
1806 	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1807 	ret = tg->latency_target == DFL_LATENCY_TARGET ||
1808 	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1809 	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1810 	      tg->avg_idletime > tg->idletime_threshold ||
1811 	      (tg->latency_target && tg->bio_cnt &&
1812 		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1813 	throtl_log(&tg->service_queue,
1814 		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1815 		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1816 		tg->bio_cnt, ret, tg->td->scale);
1817 	return ret;
1818 }
1819 
1820 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1821 {
1822 	struct throtl_service_queue *sq = &tg->service_queue;
1823 	bool read_limit, write_limit;
1824 
1825 	/*
1826 	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1827 	 * reaches), it's ok to upgrade to next limit
1828 	 */
1829 	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1830 	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1831 	if (!read_limit && !write_limit)
1832 		return true;
1833 	if (read_limit && sq->nr_queued[READ] &&
1834 	    (!write_limit || sq->nr_queued[WRITE]))
1835 		return true;
1836 	if (write_limit && sq->nr_queued[WRITE] &&
1837 	    (!read_limit || sq->nr_queued[READ]))
1838 		return true;
1839 
1840 	if (time_after_eq(jiffies,
1841 		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1842 	    throtl_tg_is_idle(tg))
1843 		return true;
1844 	return false;
1845 }
1846 
1847 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1848 {
1849 	while (true) {
1850 		if (throtl_tg_can_upgrade(tg))
1851 			return true;
1852 		tg = sq_to_tg(tg->service_queue.parent_sq);
1853 		if (!tg || !tg_to_blkg(tg)->parent)
1854 			return false;
1855 	}
1856 	return false;
1857 }
1858 
1859 static bool throtl_can_upgrade(struct throtl_data *td,
1860 	struct throtl_grp *this_tg)
1861 {
1862 	struct cgroup_subsys_state *pos_css;
1863 	struct blkcg_gq *blkg;
1864 
1865 	if (td->limit_index != LIMIT_LOW)
1866 		return false;
1867 
1868 	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1869 		return false;
1870 
1871 	rcu_read_lock();
1872 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1873 		struct throtl_grp *tg = blkg_to_tg(blkg);
1874 
1875 		if (tg == this_tg)
1876 			continue;
1877 		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1878 			continue;
1879 		if (!throtl_hierarchy_can_upgrade(tg)) {
1880 			rcu_read_unlock();
1881 			return false;
1882 		}
1883 	}
1884 	rcu_read_unlock();
1885 	return true;
1886 }
1887 
1888 static void throtl_upgrade_check(struct throtl_grp *tg)
1889 {
1890 	unsigned long now = jiffies;
1891 
1892 	if (tg->td->limit_index != LIMIT_LOW)
1893 		return;
1894 
1895 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1896 		return;
1897 
1898 	tg->last_check_time = now;
1899 
1900 	if (!time_after_eq(now,
1901 	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1902 		return;
1903 
1904 	if (throtl_can_upgrade(tg->td, NULL))
1905 		throtl_upgrade_state(tg->td);
1906 }
1907 
1908 static void throtl_upgrade_state(struct throtl_data *td)
1909 {
1910 	struct cgroup_subsys_state *pos_css;
1911 	struct blkcg_gq *blkg;
1912 
1913 	throtl_log(&td->service_queue, "upgrade to max");
1914 	td->limit_index = LIMIT_MAX;
1915 	td->low_upgrade_time = jiffies;
1916 	td->scale = 0;
1917 	rcu_read_lock();
