xref: /openbmc/linux/block/blk-throttle.c (revision 826f328e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include "blk.h"
15 #include "blk-cgroup-rwstat.h"
16 
17 /* Max dispatch from a group in 1 round */
18 #define THROTL_GRP_QUANTUM 8
19 
20 /* Total max dispatch from all groups in one round */
21 #define THROTL_QUANTUM 32
22 
23 /* Throttling is performed over a slice and after that slice is renewed */
24 #define DFL_THROTL_SLICE_HD (HZ / 10)
25 #define DFL_THROTL_SLICE_SSD (HZ / 50)
26 #define MAX_THROTL_SLICE (HZ)
27 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
28 #define MIN_THROTL_BPS (320 * 1024)
29 #define MIN_THROTL_IOPS (10)
30 #define DFL_LATENCY_TARGET (-1L)
31 #define DFL_IDLE_THRESHOLD (0)
32 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
33 #define LATENCY_FILTERED_SSD (0)
34 /*
35  * For HD, very small latency comes from sequential IO. Such IO is helpless to
36  * help determine if its IO is impacted by others, hence we ignore the IO
37  */
38 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
39 
40 static struct blkcg_policy blkcg_policy_throtl;
41 
42 /* A workqueue to queue throttle related work */
43 static struct workqueue_struct *kthrotld_workqueue;
44 
45 /*
46  * To implement hierarchical throttling, throtl_grps form a tree and bios
47  * are dispatched upwards level by level until they reach the top and get
48  * issued.  When dispatching bios from the children and local group at each
49  * level, if the bios are dispatched into a single bio_list, there's a risk
50  * of a local or child group which can queue many bios at once filling up
51  * the list starving others.
52  *
53  * To avoid such starvation, dispatched bios are queued separately
54  * according to where they came from.  When they are again dispatched to
55  * the parent, they're popped in round-robin order so that no single source
56  * hogs the dispatch window.
57  *
58  * throtl_qnode is used to keep the queued bios separated by their sources.
59  * Bios are queued to throtl_qnode which in turn is queued to
60  * throtl_service_queue and then dispatched in round-robin order.
61  *
62  * It's also used to track the reference counts on blkg's.  A qnode always
63  * belongs to a throtl_grp and gets queued on itself or the parent, so
64  * incrementing the reference of the associated throtl_grp when a qnode is
65  * queued and decrementing when dequeued is enough to keep the whole blkg
66  * tree pinned while bios are in flight.
67  */
68 struct throtl_qnode {
69 	struct list_head	node;		/* service_queue->queued[] */
70 	struct bio_list		bios;		/* queued bios */
71 	struct throtl_grp	*tg;		/* tg this qnode belongs to */
72 };
73 
74 struct throtl_service_queue {
75 	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
76 
77 	/*
78 	 * Bios queued directly to this service_queue or dispatched from
79 	 * children throtl_grp's.
80 	 */
81 	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
82 	unsigned int		nr_queued[2];	/* number of queued bios */
83 
84 	/*
85 	 * RB tree of active children throtl_grp's, which are sorted by
86 	 * their ->disptime.
87 	 */
88 	struct rb_root_cached	pending_tree;	/* RB tree of active tgs */
89 	unsigned int		nr_pending;	/* # queued in the tree */
90 	unsigned long		first_pending_disptime;	/* disptime of the first tg */
91 	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
92 };
93 
94 enum tg_state_flags {
95 	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
96 	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
97 };
98 
99 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
100 
101 enum {
102 	LIMIT_LOW,
103 	LIMIT_MAX,
104 	LIMIT_CNT,
105 };
106 
107 struct throtl_grp {
108 	/* must be the first member */
109 	struct blkg_policy_data pd;
110 
111 	/* active throtl group service_queue member */
112 	struct rb_node rb_node;
113 
114 	/* throtl_data this group belongs to */
115 	struct throtl_data *td;
116 
117 	/* this group's service queue */
118 	struct throtl_service_queue service_queue;
119 
120 	/*
121 	 * qnode_on_self is used when bios are directly queued to this
122 	 * throtl_grp so that local bios compete fairly with bios
123 	 * dispatched from children.  qnode_on_parent is used when bios are
124 	 * dispatched from this throtl_grp into its parent and will compete
125 	 * with the sibling qnode_on_parents and the parent's
126 	 * qnode_on_self.
127 	 */
128 	struct throtl_qnode qnode_on_self[2];
129 	struct throtl_qnode qnode_on_parent[2];
130 
131 	/*
132 	 * Dispatch time in jiffies. This is the estimated time when group
133 	 * will unthrottle and is ready to dispatch more bio. It is used as
134 	 * key to sort active groups in service tree.
135 	 */
136 	unsigned long disptime;
137 
138 	unsigned int flags;
139 
140 	/* are there any throtl rules between this group and td? */
141 	bool has_rules[2];
142 
143 	/* internally used bytes per second rate limits */
144 	uint64_t bps[2][LIMIT_CNT];
145 	/* user configured bps limits */
146 	uint64_t bps_conf[2][LIMIT_CNT];
147 
148 	/* internally used IOPS limits */
149 	unsigned int iops[2][LIMIT_CNT];
150 	/* user configured IOPS limits */
151 	unsigned int iops_conf[2][LIMIT_CNT];
152 
153 	/* Number of bytes dispatched in current slice */
154 	uint64_t bytes_disp[2];
155 	/* Number of bio's dispatched in current slice */
156 	unsigned int io_disp[2];
157 
158 	unsigned long last_low_overflow_time[2];
159 
160 	uint64_t last_bytes_disp[2];
161 	unsigned int last_io_disp[2];
162 
163 	unsigned long last_check_time;
164 
165 	unsigned long latency_target; /* us */
166 	unsigned long latency_target_conf; /* us */
167 	/* When did we start a new slice */
168 	unsigned long slice_start[2];
169 	unsigned long slice_end[2];
170 
171 	unsigned long last_finish_time; /* ns / 1024 */
172 	unsigned long checked_last_finish_time; /* ns / 1024 */
173 	unsigned long avg_idletime; /* ns / 1024 */
174 	unsigned long idletime_threshold; /* us */
175 	unsigned long idletime_threshold_conf; /* us */
176 
177 	unsigned int bio_cnt; /* total bios */
178 	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
179 	unsigned long bio_cnt_reset_time;
180 
181 	struct blkg_rwstat stat_bytes;
182 	struct blkg_rwstat stat_ios;
183 };
184 
185 /* We measure latency for request size from <= 4k to >= 1M */
186 #define LATENCY_BUCKET_SIZE 9
187 
188 struct latency_bucket {
189 	unsigned long total_latency; /* ns / 1024 */
190 	int samples;
191 };
192 
193 struct avg_latency_bucket {
194 	unsigned long latency; /* ns / 1024 */
195 	bool valid;
196 };
197 
198 struct throtl_data
199 {
200 	/* service tree for active throtl groups */
201 	struct throtl_service_queue service_queue;
202 
203 	struct request_queue *queue;
204 
205 	/* Total Number of queued bios on READ and WRITE lists */
206 	unsigned int nr_queued[2];
207 
208 	unsigned int throtl_slice;
209 
210 	/* Work for dispatching throttled bios */
211 	struct work_struct dispatch_work;
212 	unsigned int limit_index;
213 	bool limit_valid[LIMIT_CNT];
214 
215 	unsigned long low_upgrade_time;
216 	unsigned long low_downgrade_time;
217 
218 	unsigned int scale;
219 
220 	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
221 	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
222 	struct latency_bucket __percpu *latency_buckets[2];
223 	unsigned long last_calculate_time;
224 	unsigned long filtered_latency;
225 
226 	bool track_bio_latency;
227 };
228 
229 static void throtl_pending_timer_fn(struct timer_list *t);
230 
231 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
232 {
233 	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
234 }
235 
236 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
237 {
238 	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
239 }
240 
241 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
242 {
243 	return pd_to_blkg(&tg->pd);
244 }
245 
246 /**
247  * sq_to_tg - return the throl_grp the specified service queue belongs to
248  * @sq: the throtl_service_queue of interest
249  *
250  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
251  * embedded in throtl_data, %NULL is returned.
252  */
253 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
254 {
255 	if (sq && sq->parent_sq)
256 		return container_of(sq, struct throtl_grp, service_queue);
257 	else
258 		return NULL;
259 }
260 
261 /**
262  * sq_to_td - return throtl_data the specified service queue belongs to
263  * @sq: the throtl_service_queue of interest
264  *
265  * A service_queue can be embedded in either a throtl_grp or throtl_data.
266  * Determine the associated throtl_data accordingly and return it.
267  */
268 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
269 {
270 	struct throtl_grp *tg = sq_to_tg(sq);
271 
272 	if (tg)
273 		return tg->td;
274 	else
275 		return container_of(sq, struct throtl_data, service_queue);
276 }
277 
278 /*
279  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
280  * make the IO dispatch more smooth.
