xref: /openbmc/linux/block/blk-throttle.c (revision 825c7f4a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include "blk.h"
15 #include "blk-cgroup-rwstat.h"
16 
17 /* Max dispatch from a group in 1 round */
18 #define THROTL_GRP_QUANTUM 8
19 
20 /* Total max dispatch from all groups in one round */
21 #define THROTL_QUANTUM 32
22 
23 /* Throttling is performed over a slice and after that slice is renewed */
24 #define DFL_THROTL_SLICE_HD (HZ / 10)
25 #define DFL_THROTL_SLICE_SSD (HZ / 50)
26 #define MAX_THROTL_SLICE (HZ)
27 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
28 #define MIN_THROTL_BPS (320 * 1024)
29 #define MIN_THROTL_IOPS (10)
30 #define DFL_LATENCY_TARGET (-1L)
31 #define DFL_IDLE_THRESHOLD (0)
32 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
33 #define LATENCY_FILTERED_SSD (0)
34 /*
35  * For HD, very small latency comes from sequential IO. Such IO is helpless to
36  * help determine if its IO is impacted by others, hence we ignore the IO
37  */
38 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
39 
40 static struct blkcg_policy blkcg_policy_throtl;
41 
42 /* A workqueue to queue throttle related work */
43 static struct workqueue_struct *kthrotld_workqueue;
44 
45 /*
46  * To implement hierarchical throttling, throtl_grps form a tree and bios
47  * are dispatched upwards level by level until they reach the top and get
48  * issued.  When dispatching bios from the children and local group at each
49  * level, if the bios are dispatched into a single bio_list, there's a risk
50  * of a local or child group which can queue many bios at once filling up
51  * the list starving others.
52  *
53  * To avoid such starvation, dispatched bios are queued separately
54  * according to where they came from.  When they are again dispatched to
55  * the parent, they're popped in round-robin order so that no single source
56  * hogs the dispatch window.
57  *
58  * throtl_qnode is used to keep the queued bios separated by their sources.
59  * Bios are queued to throtl_qnode which in turn is queued to
60  * throtl_service_queue and then dispatched in round-robin order.
61  *
62  * It's also used to track the reference counts on blkg's.  A qnode always
63  * belongs to a throtl_grp and gets queued on itself or the parent, so
64  * incrementing the reference of the associated throtl_grp when a qnode is
65  * queued and decrementing when dequeued is enough to keep the whole blkg
66  * tree pinned while bios are in flight.
67  */
68 struct throtl_qnode {
69 	struct list_head	node;		/* service_queue->queued[] */
70 	struct bio_list		bios;		/* queued bios */
71 	struct throtl_grp	*tg;		/* tg this qnode belongs to */
72 };
73 
74 struct throtl_service_queue {
75 	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
76 
77 	/*
78 	 * Bios queued directly to this service_queue or dispatched from
79 	 * children throtl_grp's.
80 	 */
81 	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
82 	unsigned int		nr_queued[2];	/* number of queued bios */
83 
84 	/*
85 	 * RB tree of active children throtl_grp's, which are sorted by
86 	 * their ->disptime.
87 	 */
88 	struct rb_root_cached	pending_tree;	/* RB tree of active tgs */
89 	unsigned int		nr_pending;	/* # queued in the tree */
90 	unsigned long		first_pending_disptime;	/* disptime of the first tg */
91 	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
92 };
93 
94 enum tg_state_flags {
95 	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
96 	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
97 };
98 
99 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
100 
101 enum {
102 	LIMIT_LOW,
103 	LIMIT_MAX,
104 	LIMIT_CNT,
105 };
106 
107 struct throtl_grp {
108 	/* must be the first member */
109 	struct blkg_policy_data pd;
110 
111 	/* active throtl group service_queue member */
112 	struct rb_node rb_node;
113 
114 	/* throtl_data this group belongs to */
115 	struct throtl_data *td;
116 
117 	/* this group's service queue */
118 	struct throtl_service_queue service_queue;
119 
120 	/*
121 	 * qnode_on_self is used when bios are directly queued to this
122 	 * throtl_grp so that local bios compete fairly with bios
123 	 * dispatched from children.  qnode_on_parent is used when bios are
124 	 * dispatched from this throtl_grp into its parent and will compete
125 	 * with the sibling qnode_on_parents and the parent's
126 	 * qnode_on_self.
127 	 */
128 	struct throtl_qnode qnode_on_self[2];
129 	struct throtl_qnode qnode_on_parent[2];
130 
131 	/*
132 	 * Dispatch time in jiffies. This is the estimated time when group
133 	 * will unthrottle and is ready to dispatch more bio. It is used as
134 	 * key to sort active groups in service tree.
135 	 */
136 	unsigned long disptime;
137 
138 	unsigned int flags;
139 
140 	/* are there any throtl rules between this group and td? */
141 	bool has_rules[2];
142 
143 	/* internally used bytes per second rate limits */
144 	uint64_t bps[2][LIMIT_CNT];
145 	/* user configured bps limits */
146 	uint64_t bps_conf[2][LIMIT_CNT];
147 
148 	/* internally used IOPS limits */
149 	unsigned int iops[2][LIMIT_CNT];
150 	/* user configured IOPS limits */
151 	unsigned int iops_conf[2][LIMIT_CNT];
152 
153 	/* Number of bytes dispatched in current slice */
154 	uint64_t bytes_disp[2];
155 	/* Number of bio's dispatched in current slice */
156 	unsigned int io_disp[2];
157 
158 	unsigned long last_low_overflow_time[2];
159 
160 	uint64_t last_bytes_disp[2];
161 	unsigned int last_io_disp[2];
162 
163 	unsigned long last_check_time;
164 
165 	unsigned long latency_target; /* us */
166 	unsigned long latency_target_conf; /* us */
167 	/* When did we start a new slice */
168 	unsigned long slice_start[2];
169 	unsigned long slice_end[2];
170 
171 	unsigned long last_finish_time; /* ns / 1024 */
172 	unsigned long checked_last_finish_time; /* ns / 1024 */
173 	unsigned long avg_idletime; /* ns / 1024 */
174 	unsigned long idletime_threshold; /* us */
175 	unsigned long idletime_threshold_conf; /* us */
176 
177 	unsigned int bio_cnt; /* total bios */
178 	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
179 	unsigned long bio_cnt_reset_time;
180 
181 	struct blkg_rwstat stat_bytes;
182 	struct blkg_rwstat stat_ios;
183 };
184 
185 /* We measure latency for request size from <= 4k to >= 1M */
186 #define LATENCY_BUCKET_SIZE 9
187 
188 struct latency_bucket {
189 	unsigned long total_latency; /* ns / 1024 */
190 	int samples;
191 };
192 
193 struct avg_latency_bucket {
194 	unsigned long latency; /* ns / 1024 */
195 	bool valid;
196 };
197 
198 struct throtl_data
199 {
200 	/* service tree for active throtl groups */
201 	struct throtl_service_queue service_queue;
202 
203 	struct request_queue *queue;
204 
205 	/* Total Number of queued bios on READ and WRITE lists */
206 	unsigned int nr_queued[2];
207 
208 	unsigned int throtl_slice;
209 
210 	/* Work for dispatching throttled bios */
211 	struct work_struct dispatch_work;
212 	unsigned int limit_index;
213 	bool limit_valid[LIMIT_CNT];
214 
215 	unsigned long low_upgrade_time;
216 	unsigned long low_downgrade_time;
217 
218 	unsigned int scale;
219 
220 	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
221 	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
222 	struct latency_bucket __percpu *latency_buckets[2];
223 	unsigned long last_calculate_time;
224 	unsigned long filtered_latency;
225 
226 	bool track_bio_latency;
227 };
228 
229 static void throtl_pending_timer_fn(struct timer_list *t);
230 
231 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
232 {
233 	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
234 }
235 
236 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
237 {
238 	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
239 }
240 
241 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
242 {
243 	return pd_to_blkg(&tg->pd);
244 }
245 
246 /**
247  * sq_to_tg - return the throl_grp the specified service queue belongs to
248  * @sq: the throtl_service_queue of interest
249  *
250  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
251  * embedded in throtl_data, %NULL is returned.
252  */
253 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
254 {
255 	if (sq && sq->parent_sq)
256 		return container_of(sq, struct throtl_grp, service_queue);
257 	else
258 		return NULL;
259 }
260 
261 /**
262  * sq_to_td - return throtl_data the specified service queue belongs to
263  * @sq: the throtl_service_queue of interest
264  *
265  * A service_queue can be embedded in either a throtl_grp or throtl_data.
266  * Determine the associated throtl_data accordingly and return it.
267  */
268 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
269 {
270 	struct throtl_grp *tg = sq_to_tg(sq);
271 
272 	if (tg)
273 		return tg->td;
274 	else
275 		return container_of(sq, struct throtl_data, service_queue);
276 }
277 
278 /*
279  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
280  * make the IO dispatch more smooth.
