1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Interface for controlling IO bandwidth on a request queue 4 * 5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/bio.h> 12 #include <linux/blktrace_api.h> 13 #include <linux/blk-cgroup.h> 14 #include "blk.h" 15 #include "blk-cgroup-rwstat.h" 16 #include "blk-throttle.h" 17 18 /* Max dispatch from a group in 1 round */ 19 #define THROTL_GRP_QUANTUM 8 20 21 /* Total max dispatch from all groups in one round */ 22 #define THROTL_QUANTUM 32 23 24 /* Throttling is performed over a slice and after that slice is renewed */ 25 #define DFL_THROTL_SLICE_HD (HZ / 10) 26 #define DFL_THROTL_SLICE_SSD (HZ / 50) 27 #define MAX_THROTL_SLICE (HZ) 28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */ 29 #define MIN_THROTL_BPS (320 * 1024) 30 #define MIN_THROTL_IOPS (10) 31 #define DFL_LATENCY_TARGET (-1L) 32 #define DFL_IDLE_THRESHOLD (0) 33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */ 34 #define LATENCY_FILTERED_SSD (0) 35 /* 36 * For HD, very small latency comes from sequential IO. Such IO is helpless to 37 * help determine if its IO is impacted by others, hence we ignore the IO 38 */ 39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */ 40 41 /* A workqueue to queue throttle related work */ 42 static struct workqueue_struct *kthrotld_workqueue; 43 44 enum tg_state_flags { 45 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */ 46 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */ 47 }; 48 49 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 50 51 /* We measure latency for request size from <= 4k to >= 1M */ 52 #define LATENCY_BUCKET_SIZE 9 53 54 struct latency_bucket { 55 unsigned long total_latency; /* ns / 1024 */ 56 int samples; 57 }; 58 59 struct avg_latency_bucket { 60 unsigned long latency; /* ns / 1024 */ 61 bool valid; 62 }; 63 64 struct throtl_data 65 { 66 /* service tree for active throtl groups */ 67 struct throtl_service_queue service_queue; 68 69 struct request_queue *queue; 70 71 /* Total Number of queued bios on READ and WRITE lists */ 72 unsigned int nr_queued[2]; 73 74 unsigned int throtl_slice; 75 76 /* Work for dispatching throttled bios */ 77 struct work_struct dispatch_work; 78 unsigned int limit_index; 79 bool limit_valid[LIMIT_CNT]; 80 81 unsigned long low_upgrade_time; 82 unsigned long low_downgrade_time; 83 84 unsigned int scale; 85 86 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE]; 87 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE]; 88 struct latency_bucket __percpu *latency_buckets[2]; 89 unsigned long last_calculate_time; 90 unsigned long filtered_latency; 91 92 bool track_bio_latency; 93 }; 94 95 static void throtl_pending_timer_fn(struct timer_list *t); 96 97 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) 98 { 99 return pd_to_blkg(&tg->pd); 100 } 101 102 /** 103 * sq_to_tg - return the throl_grp the specified service queue belongs to 104 * @sq: the throtl_service_queue of interest 105 * 106 * Return the throtl_grp @sq belongs to. If @sq is the top-level one 107 * embedded in throtl_data, %NULL is returned. 108 */ 109 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) 110 { 111 if (sq && sq->parent_sq) 112 return container_of(sq, struct throtl_grp, service_queue); 113 else 114 return NULL; 115 } 116 117 /** 118 * sq_to_td - return throtl_data the specified service queue belongs to 119 * @sq: the throtl_service_queue of interest 120 * 121 * A service_queue can be embedded in either a throtl_grp or throtl_data. 122 * Determine the associated throtl_data accordingly and return it. 123 */ 124 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) 125 { 126 struct throtl_grp *tg = sq_to_tg(sq); 127 128 if (tg) 129 return tg->td; 130 else 131 return container_of(sq, struct throtl_data, service_queue); 132 } 133 134 /* 135 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to 136 * make the IO dispatch more smooth. 