1918 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1919 		struct throtl_grp *tg = blkg_to_tg(blkg);
1920 		struct throtl_service_queue *sq = &tg->service_queue;
1921 
1922 		tg->disptime = jiffies - 1;
1923 		throtl_select_dispatch(sq);
1924 		throtl_schedule_next_dispatch(sq, true);
1925 	}
1926 	rcu_read_unlock();
1927 	throtl_select_dispatch(&td->service_queue);
1928 	throtl_schedule_next_dispatch(&td->service_queue, true);
1929 	queue_work(kthrotld_workqueue, &td->dispatch_work);
1930 }
1931 
1932 static void throtl_downgrade_state(struct throtl_data *td, int new)
1933 {
1934 	td->scale /= 2;
1935 
1936 	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1937 	if (td->scale) {
1938 		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1939 		return;
1940 	}
1941 
1942 	td->limit_index = new;
1943 	td->low_downgrade_time = jiffies;
1944 }
1945 
1946 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1947 {
1948 	struct throtl_data *td = tg->td;
1949 	unsigned long now = jiffies;
1950 
1951 	/*
1952 	 * If cgroup is below low limit, consider downgrade and throttle other
1953 	 * cgroups
1954 	 */
1955 	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1956 	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1957 					td->throtl_slice) &&
1958 	    (!throtl_tg_is_idle(tg) ||
1959 	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1960 		return true;
1961 	return false;
1962 }
1963 
1964 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1965 {
1966 	while (true) {
1967 		if (!throtl_tg_can_downgrade(tg))
1968 			return false;
1969 		tg = sq_to_tg(tg->service_queue.parent_sq);
1970 		if (!tg || !tg_to_blkg(tg)->parent)
1971 			break;
1972 	}
1973 	return true;
1974 }
1975 
1976 static void throtl_downgrade_check(struct throtl_grp *tg)
1977 {
1978 	uint64_t bps;
1979 	unsigned int iops;
1980 	unsigned long elapsed_time;
1981 	unsigned long now = jiffies;
1982 
1983 	if (tg->td->limit_index != LIMIT_MAX ||
1984 	    !tg->td->limit_valid[LIMIT_LOW])
1985 		return;
1986 	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1987 		return;
1988 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1989 		return;
1990 
1991 	elapsed_time = now - tg->last_check_time;
1992 	tg->last_check_time = now;
1993 
1994 	if (time_before(now, tg_last_low_overflow_time(tg) +
1995 			tg->td->throtl_slice))
1996 		return;
1997 
1998 	if (tg->bps[READ][LIMIT_LOW]) {
1999 		bps = tg->last_bytes_disp[READ] * HZ;
2000 		do_div(bps, elapsed_time);
2001 		if (bps >= tg->bps[READ][LIMIT_LOW])
2002 			tg->last_low_overflow_time[READ] = now;
2003 	}
2004 
2005 	if (tg->bps[WRITE][LIMIT_LOW]) {
2006 		bps = tg->last_bytes_disp[WRITE] * HZ;
2007 		do_div(bps, elapsed_time);
2008 		if (bps >= tg->bps[WRITE][LIMIT_LOW])
2009 			tg->last_low_overflow_time[WRITE] = now;
2010 	}
2011 
2012 	if (tg->iops[READ][LIMIT_LOW]) {
2013 		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2014 		if (iops >= tg->iops[READ][LIMIT_LOW])
2015 			tg->last_low_overflow_time[READ] = now;
2016 	}
2017 
2018 	if (tg->iops[WRITE][LIMIT_LOW]) {
2019 		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2020 		if (iops >= tg->iops[WRITE][LIMIT_LOW])
2021 			tg->last_low_overflow_time[WRITE] = now;
2022 	}
2023 
2024 	/*
2025 	 * If cgroup is below low limit, consider downgrade and throttle other
2026 	 * cgroups
2027 	 */
2028 	if (throtl_hierarchy_can_downgrade(tg))
2029 		throtl_downgrade_state(tg->td, LIMIT_LOW);