281  * Scale up: linearly scale up according to lapsed time since upgrade. For
282  *           every throtl_slice, the limit scales up 1/2 .low limit till the
283  *           limit hits .max limit
284  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
285  */
286 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
287 {
288 	/* arbitrary value to avoid too big scale */
289 	if (td->scale < 4096 && time_after_eq(jiffies,
290 	    td->low_upgrade_time + td->scale * td->throtl_slice))
291 		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
292 
293 	return low + (low >> 1) * td->scale;
294 }
295 
296 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
297 {
298 	struct blkcg_gq *blkg = tg_to_blkg(tg);
299 	struct throtl_data *td;
300 	uint64_t ret;
301 
302 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
303 		return U64_MAX;
304 
305 	td = tg->td;
306 	ret = tg->bps[rw][td->limit_index];
307 	if (ret == 0 && td->limit_index == LIMIT_LOW) {
308 		/* intermediate node or iops isn't 0 */
309 		if (!list_empty(&blkg->blkcg->css.children) ||
310 		    tg->iops[rw][td->limit_index])
311 			return U64_MAX;
312 		else
313 			return MIN_THROTL_BPS;
314 	}
315 
316 	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
317 	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
318 		uint64_t adjusted;
319 
320 		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
321 		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
322 	}
323 	return ret;
324 }
325 
326 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
327 {
328 	struct blkcg_gq *blkg = tg_to_blkg(tg);
329 	struct throtl_data *td;
330 	unsigned int ret;
331 
332 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
333 		return UINT_MAX;
334 
335 	td = tg->td;
336 	ret = tg->iops[rw][td->limit_index];
337 	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
338 		/* intermediate node or bps isn't 0 */
339 		if (!list_empty(&blkg->blkcg->css.children) ||
340 		    tg->bps[rw][td->limit_index])
341 			return UINT_MAX;
342 		else
343 			return MIN_THROTL_IOPS;
344 	}
345 
346 	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
347 	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
348 		uint64_t adjusted;
349 
350 		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
351 		if (adjusted > UINT_MAX)
352 			adjusted = UINT_MAX;
353 		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
354 	}
355 	return ret;
356 }
357 
358 #define request_bucket_index(sectors) \
359 	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
360 
361 /**
362  * throtl_log - log debug message via blktrace
363  * @sq: the service_queue being reported
364  * @fmt: printf format string
365  * @args: printf args
366  *
367  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
368  * throtl_grp; otherwise, just "throtl".
369  */
370 #define throtl_log(sq, fmt, args...)	do {				\
371 	struct throtl_grp *__tg = sq_to_tg((sq));			\
372 	struct throtl_data *__td = sq_to_td((sq));			\
373 									\
374 	(void)__td;							\
375 	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
376 		break;							\
377 	if ((__tg)) {							\
378 		blk_add_cgroup_trace_msg(__td->queue,			\
379 			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
380 	} else {							\
381 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
382 	}								\
383 } while (0)
384 
385 static inline unsigned int throtl_bio_data_size(struct bio *bio)
386 {
387 	/* assume it's one sector */
388 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
389 		return 512;
390 	return bio->bi_iter.bi_size;
391 }
392 
393 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
394 {
395 	INIT_LIST_HEAD(&qn->node);
396 	bio_list_init(&qn->bios);
397 	qn->tg = tg;
398 }
399 
400 /**
401  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
402  * @bio: bio being added
403  * @qn: qnode to add bio to
404  * @queued: the service_queue->queued[] list @qn belongs to
405  *
406  * Add @bio to @qn and put @qn on @queued if it's not already on.
407  * @qn->tg's reference count is bumped when @qn is activated.  See the
408  * comment on top of throtl_qnode definition for details.
409  */
410 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
411 				 struct list_head *queued)
412 {
413 	bio_list_add(&qn->bios, bio);
414 	if (list_empty(&qn->node)) {
415 		list_add_tail(&qn->node, queued);
416 		blkg_get(tg_to_blkg(qn->tg));
417 	}
418 }
419 
420 /**
421  * throtl_peek_queued - peek the first bio on a qnode list
422  * @queued: the qnode list to peek
423  */
424 static struct bio *throtl_peek_queued(struct list_head *queued)
425 {
426 	struct throtl_qnode *qn;
427 	struct bio *bio;
428 
429 	if (list_empty(queued))
430 		return NULL;
431 
432 	qn = list_first_entry(queued, struct throtl_qnode, node);
433 	bio = bio_list_peek(&qn->bios);
434 	WARN_ON_ONCE(!bio);
435 	return bio;
436 }
437 
438 /**
439  * throtl_pop_queued - pop the first bio form a qnode list
440  * @queued: the qnode list to pop a bio from
441  * @tg_to_put: optional out argument for throtl_grp to put
442  *
443  * Pop the first bio from the qnode list @queued.  After popping, the first
444  * qnode is removed from @queued if empty or moved to the end of @queued so
445  * that the popping order is round-robin.
446  *
447  * When the first qnode is removed, its associated throtl_grp should be put
448  * too.  If @tg_to_put is NULL, this function automatically puts it;
449  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
450  * responsible for putting it.
451  */
452 static struct bio *throtl_pop_queued(struct list_head *queued,
453 				     struct throtl_grp **tg_to_put)
454 {
455 	struct throtl_qnode *qn;
456 	struct bio *bio;
457 
458 	if (list_empty(queued))
459 		return NULL;
460 
461 	qn = list_first_entry(queued, struct throtl_qnode, node);
462 	bio = bio_list_pop(&qn->bios);
463 	WARN_ON_ONCE(!bio);
464 
465 	if (bio_list_empty(&qn->bios)) {
466 		list_del_init(&qn->node);
467 		if (tg_to_put)
468 			*tg_to_put = qn->tg;
469 		else
470 			blkg_put(tg_to_blkg(qn->tg));
471 	} else {
472 		list_move_tail(&qn->node, queued);
473 	}
474 
475 	return bio;
476 }
477 
478 /* init a service_queue, assumes the caller zeroed it */
479 static void throtl_service_queue_init(struct throtl_service_queue *sq)
480 {
481 	INIT_LIST_HEAD(&sq->queued[0]);
482 	INIT_LIST_HEAD(&sq->queued[1]);
483 	sq->pending_tree = RB_ROOT_CACHED;
484 	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
485 }
486 
487 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
488 						struct request_queue *q,
489 						struct blkcg *blkcg)
490 {
491 	struct throtl_grp *tg;
492 	int rw;
493 
494 	tg = kzalloc_node(sizeof(*tg), gfp, q->node);
495 	if (!tg)
496 		return NULL;
497 
498 	if (blkg_rwstat_init(&tg->stat_bytes, gfp))
499 		goto err_free_tg;
500 
501 	if (blkg_rwstat_init(&tg->stat_ios, gfp))
502 		goto err_exit_stat_bytes;
503 
504 	throtl_service_queue_init(&tg->service_queue);
505 
506 	for (rw = READ; rw <= WRITE; rw++) {
507 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
508 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
509 	}
510 
511 	RB_CLEAR_NODE(&tg->rb_node);
512 	tg->bps[READ][LIMIT_MAX] = U64_MAX;
513 	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
514 	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
515 	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
516 	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
517 	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
518 	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
519 	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
520 	/* LIMIT_LOW will have default value 0 */
521 
522 	tg->latency_target = DFL_LATENCY_TARGET;
523 	tg->latency_target_conf = DFL_LATENCY_TARGET;
524 	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
525 	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
526 
527 	return &tg->pd;
528 
529 err_exit_stat_bytes:
530 	blkg_rwstat_exit(&tg->stat_bytes);
531 err_free_tg:
532 	kfree(tg);
533 	return NULL;
534 }
535 
536 static void throtl_pd_init(struct blkg_policy_data *pd)
537 {
538 	struct throtl_grp *tg = pd_to_tg(pd);
539 	struct blkcg_gq *blkg = tg_to_blkg(tg);
540 	struct throtl_data *td = blkg->q->td;
541 	struct throtl_service_queue *sq = &tg->service_queue;
542 
543 	/*
544 	 * If on the default hierarchy, we switch to properly hierarchical
545 	 * behavior where limits on a given throtl_grp are applied to the
546 	 * whole subtree rather than just the group itself.  e.g. If 16M
547 	 * read_bps limit is set on the root group, the whole system can't
548 	 * exceed 16M for the device.
549 	 *
550 	 * If not on the default hierarchy, the broken flat hierarchy
551 	 * behavior is retained where all throtl_grps are treated as if
552 	 * they're all separate root groups right below throtl_data.
553 	 * Limits of a group don't interact with limits of other groups
554 	 * regardless of the position of the group in the hierarchy.
555 	 */
556 	sq->parent_sq = &td->service_queue;
557 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
558 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
559 	tg->td = td;
560 }
561 
562 /*
563  * Set has_rules[] if @tg or any of its parents have limits configured.
564  * This doesn't require walking up to the top of the hierarchy as the
565  * parent's has_rules[] is guaranteed to be correct.
566  */
567 static void tg_update_has_rules(struct throtl_grp *tg)
568 {
569 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
570 	struct throtl_data *td = tg->td;
571 	int rw;
572 
573 	for (rw = READ; rw <= WRITE; rw++)
574 		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
575 			(td->limit_valid[td->limit_index] &&
576 			 (tg_bps_limit(tg, rw) != U64_MAX ||
577 			  tg_iops_limit(tg, rw) != UINT_MAX));
578 }
579 
580 static void throtl_pd_online(struct blkg_policy_data *pd)
581 {
582 	struct throtl_grp *tg = pd_to_tg(pd);
583 	/*
584 	 * We don't want new groups to escape the limits of its ancestors.
585 	 * Update has_rules[] after a new group is brought online.