137 * Scale up: linearly scale up according to lapsed time since upgrade. For 138 * every throtl_slice, the limit scales up 1/2 .low limit till the 139 * limit hits .max limit 140 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit 141 */ 142 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td) 143 { 144 /* arbitrary value to avoid too big scale */ 145 if (td->scale < 4096 && time_after_eq(jiffies, 146 td->low_upgrade_time + td->scale * td->throtl_slice)) 147 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice; 148 149 return low + (low >> 1) * td->scale; 150 } 151 152 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) 153 { 154 struct blkcg_gq *blkg = tg_to_blkg(tg); 155 struct throtl_data *td; 156 uint64_t ret; 157 158 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 159 return U64_MAX; 160 161 td = tg->td; 162 ret = tg->bps[rw][td->limit_index]; 163 if (ret == 0 && td->limit_index == LIMIT_LOW) { 164 /* intermediate node or iops isn't 0 */ 165 if (!list_empty(&blkg->blkcg->css.children) || 166 tg->iops[rw][td->limit_index]) 167 return U64_MAX; 168 else 169 return MIN_THROTL_BPS; 170 } 171 172 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] && 173 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) { 174 uint64_t adjusted; 175 176 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td); 177 ret = min(tg->bps[rw][LIMIT_MAX], adjusted); 178 } 179 return ret; 180 } 181 182 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) 183 { 184 struct blkcg_gq *blkg = tg_to_blkg(tg); 185 struct throtl_data *td; 186 unsigned int ret; 187 188 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 189 return UINT_MAX; 190 191 td = tg->td; 192 ret = tg->iops[rw][td->limit_index]; 193 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) { 194 /* intermediate node or bps isn't 0 */ 195 if (!list_empty(&blkg->blkcg->css.children) || 196 tg->bps[rw][td->limit_index]) 197 return UINT_MAX; 198 else 199 return MIN_THROTL_IOPS; 200 } 201 202 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] && 203 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) { 204 uint64_t adjusted; 205 206 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td); 207 if (adjusted > UINT_MAX) 208 adjusted = UINT_MAX; 209 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted); 210 } 211 return ret; 212 } 213 214 #define request_bucket_index(sectors) \ 215 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1) 216 217 /** 218 * throtl_log - log debug message via blktrace 219 * @sq: the service_queue being reported 220 * @fmt: printf format string 221 * @args: printf args 222 * 223 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a 224 * throtl_grp; otherwise, just "throtl". 225 */ 226 #define throtl_log(sq, fmt, args...) do { \ 227 struct throtl_grp *__tg = sq_to_tg((sq)); \ 228 struct throtl_data *__td = sq_to_td((sq)); \ 229 \ 230 (void)__td; \ 231 if (likely(!blk_trace_note_message_enabled(__td->queue))) \ 232 break; \ 233 if ((__tg)) { \ 234 blk_add_cgroup_trace_msg(__td->queue, \ 235 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\ 236 } else { \ 237 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ 238 } \ 239 } while (0) 240 241 static inline unsigned int throtl_bio_data_size(struct bio *bio) 242 { 243 /* assume it's one sector */ 244 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 245 return 512; 246 return bio->bi_iter.bi_size; 247 } 248 249 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) 250 { 251 INIT_LIST_HEAD(&qn->node); 252 bio_list_init(&qn->bios); 253 qn->tg = tg; 254 } 255 256 /** 257 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it 258 * @bio: bio being added 259 * @qn: qnode to add bio to 260 * @queued: the service_queue->queued[] list @qn belongs to 261 * 262 * Add @bio to @qn and put @qn on @queued if it's not already on. 263 * @qn->tg's reference count is bumped when @qn is activated. See the 264 * comment on top of throtl_qnode definition for details. 