281  * Scale up: linearly scale up according to lapsed time since upgrade. For
282  *           every throtl_slice, the limit scales up 1/2 .low limit till the
283  *           limit hits .max limit
284  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
285  */
286 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
287 {
288 	/* arbitrary value to avoid too big scale */
289 	if (td->scale < 4096 && time_after_eq(jiffies,
290 	    td->low_upgrade_time + td->scale * td->throtl_slice))
291 		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
292 
293 	return low + (low >> 1) * td->scale;
294 }
295 
296 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
297 {
298 	struct blkcg_gq *blkg = tg_to_blkg(tg);
299 	struct throtl_data *td;
300 	uint64_t ret;
301 
302 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
303 		return U64_MAX;
304 
305 	td = tg->td;
306 	ret = tg->bps[rw][td->limit_index];
307 	if (ret == 0 && td->limit_index == LIMIT_LOW) {
308 		/* intermediate node or iops isn't 0 */
309 		if (!list_empty(&blkg->blkcg->css.children) ||
310 		    tg->iops[rw][td->limit_index])
311 			return U64_MAX;
312 		else
313 			return MIN_THROTL_BPS;
314 	}
315 
316 	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
317 	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
318 		uint64_t adjusted;
319 
320 		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
321 		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
322 	}
323 	return ret;
324 }
325 
326 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
327 {
328 	struct blkcg_gq *blkg = tg_to_blkg(tg);
329 	struct throtl_data *td;
330 	unsigned int ret;
331 
332 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
333 		return UINT_MAX;
334 
335 	td = tg->td;
336 	ret = tg->iops[rw][td->limit_index];
337 	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
338 		/* intermediate node or bps isn't 0 */
339 		if (!list_empty(&blkg->blkcg->css.children) ||
340 		    tg->bps[rw][td->limit_index])
341 			return UINT_MAX;
342 		else
343 			return MIN_THROTL_IOPS;
344 	}
345 
346 	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
347 	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
348 		uint64_t adjusted;
349 
350 		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
351 		if (adjusted > UINT_MAX)
352 			adjusted = UINT_MAX;
353 		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
354 	}
355 	return ret;
356 }
357 
358 #define request_bucket_index(sectors) \
359 	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
360 
361 /**
362  * throtl_log - log debug message via blktrace
363  * @sq: the service_queue being reported
364  * @fmt: printf format string
365  * @args: printf args
366  *
367  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
368  * throtl_grp; otherwise, just "throtl".
369  */
370 #define throtl_log(sq, fmt, args...)	do {				\
371 	struct throtl_grp *__tg = sq_to_tg((sq));			\
372 	struct throtl_data *__td = sq_to_td((sq));			\
373 									\
374 	(void)__td;							\
375 	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
376 		break;							\
377 	if ((__tg)) {							\
378 		blk_add_cgroup_trace_msg(__td->queue,			\
379 			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
380 	} else {							\
381 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
382 	}								\
383 } while (0)
384 
385 static inline unsigned int throtl_bio_data_size(struct bio *bio)
386 {
387 	/* assume it's one sector */
388 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
389 		return 512;
390 	return bio->bi_iter.bi_size;
391 }
392 
393 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
394 {
395 	INIT_LIST_HEAD(&qn->node);
396 	bio_list_init(&qn->bios);
397 	qn->tg = tg;
398 }
399 
400 /**
401  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
402  * @bio: bio being added
403  * @qn: qnode to add bio to
404  * @queued: the service_queue->queued[] list @qn belongs to
405  *
406  * Add @bio to @qn and put @qn on @queued if it's not already on.
407  * @qn->tg's reference count is bumped when @qn is activated.  See the
408  * comment on top of throtl_qnode definition for details.
409  */
410 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
411 				 struct list_head *queued)
412 {
413 	bio_list_add(&qn->bios, bio);
414 	if (list_empty(&qn->node)) {
415 		list_add_tail(&qn->node, queued);
416 		blkg_get(tg_to_blkg(qn->tg));
417 	}
418 }
419 
420 /**
421  * throtl_peek_queued - peek the first bio on a qnode list
422  * @queued: the qnode list to peek
423  */
424 static struct bio *throtl_peek_queued(struct list_head *queued)
425 {
426 	struct throtl_qnode *qn;
427 	struct bio *bio;
428 
429 	if (list_empty(queued))
430 		return NULL;
431 
432 	qn = list_first_entry(queued, struct throtl_qnode, node);
433 	bio = bio_list_peek(&qn->bios);
434 	WARN_ON_ONCE(!bio);
435 	return bio;
436 }
437 
438 /**
439  * throtl_pop_queued - pop the first bio form a qnode list
440  * @queued: the qnode list to pop a bio from
441  * @tg_to_put: optional out argument for throtl_grp to put
442  *
443  * Pop the first bio from the qnode list @queued.  After popping, the first
444  * qnode is removed from @queued if empty or moved to the end of @queued so
445  * that the popping order is round-robin.
446  *
447  * When the first qnode is removed, its associated throtl_grp should be put
448  * too.  If @tg_to_put is NULL, this function automatically puts it;
449  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
450  * responsible for putting it.
451  */
452 static struct bio *throtl_pop_queued(struct list_head *queued,
453 				     struct throtl_grp **tg_to_put)
454 {
455 	struct throtl_qnode *qn;
456 	struct bio *bio;
457 
458 	if (list_empty(queued))
459 		return NULL;
460 
461 	qn = list_first_entry(queued, struct throtl_qnode, node);
462 	bio = bio_list_pop(&qn->bios);
463 	WARN_ON_ONCE(!bio);
464 
465 	if (bio_list_empty(&qn->bios)) {
466 		list_del_init(&qn->node);
467 		if (tg_to_put)
468 			*tg_to_put = qn->tg;
469 		else
470 			blkg_put(tg_to_blkg(qn->tg));
471 	} else {
472 		list_move_tail(&qn->node, queued);
473 	}
474 
475 	return bio;
476 }
477 
478 /* init a service_queue, assumes the caller zeroed it */
479 static void throtl_service_queue_init(struct throtl_service_queue *sq)
480 {
481 	INIT_LIST_HEAD(&sq->queued[0]);
482 	INIT_LIST_HEAD(&sq->queued[1]);
483 	sq->pending_tree = RB_ROOT_CACHED;
484 	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
485 }
486 
487 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
488 						struct request_queue *q,
489 						struct blkcg *blkcg)
490 {
491 	struct throtl_grp *tg;
492 	int rw;
493 
494 	tg = kzalloc_node(sizeof(*tg), gfp, q->node);
495 	if (!tg)
496 		return NULL;
497 
498 	if (blkg_rwstat_init(&tg->stat_bytes, gfp))
499 		goto err_free_tg;
500 
501 	if (blkg_rwstat_init(&tg->stat_ios, gfp))
502 		goto err_exit_stat_bytes;
503 
504 	throtl_service_queue_init(&tg->service_queue);
505 
506 	for (rw = READ; rw <= WRITE; rw++) {
507 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
508 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
509 	}
510 
511 	RB_CLEAR_NODE(&tg->rb_node);
512 	tg->bps[READ][LIMIT_MAX] = U64_MAX;
513 	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
514 	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
515 	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
516 	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
517 	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
518 	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
519 	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
520 	/* LIMIT_LOW will have default value 0 */
521 
522 	tg->latency_target = DFL_LATENCY_TARGET;
523 	tg->latency_target_conf = DFL_LATENCY_TARGET;
524 	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
525 	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
526 
527 	return &tg->pd;
528 
529 err_exit_stat_bytes:
530 	blkg_rwstat_exit(&tg->stat_bytes);
531 err_free_tg:
532 	kfree(tg);
533 	return NULL;
534 }
535 
536 static void throtl_pd_init(struct blkg_policy_data *pd)
537 {
538 	struct throtl_grp *tg = pd_to_tg(pd);
539 	struct blkcg_gq *blkg = tg_to_blkg(tg);
540 	struct throtl_data *td = blkg->q->td;
541 	struct throtl_service_queue *sq = &tg->service_queue;
542 
543 	/*
544 	 * If on the default hierarchy, we switch to properly hierarchical
545 	 * behavior where limits on a given throtl_grp are applied to the
546 	 * whole subtree rather than just the group itself.  e.g. If 16M
547 	 * read_bps limit is set on the root group, the whole system can't
548 	 * exceed 16M for the device.
549 	 *
550 	 * If not on the default hierarchy, the broken flat hierarchy
551 	 * behavior is retained where all throtl_grps are treated as if
552 	 * they're all separate root groups right below throtl_data.
553 	 * Limits of a group don't interact with limits of other groups
554 	 * regardless of the position of the group in the hierarchy.
555 	 */
556 	sq->parent_sq = &td->service_queue;
557 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
558 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
559 	tg->td = td;
560 }
561 
562 /*
563  * Set has_rules[] if @tg or any of its parents have limits configured.
564  * This doesn't require walking up to the top of the hierarchy as the
565  * parent's has_rules[] is guaranteed to be correct.
566  */
567 static void tg_update_has_rules(struct throtl_grp *tg)
568 {
569 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
570 	struct throtl_data *td = tg->td;
571 	int rw;
572 
573 	for (rw = READ; rw <= WRITE; rw++)
574 		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
575 			(td->limit_valid[td->limit_index] &&
576 			 (tg_bps_limit(tg, rw) != U64_MAX ||
577 			  tg_iops_limit(tg, rw) != UINT_MAX));
578 }
579 
580 static void throtl_pd_online(struct blkg_policy_data *pd)
581 {
582 	struct throtl_grp *tg = pd_to_tg(pd);
583 	/*
584 	 * We don't want new groups to escape the limits of its ancestors.
585 	 * Update has_rules[] after a new group is brought online.