586 	 */
587 	tg_update_has_rules(tg);
588 }
589 
590 static void blk_throtl_update_limit_valid(struct throtl_data *td)
591 {
592 	struct cgroup_subsys_state *pos_css;
593 	struct blkcg_gq *blkg;
594 	bool low_valid = false;
595 
596 	rcu_read_lock();
597 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
598 		struct throtl_grp *tg = blkg_to_tg(blkg);
599 
600 		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
601 		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
602 			low_valid = true;
603 			break;
604 		}
605 	}
606 	rcu_read_unlock();
607 
608 	td->limit_valid[LIMIT_LOW] = low_valid;
609 }
610 
611 static void throtl_upgrade_state(struct throtl_data *td);
612 static void throtl_pd_offline(struct blkg_policy_data *pd)
613 {
614 	struct throtl_grp *tg = pd_to_tg(pd);
615 
616 	tg->bps[READ][LIMIT_LOW] = 0;
617 	tg->bps[WRITE][LIMIT_LOW] = 0;
618 	tg->iops[READ][LIMIT_LOW] = 0;
619 	tg->iops[WRITE][LIMIT_LOW] = 0;
620 
621 	blk_throtl_update_limit_valid(tg->td);
622 
623 	if (!tg->td->limit_valid[tg->td->limit_index])
624 		throtl_upgrade_state(tg->td);
625 }
626 
627 static void throtl_pd_free(struct blkg_policy_data *pd)
628 {
629 	struct throtl_grp *tg = pd_to_tg(pd);
630 
631 	del_timer_sync(&tg->service_queue.pending_timer);
632 	blkg_rwstat_exit(&tg->stat_bytes);
633 	blkg_rwstat_exit(&tg->stat_ios);
634 	kfree(tg);
635 }
636 
637 static struct throtl_grp *
638 throtl_rb_first(struct throtl_service_queue *parent_sq)
639 {
640 	struct rb_node *n;
641 
642 	n = rb_first_cached(&parent_sq->pending_tree);
643 	WARN_ON_ONCE(!n);
644 	if (!n)
645 		return NULL;
646 	return rb_entry_tg(n);
647 }
648 
649 static void throtl_rb_erase(struct rb_node *n,
650 			    struct throtl_service_queue *parent_sq)
651 {
652 	rb_erase_cached(n, &parent_sq->pending_tree);
653 	RB_CLEAR_NODE(n);
654 	--parent_sq->nr_pending;
655 }
656 
657 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
658 {
659 	struct throtl_grp *tg;
660 
661 	tg = throtl_rb_first(parent_sq);
662 	if (!tg)
663 		return;
664 
665 	parent_sq->first_pending_disptime = tg->disptime;
666 }
667 
668 static void tg_service_queue_add(struct throtl_grp *tg)
669 {
670 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
671 	struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
672 	struct rb_node *parent = NULL;
673 	struct throtl_grp *__tg;
674 	unsigned long key = tg->disptime;
675 	bool leftmost = true;
676 
677 	while (*node != NULL) {
678 		parent = *node;
679 		__tg = rb_entry_tg(parent);
680 
681 		if (time_before(key, __tg->disptime))
682 			node = &parent->rb_left;
683 		else {
684 			node = &parent->rb_right;
685 			leftmost = false;
686 		}
687 	}
688 
689 	rb_link_node(&tg->rb_node, parent, node);
690 	rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
691 			       leftmost);
692 }
693 
694 static void throtl_enqueue_tg(struct throtl_grp *tg)
695 {
696 	if (!(tg->flags & THROTL_TG_PENDING)) {
697 		tg_service_queue_add(tg);
698 		tg->flags |= THROTL_TG_PENDING;
699 		tg->service_queue.parent_sq->nr_pending++;
700 	}
701 }
702 
703 static void throtl_dequeue_tg(struct throtl_grp *tg)
704 {
705 	if (tg->flags & THROTL_TG_PENDING) {
706 		throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
707 		tg->flags &= ~THROTL_TG_PENDING;
708 	}
709 }
710 
711 /* Call with queue lock held */
712 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
713 					  unsigned long expires)
714 {
715 	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
716 
717 	/*
718 	 * Since we are adjusting the throttle limit dynamically, the sleep
719 	 * time calculated according to previous limit might be invalid. It's
720 	 * possible the cgroup sleep time is very long and no other cgroups
721 	 * have IO running so notify the limit changes. Make sure the cgroup
722 	 * doesn't sleep too long to avoid the missed notification.
723 	 */
724 	if (time_after(expires, max_expire))
725 		expires = max_expire;
726 	mod_timer(&sq->pending_timer, expires);
727 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
728 		   expires - jiffies, jiffies);
729 }
730 
731 /**
732  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
733  * @sq: the service_queue to schedule dispatch for
734  * @force: force scheduling
735  *
736  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
737  * dispatch time of the first pending child.  Returns %true if either timer
738  * is armed or there's no pending child left.  %false if the current
739  * dispatch window is still open and the caller should continue
740  * dispatching.
741  *
742  * If @force is %true, the dispatch timer is always scheduled and this
743  * function is guaranteed to return %true.  This is to be used when the
744  * caller can't dispatch itself and needs to invoke pending_timer
745  * unconditionally.  Note that forced scheduling is likely to induce short
746  * delay before dispatch starts even if @sq->first_pending_disptime is not
747  * in the future and thus shouldn't be used in hot paths.
748  */
749 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
750 					  bool force)
751 {
752 	/* any pending children left? */
753 	if (!sq->nr_pending)
754 		return true;
755 
756 	update_min_dispatch_time(sq);
757 
758 	/* is the next dispatch time in the future? */
759 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
760 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
761 		return true;
762 	}
763 
764 	/* tell the caller to continue dispatching */
765 	return false;
766 }
767 
768 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
769 		bool rw, unsigned long start)
770 {
771 	tg->bytes_disp[rw] = 0;
772 	tg->io_disp[rw] = 0;
773 
774 	/*
775 	 * Previous slice has expired. We must have trimmed it after last
776 	 * bio dispatch. That means since start of last slice, we never used
777 	 * that bandwidth. Do try to make use of that bandwidth while giving
778 	 * credit.
779 	 */
780 	if (time_after_eq(start, tg->slice_start[rw]))
781 		tg->slice_start[rw] = start;
782 
783 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
784 	throtl_log(&tg->service_queue,
785 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
786 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
787 		   tg->slice_end[rw], jiffies);
788 }
789 
790 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
791 {
792 	tg->bytes_disp[rw] = 0;
793 	tg->io_disp[rw] = 0;
794 	tg->slice_start[rw] = jiffies;
795 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
796 	throtl_log(&tg->service_queue,
797 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
798 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
799 		   tg->slice_end[rw], jiffies);
800 }
801 
802 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
803 					unsigned long jiffy_end)
804 {
805 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
806 }
807 
808 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
809 				       unsigned long jiffy_end)
810 {
811 	throtl_set_slice_end(tg, rw, jiffy_end);
812 	throtl_log(&tg->service_queue,
813 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
814 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
815 		   tg->slice_end[rw], jiffies);
816 }
817 
818 /* Determine if previously allocated or extended slice is complete or not */
819 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
820 {
821 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
822 		return false;
823 
824 	return true;
825 }
826 
827 /* Trim the used slices and adjust slice start accordingly */
828 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
829 {
830 	unsigned long nr_slices, time_elapsed, io_trim;
831 	u64 bytes_trim, tmp;
832 
833 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
834 
835 	/*
836 	 * If bps are unlimited (-1), then time slice don't get
837 	 * renewed. Don't try to trim the slice if slice is used. A new
838 	 * slice will start when appropriate.
839 	 */
840 	if (throtl_slice_used(tg, rw))
841 		return;
842 
843 	/*
844 	 * A bio has been dispatched. Also adjust slice_end. It might happen
845 	 * that initially cgroup limit was very low resulting in high
846 	 * slice_end, but later limit was bumped up and bio was dispatched
847 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
848 	 * is bad because it does not allow new slice to start.
849 	 */
850 
851 	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
852 
853 	time_elapsed = jiffies - tg->slice_start[rw];
854 
855 	nr_slices = time_elapsed / tg->td->throtl_slice;
856 
857 	if (!nr_slices)
858 		return;
859 	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
860 	do_div(tmp, HZ);
861 	bytes_trim = tmp;
862 
863 	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
864 		HZ;
865 
866 	if (!bytes_trim && !io_trim)
867 		return;
868 
869 	if (tg->bytes_disp[rw] >= bytes_trim)
870 		tg->bytes_disp[rw] -= bytes_trim;
871 	else
872 		tg->bytes_disp[rw] = 0;
873 
874 	if (tg->io_disp[rw] >= io_trim)
875 		tg->io_disp[rw] -= io_trim;
876 	else
877 		tg->io_disp[rw] = 0;
878 
879 	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
880 
881 	throtl_log(&tg->service_queue,
882 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
883 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
884 		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
885 }
886 
887 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
888 				  u32 iops_limit, unsigned long *wait)
889 {
890 	bool rw = bio_data_dir(bio);
891 	unsigned int io_allowed;
892 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
893 	u64 tmp;
894 
895 	if (iops_limit == UINT_MAX) {
896 		if (wait)
897 			*wait = 0;
898 		return true;
899 	}
900 
901 	jiffy_elapsed = jiffies - tg->slice_start[rw];
902 
903 	/* Round up to the next throttle slice, wait time must be nonzero */
904 	jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
905 
906 	/*
907 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
908 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
909 	 * will allow dispatch after 1 second and after that slice should
910 	 * have been trimmed.
911 	 */
912 
913 	tmp = (u64)iops_limit * jiffy_elapsed_rnd;
914 	do_div(tmp, HZ);
915 
916 	if (tmp > UINT_MAX)
917 		io_allowed = UINT_MAX;
918 	else
919 		io_allowed = tmp;
920 
921 	if (tg->io_disp[rw] + 1 <= io_allowed) {
922 		if (wait)
923 			*wait = 0;
924 		return true;
925 	}
926 
927 	/* Calc approx time to dispatch */
928 	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
929 
930 	if (wait)
931 		*wait = jiffy_wait;
932 	return false;
933 }
934 
935 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
936 				 u64 bps_limit, unsigned long *wait)
937 {
938 	bool rw = bio_data_dir(bio);
939 	u64 bytes_allowed, extra_bytes, tmp;
940 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
941 	unsigned int bio_size = throtl_bio_data_size(bio);
942 
943 	if (bps_limit == U64_MAX) {
944 		if (wait)
945 			*wait = 0;
946 		return true;
947 	}
948 
949 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
950 
951 	/* Slice has just started. Consider one slice interval */
952 	if (!jiffy_elapsed)
953 		jiffy_elapsed_rnd = tg->td->throtl_slice;
954 
955 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
956 
957 	tmp = bps_limit * jiffy_elapsed_rnd;
958 	do_div(tmp, HZ);
959 	bytes_allowed = tmp;
960 
961 	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
962 		if (wait)
963 			*wait = 0;
964 		return true;
965 	}
966 
967 	/* Calc approx time to dispatch */
968 	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
969 	jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
970 
971 	if (!jiffy_wait)
972 		jiffy_wait = 1;
973 
974 	/*
975 	 * This wait time is without taking into consideration the rounding
976 	 * up we did. Add that time also.