265 */ 266 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, 267 struct list_head *queued) 268 { 269 bio_list_add(&qn->bios, bio); 270 if (list_empty(&qn->node)) { 271 list_add_tail(&qn->node, queued); 272 blkg_get(tg_to_blkg(qn->tg)); 273 } 274 } 275 276 /** 277 * throtl_peek_queued - peek the first bio on a qnode list 278 * @queued: the qnode list to peek 279 */ 280 static struct bio *throtl_peek_queued(struct list_head *queued) 281 { 282 struct throtl_qnode *qn; 283 struct bio *bio; 284 285 if (list_empty(queued)) 286 return NULL; 287 288 qn = list_first_entry(queued, struct throtl_qnode, node); 289 bio = bio_list_peek(&qn->bios); 290 WARN_ON_ONCE(!bio); 291 return bio; 292 } 293 294 /** 295 * throtl_pop_queued - pop the first bio form a qnode list 296 * @queued: the qnode list to pop a bio from 297 * @tg_to_put: optional out argument for throtl_grp to put 298 * 299 * Pop the first bio from the qnode list @queued. After popping, the first 300 * qnode is removed from @queued if empty or moved to the end of @queued so 301 * that the popping order is round-robin. 302 * 303 * When the first qnode is removed, its associated throtl_grp should be put 304 * too. If @tg_to_put is NULL, this function automatically puts it; 305 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is 306 * responsible for putting it. 307 */ 308 static struct bio *throtl_pop_queued(struct list_head *queued, 309 struct throtl_grp **tg_to_put) 310 { 311 struct throtl_qnode *qn; 312 struct bio *bio; 313 314 if (list_empty(queued)) 315 return NULL; 316 317 qn = list_first_entry(queued, struct throtl_qnode, node); 318 bio = bio_list_pop(&qn->bios); 319 WARN_ON_ONCE(!bio); 320 321 if (bio_list_empty(&qn->bios)) { 322 list_del_init(&qn->node); 323 if (tg_to_put) 324 *tg_to_put = qn->tg; 325 else 326 blkg_put(tg_to_blkg(qn->tg)); 327 } else { 328 list_move_tail(&qn->node, queued); 329 } 330 331 return bio; 332 } 333 334 /* init a service_queue, assumes the caller zeroed it */ 335 static void throtl_service_queue_init(struct throtl_service_queue *sq) 336 { 337 INIT_LIST_HEAD(&sq->queued[0]); 338 INIT_LIST_HEAD(&sq->queued[1]); 339 sq->pending_tree = RB_ROOT_CACHED; 340 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0); 341 } 342 343 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, 344 struct request_queue *q, 345 struct blkcg *blkcg) 346 { 347 struct throtl_grp *tg; 348 int rw; 349 350 tg = kzalloc_node(sizeof(*tg), gfp, q->node); 351 if (!tg) 352 return NULL; 353 354 if (blkg_rwstat_init(&tg->stat_bytes, gfp)) 355 goto err_free_tg; 356 357 if (blkg_rwstat_init(&tg->stat_ios, gfp)) 358 goto err_exit_stat_bytes; 359 360 throtl_service_queue_init(&tg->service_queue); 361 362 for (rw = READ; rw <= WRITE; rw++) { 363 throtl_qnode_init(&tg->qnode_on_self[rw], tg); 364 throtl_qnode_init(&tg->qnode_on_parent[rw], tg); 365 } 366 367 RB_CLEAR_NODE(&tg->rb_node); 368 tg->bps[READ][LIMIT_MAX] = U64_MAX; 369 tg->bps[WRITE][LIMIT_MAX] = U64_MAX; 370 tg->iops[READ][LIMIT_MAX] = UINT_MAX; 371 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX; 372 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX; 373 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX; 374 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX; 375 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX; 376 /* LIMIT_LOW will have default value 0 */ 377 378 tg->latency_target = DFL_LATENCY_TARGET; 379 tg->latency_target_conf = DFL_LATENCY_TARGET; 380 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 381 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD; 382 383 return &tg->pd; 384 385 err_exit_stat_bytes: 386 blkg_rwstat_exit(&tg->stat_bytes); 387 err_free_tg: 388 kfree(tg); 389 return NULL; 390 } 391 392 static void throtl_pd_init(struct blkg_policy_data *pd) 393 { 394 struct throtl_grp *tg = pd_to_tg(pd); 395 struct blkcg_gq *blkg = tg_to_blkg(tg); 396 struct throtl_data *td = blkg->q->td; 397 struct throtl_service_queue *sq = &tg->service_queue; 398 399 /* 400 * If on the default hierarchy, we switch to properly hierarchical 401 * behavior where limits on a given throtl_grp are applied to the 402 * whole subtree rather than just the group itself. e.g. If 16M 403 * read_bps limit is set on the root group, the whole system can't 404 * exceed 16M for the device. 