2030 
2031 	tg->last_bytes_disp[READ] = 0;
2032 	tg->last_bytes_disp[WRITE] = 0;
2033 	tg->last_io_disp[READ] = 0;
2034 	tg->last_io_disp[WRITE] = 0;
2035 }
2036 
2037 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2038 {
2039 	unsigned long now = ktime_get_ns() >> 10;
2040 	unsigned long last_finish_time = tg->last_finish_time;
2041 
2042 	if (now <= last_finish_time || last_finish_time == 0 ||
2043 	    last_finish_time == tg->checked_last_finish_time)
2044 		return;
2045 
2046 	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2047 	tg->checked_last_finish_time = last_finish_time;
2048 }
2049 
2050 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2051 static void throtl_update_latency_buckets(struct throtl_data *td)
2052 {
2053 	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2054 	int i, cpu, rw;
2055 	unsigned long last_latency[2] = { 0 };
2056 	unsigned long latency[2];
2057 
2058 	if (!blk_queue_nonrot(td->queue))
2059 		return;
2060 	if (time_before(jiffies, td->last_calculate_time + HZ))
2061 		return;
2062 	td->last_calculate_time = jiffies;
2063 
2064 	memset(avg_latency, 0, sizeof(avg_latency));
2065 	for (rw = READ; rw <= WRITE; rw++) {
2066 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2067 			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2068 
2069 			for_each_possible_cpu(cpu) {
2070 				struct latency_bucket *bucket;
2071 
2072 				/* this isn't race free, but ok in practice */
2073 				bucket = per_cpu_ptr(td->latency_buckets[rw],
2074 					cpu);
2075 				tmp->total_latency += bucket[i].total_latency;
2076 				tmp->samples += bucket[i].samples;
2077 				bucket[i].total_latency = 0;
2078 				bucket[i].samples = 0;
2079 			}
2080 
2081 			if (tmp->samples >= 32) {
2082 				int samples = tmp->samples;
2083 
2084 				latency[rw] = tmp->total_latency;
2085 
2086 				tmp->total_latency = 0;
2087 				tmp->samples = 0;
2088 				latency[rw] /= samples;
2089 				if (latency[rw] == 0)
2090 					continue;
2091 				avg_latency[rw][i].latency = latency[rw];
2092 			}
2093 		}
2094 	}
2095 
2096 	for (rw = READ; rw <= WRITE; rw++) {
2097 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2098 			if (!avg_latency[rw][i].latency) {
2099 				if (td->avg_buckets[rw][i].latency < last_latency[rw])
2100 					td->avg_buckets[rw][i].latency =
2101 						last_latency[rw];
2102 				continue;
2103 			}
2104 
2105 			if (!td->avg_buckets[rw][i].valid)
2106 				latency[rw] = avg_latency[rw][i].latency;
2107 			else
2108 				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2109 					avg_latency[rw][i].latency) >> 3;
2110 
2111 			td->avg_buckets[rw][i].latency = max(latency[rw],
2112 				last_latency[rw]);
2113 			td->avg_buckets[rw][i].valid = true;
2114 			last_latency[rw] = td->avg_buckets[rw][i].latency;
2115 		}
2116 	}
2117 
2118 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2119 		throtl_log(&td->service_queue,
2120 			"Latency bucket %d: read latency=%ld, read valid=%d, "
2121 			"write latency=%ld, write valid=%d", i,
2122 			td->avg_buckets[READ][i].latency,
2123 			td->avg_buckets[READ][i].valid,
2124 			td->avg_buckets[WRITE][i].latency,
2125 			td->avg_buckets[WRITE][i].valid);
2126 }
2127 #else
2128 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2129 {
2130 }
2131 #endif
2132 
2133 static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
2134 {
2135 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2136 	if (bio->bi_css) {