977 	 */
978 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
979 	if (wait)
980 		*wait = jiffy_wait;
981 	return false;
982 }
983 
984 /*
985  * Returns whether one can dispatch a bio or not. Also returns approx number
986  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
987  */
988 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
989 			    unsigned long *wait)
990 {
991 	bool rw = bio_data_dir(bio);
992 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
993 	u64 bps_limit = tg_bps_limit(tg, rw);
994 	u32 iops_limit = tg_iops_limit(tg, rw);
995 
996 	/*
997  	 * Currently whole state machine of group depends on first bio
998 	 * queued in the group bio list. So one should not be calling
999 	 * this function with a different bio if there are other bios
1000 	 * queued.
1001 	 */
1002 	BUG_ON(tg->service_queue.nr_queued[rw] &&
1003 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1004 
1005 	/* If tg->bps = -1, then BW is unlimited */
1006 	if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
1007 		if (wait)
1008 			*wait = 0;
1009 		return true;
1010 	}
1011 
1012 	/*
1013 	 * If previous slice expired, start a new one otherwise renew/extend
1014 	 * existing slice to make sure it is at least throtl_slice interval
1015 	 * long since now. New slice is started only for empty throttle group.
1016 	 * If there is queued bio, that means there should be an active
1017 	 * slice and it should be extended instead.
1018 	 */
1019 	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1020 		throtl_start_new_slice(tg, rw);
1021 	else {
1022 		if (time_before(tg->slice_end[rw],
1023 		    jiffies + tg->td->throtl_slice))
1024 			throtl_extend_slice(tg, rw,
1025 				jiffies + tg->td->throtl_slice);
1026 	}
1027 
1028 	if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
1029 	    tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
1030 		if (wait)
1031 			*wait = 0;
1032 		return true;
1033 	}
1034 
1035 	max_wait = max(bps_wait, iops_wait);
1036 
1037 	if (wait)
1038 		*wait = max_wait;
1039 
1040 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1041 		throtl_extend_slice(tg, rw, jiffies + max_wait);
1042 
1043 	return false;
1044 }
1045 
1046 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1047 {
1048 	bool rw = bio_data_dir(bio);
1049 	unsigned int bio_size = throtl_bio_data_size(bio);
1050 
1051 	/* Charge the bio to the group */
1052 	tg->bytes_disp[rw] += bio_size;
1053 	tg->io_disp[rw]++;
1054 	tg->last_bytes_disp[rw] += bio_size;
1055 	tg->last_io_disp[rw]++;
1056 
1057 	/*
1058 	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1059 	 * more than once as a throttled bio will go through blk-throtl the
1060 	 * second time when it eventually gets issued.  Set it when a bio
1061 	 * is being charged to a tg.
1062 	 */
1063 	if (!bio_flagged(bio, BIO_THROTTLED))
1064 		bio_set_flag(bio, BIO_THROTTLED);
1065 }
1066 
1067 /**
1068  * throtl_add_bio_tg - add a bio to the specified throtl_grp
1069  * @bio: bio to add
1070  * @qn: qnode to use
1071  * @tg: the target throtl_grp
1072  *
1073  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1074  * tg->qnode_on_self[] is used.
1075  */
1076 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1077 			      struct throtl_grp *tg)
1078 {
1079 	struct throtl_service_queue *sq = &tg->service_queue;
1080 	bool rw = bio_data_dir(bio);
1081 
1082 	if (!qn)
1083 		qn = &tg->qnode_on_self[rw];
1084 
1085 	/*
1086 	 * If @tg doesn't currently have any bios queued in the same
1087 	 * direction, queueing @bio can change when @tg should be
1088 	 * dispatched.  Mark that @tg was empty.  This is automatically
1089 	 * cleared on the next tg_update_disptime().
1090 	 */
1091 	if (!sq->nr_queued[rw])
1092 		tg->flags |= THROTL_TG_WAS_EMPTY;
1093 
1094 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1095 
1096 	sq->nr_queued[rw]++;
1097 	throtl_enqueue_tg(tg);
1098 }
1099 
1100 static void tg_update_disptime(struct throtl_grp *tg)
1101 {
1102 	struct throtl_service_queue *sq = &tg->service_queue;
1103 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1104 	struct bio *bio;
1105 
1106 	bio = throtl_peek_queued(&sq->queued[READ]);
1107 	if (bio)
1108 		tg_may_dispatch(tg, bio, &read_wait);
1109 
1110 	bio = throtl_peek_queued(&sq->queued[WRITE]);
1111 	if (bio)
1112 		tg_may_dispatch(tg, bio, &write_wait);
1113 
1114 	min_wait = min(read_wait, write_wait);
1115 	disptime = jiffies + min_wait;
1116 
1117 	/* Update dispatch time */
1118 	throtl_dequeue_tg(tg);
1119 	tg->disptime = disptime;
1120 	throtl_enqueue_tg(tg);
1121 
1122 	/* see throtl_add_bio_tg() */
1123 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1124 }
1125 
1126 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1127 					struct throtl_grp *parent_tg, bool rw)
1128 {
1129 	if (throtl_slice_used(parent_tg, rw)) {
1130 		throtl_start_new_slice_with_credit(parent_tg, rw,
1131 				child_tg->slice_start[rw]);
1132 	}
1133 
1134 }
1135 
1136 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1137 {
1138 	struct throtl_service_queue *sq = &tg->service_queue;
1139 	struct throtl_service_queue *parent_sq = sq->parent_sq;
1140 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1141 	struct throtl_grp *tg_to_put = NULL;
1142 	struct bio *bio;
1143 
1144 	/*
1145 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1146 	 * from @tg may put its reference and @parent_sq might end up
1147 	 * getting released prematurely.  Remember the tg to put and put it
1148 	 * after @bio is transferred to @parent_sq.
1149 	 */
1150 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1151 	sq->nr_queued[rw]--;
1152 
1153 	throtl_charge_bio(tg, bio);
1154 
1155 	/*
1156 	 * If our parent is another tg, we just need to transfer @bio to
1157 	 * the parent using throtl_add_bio_tg().  If our parent is
1158 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1159 	 * bio_lists[] and decrease total number queued.  The caller is
1160 	 * responsible for issuing these bios.
1161 	 */
1162 	if (parent_tg) {
1163 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1164 		start_parent_slice_with_credit(tg, parent_tg, rw);
1165 	} else {
1166 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1167 				     &parent_sq->queued[rw]);
1168 		BUG_ON(tg->td->nr_queued[rw] <= 0);
1169 		tg->td->nr_queued[rw]--;
1170 	}
1171 
1172 	throtl_trim_slice(tg, rw);
1173 
1174 	if (tg_to_put)
1175 		blkg_put(tg_to_blkg(tg_to_put));
1176 }
1177 
1178 static int throtl_dispatch_tg(struct throtl_grp *tg)
1179 {
1180 	struct throtl_service_queue *sq = &tg->service_queue;
1181 	unsigned int nr_reads = 0, nr_writes = 0;
1182 	unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1183 	unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1184 	struct bio *bio;
1185 
1186 	/* Try to dispatch 75% READS and 25% WRITES */
1187 
1188 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1189 	       tg_may_dispatch(tg, bio, NULL)) {
1190 
1191 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1192 		nr_reads++;
1193 
1194 		if (nr_reads >= max_nr_reads)
1195 			break;
1196 	}
1197 
1198 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1199 	       tg_may_dispatch(tg, bio, NULL)) {
1200 
1201 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1202 		nr_writes++;
1203 
1204 		if (nr_writes >= max_nr_writes)
1205 			break;
1206 	}
1207 
1208 	return nr_reads + nr_writes;
1209 }
1210 
1211 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1212 {
1213 	unsigned int nr_disp = 0;
1214 
1215 	while (1) {
1216 		struct throtl_grp *tg;
1217 		struct throtl_service_queue *sq;
1218 
1219 		if (!parent_sq->nr_pending)
1220 			break;
1221 
1222 		tg = throtl_rb_first(parent_sq);
1223 		if (!tg)
1224 			break;
1225 
1226 		if (time_before(jiffies, tg->disptime))
1227 			break;
1228 
1229 		throtl_dequeue_tg(tg);
1230 
1231 		nr_disp += throtl_dispatch_tg(tg);
1232 
1233 		sq = &tg->service_queue;
1234 		if (sq->nr_queued[0] || sq->nr_queued[1])
1235 			tg_update_disptime(tg);
1236 
1237 		if (nr_disp >= THROTL_QUANTUM)
1238 			break;
1239 	}
1240 
1241 	return nr_disp;
1242 }
1243 
1244 static bool throtl_can_upgrade(struct throtl_data *td,
1245 	struct throtl_grp *this_tg);
1246 /**
1247  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1248  * @t: the pending_timer member of the throtl_service_queue being serviced
1249  *
1250  * This timer is armed when a child throtl_grp with active bio's become
1251  * pending and queued on the service_queue's pending_tree and expires when
1252  * the first child throtl_grp should be dispatched.  This function
1253  * dispatches bio's from the children throtl_grps to the parent
1254  * service_queue.
1255  *
1256  * If the parent's parent is another throtl_grp, dispatching is propagated
1257  * by either arming its pending_timer or repeating dispatch directly.  If
1258  * the top-level service_tree is reached, throtl_data->dispatch_work is
1259  * kicked so that the ready bio's are issued.