405 * 406 * If not on the default hierarchy, the broken flat hierarchy 407 * behavior is retained where all throtl_grps are treated as if 408 * they're all separate root groups right below throtl_data. 409 * Limits of a group don't interact with limits of other groups 410 * regardless of the position of the group in the hierarchy. 411 */ 412 sq->parent_sq = &td->service_queue; 413 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) 414 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; 415 tg->td = td; 416 } 417 418 /* 419 * Set has_rules[] if @tg or any of its parents have limits configured. 420 * This doesn't require walking up to the top of the hierarchy as the 421 * parent's has_rules[] is guaranteed to be correct. 422 */ 423 static void tg_update_has_rules(struct throtl_grp *tg) 424 { 425 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); 426 struct throtl_data *td = tg->td; 427 int rw; 428 429 for (rw = READ; rw <= WRITE; rw++) 430 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) || 431 (td->limit_valid[td->limit_index] && 432 (tg_bps_limit(tg, rw) != U64_MAX || 433 tg_iops_limit(tg, rw) != UINT_MAX)); 434 } 435 436 static void throtl_pd_online(struct blkg_policy_data *pd) 437 { 438 struct throtl_grp *tg = pd_to_tg(pd); 439 /* 440 * We don't want new groups to escape the limits of its ancestors. 441 * Update has_rules[] after a new group is brought online. 442 */ 443 tg_update_has_rules(tg); 444 } 445 446 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 447 static void blk_throtl_update_limit_valid(struct throtl_data *td) 448 { 449 struct cgroup_subsys_state *pos_css; 450 struct blkcg_gq *blkg; 451 bool low_valid = false; 452 453 rcu_read_lock(); 454 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 455 struct throtl_grp *tg = blkg_to_tg(blkg); 456 457 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] || 458 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) { 459 low_valid = true; 460 break; 461 } 462 } 463 rcu_read_unlock(); 464 465 td->limit_valid[LIMIT_LOW] = low_valid; 466 } 467 #else 468 static inline void blk_throtl_update_limit_valid(struct throtl_data *td) 469 { 470 } 471 #endif 472 473 static void throtl_upgrade_state(struct throtl_data *td); 474 static void throtl_pd_offline(struct blkg_policy_data *pd) 475 { 476 struct throtl_grp *tg = pd_to_tg(pd); 477 478 tg->bps[READ][LIMIT_LOW] = 0; 479 tg->bps[WRITE][LIMIT_LOW] = 0; 480 tg->iops[READ][LIMIT_LOW] = 0; 481 tg->iops[WRITE][LIMIT_LOW] = 0; 482 483 blk_throtl_update_limit_valid(tg->td); 484 485 if (!tg->td->limit_valid[tg->td->limit_index]) 486 throtl_upgrade_state(tg->td); 487 } 488 489 static void throtl_pd_free(struct blkg_policy_data *pd) 490 { 491 struct throtl_grp *tg = pd_to_tg(pd); 492 493 del_timer_sync(&tg->service_queue.pending_timer); 494 blkg_rwstat_exit(&tg->stat_bytes); 495 blkg_rwstat_exit(&tg->stat_ios); 496 kfree(tg); 497 } 498 499 static struct throtl_grp * 500 throtl_rb_first(struct throtl_service_queue *parent_sq) 501 { 502 struct rb_node *n; 503 504 n = rb_first_cached(&parent_sq->pending_tree); 505 WARN_ON_ONCE(!n); 506 if (!n) 507 return NULL; 508 return rb_entry_tg(n); 509 } 510 511 static void throtl_rb_erase(struct rb_node *n, 512 struct throtl_service_queue *parent_sq) 513 { 514 rb_erase_cached(n, &parent_sq->pending_tree); 515 RB_CLEAR_NODE(n); 516 --parent_sq->nr_pending; 