586 	 */
587 	tg_update_has_rules(tg);
588 }
589 
590 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
591 static void blk_throtl_update_limit_valid(struct throtl_data *td)
592 {
593 	struct cgroup_subsys_state *pos_css;
594 	struct blkcg_gq *blkg;
595 	bool low_valid = false;
596 
597 	rcu_read_lock();
598 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
599 		struct throtl_grp *tg = blkg_to_tg(blkg);
600 
601 		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
602 		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
603 			low_valid = true;
604 			break;
605 		}
606 	}
607 	rcu_read_unlock();
608 
609 	td->limit_valid[LIMIT_LOW] = low_valid;
610 }
611 #else
612 static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
613 {
614 }
615 #endif
616 
617 static void throtl_upgrade_state(struct throtl_data *td);
618 static void throtl_pd_offline(struct blkg_policy_data *pd)
619 {
620 	struct throtl_grp *tg = pd_to_tg(pd);
621 
622 	tg->bps[READ][LIMIT_LOW] = 0;
623 	tg->bps[WRITE][LIMIT_LOW] = 0;
624 	tg->iops[READ][LIMIT_LOW] = 0;
625 	tg->iops[WRITE][LIMIT_LOW] = 0;
626 
627 	blk_throtl_update_limit_valid(tg->td);
628 
629 	if (!tg->td->limit_valid[tg->td->limit_index])
630 		throtl_upgrade_state(tg->td);
631 }
632 
633 static void throtl_pd_free(struct blkg_policy_data *pd)
634 {
635 	struct throtl_grp *tg = pd_to_tg(pd);
636 
637 	del_timer_sync(&tg->service_queue.pending_timer);
638 	blkg_rwstat_exit(&tg->stat_bytes);
639 	blkg_rwstat_exit(&tg->stat_ios);
640 	kfree(tg);
641 }
642 
643 static struct throtl_grp *
644 throtl_rb_first(struct throtl_service_queue *parent_sq)
645 {
646 	struct rb_node *n;
647 
648 	n = rb_first_cached(&parent_sq->pending_tree);
649 	WARN_ON_ONCE(!n);
650 	if (!n)
651 		return NULL;
652 	return rb_entry_tg(n);
653 }
654 
655 static void throtl_rb_erase(struct rb_node *n,
656 			    struct throtl_service_queue *parent_sq)
657 {
658 	rb_erase_cached(n, &parent_sq->pending_tree);
659 	RB_CLEAR_NODE(n);
660 	--parent_sq->nr_pending;
661 }
662 
663 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
664 {
665 	struct throtl_grp *tg;
666 
667 	tg = throtl_rb_first(parent_sq);
668 	if (!tg)
669 		return;
670 
671 	parent_sq->first_pending_disptime = tg->disptime;
672 }
673 
674 static void tg_service_queue_add(struct throtl_grp *tg)
675 {
676 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
677 	struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
678 	struct rb_node *parent = NULL;
679 	struct throtl_grp *__tg;
680 	unsigned long key = tg->disptime;
681 	bool leftmost = true;
682 
683 	while (*node != NULL) {
684 		parent = *node;
685 		__tg = rb_entry_tg(parent);
686 
687 		if (time_before(key, __tg->disptime))
688 			node = &parent->rb_left;
689 		else {
690 			node = &parent->rb_right;
691 			leftmost = false;
692 		}
693 	}
694 
695 	rb_link_node(&tg->rb_node, parent, node);
696 	rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
697 			       leftmost);
698 }
699 
700 static void throtl_enqueue_tg(struct throtl_grp *tg)
701 {
702 	if (!(tg->flags & THROTL_TG_PENDING)) {
703 		tg_service_queue_add(tg);
704 		tg->flags |= THROTL_TG_PENDING;
705 		tg->service_queue.parent_sq->nr_pending++;
706 	}
707 }
708 
709 static void throtl_dequeue_tg(struct throtl_grp *tg)
710 {
711 	if (tg->flags & THROTL_TG_PENDING) {
712 		throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
713 		tg->flags &= ~THROTL_TG_PENDING;
714 	}
715 }
716 
717 /* Call with queue lock held */
718 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
719 					  unsigned long expires)
720 {
721 	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
722 
723 	/*
724 	 * Since we are adjusting the throttle limit dynamically, the sleep
725 	 * time calculated according to previous limit might be invalid. It's
726 	 * possible the cgroup sleep time is very long and no other cgroups
727 	 * have IO running so notify the limit changes. Make sure the cgroup
728 	 * doesn't sleep too long to avoid the missed notification.
729 	 */
730 	if (time_after(expires, max_expire))
731 		expires = max_expire;
732 	mod_timer(&sq->pending_timer, expires);
733 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
734 		   expires - jiffies, jiffies);
735 }
736 
737 /**
738  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
739  * @sq: the service_queue to schedule dispatch for
740  * @force: force scheduling
741  *
742  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
743  * dispatch time of the first pending child.  Returns %true if either timer
744  * is armed or there's no pending child left.  %false if the current
745  * dispatch window is still open and the caller should continue
746  * dispatching.
747  *
748  * If @force is %true, the dispatch timer is always scheduled and this
749  * function is guaranteed to return %true.  This is to be used when the
750  * caller can't dispatch itself and needs to invoke pending_timer
751  * unconditionally.  Note that forced scheduling is likely to induce short
752  * delay before dispatch starts even if @sq->first_pending_disptime is not
753  * in the future and thus shouldn't be used in hot paths.
754  */
755 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
756 					  bool force)
757 {
758 	/* any pending children left? */
759 	if (!sq->nr_pending)
760 		return true;
761 
762 	update_min_dispatch_time(sq);
763 
764 	/* is the next dispatch time in the future? */
765 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
766 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
767 		return true;
768 	}
769 
770 	/* tell the caller to continue dispatching */
771 	return false;
772 }
773 
774 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
775 		bool rw, unsigned long start)
776 {
777 	tg->bytes_disp[rw] = 0;
778 	tg->io_disp[rw] = 0;
779 
780 	/*
781 	 * Previous slice has expired. We must have trimmed it after last
782 	 * bio dispatch. That means since start of last slice, we never used
783 	 * that bandwidth. Do try to make use of that bandwidth while giving
784 	 * credit.
785 	 */
786 	if (time_after_eq(start, tg->slice_start[rw]))
787 		tg->slice_start[rw] = start;
788 
789 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
790 	throtl_log(&tg->service_queue,
791 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
792 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
793 		   tg->slice_end[rw], jiffies);
794 }
795 
796 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
797 {
798 	tg->bytes_disp[rw] = 0;
799 	tg->io_disp[rw] = 0;
800 	tg->slice_start[rw] = jiffies;
801 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
802 	throtl_log(&tg->service_queue,
803 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
804 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
805 		   tg->slice_end[rw], jiffies);
806 }
807 
808 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
809 					unsigned long jiffy_end)
810 {
811 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
812 }
813 
814 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
815 				       unsigned long jiffy_end)
816 {
817 	throtl_set_slice_end(tg, rw, jiffy_end);
818 	throtl_log(&tg->service_queue,
819 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
820 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
821 		   tg->slice_end[rw], jiffies);
822 }
823 
824 /* Determine if previously allocated or extended slice is complete or not */
825 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
826 {
827 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
828 		return false;
829 
830 	return true;
831 }
832 
833 /* Trim the used slices and adjust slice start accordingly */
834 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
835 {
836 	unsigned long nr_slices, time_elapsed, io_trim;
837 	u64 bytes_trim, tmp;
838 
839 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
840 
841 	/*
842 	 * If bps are unlimited (-1), then time slice don't get
843 	 * renewed. Don't try to trim the slice if slice is used. A new
844 	 * slice will start when appropriate.
845 	 */
846 	if (throtl_slice_used(tg, rw))
847 		return;
848 
849 	/*
850 	 * A bio has been dispatched. Also adjust slice_end. It might happen
851 	 * that initially cgroup limit was very low resulting in high
852 	 * slice_end, but later limit was bumped up and bio was dispatched
853 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
854 	 * is bad because it does not allow new slice to start.
855 	 */
856 
857 	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
858 
859 	time_elapsed = jiffies - tg->slice_start[rw];
860 
861 	nr_slices = time_elapsed / tg->td->throtl_slice;
862 
863 	if (!nr_slices)
864 		return;
865 	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
866 	do_div(tmp, HZ);
867 	bytes_trim = tmp;
868 
869 	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
870 		HZ;
871 
872 	if (!bytes_trim && !io_trim)
873 		return;
874 
875 	if (tg->bytes_disp[rw] >= bytes_trim)
876 		tg->bytes_disp[rw] -= bytes_trim;
877 	else
878 		tg->bytes_disp[rw] = 0;
879 
880 	if (tg->io_disp[rw] >= io_trim)
881 		tg->io_disp[rw] -= io_trim;
882 	else
883 		tg->io_disp[rw] = 0;
884 
885 	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
886 
887 	throtl_log(&tg->service_queue,
888 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
889 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
890 		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
891 }
892 
893 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
894 				  u32 iops_limit, unsigned long *wait)
895 {
896 	bool rw = bio_data_dir(bio);
897 	unsigned int io_allowed;
898 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
899 	u64 tmp;
900 
901 	if (iops_limit == UINT_MAX) {
902 		if (wait)
903 			*wait = 0;
904 		return true;
905 	}
906 
907 	jiffy_elapsed = jiffies - tg->slice_start[rw];
908 
909 	/* Round up to the next throttle slice, wait time must be nonzero */
910 	jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
911 
912 	/*
913 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
914 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
915 	 * will allow dispatch after 1 second and after that slice should
916 	 * have been trimmed.
917 	 */
918 
919 	tmp = (u64)iops_limit * jiffy_elapsed_rnd;
920 	do_div(tmp, HZ);
921 
922 	if (tmp > UINT_MAX)
923 		io_allowed = UINT_MAX;
924 	else
925 		io_allowed = tmp;
926 
927 	if (tg->io_disp[rw] + 1 <= io_allowed) {
928 		if (wait)
929 			*wait = 0;
930 		return true;
931 	}
932 
933 	/* Calc approx time to dispatch */
934 	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
935 
936 	if (wait)
937 		*wait = jiffy_wait;
938 	return false;
939 }
940 
941 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
942 				 u64 bps_limit, unsigned long *wait)
943 {
944 	bool rw = bio_data_dir(bio);
945 	u64 bytes_allowed, extra_bytes, tmp;
946 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
947 	unsigned int bio_size = throtl_bio_data_size(bio);
948 
949 	if (bps_limit == U64_MAX) {
950 		if (wait)
951 			*wait = 0;
952 		return true;
953 	}
954 
955 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
956 
957 	/* Slice has just started. Consider one slice interval */
958 	if (!jiffy_elapsed)
959 		jiffy_elapsed_rnd = tg->td->throtl_slice;
960 
961 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
962 
963 	tmp = bps_limit * jiffy_elapsed_rnd;
964 	do_div(tmp, HZ);
965 	bytes_allowed = tmp;
966 
967 	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
968 		if (wait)
969 			*wait = 0;
970 		return true;
971 	}
972 
973 	/* Calc approx time to dispatch */
974 	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
975 	jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
976 
977 	if (!jiffy_wait)
978 		jiffy_wait = 1;
979 
980 	/*
981 	 * This wait time is without taking into consideration the rounding
982 	 * up we did. Add that time also.