1260  */
1261 static void throtl_pending_timer_fn(struct timer_list *t)
1262 {
1263 	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1264 	struct throtl_grp *tg = sq_to_tg(sq);
1265 	struct throtl_data *td = sq_to_td(sq);
1266 	struct request_queue *q = td->queue;
1267 	struct throtl_service_queue *parent_sq;
1268 	bool dispatched;
1269 	int ret;
1270 
1271 	spin_lock_irq(&q->queue_lock);
1272 	if (throtl_can_upgrade(td, NULL))
1273 		throtl_upgrade_state(td);
1274 
1275 again:
1276 	parent_sq = sq->parent_sq;
1277 	dispatched = false;
1278 
1279 	while (true) {
1280 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1281 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1282 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1283 
1284 		ret = throtl_select_dispatch(sq);
1285 		if (ret) {
1286 			throtl_log(sq, "bios disp=%u", ret);
1287 			dispatched = true;
1288 		}
1289 
1290 		if (throtl_schedule_next_dispatch(sq, false))
1291 			break;
1292 
1293 		/* this dispatch windows is still open, relax and repeat */
1294 		spin_unlock_irq(&q->queue_lock);
1295 		cpu_relax();
1296 		spin_lock_irq(&q->queue_lock);
1297 	}
1298 
1299 	if (!dispatched)
1300 		goto out_unlock;
1301 
1302 	if (parent_sq) {
1303 		/* @parent_sq is another throl_grp, propagate dispatch */
1304 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1305 			tg_update_disptime(tg);
1306 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1307 				/* window is already open, repeat dispatching */
1308 				sq = parent_sq;
1309 				tg = sq_to_tg(sq);
1310 				goto again;
1311 			}
1312 		}
1313 	} else {
1314 		/* reached the top-level, queue issuing */
1315 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1316 	}
1317 out_unlock:
1318 	spin_unlock_irq(&q->queue_lock);
1319 }
1320 
1321 /**
1322  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1323  * @work: work item being executed
1324  *
1325  * This function is queued for execution when bios reach the bio_lists[]
1326  * of throtl_data->service_queue.  Those bios are ready and issued by this
1327  * function.
1328  */
1329 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1330 {
1331 	struct throtl_data *td = container_of(work, struct throtl_data,
1332 					      dispatch_work);
1333 	struct throtl_service_queue *td_sq = &td->service_queue;
1334 	struct request_queue *q = td->queue;
1335 	struct bio_list bio_list_on_stack;
1336 	struct bio *bio;
1337 	struct blk_plug plug;
1338 	int rw;
1339 
1340 	bio_list_init(&bio_list_on_stack);
1341 
1342 	spin_lock_irq(&q->queue_lock);
1343 	for (rw = READ; rw <= WRITE; rw++)
1344 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1345 			bio_list_add(&bio_list_on_stack, bio);
1346 	spin_unlock_irq(&q->queue_lock);
1347 
1348 	if (!bio_list_empty(&bio_list_on_stack)) {
1349 		blk_start_plug(&plug);
1350 		while ((bio = bio_list_pop(&bio_list_on_stack)))
1351 			submit_bio_noacct(bio);
1352 		blk_finish_plug(&plug);
1353 	}
1354 }
1355 
1356 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1357 			      int off)
1358 {
1359 	struct throtl_grp *tg = pd_to_tg(pd);
1360 	u64 v = *(u64 *)((void *)tg + off);
1361 
1362 	if (v == U64_MAX)
1363 		return 0;
1364 	return __blkg_prfill_u64(sf, pd, v);
1365 }
1366 
1367 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1368 			       int off)
1369 {
1370 	struct throtl_grp *tg = pd_to_tg(pd);
1371 	unsigned int v = *(unsigned int *)((void *)tg + off);
1372 
1373 	if (v == UINT_MAX)
1374 		return 0;
1375 	return __blkg_prfill_u64(sf, pd, v);
1376 }
1377 
1378 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1379 {
1380 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1381 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1382 	return 0;
1383 }
1384 
1385 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1386 {
1387 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1388 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1389 	return 0;
1390 }
1391 
1392 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1393 {
1394 	struct throtl_service_queue *sq = &tg->service_queue;
1395 	struct cgroup_subsys_state *pos_css;
1396 	struct blkcg_gq *blkg;
1397 
1398 	throtl_log(&tg->service_queue,
1399 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1400 		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1401 		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1402 
1403 	/*
1404 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1405 	 * considered to have rules if either the tg itself or any of its
1406 	 * ancestors has rules.  This identifies groups without any
1407 	 * restrictions in the whole hierarchy and allows them to bypass
1408 	 * blk-throttle.
1409 	 */
1410 	blkg_for_each_descendant_pre(blkg, pos_css,
1411 			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1412 		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1413 		struct throtl_grp *parent_tg;
1414 
1415 		tg_update_has_rules(this_tg);
1416 		/* ignore root/second level */
1417 		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1418 		    !blkg->parent->parent)
1419 			continue;
1420 		parent_tg = blkg_to_tg(blkg->parent);
1421 		/*
1422 		 * make sure all children has lower idle time threshold and
1423 		 * higher latency target
1424 		 */
1425 		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1426 				parent_tg->idletime_threshold);
1427 		this_tg->latency_target = max(this_tg->latency_target,
1428 				parent_tg->latency_target);
1429 	}
1430 
1431 	/*
1432 	 * We're already holding queue_lock and know @tg is valid.  Let's
1433 	 * apply the new config directly.
1434 	 *
1435 	 * Restart the slices for both READ and WRITES. It might happen
1436 	 * that a group's limit are dropped suddenly and we don't want to
1437 	 * account recently dispatched IO with new low rate.
1438 	 */
1439 	throtl_start_new_slice(tg, READ);
1440 	throtl_start_new_slice(tg, WRITE);
1441 
1442 	if (tg->flags & THROTL_TG_PENDING) {
1443 		tg_update_disptime(tg);
1444 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1445 	}
1446 }
1447 
1448 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1449 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1450 {
1451 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1452 	struct blkg_conf_ctx ctx;
1453 	struct throtl_grp *tg;
1454 	int ret;
1455 	u64 v;
1456 
1457 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1458 	if (ret)
1459 		return ret;
1460 
1461 	ret = -EINVAL;
1462 	if (sscanf(ctx.body, "%llu", &v) != 1)
1463 		goto out_finish;
1464 	if (!v)
1465 		v = U64_MAX;
1466 
1467 	tg = blkg_to_tg(ctx.blkg);
1468 
1469 	if (is_u64)
1470 		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1471 	else
1472 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1473 
1474 	tg_conf_updated(tg, false);
1475 	ret = 0;
1476 out_finish:
1477 	blkg_conf_finish(&ctx);
1478 	return ret ?: nbytes;
1479 }
1480 
1481 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1482 			       char *buf, size_t nbytes, loff_t off)
1483 {
1484 	return tg_set_conf(of, buf, nbytes, off, true);
1485 }
1486 
1487 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1488 				char *buf, size_t nbytes, loff_t off)
1489 {
1490 	return tg_set_conf(of, buf, nbytes, off, false);
1491 }
1492 
1493 static int tg_print_rwstat(struct seq_file *sf, void *v)
1494 {
1495 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1496 			  blkg_prfill_rwstat, &blkcg_policy_throtl,
1497 			  seq_cft(sf)->private, true);
1498 	return 0;
1499 }
1500 
1501 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1502 				      struct blkg_policy_data *pd, int off)
1503 {
1504 	struct blkg_rwstat_sample sum;
1505 
1506 	blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1507 				  &sum);
1508 	return __blkg_prfill_rwstat(sf, pd, &sum);
1509 }
1510 
1511 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1512 {
1513 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1514 			  tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1515 			  seq_cft(sf)->private, true);
1516 	return 0;
1517 }
1518 
1519 static struct cftype throtl_legacy_files[] = {
1520 	{
1521 		.name = "throttle.read_bps_device",
1522 		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1523 		.seq_show = tg_print_conf_u64,
1524 		.write = tg_set_conf_u64,
1525 	},
1526 	{
1527 		.name = "throttle.write_bps_device",
1528 		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1529 		.seq_show = tg_print_conf_u64,
1530 		.write = tg_set_conf_u64,
1531 	},
1532 	{
1533 		.name = "throttle.read_iops_device",
1534 		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1535 		.seq_show = tg_print_conf_uint,
1536 		.write = tg_set_conf_uint,
1537 	},
1538 	{
1539 		.name = "throttle.write_iops_device",
1540 		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1541 		.seq_show = tg_print_conf_uint,
1542 		.write = tg_set_conf_uint,
1543 	},
1544 	{
1545 		.name = "throttle.io_service_bytes",
1546 		.private = offsetof(struct throtl_grp, stat_bytes),
1547 		.seq_show = tg_print_rwstat,
1548 	},
1549 	{
1550 		.name = "throttle.io_service_bytes_recursive",
1551 		.private = offsetof(struct throtl_grp, stat_bytes),
1552 		.seq_show = tg_print_rwstat_recursive,
1553 	},
1554 	{
1555 		.name = "throttle.io_serviced",
1556 		.private = offsetof(struct throtl_grp, stat_ios),
1557 		.seq_show = tg_print_rwstat,
1558 	},
1559 	{
1560 		.name = "throttle.io_serviced_recursive",
1561 		.private = offsetof(struct throtl_grp, stat_ios),
1562 		.seq_show = tg_print_rwstat_recursive,
1563 	},
1564 	{ }	/* terminate */
1565 };
1566 
1567 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1568 			 int off)
1569 {
1570 	struct throtl_grp *tg = pd_to_tg(pd);
1571 	const char *dname = blkg_dev_name(pd->blkg);
1572 	char bufs[4][21] = { "max", "max", "max", "max" };
1573 	u64 bps_dft;
1574 	unsigned int iops_dft;
1575 	char idle_time[26] = "";
1576 	char latency_time[26] = "";
1577 
1578 	if (!dname)
1579 		return 0;
1580 
1581 	if (off == LIMIT_LOW) {
1582 		bps_dft = 0;
1583 		iops_dft = 0;
1584 	} else {
1585 		bps_dft = U64_MAX;
1586 		iops_dft = UINT_MAX;
1587 	}
1588 
1589 	if (tg->bps_conf[READ][off] == bps_dft &&
1590 	    tg->bps_conf[WRITE][off] == bps_dft &&
1591 	    tg->iops_conf[READ][off] == iops_dft &&