517 } 518 519 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) 520 { 521 struct throtl_grp *tg; 522 523 tg = throtl_rb_first(parent_sq); 524 if (!tg) 525 return; 526 527 parent_sq->first_pending_disptime = tg->disptime; 528 } 529 530 static void tg_service_queue_add(struct throtl_grp *tg) 531 { 532 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; 533 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node; 534 struct rb_node *parent = NULL; 535 struct throtl_grp *__tg; 536 unsigned long key = tg->disptime; 537 bool leftmost = true; 538 539 while (*node != NULL) { 540 parent = *node; 541 __tg = rb_entry_tg(parent); 542 543 if (time_before(key, __tg->disptime)) 544 node = &parent->rb_left; 545 else { 546 node = &parent->rb_right; 547 leftmost = false; 548 } 549 } 550 551 rb_link_node(&tg->rb_node, parent, node); 552 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree, 553 leftmost); 554 } 555 556 static void throtl_enqueue_tg(struct throtl_grp *tg) 557 { 558 if (!(tg->flags & THROTL_TG_PENDING)) { 559 tg_service_queue_add(tg); 560 tg->flags |= THROTL_TG_PENDING; 561 tg->service_queue.parent_sq->nr_pending++; 562 } 563 } 564 565 static void throtl_dequeue_tg(struct throtl_grp *tg) 566 { 567 if (tg->flags & THROTL_TG_PENDING) { 568 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); 569 tg->flags &= ~THROTL_TG_PENDING; 570 } 571 } 572 573 /* Call with queue lock held */ 574 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, 575 unsigned long expires) 576 { 577 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice; 578 579 /* 580 * Since we are adjusting the throttle limit dynamically, the sleep 581 * time calculated according to previous limit might be invalid. It's 582 * possible the cgroup sleep time is very long and no other cgroups 583 * have IO running so notify the limit changes. Make sure the cgroup 584 * doesn't sleep too long to avoid the missed notification. 585 */ 586 if (time_after(expires, max_expire)) 587 expires = max_expire; 588 mod_timer(&sq->pending_timer, expires); 589 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", 590 expires - jiffies, jiffies); 591 } 592 593 /** 594 * throtl_schedule_next_dispatch - schedule the next dispatch cycle 595 * @sq: the service_queue to schedule dispatch for 596 * @force: force scheduling 597 * 598 * Arm @sq->pending_timer so that the next dispatch cycle starts on the 599 * dispatch time of the first pending child. Returns %true if either timer 600 * is armed or there's no pending child left. %false if the current 601 * dispatch window is still open and the caller should continue 602 * dispatching. 603 * 604 * If @force is %true, the dispatch timer is always scheduled and this 605 * function is guaranteed to return %true. This is to be used when the 606 * caller can't dispatch itself and needs to invoke pending_timer 607 * unconditionally. Note that forced scheduling is likely to induce short 608 * delay before dispatch starts even if @sq->first_pending_disptime is not 609 * in the future and thus shouldn't be used in hot paths. 610 */ 611 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, 612 bool force) 613 { 614 /* any pending children left? */ 615 if (!sq->nr_pending) 616 return true; 617 618 update_min_dispatch_time(sq); 619 620 /* is the next dispatch time in the future? */ 621 if (force || time_after(sq->first_pending_disptime, jiffies)) { 622 throtl_schedule_pending_timer(sq, sq->first_pending_disptime); 623 return true; 624 } 625 626 /* tell the caller to continue dispatching */ 627 return false; 628 } 629 630 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, 631 bool rw, unsigned long start) 632 { 633 tg->bytes_disp[rw] = 0; 634 tg->io_disp[rw] = 0; 635 636 atomic_set(&tg->io_split_cnt[rw], 0); 637 638 /* 639 * Previous slice has expired. We must have trimmed it after last 640 * bio dispatch. That means since start of last slice, we never used 641 * that bandwidth. Do try to make use of that bandwidth while giving 642 * credit. 