983 	 */
984 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
985 	if (wait)
986 		*wait = jiffy_wait;
987 	return false;
988 }
989 
990 /*
991  * Returns whether one can dispatch a bio or not. Also returns approx number
992  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
993  */
994 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
995 			    unsigned long *wait)
996 {
997 	bool rw = bio_data_dir(bio);
998 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
999 	u64 bps_limit = tg_bps_limit(tg, rw);
1000 	u32 iops_limit = tg_iops_limit(tg, rw);
1001 
1002 	/*
1003  	 * Currently whole state machine of group depends on first bio
1004 	 * queued in the group bio list. So one should not be calling
1005 	 * this function with a different bio if there are other bios
1006 	 * queued.
1007 	 */
1008 	BUG_ON(tg->service_queue.nr_queued[rw] &&
1009 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1010 
1011 	/* If tg->bps = -1, then BW is unlimited */
1012 	if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
1013 		if (wait)
1014 			*wait = 0;
1015 		return true;
1016 	}
1017 
1018 	/*
1019 	 * If previous slice expired, start a new one otherwise renew/extend
1020 	 * existing slice to make sure it is at least throtl_slice interval
1021 	 * long since now. New slice is started only for empty throttle group.
1022 	 * If there is queued bio, that means there should be an active
1023 	 * slice and it should be extended instead.
1024 	 */
1025 	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1026 		throtl_start_new_slice(tg, rw);
1027 	else {
1028 		if (time_before(tg->slice_end[rw],
1029 		    jiffies + tg->td->throtl_slice))
1030 			throtl_extend_slice(tg, rw,
1031 				jiffies + tg->td->throtl_slice);
1032 	}
1033 
1034 	if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
1035 	    tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
1036 		if (wait)
1037 			*wait = 0;
1038 		return true;
1039 	}
1040 
1041 	max_wait = max(bps_wait, iops_wait);
1042 
1043 	if (wait)
1044 		*wait = max_wait;
1045 
1046 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1047 		throtl_extend_slice(tg, rw, jiffies + max_wait);
1048 
1049 	return false;
1050 }
1051 
1052 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1053 {
1054 	bool rw = bio_data_dir(bio);
1055 	unsigned int bio_size = throtl_bio_data_size(bio);
1056 
1057 	/* Charge the bio to the group */
1058 	tg->bytes_disp[rw] += bio_size;
1059 	tg->io_disp[rw]++;
1060 	tg->last_bytes_disp[rw] += bio_size;
1061 	tg->last_io_disp[rw]++;
1062 
1063 	/*
1064 	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1065 	 * more than once as a throttled bio will go through blk-throtl the
1066 	 * second time when it eventually gets issued.  Set it when a bio
1067 	 * is being charged to a tg.
1068 	 */
1069 	if (!bio_flagged(bio, BIO_THROTTLED))
1070 		bio_set_flag(bio, BIO_THROTTLED);
1071 }
1072 
1073 /**
1074  * throtl_add_bio_tg - add a bio to the specified throtl_grp
1075  * @bio: bio to add
1076  * @qn: qnode to use
1077  * @tg: the target throtl_grp
1078  *
1079  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1080  * tg->qnode_on_self[] is used.
1081  */
1082 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1083 			      struct throtl_grp *tg)
1084 {
1085 	struct throtl_service_queue *sq = &tg->service_queue;
1086 	bool rw = bio_data_dir(bio);
1087 
1088 	if (!qn)
1089 		qn = &tg->qnode_on_self[rw];
1090 
1091 	/*
1092 	 * If @tg doesn't currently have any bios queued in the same
1093 	 * direction, queueing @bio can change when @tg should be
1094 	 * dispatched.  Mark that @tg was empty.  This is automatically
1095 	 * cleared on the next tg_update_disptime().
1096 	 */
1097 	if (!sq->nr_queued[rw])
1098 		tg->flags |= THROTL_TG_WAS_EMPTY;
1099 
1100 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1101 
1102 	sq->nr_queued[rw]++;
1103 	throtl_enqueue_tg(tg);
1104 }
1105 
1106 static void tg_update_disptime(struct throtl_grp *tg)
1107 {
1108 	struct throtl_service_queue *sq = &tg->service_queue;
1109 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1110 	struct bio *bio;
1111 
1112 	bio = throtl_peek_queued(&sq->queued[READ]);
1113 	if (bio)
1114 		tg_may_dispatch(tg, bio, &read_wait);
1115 
1116 	bio = throtl_peek_queued(&sq->queued[WRITE]);
1117 	if (bio)
1118 		tg_may_dispatch(tg, bio, &write_wait);
1119 
1120 	min_wait = min(read_wait, write_wait);
1121 	disptime = jiffies + min_wait;
1122 
1123 	/* Update dispatch time */
1124 	throtl_dequeue_tg(tg);
1125 	tg->disptime = disptime;
1126 	throtl_enqueue_tg(tg);
1127 
1128 	/* see throtl_add_bio_tg() */
1129 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1130 }
1131 
1132 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1133 					struct throtl_grp *parent_tg, bool rw)
1134 {
1135 	if (throtl_slice_used(parent_tg, rw)) {
1136 		throtl_start_new_slice_with_credit(parent_tg, rw,
1137 				child_tg->slice_start[rw]);
1138 	}
1139 
1140 }
1141 
1142 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1143 {
1144 	struct throtl_service_queue *sq = &tg->service_queue;
1145 	struct throtl_service_queue *parent_sq = sq->parent_sq;
1146 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1147 	struct throtl_grp *tg_to_put = NULL;
1148 	struct bio *bio;
1149 
1150 	/*
1151 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1152 	 * from @tg may put its reference and @parent_sq might end up
1153 	 * getting released prematurely.  Remember the tg to put and put it
1154 	 * after @bio is transferred to @parent_sq.
1155 	 */
1156 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1157 	sq->nr_queued[rw]--;
1158 
1159 	throtl_charge_bio(tg, bio);
1160 
1161 	/*
1162 	 * If our parent is another tg, we just need to transfer @bio to
1163 	 * the parent using throtl_add_bio_tg().  If our parent is
1164 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1165 	 * bio_lists[] and decrease total number queued.  The caller is
1166 	 * responsible for issuing these bios.
1167 	 */
1168 	if (parent_tg) {
1169 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1170 		start_parent_slice_with_credit(tg, parent_tg, rw);
1171 	} else {
1172 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1173 				     &parent_sq->queued[rw]);
1174 		BUG_ON(tg->td->nr_queued[rw] <= 0);
1175 		tg->td->nr_queued[rw]--;
1176 	}
1177 
1178 	throtl_trim_slice(tg, rw);
1179 
1180 	if (tg_to_put)
1181 		blkg_put(tg_to_blkg(tg_to_put));
1182 }
1183 
1184 static int throtl_dispatch_tg(struct throtl_grp *tg)
1185 {
1186 	struct throtl_service_queue *sq = &tg->service_queue;
1187 	unsigned int nr_reads = 0, nr_writes = 0;
1188 	unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1189 	unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1190 	struct bio *bio;
1191 
1192 	/* Try to dispatch 75% READS and 25% WRITES */
1193 
1194 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1195 	       tg_may_dispatch(tg, bio, NULL)) {
1196 
1197 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1198 		nr_reads++;
1199 
1200 		if (nr_reads >= max_nr_reads)
1201 			break;
1202 	}
1203 
1204 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1205 	       tg_may_dispatch(tg, bio, NULL)) {
1206 
1207 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1208 		nr_writes++;
1209 
1210 		if (nr_writes >= max_nr_writes)
1211 			break;
1212 	}
1213 
1214 	return nr_reads + nr_writes;
1215 }
1216 
1217 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1218 {
1219 	unsigned int nr_disp = 0;
1220 
1221 	while (1) {
1222 		struct throtl_grp *tg;
1223 		struct throtl_service_queue *sq;
1224 
1225 		if (!parent_sq->nr_pending)
1226 			break;
1227 
1228 		tg = throtl_rb_first(parent_sq);
1229 		if (!tg)
1230 			break;
1231 
1232 		if (time_before(jiffies, tg->disptime))
1233 			break;
1234 
1235 		throtl_dequeue_tg(tg);
1236 
1237 		nr_disp += throtl_dispatch_tg(tg);
1238 
1239 		sq = &tg->service_queue;
1240 		if (sq->nr_queued[0] || sq->nr_queued[1])
1241 			tg_update_disptime(tg);
1242 
1243 		if (nr_disp >= THROTL_QUANTUM)
1244 			break;
1245 	}
1246 
1247 	return nr_disp;
1248 }
1249 
1250 static bool throtl_can_upgrade(struct throtl_data *td,
1251 	struct throtl_grp *this_tg);
1252 /**
1253  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1254  * @t: the pending_timer member of the throtl_service_queue being serviced
1255  *
1256  * This timer is armed when a child throtl_grp with active bio's become
1257  * pending and queued on the service_queue's pending_tree and expires when
1258  * the first child throtl_grp should be dispatched.  This function
1259  * dispatches bio's from the children throtl_grps to the parent
1260  * service_queue.
1261  *
1262  * If the parent's parent is another throtl_grp, dispatching is propagated
1263  * by either arming its pending_timer or repeating dispatch directly.  If
1264  * the top-level service_tree is reached, throtl_data->dispatch_work is
1265  * kicked so that the ready bio's are issued.