1592 	    tg->iops_conf[WRITE][off] == iops_dft &&
1593 	    (off != LIMIT_LOW ||
1594 	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1595 	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1596 		return 0;
1597 
1598 	if (tg->bps_conf[READ][off] != U64_MAX)
1599 		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1600 			tg->bps_conf[READ][off]);
1601 	if (tg->bps_conf[WRITE][off] != U64_MAX)
1602 		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1603 			tg->bps_conf[WRITE][off]);
1604 	if (tg->iops_conf[READ][off] != UINT_MAX)
1605 		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1606 			tg->iops_conf[READ][off]);
1607 	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1608 		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1609 			tg->iops_conf[WRITE][off]);
1610 	if (off == LIMIT_LOW) {
1611 		if (tg->idletime_threshold_conf == ULONG_MAX)
1612 			strcpy(idle_time, " idle=max");
1613 		else
1614 			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1615 				tg->idletime_threshold_conf);
1616 
1617 		if (tg->latency_target_conf == ULONG_MAX)
1618 			strcpy(latency_time, " latency=max");
1619 		else
1620 			snprintf(latency_time, sizeof(latency_time),
1621 				" latency=%lu", tg->latency_target_conf);
1622 	}
1623 
1624 	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1625 		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1626 		   latency_time);
1627 	return 0;
1628 }
1629 
1630 static int tg_print_limit(struct seq_file *sf, void *v)
1631 {
1632 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1633 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1634 	return 0;
1635 }
1636 
1637 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1638 			  char *buf, size_t nbytes, loff_t off)
1639 {
1640 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1641 	struct blkg_conf_ctx ctx;
1642 	struct throtl_grp *tg;
1643 	u64 v[4];
1644 	unsigned long idle_time;
1645 	unsigned long latency_time;
1646 	int ret;
1647 	int index = of_cft(of)->private;
1648 
1649 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1650 	if (ret)
1651 		return ret;
1652 
1653 	tg = blkg_to_tg(ctx.blkg);
1654 
1655 	v[0] = tg->bps_conf[READ][index];
1656 	v[1] = tg->bps_conf[WRITE][index];
1657 	v[2] = tg->iops_conf[READ][index];
1658 	v[3] = tg->iops_conf[WRITE][index];
1659 
1660 	idle_time = tg->idletime_threshold_conf;
1661 	latency_time = tg->latency_target_conf;
1662 	while (true) {
1663 		char tok[27];	/* wiops=18446744073709551616 */
1664 		char *p;
1665 		u64 val = U64_MAX;
1666 		int len;
1667 
1668 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1669 			break;
1670 		if (tok[0] == '\0')
1671 			break;
1672 		ctx.body += len;
1673 
1674 		ret = -EINVAL;
1675 		p = tok;
1676 		strsep(&p, "=");
1677 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1678 			goto out_finish;
1679 
1680 		ret = -ERANGE;
1681 		if (!val)
1682 			goto out_finish;
1683 
1684 		ret = -EINVAL;
1685 		if (!strcmp(tok, "rbps") && val > 1)
1686 			v[0] = val;
1687 		else if (!strcmp(tok, "wbps") && val > 1)
1688 			v[1] = val;
1689 		else if (!strcmp(tok, "riops") && val > 1)
1690 			v[2] = min_t(u64, val, UINT_MAX);
1691 		else if (!strcmp(tok, "wiops") && val > 1)
1692 			v[3] = min_t(u64, val, UINT_MAX);
1693 		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1694 			idle_time = val;
1695 		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1696 			latency_time = val;
1697 		else
1698 			goto out_finish;
1699 	}
1700 
1701 	tg->bps_conf[READ][index] = v[0];
1702 	tg->bps_conf[WRITE][index] = v[1];
1703 	tg->iops_conf[READ][index] = v[2];
1704 	tg->iops_conf[WRITE][index] = v[3];
1705 
1706 	if (index == LIMIT_MAX) {
1707 		tg->bps[READ][index] = v[0];
1708 		tg->bps[WRITE][index] = v[1];
1709 		tg->iops[READ][index] = v[2];
1710 		tg->iops[WRITE][index] = v[3];
1711 	}
1712 	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1713 		tg->bps_conf[READ][LIMIT_MAX]);
1714 	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1715 		tg->bps_conf[WRITE][LIMIT_MAX]);
1716 	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1717 		tg->iops_conf[READ][LIMIT_MAX]);
1718 	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1719 		tg->iops_conf[WRITE][LIMIT_MAX]);
1720 	tg->idletime_threshold_conf = idle_time;
1721 	tg->latency_target_conf = latency_time;
1722 
1723 	/* force user to configure all settings for low limit  */
1724 	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1725 	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1726 	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1727 	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
1728 		tg->bps[READ][LIMIT_LOW] = 0;
1729 		tg->bps[WRITE][LIMIT_LOW] = 0;
1730 		tg->iops[READ][LIMIT_LOW] = 0;
1731 		tg->iops[WRITE][LIMIT_LOW] = 0;
1732 		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1733 		tg->latency_target = DFL_LATENCY_TARGET;
1734 	} else if (index == LIMIT_LOW) {
1735 		tg->idletime_threshold = tg->idletime_threshold_conf;
1736 		tg->latency_target = tg->latency_target_conf;
1737 	}
1738 
1739 	blk_throtl_update_limit_valid(tg->td);
1740 	if (tg->td->limit_valid[LIMIT_LOW]) {
1741 		if (index == LIMIT_LOW)
1742 			tg->td->limit_index = LIMIT_LOW;
1743 	} else
1744 		tg->td->limit_index = LIMIT_MAX;
1745 	tg_conf_updated(tg, index == LIMIT_LOW &&
1746 		tg->td->limit_valid[LIMIT_LOW]);
1747 	ret = 0;
1748 out_finish:
1749 	blkg_conf_finish(&ctx);
1750 	return ret ?: nbytes;
1751 }
1752 
1753 static struct cftype throtl_files[] = {
1754 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1755 	{
1756 		.name = "low",
1757 		.flags = CFTYPE_NOT_ON_ROOT,
1758 		.seq_show = tg_print_limit,
1759 		.write = tg_set_limit,
1760 		.private = LIMIT_LOW,
1761 	},
1762 #endif
1763 	{
1764 		.name = "max",
1765 		.flags = CFTYPE_NOT_ON_ROOT,
1766 		.seq_show = tg_print_limit,
1767 		.write = tg_set_limit,
1768 		.private = LIMIT_MAX,
1769 	},
1770 	{ }	/* terminate */
1771 };
1772 
1773 static void throtl_shutdown_wq(struct request_queue *q)
1774 {
1775 	struct throtl_data *td = q->td;
1776 
1777 	cancel_work_sync(&td->dispatch_work);
1778 }
1779 
1780 static struct blkcg_policy blkcg_policy_throtl = {
1781 	.dfl_cftypes		= throtl_files,
1782 	.legacy_cftypes		= throtl_legacy_files,
1783 
1784 	.pd_alloc_fn		= throtl_pd_alloc,
1785 	.pd_init_fn		= throtl_pd_init,
1786 	.pd_online_fn		= throtl_pd_online,
1787 	.pd_offline_fn		= throtl_pd_offline,
1788 	.pd_free_fn		= throtl_pd_free,
1789 };
1790 
1791 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1792 {
1793 	unsigned long rtime = jiffies, wtime = jiffies;
1794 
1795 	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1796 		rtime = tg->last_low_overflow_time[READ];
1797 	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1798 		wtime = tg->last_low_overflow_time[WRITE];
1799 	return min(rtime, wtime);
1800 }
1801 
1802 /* tg should not be an intermediate node */
1803 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1804 {
1805 	struct throtl_service_queue *parent_sq;
1806 	struct throtl_grp *parent = tg;
1807 	unsigned long ret = __tg_last_low_overflow_time(tg);
1808 
1809 	while (true) {
1810 		parent_sq = parent->service_queue.parent_sq;
1811 		parent = sq_to_tg(parent_sq);
1812 		if (!parent)
1813 			break;
1814 
1815 		/*
1816 		 * The parent doesn't have low limit, it always reaches low
1817 		 * limit. Its overflow time is useless for children
1818 		 */
1819 		if (!parent->bps[READ][LIMIT_LOW] &&
1820 		    !parent->iops[READ][LIMIT_LOW] &&
1821 		    !parent->bps[WRITE][LIMIT_LOW] &&
1822 		    !parent->iops[WRITE][LIMIT_LOW])
1823 			continue;
1824 		if (time_after(__tg_last_low_overflow_time(parent), ret))
1825 			ret = __tg_last_low_overflow_time(parent);
1826 	}
1827 	return ret;
1828 }
1829 
1830 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1831 {
1832 	/*
1833 	 * cgroup is idle if:
1834 	 * - single idle is too long, longer than a fixed value (in case user
1835 	 *   configure a too big threshold) or 4 times of idletime threshold
1836 	 * - average think time is more than threshold
1837 	 * - IO latency is largely below threshold
1838 	 */
1839 	unsigned long time;
1840 	bool ret;
1841 
1842 	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1843 	ret = tg->latency_target == DFL_LATENCY_TARGET ||
1844 	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1845 	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1846 	      tg->avg_idletime > tg->idletime_threshold ||
1847 	      (tg->latency_target && tg->bio_cnt &&
1848 		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1849 	throtl_log(&tg->service_queue,
1850 		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1851 		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1852 		tg->bio_cnt, ret, tg->td->scale);
1853 	return ret;
1854 }
1855 
1856 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1857 {
1858 	struct throtl_service_queue *sq = &tg->service_queue;
1859 	bool read_limit, write_limit;
1860 
1861 	/*
1862 	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1863 	 * reaches), it's ok to upgrade to next limit
1864 	 */
1865 	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1866 	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1867 	if (!read_limit && !write_limit)
1868 		return true;
1869 	if (read_limit && sq->nr_queued[READ] &&
1870 	    (!write_limit || sq->nr_queued[WRITE]))
1871 		return true;
1872 	if (write_limit && sq->nr_queued[WRITE] &&
1873 	    (!read_limit || sq->nr_queued[READ]))
1874 		return true;
1875 
1876 	if (time_after_eq(jiffies,
1877 		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1878 	    throtl_tg_is_idle(tg))
1879 		return true;
1880 	return false;
1881 }
1882 
1883 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1884 {
1885 	while (true) {
1886 		if (throtl_tg_can_upgrade(tg))
1887 			return true;
1888 		tg = sq_to_tg(tg->service_queue.parent_sq);
1889 		if (!tg || !tg_to_blkg(tg)->parent)
1890 			return false;
1891 	}
1892 	return false;
1893 }
1894 
1895 static bool throtl_can_upgrade(struct throtl_data *td,
1896 	struct throtl_grp *this_tg)
1897 {
1898 	struct cgroup_subsys_state *pos_css;
1899 	struct blkcg_gq *blkg;
1900 
1901 	if (td->limit_index != LIMIT_LOW)