2137 		if (bio->bi_cg_private)
2138 			blkg_put(tg_to_blkg(bio->bi_cg_private));
2139 		bio->bi_cg_private = tg;
2140 		blkg_get(tg_to_blkg(tg));
2141 	}
2142 	blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
2143 #endif
2144 }
2145 
2146 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2147 		    struct bio *bio)
2148 {
2149 	struct throtl_qnode *qn = NULL;
2150 	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2151 	struct throtl_service_queue *sq;
2152 	bool rw = bio_data_dir(bio);
2153 	bool throttled = false;
2154 	struct throtl_data *td = tg->td;
2155 
2156 	WARN_ON_ONCE(!rcu_read_lock_held());
2157 
2158 	/* see throtl_charge_bio() */
2159 	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2160 		goto out;
2161 
2162 	spin_lock_irq(q->queue_lock);
2163 
2164 	throtl_update_latency_buckets(td);
2165 
2166 	if (unlikely(blk_queue_bypass(q)))
2167 		goto out_unlock;
2168 
2169 	blk_throtl_assoc_bio(tg, bio);
2170 	blk_throtl_update_idletime(tg);
2171 
2172 	sq = &tg->service_queue;
2173 
2174 again:
2175 	while (true) {
2176 		if (tg->last_low_overflow_time[rw] == 0)
2177 			tg->last_low_overflow_time[rw] = jiffies;
2178 		throtl_downgrade_check(tg);
2179 		throtl_upgrade_check(tg);
2180 		/* throtl is FIFO - if bios are already queued, should queue */
2181 		if (sq->nr_queued[rw])
2182 			break;
2183 
2184 		/* if above limits, break to queue */
2185 		if (!tg_may_dispatch(tg, bio, NULL)) {
2186 			tg->last_low_overflow_time[rw] = jiffies;
2187 			if (throtl_can_upgrade(td, tg)) {
2188 				throtl_upgrade_state(td);
2189 				goto again;
2190 			}
2191 			break;
2192 		}
2193 
2194 		/* within limits, let's charge and dispatch directly */
2195 		throtl_charge_bio(tg, bio);
2196 
2197 		/*
2198 		 * We need to trim slice even when bios are not being queued
2199 		 * otherwise it might happen that a bio is not queued for
2200 		 * a long time and slice keeps on extending and trim is not
2201 		 * called for a long time. Now if limits are reduced suddenly
2202 		 * we take into account all the IO dispatched so far at new
2203 		 * low rate and * newly queued IO gets a really long dispatch
2204 		 * time.
2205 		 *
2206 		 * So keep on trimming slice even if bio is not queued.
2207 		 */
2208 		throtl_trim_slice(tg, rw);
2209 
2210 		/*
2211 		 * @bio passed through this layer without being throttled.
2212 		 * Climb up the ladder.  If we''re already at the top, it
2213 		 * can be executed directly.
2214 		 */
2215 		qn = &tg->qnode_on_parent[rw];
2216 		sq = sq->parent_sq;
2217 		tg = sq_to_tg(sq);
2218 		if (!tg)
2219 			goto out_unlock;
2220 	}
2221 
2222 	/* out-of-limit, queue to @tg */
2223 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2224 		   rw == READ ? 'R' : 'W',
2225 		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2226 		   tg_bps_limit(tg, rw),
2227 		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2228 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2229 
2230 	tg->last_low_overflow_time[rw] = jiffies;
2231 
2232 	td->nr_queued[rw]++;
2233 	throtl_add_bio_tg(bio, qn, tg);
2234 	throttled = true;
2235 
2236 	/*
2237 	 * Update @tg's dispatch time and force schedule dispatch if @tg
2238 	 * was empty before @bio.  The forced scheduling isn't likely to
2239 	 * cause undue delay as @bio is likely to be dispatched directly if
2240 	 * its @tg's disptime is not in the future.