643 */ 644 if (time_after_eq(start, tg->slice_start[rw])) 645 tg->slice_start[rw] = start; 646 647 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 648 throtl_log(&tg->service_queue, 649 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", 650 rw == READ ? 'R' : 'W', tg->slice_start[rw], 651 tg->slice_end[rw], jiffies); 652 } 653 654 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw) 655 { 656 tg->bytes_disp[rw] = 0; 657 tg->io_disp[rw] = 0; 658 tg->slice_start[rw] = jiffies; 659 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 660 661 atomic_set(&tg->io_split_cnt[rw], 0); 662 663 throtl_log(&tg->service_queue, 664 "[%c] new slice start=%lu end=%lu jiffies=%lu", 665 rw == READ ? 'R' : 'W', tg->slice_start[rw], 666 tg->slice_end[rw], jiffies); 667 } 668 669 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, 670 unsigned long jiffy_end) 671 { 672 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 673 } 674 675 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, 676 unsigned long jiffy_end) 677 { 678 throtl_set_slice_end(tg, rw, jiffy_end); 679 throtl_log(&tg->service_queue, 680 "[%c] extend slice start=%lu end=%lu jiffies=%lu", 681 rw == READ ? 'R' : 'W', tg->slice_start[rw], 682 tg->slice_end[rw], jiffies); 683 } 684 685 /* Determine if previously allocated or extended slice is complete or not */ 686 static bool throtl_slice_used(struct throtl_grp *tg, bool rw) 687 { 688 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 689 return false; 690 691 return true; 692 } 693 694 /* Trim the used slices and adjust slice start accordingly */ 695 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) 696 { 697 unsigned long nr_slices, time_elapsed, io_trim; 698 u64 bytes_trim, tmp; 699 700 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 701 702 /* 703 * If bps are unlimited (-1), then time slice don't get 704 * renewed. Don't try to trim the slice if slice is used. A new 705 * slice will start when appropriate. 706 */ 707 if (throtl_slice_used(tg, rw)) 708 return; 709 710 /* 711 * A bio has been dispatched. Also adjust slice_end. It might happen 712 * that initially cgroup limit was very low resulting in high 713 * slice_end, but later limit was bumped up and bio was dispatched 714 * sooner, then we need to reduce slice_end. A high bogus slice_end 715 * is bad because it does not allow new slice to start. 716 */ 717 718 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); 719 720 time_elapsed = jiffies - tg->slice_start[rw]; 721 722 nr_slices = time_elapsed / tg->td->throtl_slice; 723 724 if (!nr_slices) 725 return; 726 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices; 727 do_div(tmp, HZ); 728 bytes_trim = tmp; 729 730 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) / 731 HZ; 732 733 if (!bytes_trim && !io_trim) 734 return; 735 736 if (tg->bytes_disp[rw] >= bytes_trim) 737 tg->bytes_disp[rw] -= bytes_trim; 738 else 739 tg->bytes_disp[rw] = 0; 740 741 if (tg->io_disp[rw] >= io_trim) 742 tg->io_disp[rw] -= io_trim; 743 else 744 tg->io_disp[rw] = 0; 745 746 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice; 747 748 throtl_log(&tg->service_queue, 749 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu", 750 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, 751 tg->slice_start[rw], tg->slice_end[rw], jiffies); 752 } 753 754 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, 755 u32 iops_limit, unsigned long *wait) 756 { 757 bool rw = bio_data_dir(bio); 758 unsigned int io_allowed; 759 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 760 u64 tmp; 761 762 if (iops_limit == UINT_MAX) { 763 if (wait) 764 *wait = 0; 765 return true; 766 } 767 768 jiffy_elapsed = jiffies - tg->slice_start[rw]; 769 770 /* Round up to the next throttle slice, wait time must be nonzero */ 771 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice); 772 773 /* 774 * jiffy_elapsed_rnd should not be a big value as minimum iops can be 775 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 776 * will allow dispatch after 1 second and after that slice should 777 * have been trimmed. 