1902 		return false;
1903 
1904 	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1905 		return false;
1906 
1907 	rcu_read_lock();
1908 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1909 		struct throtl_grp *tg = blkg_to_tg(blkg);
1910 
1911 		if (tg == this_tg)
1912 			continue;
1913 		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1914 			continue;
1915 		if (!throtl_hierarchy_can_upgrade(tg)) {
1916 			rcu_read_unlock();
1917 			return false;
1918 		}
1919 	}
1920 	rcu_read_unlock();
1921 	return true;
1922 }
1923 
1924 static void throtl_upgrade_check(struct throtl_grp *tg)
1925 {
1926 	unsigned long now = jiffies;
1927 
1928 	if (tg->td->limit_index != LIMIT_LOW)
1929 		return;
1930 
1931 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1932 		return;
1933 
1934 	tg->last_check_time = now;
1935 
1936 	if (!time_after_eq(now,
1937 	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1938 		return;
1939 
1940 	if (throtl_can_upgrade(tg->td, NULL))
1941 		throtl_upgrade_state(tg->td);
1942 }
1943 
1944 static void throtl_upgrade_state(struct throtl_data *td)
1945 {
1946 	struct cgroup_subsys_state *pos_css;
1947 	struct blkcg_gq *blkg;
1948 
1949 	throtl_log(&td->service_queue, "upgrade to max");
1950 	td->limit_index = LIMIT_MAX;
1951 	td->low_upgrade_time = jiffies;
1952 	td->scale = 0;
1953 	rcu_read_lock();
1954 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1955 		struct throtl_grp *tg = blkg_to_tg(blkg);
1956 		struct throtl_service_queue *sq = &tg->service_queue;
1957 
1958 		tg->disptime = jiffies - 1;
1959 		throtl_select_dispatch(sq);
1960 		throtl_schedule_next_dispatch(sq, true);
1961 	}
1962 	rcu_read_unlock();
1963 	throtl_select_dispatch(&td->service_queue);
1964 	throtl_schedule_next_dispatch(&td->service_queue, true);
1965 	queue_work(kthrotld_workqueue, &td->dispatch_work);
1966 }
1967 
1968 static void throtl_downgrade_state(struct throtl_data *td)
1969 {
1970 	td->scale /= 2;
1971 
1972 	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1973 	if (td->scale) {
1974 		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1975 		return;
1976 	}
1977 
1978 	td->limit_index = LIMIT_LOW;
1979 	td->low_downgrade_time = jiffies;
1980 }
1981 
1982 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1983 {
1984 	struct throtl_data *td = tg->td;
1985 	unsigned long now = jiffies;
1986 
1987 	/*
1988 	 * If cgroup is below low limit, consider downgrade and throttle other
1989 	 * cgroups
1990 	 */
1991 	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1992 	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1993 					td->throtl_slice) &&
1994 	    (!throtl_tg_is_idle(tg) ||
1995 	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1996 		return true;
1997 	return false;
1998 }
1999 
2000 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
2001 {
2002 	while (true) {
2003 		if (!throtl_tg_can_downgrade(tg))
2004 			return false;
2005 		tg = sq_to_tg(tg->service_queue.parent_sq);
2006 		if (!tg || !tg_to_blkg(tg)->parent)
2007 			break;
2008 	}
2009 	return true;
2010 }
2011 
2012 static void throtl_downgrade_check(struct throtl_grp *tg)
2013 {
2014 	uint64_t bps;
2015 	unsigned int iops;
2016 	unsigned long elapsed_time;
2017 	unsigned long now = jiffies;
2018 
2019 	if (tg->td->limit_index != LIMIT_MAX ||
2020 	    !tg->td->limit_valid[LIMIT_LOW])
2021 		return;
2022 	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2023 		return;
2024 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2025 		return;
2026 
2027 	elapsed_time = now - tg->last_check_time;
2028 	tg->last_check_time = now;
2029 
2030 	if (time_before(now, tg_last_low_overflow_time(tg) +
2031 			tg->td->throtl_slice))
2032 		return;
2033 
2034 	if (tg->bps[READ][LIMIT_LOW]) {
2035 		bps = tg->last_bytes_disp[READ] * HZ;
2036 		do_div(bps, elapsed_time);
2037 		if (bps >= tg->bps[READ][LIMIT_LOW])
2038 			tg->last_low_overflow_time[READ] = now;
2039 	}
2040 
2041 	if (tg->bps[WRITE][LIMIT_LOW]) {
2042 		bps = tg->last_bytes_disp[WRITE] * HZ;
2043 		do_div(bps, elapsed_time);
2044 		if (bps >= tg->bps[WRITE][LIMIT_LOW])
2045 			tg->last_low_overflow_time[WRITE] = now;
2046 	}
2047 
2048 	if (tg->iops[READ][LIMIT_LOW]) {
2049 		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2050 		if (iops >= tg->iops[READ][LIMIT_LOW])
2051 			tg->last_low_overflow_time[READ] = now;
2052 	}
2053 
2054 	if (tg->iops[WRITE][LIMIT_LOW]) {
2055 		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2056 		if (iops >= tg->iops[WRITE][LIMIT_LOW])
2057 			tg->last_low_overflow_time[WRITE] = now;
2058 	}
2059 
2060 	/*
2061 	 * If cgroup is below low limit, consider downgrade and throttle other
2062 	 * cgroups
2063 	 */
2064 	if (throtl_hierarchy_can_downgrade(tg))
2065 		throtl_downgrade_state(tg->td);
2066 
2067 	tg->last_bytes_disp[READ] = 0;
2068 	tg->last_bytes_disp[WRITE] = 0;
2069 	tg->last_io_disp[READ] = 0;
2070 	tg->last_io_disp[WRITE] = 0;
2071 }
2072 
2073 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2074 {
2075 	unsigned long now;
2076 	unsigned long last_finish_time = tg->last_finish_time;
2077 
2078 	if (last_finish_time == 0)
2079 		return;
2080 
2081 	now = ktime_get_ns() >> 10;
2082 	if (now <= last_finish_time ||
2083 	    last_finish_time == tg->checked_last_finish_time)
2084 		return;
2085 
2086 	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2087 	tg->checked_last_finish_time = last_finish_time;
2088 }
2089 
2090 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2091 static void throtl_update_latency_buckets(struct throtl_data *td)
2092 {
2093 	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2094 	int i, cpu, rw;
2095 	unsigned long last_latency[2] = { 0 };
2096 	unsigned long latency[2];
2097 
2098 	if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2099 		return;
2100 	if (time_before(jiffies, td->last_calculate_time + HZ))
2101 		return;
2102 	td->last_calculate_time = jiffies;
2103 
2104 	memset(avg_latency, 0, sizeof(avg_latency));
2105 	for (rw = READ; rw <= WRITE; rw++) {
2106 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2107 			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2108 
2109 			for_each_possible_cpu(cpu) {
2110 				struct latency_bucket *bucket;
2111 
2112 				/* this isn't race free, but ok in practice */
2113 				bucket = per_cpu_ptr(td->latency_buckets[rw],
2114 					cpu);
2115 				tmp->total_latency += bucket[i].total_latency;
2116 				tmp->samples += bucket[i].samples;
2117 				bucket[i].total_latency = 0;
2118 				bucket[i].samples = 0;
2119 			}
2120 
2121 			if (tmp->samples >= 32) {
2122 				int samples = tmp->samples;
2123 
2124 				latency[rw] = tmp->total_latency;
2125 
2126 				tmp->total_latency = 0;
2127 				tmp->samples = 0;
2128 				latency[rw] /= samples;
2129 				if (latency[rw] == 0)
2130 					continue;
2131 				avg_latency[rw][i].latency = latency[rw];
2132 			}
2133 		}
2134 	}
2135 
2136 	for (rw = READ; rw <= WRITE; rw++) {
2137 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2138 			if (!avg_latency[rw][i].latency) {
2139 				if (td->avg_buckets[rw][i].latency < last_latency[rw])
2140 					td->avg_buckets[rw][i].latency =
2141 						last_latency[rw];
2142 				continue;
2143 			}
2144 
2145 			if (!td->avg_buckets[rw][i].valid)
2146 				latency[rw] = avg_latency[rw][i].latency;
2147 			else
2148 				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2149 					avg_latency[rw][i].latency) >> 3;
2150 
2151 			td->avg_buckets[rw][i].latency = max(latency[rw],
2152 				last_latency[rw]);
2153 			td->avg_buckets[rw][i].valid = true;
2154 			last_latency[rw] = td->avg_buckets[rw][i].latency;
2155 		}
2156 	}
2157 
2158 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2159 		throtl_log(&td->service_queue,
2160 			"Latency bucket %d: read latency=%ld, read valid=%d, "
2161 			"write latency=%ld, write valid=%d", i,
2162 			td->avg_buckets[READ][i].latency,
2163 			td->avg_buckets[READ][i].valid,
2164 			td->avg_buckets[WRITE][i].latency,
2165 			td->avg_buckets[WRITE][i].valid);
2166 }
2167 #else
2168 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2169 {
2170 }
2171 #endif
2172 
2173 bool blk_throtl_bio(struct bio *bio)
2174 {
2175 	struct request_queue *q = bio->bi_disk->queue;
2176 	struct blkcg_gq *blkg = bio->bi_blkg;
2177 	struct throtl_qnode *qn = NULL;
2178 	struct throtl_grp *tg = blkg_to_tg(blkg);
2179 	struct throtl_service_queue *sq;
2180 	bool rw = bio_data_dir(bio);
2181 	bool throttled = false;
2182 	struct throtl_data *td = tg->td;
2183 
2184 	rcu_read_lock();
2185 
2186 	/* see throtl_charge_bio() */
2187 	if (bio_flagged(bio, BIO_THROTTLED))
2188 		goto out;
2189 
2190 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2191 		blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2192 				bio->bi_iter.bi_size);
2193 		blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2194 	}
2195 
2196 	if (!tg->has_rules[rw])
2197 		goto out;
2198 
2199 	spin_lock_irq(&q->queue_lock);
2200 
2201 	throtl_update_latency_buckets(td);
2202 
2203 	blk_throtl_update_idletime(tg);
2204 
2205 	sq = &tg->service_queue;
2206 
2207 again:
2208 	while (true) {
2209 		if (tg->last_low_overflow_time[rw] == 0)
2210 			tg->last_low_overflow_time[rw] = jiffies;
2211 		throtl_downgrade_check(tg);
2212 		throtl_upgrade_check(tg);
2213 		/* throtl is FIFO - if bios are already queued, should queue */
2214 		if (sq->nr_queued[rw])
2215 			break;
2216 
2217 		/* if above limits, break to queue */
2218 		if (!tg_may_dispatch(tg, bio, NULL)) {
2219 			tg->last_low_overflow_time[rw] = jiffies;
2220 			if (throtl_can_upgrade(td, tg)) {
2221 				throtl_upgrade_state(td);
2222 				goto again;
2223 			}
2224 			break;
2225 		}
2226 
2227 		/* within limits, let's charge and dispatch directly */
2228 		throtl_charge_bio(tg, bio);
2229 
2230 		/*
2231 		 * We need to trim slice even when bios are not being queued
2232 		 * otherwise it might happen that a bio is not queued for
2233 		 * a long time and slice keeps on extending and trim is not
2234 		 * called for a long time. Now if limits are reduced suddenly
2235 		 * we take into account all the IO dispatched so far at new
2236 		 * low rate and * newly queued IO gets a really long dispatch
2237 		 * time.