1266  */
1267 static void throtl_pending_timer_fn(struct timer_list *t)
1268 {
1269 	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1270 	struct throtl_grp *tg = sq_to_tg(sq);
1271 	struct throtl_data *td = sq_to_td(sq);
1272 	struct request_queue *q = td->queue;
1273 	struct throtl_service_queue *parent_sq;
1274 	bool dispatched;
1275 	int ret;
1276 
1277 	spin_lock_irq(&q->queue_lock);
1278 	if (throtl_can_upgrade(td, NULL))
1279 		throtl_upgrade_state(td);
1280 
1281 again:
1282 	parent_sq = sq->parent_sq;
1283 	dispatched = false;
1284 
1285 	while (true) {
1286 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1287 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1288 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1289 
1290 		ret = throtl_select_dispatch(sq);
1291 		if (ret) {
1292 			throtl_log(sq, "bios disp=%u", ret);
1293 			dispatched = true;
1294 		}
1295 
1296 		if (throtl_schedule_next_dispatch(sq, false))
1297 			break;
1298 
1299 		/* this dispatch windows is still open, relax and repeat */
1300 		spin_unlock_irq(&q->queue_lock);
1301 		cpu_relax();
1302 		spin_lock_irq(&q->queue_lock);
1303 	}
1304 
1305 	if (!dispatched)
1306 		goto out_unlock;
1307 
1308 	if (parent_sq) {
1309 		/* @parent_sq is another throl_grp, propagate dispatch */
1310 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1311 			tg_update_disptime(tg);
1312 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1313 				/* window is already open, repeat dispatching */
1314 				sq = parent_sq;
1315 				tg = sq_to_tg(sq);
1316 				goto again;
1317 			}
1318 		}
1319 	} else {
1320 		/* reached the top-level, queue issuing */
1321 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1322 	}
1323 out_unlock:
1324 	spin_unlock_irq(&q->queue_lock);
1325 }
1326 
1327 /**
1328  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1329  * @work: work item being executed
1330  *
1331  * This function is queued for execution when bios reach the bio_lists[]
1332  * of throtl_data->service_queue.  Those bios are ready and issued by this
1333  * function.
1334  */
1335 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1336 {
1337 	struct throtl_data *td = container_of(work, struct throtl_data,
1338 					      dispatch_work);
1339 	struct throtl_service_queue *td_sq = &td->service_queue;
1340 	struct request_queue *q = td->queue;
1341 	struct bio_list bio_list_on_stack;
1342 	struct bio *bio;
1343 	struct blk_plug plug;
1344 	int rw;
1345 
1346 	bio_list_init(&bio_list_on_stack);
1347 
1348 	spin_lock_irq(&q->queue_lock);
1349 	for (rw = READ; rw <= WRITE; rw++)
1350 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1351 			bio_list_add(&bio_list_on_stack, bio);
1352 	spin_unlock_irq(&q->queue_lock);
1353 
1354 	if (!bio_list_empty(&bio_list_on_stack)) {
1355 		blk_start_plug(&plug);
1356 		while ((bio = bio_list_pop(&bio_list_on_stack)))
1357 			submit_bio_noacct(bio);
1358 		blk_finish_plug(&plug);
1359 	}
1360 }
1361 
1362 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1363 			      int off)
1364 {
1365 	struct throtl_grp *tg = pd_to_tg(pd);
1366 	u64 v = *(u64 *)((void *)tg + off);
1367 
1368 	if (v == U64_MAX)
1369 		return 0;
1370 	return __blkg_prfill_u64(sf, pd, v);
1371 }
1372 
1373 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1374 			       int off)
1375 {
1376 	struct throtl_grp *tg = pd_to_tg(pd);
1377 	unsigned int v = *(unsigned int *)((void *)tg + off);
1378 
1379 	if (v == UINT_MAX)
1380 		return 0;
1381 	return __blkg_prfill_u64(sf, pd, v);
1382 }
1383 
1384 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1385 {
1386 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1387 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1388 	return 0;
1389 }
1390 
1391 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1392 {
1393 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1394 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1395 	return 0;
1396 }
1397 
1398 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1399 {
1400 	struct throtl_service_queue *sq = &tg->service_queue;
1401 	struct cgroup_subsys_state *pos_css;
1402 	struct blkcg_gq *blkg;
1403 
1404 	throtl_log(&tg->service_queue,
1405 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1406 		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1407 		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1408 
1409 	/*
1410 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1411 	 * considered to have rules if either the tg itself or any of its
1412 	 * ancestors has rules.  This identifies groups without any
1413 	 * restrictions in the whole hierarchy and allows them to bypass
1414 	 * blk-throttle.
1415 	 */
1416 	blkg_for_each_descendant_pre(blkg, pos_css,
1417 			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1418 		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1419 		struct throtl_grp *parent_tg;
1420 
1421 		tg_update_has_rules(this_tg);
1422 		/* ignore root/second level */
1423 		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1424 		    !blkg->parent->parent)
1425 			continue;
1426 		parent_tg = blkg_to_tg(blkg->parent);
1427 		/*
1428 		 * make sure all children has lower idle time threshold and
1429 		 * higher latency target
1430 		 */
1431 		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1432 				parent_tg->idletime_threshold);
1433 		this_tg->latency_target = max(this_tg->latency_target,
1434 				parent_tg->latency_target);
1435 	}
1436 
1437 	/*
1438 	 * We're already holding queue_lock and know @tg is valid.  Let's
1439 	 * apply the new config directly.
1440 	 *
1441 	 * Restart the slices for both READ and WRITES. It might happen
1442 	 * that a group's limit are dropped suddenly and we don't want to
1443 	 * account recently dispatched IO with new low rate.
1444 	 */
1445 	throtl_start_new_slice(tg, READ);
1446 	throtl_start_new_slice(tg, WRITE);
1447 
1448 	if (tg->flags & THROTL_TG_PENDING) {
1449 		tg_update_disptime(tg);
1450 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1451 	}
1452 }
1453 
1454 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1455 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1456 {
1457 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1458 	struct blkg_conf_ctx ctx;
1459 	struct throtl_grp *tg;
1460 	int ret;
1461 	u64 v;
1462 
1463 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1464 	if (ret)
1465 		return ret;
1466 
1467 	ret = -EINVAL;
1468 	if (sscanf(ctx.body, "%llu", &v) != 1)
1469 		goto out_finish;
1470 	if (!v)
1471 		v = U64_MAX;
1472 
1473 	tg = blkg_to_tg(ctx.blkg);
1474 
1475 	if (is_u64)
1476 		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1477 	else
1478 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1479 
1480 	tg_conf_updated(tg, false);
1481 	ret = 0;
1482 out_finish:
1483 	blkg_conf_finish(&ctx);
1484 	return ret ?: nbytes;
1485 }
1486 
1487 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1488 			       char *buf, size_t nbytes, loff_t off)
1489 {
1490 	return tg_set_conf(of, buf, nbytes, off, true);
1491 }
1492 
1493 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1494 				char *buf, size_t nbytes, loff_t off)
1495 {
1496 	return tg_set_conf(of, buf, nbytes, off, false);
1497 }
1498 
1499 static int tg_print_rwstat(struct seq_file *sf, void *v)
1500 {
1501 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1502 			  blkg_prfill_rwstat, &blkcg_policy_throtl,
1503 			  seq_cft(sf)->private, true);
1504 	return 0;
1505 }
1506 
1507 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1508 				      struct blkg_policy_data *pd, int off)
1509 {
1510 	struct blkg_rwstat_sample sum;
1511 
1512 	blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1513 				  &sum);
1514 	return __blkg_prfill_rwstat(sf, pd, &sum);
1515 }
1516 
1517 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1518 {
1519 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1520 			  tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1521 			  seq_cft(sf)->private, true);
1522 	return 0;
1523 }
1524 
1525 static struct cftype throtl_legacy_files[] = {
1526 	{
1527 		.name = "throttle.read_bps_device",
1528 		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1529 		.seq_show = tg_print_conf_u64,
1530 		.write = tg_set_conf_u64,
1531 	},
1532 	{
1533 		.name = "throttle.write_bps_device",
1534 		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1535 		.seq_show = tg_print_conf_u64,
1536 		.write = tg_set_conf_u64,
1537 	},
1538 	{
1539 		.name = "throttle.read_iops_device",
1540 		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1541 		.seq_show = tg_print_conf_uint,
1542 		.write = tg_set_conf_uint,
1543 	},
1544 	{
1545 		.name = "throttle.write_iops_device",
1546 		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1547 		.seq_show = tg_print_conf_uint,
1548 		.write = tg_set_conf_uint,
1549 	},
1550 	{
1551 		.name = "throttle.io_service_bytes",
1552 		.private = offsetof(struct throtl_grp, stat_bytes),
1553 		.seq_show = tg_print_rwstat,
1554 	},
1555 	{
1556 		.name = "throttle.io_service_bytes_recursive",
1557 		.private = offsetof(struct throtl_grp, stat_bytes),
1558 		.seq_show = tg_print_rwstat_recursive,
1559 	},
1560 	{
1561 		.name = "throttle.io_serviced",
1562 		.private = offsetof(struct throtl_grp, stat_ios),
1563 		.seq_show = tg_print_rwstat,
1564 	},
1565 	{
1566 		.name = "throttle.io_serviced_recursive",
1567 		.private = offsetof(struct throtl_grp, stat_ios),
1568 		.seq_show = tg_print_rwstat_recursive,
1569 	},
1570 	{ }	/* terminate */
1571 };
1572 
1573 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1574 			 int off)
1575 {
1576 	struct throtl_grp *tg = pd_to_tg(pd);
1577 	const char *dname = blkg_dev_name(pd->blkg);
1578 	char bufs[4][21] = { "max", "max", "max", "max" };
1579 	u64 bps_dft;
1580 	unsigned int iops_dft;
1581 	char idle_time[26] = "";
1582 	char latency_time[26] = "";
1583 
1584 	if (!dname)
1585 		return 0;
1586 
1587 	if (off == LIMIT_LOW) {
1588 		bps_dft = 0;
1589 		iops_dft = 0;
1590 	} else {
1591 		bps_dft = U64_MAX;
1592 		iops_dft = UINT_MAX;
1593 	}
1594 
1595 	if (tg->bps_conf[READ][off] == bps_dft &&
1596 	    tg->bps_conf[WRITE][off] == bps_dft &&
1597 	    tg->iops_conf[READ][off] == iops_dft &&