2241 	 */
2242 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2243 		tg_update_disptime(tg);
2244 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2245 	}
2246 
2247 out_unlock:
2248 	spin_unlock_irq(q->queue_lock);
2249 out:
2250 	bio_set_flag(bio, BIO_THROTTLED);
2251 
2252 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2253 	if (throttled || !td->track_bio_latency)
2254 		bio->bi_issue_stat.stat |= SKIP_LATENCY;
2255 #endif
2256 	return throttled;
2257 }
2258 
2259 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2260 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2261 	int op, unsigned long time)
2262 {
2263 	struct latency_bucket *latency;
2264 	int index;
2265 
2266 	if (!td || td->limit_index != LIMIT_LOW ||
2267 	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2268 	    !blk_queue_nonrot(td->queue))
2269 		return;
2270 
2271 	index = request_bucket_index(size);
2272 
2273 	latency = get_cpu_ptr(td->latency_buckets[op]);
2274 	latency[index].total_latency += time;
2275 	latency[index].samples++;
2276 	put_cpu_ptr(td->latency_buckets[op]);
2277 }
2278 
2279 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2280 {
2281 	struct request_queue *q = rq->q;
2282 	struct throtl_data *td = q->td;
2283 
2284 	throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
2285 		req_op(rq), time_ns >> 10);
2286 }
2287 
2288 void blk_throtl_bio_endio(struct bio *bio)
2289 {
2290 	struct throtl_grp *tg;
2291 	u64 finish_time_ns;
2292 	unsigned long finish_time;
2293 	unsigned long start_time;
2294 	unsigned long lat;
2295 	int rw = bio_data_dir(bio);
2296 
2297 	tg = bio->bi_cg_private;
2298 	if (!tg)
2299 		return;
2300 	bio->bi_cg_private = NULL;
2301 
2302 	finish_time_ns = ktime_get_ns();
2303 	tg->last_finish_time = finish_time_ns >> 10;
2304 
2305 	start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
2306 	finish_time = __blk_stat_time(finish_time_ns) >> 10;
2307 	if (!start_time || finish_time <= start_time) {
2308 		blkg_put(tg_to_blkg(tg));
2309 		return;
2310 	}
2311 
2312 	lat = finish_time - start_time;
2313 	/* this is only for bio based driver */
2314 	if (!(bio->bi_issue_stat.stat & SKIP_LATENCY))
2315 		throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
2316 			bio_op(bio), lat);
2317 
2318 	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2319 		int bucket;
2320 		unsigned int threshold;
2321 
2322 		bucket = request_bucket_index(
2323 			blk_stat_size(&bio->bi_issue_stat));
2324 		threshold = tg->td->avg_buckets[rw][bucket].latency +
2325 			tg->latency_target;
2326 		if (lat > threshold)
2327 			tg->bad_bio_cnt++;
2328 		/*
2329 		 * Not race free, could get wrong count, which means cgroups
2330 		 * will be throttled
2331 		 */
2332 		tg->bio_cnt++;
2333 	}
2334 
2335 	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2336 		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2337 		tg->bio_cnt /= 2;
2338 		tg->bad_bio_cnt /= 2;
2339 	}
2340 
2341 	blkg_put(tg_to_blkg(tg));
2342 }
2343 #endif
2344 
2345 /*
2346  * Dispatch all bios from all children tg's queued on @parent_sq.  On
2347  * return, @parent_sq is guaranteed to not have any active children tg's
2348  * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2349  */
2350 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2351 {
2352 	struct throtl_grp *tg;
2353 
2354 	while ((tg = throtl_rb_first(parent_sq))) {
2355 		struct throtl_service_queue *sq = &tg->service_queue;
2356 		struct bio *bio;
2357 
2358 		throtl_dequeue_tg(tg);
2359 
2360 		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2361 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2362 		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2363 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2364 	}
2365 }
2366 
2367 /**
2368  * blk_throtl_drain - drain throttled bios
2369  * @q: request_queue to drain throttled bios for
2370  *
2371  * Dispatch all currently throttled bios on @q through ->make_request_fn().
2372  */
2373 void blk_throtl_drain(struct request_queue *q)
2374 	__releases(q->queue_lock) __acquires(q->queue_lock)
2375 {
2376 	struct throtl_data *td = q->td;
2377 	struct blkcg_gq *blkg;
2378 	struct cgroup_subsys_state *pos_css;
2379 	struct bio *bio;
2380 	int rw;
2381 
2382 	queue_lockdep_assert_held(q);
2383 	rcu_read_lock();
2384 
2385 	/*
2386 	 * Drain each tg while doing post-order walk on the blkg tree, so
2387 	 * that all bios are propagated to td->service_queue.  It'd be
2388 	 * better to walk service_queue tree directly but blkg walk is
2389 	 * easier.