2238 		 *
2239 		 * So keep on trimming slice even if bio is not queued.
2240 		 */
2241 		throtl_trim_slice(tg, rw);
2242 
2243 		/*
2244 		 * @bio passed through this layer without being throttled.
2245 		 * Climb up the ladder.  If we're already at the top, it
2246 		 * can be executed directly.
2247 		 */
2248 		qn = &tg->qnode_on_parent[rw];
2249 		sq = sq->parent_sq;
2250 		tg = sq_to_tg(sq);
2251 		if (!tg)
2252 			goto out_unlock;
2253 	}
2254 
2255 	/* out-of-limit, queue to @tg */
2256 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2257 		   rw == READ ? 'R' : 'W',
2258 		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2259 		   tg_bps_limit(tg, rw),
2260 		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2261 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2262 
2263 	tg->last_low_overflow_time[rw] = jiffies;
2264 
2265 	td->nr_queued[rw]++;
2266 	throtl_add_bio_tg(bio, qn, tg);
2267 	throttled = true;
2268 
2269 	/*
2270 	 * Update @tg's dispatch time and force schedule dispatch if @tg
2271 	 * was empty before @bio.  The forced scheduling isn't likely to
2272 	 * cause undue delay as @bio is likely to be dispatched directly if
2273 	 * its @tg's disptime is not in the future.
2274 	 */
2275 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2276 		tg_update_disptime(tg);
2277 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2278 	}
2279 
2280 out_unlock:
2281 	spin_unlock_irq(&q->queue_lock);
2282 out:
2283 	bio_set_flag(bio, BIO_THROTTLED);
2284 
2285 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2286 	if (throttled || !td->track_bio_latency)
2287 		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2288 #endif
2289 	rcu_read_unlock();
2290 	return throttled;
2291 }
2292 
2293 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2294 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2295 	int op, unsigned long time)
2296 {
2297 	struct latency_bucket *latency;
2298 	int index;
2299 
2300 	if (!td || td->limit_index != LIMIT_LOW ||
2301 	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2302 	    !blk_queue_nonrot(td->queue))
2303 		return;
2304 
2305 	index = request_bucket_index(size);
2306 
2307 	latency = get_cpu_ptr(td->latency_buckets[op]);
2308 	latency[index].total_latency += time;
2309 	latency[index].samples++;
2310 	put_cpu_ptr(td->latency_buckets[op]);
2311 }
2312 
2313 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2314 {
2315 	struct request_queue *q = rq->q;
2316 	struct throtl_data *td = q->td;
2317 
2318 	throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2319 			     time_ns >> 10);
2320 }
2321 
2322 void blk_throtl_bio_endio(struct bio *bio)
2323 {
2324 	struct blkcg_gq *blkg;
2325 	struct throtl_grp *tg;
2326 	u64 finish_time_ns;
2327 	unsigned long finish_time;
2328 	unsigned long start_time;
2329 	unsigned long lat;
2330 	int rw = bio_data_dir(bio);
2331 
2332 	blkg = bio->bi_blkg;
2333 	if (!blkg)
2334 		return;
2335 	tg = blkg_to_tg(blkg);
2336 	if (!tg->td->limit_valid[LIMIT_LOW])
2337 		return;
2338 
2339 	finish_time_ns = ktime_get_ns();
2340 	tg->last_finish_time = finish_time_ns >> 10;
2341 
2342 	start_time = bio_issue_time(&bio->bi_issue) >> 10;
2343 	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2344 	if (!start_time || finish_time <= start_time)
2345 		return;
2346 
2347 	lat = finish_time - start_time;
2348 	/* this is only for bio based driver */
2349 	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2350 		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2351 				     bio_op(bio), lat);
2352 
2353 	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2354 		int bucket;
2355 		unsigned int threshold;
2356 
2357 		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2358 		threshold = tg->td->avg_buckets[rw][bucket].latency +
2359 			tg->latency_target;
2360 		if (lat > threshold)
2361 			tg->bad_bio_cnt++;
2362 		/*
2363 		 * Not race free, could get wrong count, which means cgroups
2364 		 * will be throttled
2365 		 */
2366 		tg->bio_cnt++;
2367 	}
2368 
2369 	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2370 		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2371 		tg->bio_cnt /= 2;
2372 		tg->bad_bio_cnt /= 2;
2373 	}
2374 }
2375 #endif
2376 
2377 int blk_throtl_init(struct request_queue *q)
2378 {
2379 	struct throtl_data *td;
2380 	int ret;
2381 
2382 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2383 	if (!td)
2384 		return -ENOMEM;
2385 	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2386 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2387 	if (!td->latency_buckets[READ]) {
2388 		kfree(td);
2389 		return -ENOMEM;
2390 	}
2391 	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2392 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2393 	if (!td->latency_buckets[WRITE]) {
2394 		free_percpu(td->latency_buckets[READ]);
2395 		kfree(td);
2396 		return -ENOMEM;
2397 	}
2398 
2399 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2400 	throtl_service_queue_init(&td->service_queue);
2401 
2402 	q->td = td;
2403 	td->queue = q;
2404 
2405 	td->limit_valid[LIMIT_MAX] = true;
2406 	td->limit_index = LIMIT_MAX;
2407 	td->low_upgrade_time = jiffies;
2408 	td->low_downgrade_time = jiffies;
2409 
2410 	/* activate policy */
2411 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2412 	if (ret) {
2413 		free_percpu(td->latency_buckets[READ]);
2414 		free_percpu(td->latency_buckets[WRITE]);
2415 		kfree(td);
2416 	}
2417 	return ret;
2418 }
2419 
2420 void blk_throtl_exit(struct request_queue *q)
2421 {
2422 	BUG_ON(!q->td);
2423 	throtl_shutdown_wq(q);
2424 	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2425 	free_percpu(q->td->latency_buckets[READ]);
2426 	free_percpu(q->td->latency_buckets[WRITE]);
2427 	kfree(q->td);
2428 }
2429 
2430 void blk_throtl_register_queue(struct request_queue *q)
2431 {
2432 	struct throtl_data *td;
2433 	int i;
2434 
2435 	td = q->td;
2436 	BUG_ON(!td);
2437 
2438 	if (blk_queue_nonrot(q)) {
2439 		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2440 		td->filtered_latency = LATENCY_FILTERED_SSD;
2441 	} else {
2442 		td->throtl_slice = DFL_THROTL_SLICE_HD;
2443 		td->filtered_latency = LATENCY_FILTERED_HD;
2444 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2445 			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2446 			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2447 		}
2448 	}
2449 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2450 	/* if no low limit, use previous default */
2451 	td->throtl_slice = DFL_THROTL_SLICE_HD;
2452 #endif
2453 
2454 	td->track_bio_latency = !queue_is_mq(q);
2455 	if (!td->track_bio_latency)
2456 		blk_stat_enable_accounting(q);
2457 }
2458 
2459 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2460 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2461 {
2462 	if (!q->td)
2463 		return -EINVAL;
2464 	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2465 }
2466 
2467 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2468 	const char *page, size_t count)
2469 {
2470 	unsigned long v;
2471 	unsigned long t;
2472 
2473 	if (!q->td)
2474 		return -EINVAL;
2475 	if (kstrtoul(page, 10, &v))
2476 		return -EINVAL;
2477 	t = msecs_to_jiffies(v);
2478 	if (t == 0 || t > MAX_THROTL_SLICE)
2479 		return -EINVAL;
2480 	q->td->throtl_slice = t;
2481 	return count;
2482 }
2483 #endif
2484 
2485 static int __init throtl_init(void)
2486 {
2487 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2488 	if (!kthrotld_workqueue)
2489 		panic("Failed to create kthrotld\n");
2490 
2491 	return blkcg_policy_register(&blkcg_policy_throtl);
2492 }
2493 
2494 module_init(throtl_init);
2495