1598 	    tg->iops_conf[WRITE][off] == iops_dft &&
1599 	    (off != LIMIT_LOW ||
1600 	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1601 	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1602 		return 0;
1603 
1604 	if (tg->bps_conf[READ][off] != U64_MAX)
1605 		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1606 			tg->bps_conf[READ][off]);
1607 	if (tg->bps_conf[WRITE][off] != U64_MAX)
1608 		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1609 			tg->bps_conf[WRITE][off]);
1610 	if (tg->iops_conf[READ][off] != UINT_MAX)
1611 		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1612 			tg->iops_conf[READ][off]);
1613 	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1614 		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1615 			tg->iops_conf[WRITE][off]);
1616 	if (off == LIMIT_LOW) {
1617 		if (tg->idletime_threshold_conf == ULONG_MAX)
1618 			strcpy(idle_time, " idle=max");
1619 		else
1620 			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1621 				tg->idletime_threshold_conf);
1622 
1623 		if (tg->latency_target_conf == ULONG_MAX)
1624 			strcpy(latency_time, " latency=max");
1625 		else
1626 			snprintf(latency_time, sizeof(latency_time),
1627 				" latency=%lu", tg->latency_target_conf);
1628 	}
1629 
1630 	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1631 		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1632 		   latency_time);
1633 	return 0;
1634 }
1635 
1636 static int tg_print_limit(struct seq_file *sf, void *v)
1637 {
1638 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1639 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1640 	return 0;
1641 }
1642 
1643 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1644 			  char *buf, size_t nbytes, loff_t off)
1645 {
1646 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1647 	struct blkg_conf_ctx ctx;
1648 	struct throtl_grp *tg;
1649 	u64 v[4];
1650 	unsigned long idle_time;
1651 	unsigned long latency_time;
1652 	int ret;
1653 	int index = of_cft(of)->private;
1654 
1655 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1656 	if (ret)
1657 		return ret;
1658 
1659 	tg = blkg_to_tg(ctx.blkg);
1660 
1661 	v[0] = tg->bps_conf[READ][index];
1662 	v[1] = tg->bps_conf[WRITE][index];
1663 	v[2] = tg->iops_conf[READ][index];
1664 	v[3] = tg->iops_conf[WRITE][index];
1665 
1666 	idle_time = tg->idletime_threshold_conf;
1667 	latency_time = tg->latency_target_conf;
1668 	while (true) {
1669 		char tok[27];	/* wiops=18446744073709551616 */
1670 		char *p;
1671 		u64 val = U64_MAX;
1672 		int len;
1673 
1674 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1675 			break;
1676 		if (tok[0] == '\0')
1677 			break;
1678 		ctx.body += len;
1679 
1680 		ret = -EINVAL;
1681 		p = tok;
1682 		strsep(&p, "=");
1683 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1684 			goto out_finish;
1685 
1686 		ret = -ERANGE;
1687 		if (!val)
1688 			goto out_finish;
1689 
1690 		ret = -EINVAL;
1691 		if (!strcmp(tok, "rbps") && val > 1)
1692 			v[0] = val;
1693 		else if (!strcmp(tok, "wbps") && val > 1)
1694 			v[1] = val;
1695 		else if (!strcmp(tok, "riops") && val > 1)
1696 			v[2] = min_t(u64, val, UINT_MAX);
1697 		else if (!strcmp(tok, "wiops") && val > 1)
1698 			v[3] = min_t(u64, val, UINT_MAX);
1699 		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1700 			idle_time = val;
1701 		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1702 			latency_time = val;
1703 		else
1704 			goto out_finish;
1705 	}
1706 
1707 	tg->bps_conf[READ][index] = v[0];
1708 	tg->bps_conf[WRITE][index] = v[1];
1709 	tg->iops_conf[READ][index] = v[2];
1710 	tg->iops_conf[WRITE][index] = v[3];
1711 
1712 	if (index == LIMIT_MAX) {
1713 		tg->bps[READ][index] = v[0];
1714 		tg->bps[WRITE][index] = v[1];
1715 		tg->iops[READ][index] = v[2];
1716 		tg->iops[WRITE][index] = v[3];
1717 	}
1718 	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1719 		tg->bps_conf[READ][LIMIT_MAX]);
1720 	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1721 		tg->bps_conf[WRITE][LIMIT_MAX]);
1722 	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1723 		tg->iops_conf[READ][LIMIT_MAX]);
1724 	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1725 		tg->iops_conf[WRITE][LIMIT_MAX]);
1726 	tg->idletime_threshold_conf = idle_time;
1727 	tg->latency_target_conf = latency_time;
1728 
1729 	/* force user to configure all settings for low limit  */
1730 	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1731 	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1732 	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1733 	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
1734 		tg->bps[READ][LIMIT_LOW] = 0;
1735 		tg->bps[WRITE][LIMIT_LOW] = 0;
1736 		tg->iops[READ][LIMIT_LOW] = 0;
1737 		tg->iops[WRITE][LIMIT_LOW] = 0;
1738 		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1739 		tg->latency_target = DFL_LATENCY_TARGET;
1740 	} else if (index == LIMIT_LOW) {
1741 		tg->idletime_threshold = tg->idletime_threshold_conf;
1742 		tg->latency_target = tg->latency_target_conf;
1743 	}
1744 
1745 	blk_throtl_update_limit_valid(tg->td);
1746 	if (tg->td->limit_valid[LIMIT_LOW]) {
1747 		if (index == LIMIT_LOW)
1748 			tg->td->limit_index = LIMIT_LOW;
1749 	} else
1750 		tg->td->limit_index = LIMIT_MAX;
1751 	tg_conf_updated(tg, index == LIMIT_LOW &&
1752 		tg->td->limit_valid[LIMIT_LOW]);
1753 	ret = 0;
1754 out_finish:
1755 	blkg_conf_finish(&ctx);
1756 	return ret ?: nbytes;
1757 }
1758 
1759 static struct cftype throtl_files[] = {
1760 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1761 	{
1762 		.name = "low",
1763 		.flags = CFTYPE_NOT_ON_ROOT,
1764 		.seq_show = tg_print_limit,
1765 		.write = tg_set_limit,
1766 		.private = LIMIT_LOW,
1767 	},
1768 #endif
1769 	{
1770 		.name = "max",
1771 		.flags = CFTYPE_NOT_ON_ROOT,
1772 		.seq_show = tg_print_limit,
1773 		.write = tg_set_limit,
1774 		.private = LIMIT_MAX,
1775 	},
1776 	{ }	/* terminate */
1777 };
1778 
1779 static void throtl_shutdown_wq(struct request_queue *q)
1780 {
1781 	struct throtl_data *td = q->td;
1782 
1783 	cancel_work_sync(&td->dispatch_work);
1784 }
1785 
1786 static struct blkcg_policy blkcg_policy_throtl = {
1787 	.dfl_cftypes		= throtl_files,
1788 	.legacy_cftypes		= throtl_legacy_files,
1789 
1790 	.pd_alloc_fn		= throtl_pd_alloc,
1791 	.pd_init_fn		= throtl_pd_init,
1792 	.pd_online_fn		= throtl_pd_online,
1793 	.pd_offline_fn		= throtl_pd_offline,
1794 	.pd_free_fn		= throtl_pd_free,
1795 };
1796 
1797 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1798 {
1799 	unsigned long rtime = jiffies, wtime = jiffies;
1800 
1801 	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1802 		rtime = tg->last_low_overflow_time[READ];
1803 	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1804 		wtime = tg->last_low_overflow_time[WRITE];
1805 	return min(rtime, wtime);
1806 }
1807 
1808 /* tg should not be an intermediate node */
1809 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1810 {
1811 	struct throtl_service_queue *parent_sq;
1812 	struct throtl_grp *parent = tg;
1813 	unsigned long ret = __tg_last_low_overflow_time(tg);
1814 
1815 	while (true) {
1816 		parent_sq = parent->service_queue.parent_sq;
1817 		parent = sq_to_tg(parent_sq);
1818 		if (!parent)
1819 			break;
1820 
1821 		/*
1822 		 * The parent doesn't have low limit, it always reaches low
1823 		 * limit. Its overflow time is useless for children
1824 		 */
1825 		if (!parent->bps[READ][LIMIT_LOW] &&
1826 		    !parent->iops[READ][LIMIT_LOW] &&
1827 		    !parent->bps[WRITE][LIMIT_LOW] &&
1828 		    !parent->iops[WRITE][LIMIT_LOW])
1829 			continue;
1830 		if (time_after(__tg_last_low_overflow_time(parent), ret))
1831 			ret = __tg_last_low_overflow_time(parent);
1832 	}
1833 	return ret;
1834 }
1835 
1836 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1837 {
1838 	/*
1839 	 * cgroup is idle if:
1840 	 * - single idle is too long, longer than a fixed value (in case user
1841 	 *   configure a too big threshold) or 4 times of idletime threshold
1842 	 * - average think time is more than threshold
1843 	 * - IO latency is largely below threshold
1844 	 */
1845 	unsigned long time;
1846 	bool ret;
1847 
1848 	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1849 	ret = tg->latency_target == DFL_LATENCY_TARGET ||
1850 	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1851 	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1852 	      tg->avg_idletime > tg->idletime_threshold ||
1853 	      (tg->latency_target && tg->bio_cnt &&
1854 		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1855 	throtl_log(&tg->service_queue,
1856 		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1857 		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1858 		tg->bio_cnt, ret, tg->td->scale);
1859 	return ret;
1860 }
1861 
1862 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1863 {
1864 	struct throtl_service_queue *sq = &tg->service_queue;
1865 	bool read_limit, write_limit;
1866 
1867 	/*
1868 	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1869 	 * reaches), it's ok to upgrade to next limit
1870 	 */
1871 	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1872 	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1873 	if (!read_limit && !write_limit)
1874 		return true;
1875 	if (read_limit && sq->nr_queued[READ] &&
1876 	    (!write_limit || sq->nr_queued[WRITE]))
1877 		return true;
1878 	if (write_limit && sq->nr_queued[WRITE] &&
1879 	    (!read_limit || sq->nr_queued[READ]))
1880 		return true;
1881 
1882 	if (time_after_eq(jiffies,
1883 		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1884 	    throtl_tg_is_idle(tg))
1885 		return true;
1886 	return false;
1887 }
1888 
1889 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1890 {
1891 	while (true) {
1892 		if (throtl_tg_can_upgrade(tg))
1893 			return true;
1894 		tg = sq_to_tg(tg->service_queue.parent_sq);
1895 		if (!tg || !tg_to_blkg(tg)->parent)
1896 			return false;
1897 	}
1898 	return false;
1899 }
1900 
1901 static bool throtl_can_upgrade(struct throtl_data *td,
1902 	struct throtl_grp *this_tg)
1903 {
1904 	struct cgroup_subsys_state *pos_css;
1905 	struct blkcg_gq *blkg;
1906 
1907 	if (td->limit_index != LIMIT_LOW)