2390 	 */
2391 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2392 		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2393 
2394 	/* finally, transfer bios from top-level tg's into the td */
2395 	tg_drain_bios(&td->service_queue);
2396 
2397 	rcu_read_unlock();
2398 	spin_unlock_irq(q->queue_lock);
2399 
2400 	/* all bios now should be in td->service_queue, issue them */
2401 	for (rw = READ; rw <= WRITE; rw++)
2402 		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2403 						NULL)))
2404 			generic_make_request(bio);
2405 
2406 	spin_lock_irq(q->queue_lock);
2407 }
2408 
2409 int blk_throtl_init(struct request_queue *q)
2410 {
2411 	struct throtl_data *td;
2412 	int ret;
2413 
2414 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2415 	if (!td)
2416 		return -ENOMEM;
2417 	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2418 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2419 	if (!td->latency_buckets[READ]) {
2420 		kfree(td);
2421 		return -ENOMEM;
2422 	}
2423 	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2424 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2425 	if (!td->latency_buckets[WRITE]) {
2426 		free_percpu(td->latency_buckets[READ]);
2427 		kfree(td);
2428 		return -ENOMEM;
2429 	}
2430 
2431 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2432 	throtl_service_queue_init(&td->service_queue);
2433 
2434 	q->td = td;
2435 	td->queue = q;
2436 
2437 	td->limit_valid[LIMIT_MAX] = true;
2438 	td->limit_index = LIMIT_MAX;
2439 	td->low_upgrade_time = jiffies;
2440 	td->low_downgrade_time = jiffies;
2441 
2442 	/* activate policy */
2443 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2444 	if (ret) {
2445 		free_percpu(td->latency_buckets[READ]);
2446 		free_percpu(td->latency_buckets[WRITE]);
2447 		kfree(td);
2448 	}
2449 	return ret;
2450 }
2451 
2452 void blk_throtl_exit(struct request_queue *q)
2453 {
2454 	BUG_ON(!q->td);
2455 	throtl_shutdown_wq(q);
2456 	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2457 	free_percpu(q->td->latency_buckets[READ]);
2458 	free_percpu(q->td->latency_buckets[WRITE]);
2459 	kfree(q->td);
2460 }
2461 
2462 void blk_throtl_register_queue(struct request_queue *q)
2463 {
2464 	struct throtl_data *td;
2465 	int i;
2466 
2467 	td = q->td;
2468 	BUG_ON(!td);
2469 
2470 	if (blk_queue_nonrot(q)) {
2471 		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2472 		td->filtered_latency = LATENCY_FILTERED_SSD;
2473 	} else {
2474 		td->throtl_slice = DFL_THROTL_SLICE_HD;
2475 		td->filtered_latency = LATENCY_FILTERED_HD;
2476 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2477 			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2478 			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2479 		}
2480 	}
2481 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2482 	/* if no low limit, use previous default */
2483 	td->throtl_slice = DFL_THROTL_SLICE_HD;
2484 #endif
2485 
2486 	td->track_bio_latency = !queue_is_rq_based(q);
2487 	if (!td->track_bio_latency)
2488 		blk_stat_enable_accounting(q);
2489 }
2490 
2491 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2492 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2493 {
2494 	if (!q->td)
2495 		return -EINVAL;
2496 	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2497 }
2498 
2499 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2500 	const char *page, size_t count)
2501 {
2502 	unsigned long v;
2503 	unsigned long t;
2504 
2505 	if (!q->td)
2506 		return -EINVAL;
2507 	if (kstrtoul(page, 10, &v))
2508 		return -EINVAL;
2509 	t = msecs_to_jiffies(v);
2510 	if (t == 0 || t > MAX_THROTL_SLICE)
2511 		return -EINVAL;
2512 	q->td->throtl_slice = t;
2513 	return count;
2514 }
2515 #endif
2516 
2517 static int __init throtl_init(void)
2518 {
2519 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2520 	if (!kthrotld_workqueue)
2521 		panic("Failed to create kthrotld\n");
2522 
2523 	return blkcg_policy_register(&blkcg_policy_throtl);
2524 }
2525 
2526 module_init(throtl_init);
2527