1908 		return false;
1909 
1910 	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1911 		return false;
1912 
1913 	rcu_read_lock();
1914 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1915 		struct throtl_grp *tg = blkg_to_tg(blkg);
1916 
1917 		if (tg == this_tg)
1918 			continue;
1919 		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1920 			continue;
1921 		if (!throtl_hierarchy_can_upgrade(tg)) {
1922 			rcu_read_unlock();
1923 			return false;
1924 		}
1925 	}
1926 	rcu_read_unlock();
1927 	return true;
1928 }
1929 
1930 static void throtl_upgrade_check(struct throtl_grp *tg)
1931 {
1932 	unsigned long now = jiffies;
1933 
1934 	if (tg->td->limit_index != LIMIT_LOW)
1935 		return;
1936 
1937 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1938 		return;
1939 
1940 	tg->last_check_time = now;
1941 
1942 	if (!time_after_eq(now,
1943 	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1944 		return;
1945 
1946 	if (throtl_can_upgrade(tg->td, NULL))
1947 		throtl_upgrade_state(tg->td);
1948 }
1949 
1950 static void throtl_upgrade_state(struct throtl_data *td)
1951 {
1952 	struct cgroup_subsys_state *pos_css;
1953 	struct blkcg_gq *blkg;
1954 
1955 	throtl_log(&td->service_queue, "upgrade to max");
1956 	td->limit_index = LIMIT_MAX;
1957 	td->low_upgrade_time = jiffies;
1958 	td->scale = 0;
1959 	rcu_read_lock();
1960 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1961 		struct throtl_grp *tg = blkg_to_tg(blkg);
1962 		struct throtl_service_queue *sq = &tg->service_queue;
1963 
1964 		tg->disptime = jiffies - 1;
1965 		throtl_select_dispatch(sq);
1966 		throtl_schedule_next_dispatch(sq, true);
1967 	}
1968 	rcu_read_unlock();
1969 	throtl_select_dispatch(&td->service_queue);
1970 	throtl_schedule_next_dispatch(&td->service_queue, true);
1971 	queue_work(kthrotld_workqueue, &td->dispatch_work);
1972 }
1973 
1974 static void throtl_downgrade_state(struct throtl_data *td)
1975 {
1976 	td->scale /= 2;
1977 
1978 	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1979 	if (td->scale) {
1980 		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1981 		return;
1982 	}
1983 
1984 	td->limit_index = LIMIT_LOW;
1985 	td->low_downgrade_time = jiffies;
1986 }
1987 
1988 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1989 {
1990 	struct throtl_data *td = tg->td;
1991 	unsigned long now = jiffies;
1992 
1993 	/*
1994 	 * If cgroup is below low limit, consider downgrade and throttle other
1995 	 * cgroups
1996 	 */
1997 	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1998 	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1999 					td->throtl_slice) &&
2000 	    (!throtl_tg_is_idle(tg) ||
2001 	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
2002 		return true;
2003 	return false;
2004 }
2005 
2006 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
2007 {
2008 	while (true) {
2009 		if (!throtl_tg_can_downgrade(tg))
2010 			return false;
2011 		tg = sq_to_tg(tg->service_queue.parent_sq);
2012 		if (!tg || !tg_to_blkg(tg)->parent)
2013 			break;
2014 	}
2015 	return true;
2016 }
2017 
2018 static void throtl_downgrade_check(struct throtl_grp *tg)
2019 {
2020 	uint64_t bps;
2021 	unsigned int iops;
2022 	unsigned long elapsed_time;
2023 	unsigned long now = jiffies;
2024 
2025 	if (tg->td->limit_index != LIMIT_MAX ||
2026 	    !tg->td->limit_valid[LIMIT_LOW])
2027 		return;
2028 	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2029 		return;
2030 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2031 		return;
2032 
2033 	elapsed_time = now - tg->last_check_time;
2034 	tg->last_check_time = now;
2035 
2036 	if (time_before(now, tg_last_low_overflow_time(tg) +
2037 			tg->td->throtl_slice))
2038 		return;
2039 
2040 	if (tg->bps[READ][LIMIT_LOW]) {
2041 		bps = tg->last_bytes_disp[READ] * HZ;
2042 		do_div(bps, elapsed_time);
2043 		if (bps >= tg->bps[READ][LIMIT_LOW])
2044 			tg->last_low_overflow_time[READ] = now;
2045 	}
2046 
2047 	if (tg->bps[WRITE][LIMIT_LOW]) {
2048 		bps = tg->last_bytes_disp[WRITE] * HZ;
2049 		do_div(bps, elapsed_time);
2050 		if (bps >= tg->bps[WRITE][LIMIT_LOW])
2051 			tg->last_low_overflow_time[WRITE] = now;
2052 	}
2053 
2054 	if (tg->iops[READ][LIMIT_LOW]) {
2055 		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2056 		if (iops >= tg->iops[READ][LIMIT_LOW])
2057 			tg->last_low_overflow_time[READ] = now;
2058 	}
2059 
2060 	if (tg->iops[WRITE][LIMIT_LOW]) {
2061 		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2062 		if (iops >= tg->iops[WRITE][LIMIT_LOW])
2063 			tg->last_low_overflow_time[WRITE] = now;
2064 	}
2065 
2066 	/*
2067 	 * If cgroup is below low limit, consider downgrade and throttle other
2068 	 * cgroups
2069 	 */
2070 	if (throtl_hierarchy_can_downgrade(tg))
2071 		throtl_downgrade_state(tg->td);
2072 
2073 	tg->last_bytes_disp[READ] = 0;
2074 	tg->last_bytes_disp[WRITE] = 0;
2075 	tg->last_io_disp[READ] = 0;
2076 	tg->last_io_disp[WRITE] = 0;
2077 }
2078 
2079 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2080 {
2081 	unsigned long now;
2082 	unsigned long last_finish_time = tg->last_finish_time;
2083 
2084 	if (last_finish_time == 0)
2085 		return;
2086 
2087 	now = ktime_get_ns() >> 10;
2088 	if (now <= last_finish_time ||
2089 	    last_finish_time == tg->checked_last_finish_time)
2090 		return;
2091 
2092 	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2093 	tg->checked_last_finish_time = last_finish_time;
2094 }
2095 
2096 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2097 static void throtl_update_latency_buckets(struct throtl_data *td)
2098 {
2099 	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2100 	int i, cpu, rw;
2101 	unsigned long last_latency[2] = { 0 };
2102 	unsigned long latency[2];
2103 
2104 	if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2105 		return;
2106 	if (time_before(jiffies, td->last_calculate_time + HZ))
2107 		return;
2108 	td->last_calculate_time = jiffies;
2109 
2110 	memset(avg_latency, 0, sizeof(avg_latency));
2111 	for (rw = READ; rw <= WRITE; rw++) {
2112 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2113 			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2114 
2115 			for_each_possible_cpu(cpu) {
2116 				struct latency_bucket *bucket;
2117 
2118 				/* this isn't race free, but ok in practice */
2119 				bucket = per_cpu_ptr(td->latency_buckets[rw],
2120 					cpu);
2121 				tmp->total_latency += bucket[i].total_latency;
2122 				tmp->samples += bucket[i].samples;
2123 				bucket[i].total_latency = 0;
2124 				bucket[i].samples = 0;
2125 			}
2126 
2127 			if (tmp->samples >= 32) {
2128 				int samples = tmp->samples;
2129 
2130 				latency[rw] = tmp->total_latency;
2131 
2132 				tmp->total_latency = 0;
2133 				tmp->samples = 0;
2134 				latency[rw] /= samples;
2135 				if (latency[rw] == 0)
2136 					continue;
2137 				avg_latency[rw][i].latency = latency[rw];
2138 			}
2139 		}
2140 	}
2141 
2142 	for (rw = READ; rw <= WRITE; rw++) {
2143 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2144 			if (!avg_latency[rw][i].latency) {
2145 				if (td->avg_buckets[rw][i].latency < last_latency[rw])
2146 					td->avg_buckets[rw][i].latency =
2147 						last_latency[rw];
2148 				continue;
2149 			}
2150 
2151 			if (!td->avg_buckets[rw][i].valid)
2152 				latency[rw] = avg_latency[rw][i].latency;
2153 			else
2154 				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2155 					avg_latency[rw][i].latency) >> 3;
2156 
2157 			td->avg_buckets[rw][i].latency = max(latency[rw],
2158 				last_latency[rw]);
2159 			td->avg_buckets[rw][i].valid = true;
2160 			last_latency[rw] = td->avg_buckets[rw][i].latency;
2161 		}
2162 	}
2163 
2164 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2165 		throtl_log(&td->service_queue,
2166 			"Latency bucket %d: read latency=%ld, read valid=%d, "
2167 			"write latency=%ld, write valid=%d", i,
2168 			td->avg_buckets[READ][i].latency,
2169 			td->avg_buckets[READ][i].valid,
2170 			td->avg_buckets[WRITE][i].latency,
2171 			td->avg_buckets[WRITE][i].valid);
2172 }
2173 #else
2174 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2175 {
2176 }
2177 #endif
2178 
2179 bool blk_throtl_bio(struct bio *bio)
2180 {
2181 	struct request_queue *q = bio->bi_disk->queue;
2182 	struct blkcg_gq *blkg = bio->bi_blkg;
2183 	struct throtl_qnode *qn = NULL;
2184 	struct throtl_grp *tg = blkg_to_tg(blkg);
2185 	struct throtl_service_queue *sq;
2186 	bool rw = bio_data_dir(bio);
2187 	bool throttled = false;
2188 	struct throtl_data *td = tg->td;
2189 
2190 	rcu_read_lock();
2191 
2192 	/* see throtl_charge_bio() */
2193 	if (bio_flagged(bio, BIO_THROTTLED))
2194 		goto out;
2195 
2196 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2197 		blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2198 				bio->bi_iter.bi_size);
2199 		blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2200 	}
2201 
2202 	if (!tg->has_rules[rw])
2203 		goto out;
2204 
2205 	spin_lock_irq(&q->queue_lock);
2206 
2207 	throtl_update_latency_buckets(td);
2208 
2209 	blk_throtl_update_idletime(tg);
2210 
2211 	sq = &tg->service_queue;
2212 
2213 again:
2214 	while (true) {
2215 		if (tg->last_low_overflow_time[rw] == 0)
2216 			tg->last_low_overflow_time[rw] = jiffies;
2217 		throtl_downgrade_check(tg);
2218 		throtl_upgrade_check(tg);
2219 		/* throtl is FIFO - if bios are already queued, should queue */
2220 		if (sq->nr_queued[rw])
2221 			break;
2222 
2223 		/* if above limits, break to queue */
2224 		if (!tg_may_dispatch(tg, bio, NULL)) {
2225 			tg->last_low_overflow_time[rw] = jiffies;
2226 			if (throtl_can_upgrade(td, tg)) {
2227 				throtl_upgrade_state(td);
2228 				goto again;
2229 			}
2230 			break;
2231 		}
2232 
2233 		/* within limits, let's charge and dispatch directly */
2234 		throtl_charge_bio(tg, bio);
2235 
2236 		/*
2237 		 * We need to trim slice even when bios are not being queued
2238 		 * otherwise it might happen that a bio is not queued for
2239 		 * a long time and slice keeps on extending and trim is not
2240 		 * called for a long time. Now if limits are reduced suddenly
2241 		 * we take into account all the IO dispatched so far at new
2242 		 * low rate and * newly queued IO gets a really long dispatch
2243 		 * time.
2244 		 *
2245 		 * So keep on trimming slice even if bio is not queued.
2246 		 */
2247 		throtl_trim_slice(tg, rw);
2248 
2249 		/*
2250 		 * @bio passed through this layer without being throttled.
2251 		 * Climb up the ladder.  If we're already at the top, it
2252 		 * can be executed directly.
2253 		 */
2254 		qn = &tg->qnode_on_parent[rw];
2255 		sq = sq->parent_sq;
2256 		tg = sq_to_tg(sq);
2257 		if (!tg)
2258 			goto out_unlock;
2259 	}
2260 
2261 	/* out-of-limit, queue to @tg */
2262 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2263 		   rw == READ ? 'R' : 'W',
2264 		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2265 		   tg_bps_limit(tg, rw),
2266 		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2267 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2268 
2269 	tg->last_low_overflow_time[rw] = jiffies;
2270 
2271 	td->nr_queued[rw]++;
2272 	throtl_add_bio_tg(bio, qn, tg);
2273 	throttled = true;
2274 
2275 	/*
2276 	 * Update @tg's dispatch time and force schedule dispatch if @tg
2277 	 * was empty before @bio.  The forced scheduling isn't likely to
2278 	 * cause undue delay as @bio is likely to be dispatched directly if
2279 	 * its @tg's disptime is not in the future.
2280 	 */
2281 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2282 		tg_update_disptime(tg);
2283 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2284 	}
2285 
2286 out_unlock:
2287 	spin_unlock_irq(&q->queue_lock);
2288 out:
2289 	bio_set_flag(bio, BIO_THROTTLED);
2290 
2291 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2292 	if (throttled || !td->track_bio_latency)
2293 		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2294 #endif
2295 	rcu_read_unlock();
2296 	return throttled;
2297 }
2298 
2299 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2300 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2301 	int op, unsigned long time)
2302 {
2303 	struct latency_bucket *latency;
2304 	int index;
2305 
2306 	if (!td || td->limit_index != LIMIT_LOW ||
2307 	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2308 	    !blk_queue_nonrot(td->queue))
2309 		return;
2310 
2311 	index = request_bucket_index(size);
2312 
2313 	latency = get_cpu_ptr(td->latency_buckets[op]);
2314 	latency[index].total_latency += time;
2315 	latency[index].samples++;
2316 	put_cpu_ptr(td->latency_buckets[op]);
2317 }
2318 
2319 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2320 {
2321 	struct request_queue *q = rq->q;
2322 	struct throtl_data *td = q->td;
2323 
2324 	throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2325 			     time_ns >> 10);
2326 }
2327 
2328 void blk_throtl_bio_endio(struct bio *bio)
2329 {
2330 	struct blkcg_gq *blkg;
2331 	struct throtl_grp *tg;
2332 	u64 finish_time_ns;
2333 	unsigned long finish_time;
2334 	unsigned long start_time;
2335 	unsigned long lat;
2336 	int rw = bio_data_dir(bio);
2337 
2338 	blkg = bio->bi_blkg;
2339 	if (!blkg)
2340 		return;
2341 	tg = blkg_to_tg(blkg);
2342 	if (!tg->td->limit_valid[LIMIT_LOW])
2343 		return;
2344 
2345 	finish_time_ns = ktime_get_ns();
2346 	tg->last_finish_time = finish_time_ns >> 10;
2347 
2348 	start_time = bio_issue_time(&bio->bi_issue) >> 10;
2349 	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2350 	if (!start_time || finish_time <= start_time)
2351 		return;
2352 
2353 	lat = finish_time - start_time;
2354 	/* this is only for bio based driver */
2355 	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2356 		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2357 				     bio_op(bio), lat);
2358 
2359 	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2360 		int bucket;
2361 		unsigned int threshold;
2362 
2363 		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2364 		threshold = tg->td->avg_buckets[rw][bucket].latency +
2365 			tg->latency_target;
2366 		if (lat > threshold)
2367 			tg->bad_bio_cnt++;
2368 		/*
2369 		 * Not race free, could get wrong count, which means cgroups
2370 		 * will be throttled
2371 		 */
2372 		tg->bio_cnt++;
2373 	}
2374 
2375 	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2376 		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2377 		tg->bio_cnt /= 2;
2378 		tg->bad_bio_cnt /= 2;
2379 	}
2380 }
2381 #endif
2382 
2383 int blk_throtl_init(struct request_queue *q)
2384 {
2385 	struct throtl_data *td;
2386 	int ret;
2387 
2388 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2389 	if (!td)
2390 		return -ENOMEM;
2391 	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2392 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2393 	if (!td->latency_buckets[READ]) {
2394 		kfree(td);
2395 		return -ENOMEM;
2396 	}
2397 	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2398 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2399 	if (!td->latency_buckets[WRITE]) {
2400 		free_percpu(td->latency_buckets[READ]);
2401 		kfree(td);
2402 		return -ENOMEM;
2403 	}
2404 
2405 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2406 	throtl_service_queue_init(&td->service_queue);
2407 
2408 	q->td = td;
2409 	td->queue = q;
2410 
2411 	td->limit_valid[LIMIT_MAX] = true;
2412 	td->limit_index = LIMIT_MAX;
2413 	td->low_upgrade_time = jiffies;
2414 	td->low_downgrade_time = jiffies;
2415 
2416 	/* activate policy */
2417 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2418 	if (ret) {
2419 		free_percpu(td->latency_buckets[READ]);
2420 		free_percpu(td->latency_buckets[WRITE]);
2421 		kfree(td);
2422 	}
2423 	return ret;
2424 }
2425 
2426 void blk_throtl_exit(struct request_queue *q)
2427 {
2428 	BUG_ON(!q->td);
2429 	throtl_shutdown_wq(q);
2430 	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2431 	free_percpu(q->td->latency_buckets[READ]);
2432 	free_percpu(q->td->latency_buckets[WRITE]);
2433 	kfree(q->td);
2434 }
2435 
2436 void blk_throtl_register_queue(struct request_queue *q)
2437 {
2438 	struct throtl_data *td;
2439 	int i;
2440 
2441 	td = q->td;
2442 	BUG_ON(!td);
2443 
2444 	if (blk_queue_nonrot(q)) {
2445 		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2446 		td->filtered_latency = LATENCY_FILTERED_SSD;
2447 	} else {
2448 		td->throtl_slice = DFL_THROTL_SLICE_HD;
2449 		td->filtered_latency = LATENCY_FILTERED_HD;
2450 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2451 			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2452 			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2453 		}
2454 	}
2455 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2456 	/* if no low limit, use previous default */
2457 	td->throtl_slice = DFL_THROTL_SLICE_HD;
2458 #endif
2459 
2460 	td->track_bio_latency = !queue_is_mq(q);
2461 	if (!td->track_bio_latency)
2462 		blk_stat_enable_accounting(q);
2463 }
2464 
2465 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2466 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2467 {
2468 	if (!q->td)
2469 		return -EINVAL;
2470 	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2471 }
2472 
2473 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2474 	const char *page, size_t count)
2475 {
2476 	unsigned long v;
2477 	unsigned long t;
2478 
2479 	if (!q->td)
2480 		return -EINVAL;
2481 	if (kstrtoul(page, 10, &v))
2482 		return -EINVAL;
2483 	t = msecs_to_jiffies(v);
2484 	if (t == 0 || t > MAX_THROTL_SLICE)
2485 		return -EINVAL;
2486 	q->td->throtl_slice = t;
2487 	return count;
2488 }
2489 #endif
2490 
2491 static int __init throtl_init(void)
2492 {
2493 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2494 	if (!kthrotld_workqueue)
2495 		panic("Failed to create kthrotld\n");
2496 
2497 	return blkcg_policy_register(&blkcg_policy_throtl);
2498 }
2499 
2500 module_init(throtl_init);
2501