778 */ 779 780 tmp = (u64)iops_limit * jiffy_elapsed_rnd; 781 do_div(tmp, HZ); 782 783 if (tmp > UINT_MAX) 784 io_allowed = UINT_MAX; 785 else 786 io_allowed = tmp; 787 788 if (tg->io_disp[rw] + 1 <= io_allowed) { 789 if (wait) 790 *wait = 0; 791 return true; 792 } 793 794 /* Calc approx time to dispatch */ 795 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed; 796 797 if (wait) 798 *wait = jiffy_wait; 799 return false; 800 } 801 802 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, 803 u64 bps_limit, unsigned long *wait) 804 { 805 bool rw = bio_data_dir(bio); 806 u64 bytes_allowed, extra_bytes, tmp; 807 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 808 unsigned int bio_size = throtl_bio_data_size(bio); 809 810 if (bps_limit == U64_MAX) { 811 if (wait) 812 *wait = 0; 813 return true; 814 } 815 816 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 817 818 /* Slice has just started. Consider one slice interval */ 819 if (!jiffy_elapsed) 820 jiffy_elapsed_rnd = tg->td->throtl_slice; 821 822 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 823 824 tmp = bps_limit * jiffy_elapsed_rnd; 825 do_div(tmp, HZ); 826 bytes_allowed = tmp; 827 828 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) { 829 if (wait) 830 *wait = 0; 831 return true; 832 } 833 834 /* Calc approx time to dispatch */ 835 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed; 836 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit); 837 838 if (!jiffy_wait) 839 jiffy_wait = 1; 840 841 /* 842 * This wait time is without taking into consideration the rounding 843 * up we did. Add that time also. 844 */ 845 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 846 if (wait) 847 *wait = jiffy_wait; 848 return false; 849 } 850 851 /* 852 * Returns whether one can dispatch a bio or not. Also returns approx number 853 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 854 */ 855 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, 856 unsigned long *wait) 857 { 858 bool rw = bio_data_dir(bio); 859 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 860 u64 bps_limit = tg_bps_limit(tg, rw); 861 u32 iops_limit = tg_iops_limit(tg, rw); 862 863 /* 864 * Currently whole state machine of group depends on first bio 865 * queued in the group bio list. So one should not be calling 866 * this function with a different bio if there are other bios 867 * queued. 868 */ 869 BUG_ON(tg->service_queue.nr_queued[rw] && 870 bio != throtl_peek_queued(&tg->service_queue.queued[rw])); 871 872 /* If tg->bps = -1, then BW is unlimited */ 873 if (bps_limit == U64_MAX && iops_limit == UINT_MAX) { 874 if (wait) 875 *wait = 0; 876 return true; 877 } 878 879 /* 880 * If previous slice expired, start a new one otherwise renew/extend 881 * existing slice to make sure it is at least throtl_slice interval 882 * long since now. New slice is started only for empty throttle group. 883 * If there is queued bio, that means there should be an active 884 * slice and it should be extended instead. 885 */ 886 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw])) 887 throtl_start_new_slice(tg, rw); 888 else { 889 if (time_before(tg->slice_end[rw], 890 jiffies + tg->td->throtl_slice)) 891 throtl_extend_slice(tg, rw, 892 jiffies + tg->td->throtl_slice); 893 } 894 895 if (iops_limit != UINT_MAX) 896 tg->io_disp[rw] += atomic_xchg(&tg->io_split_cnt[rw], 0); 897 898 if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) && 899 tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) { 900 if (wait) 901 *wait = 0; 902 return true; 903 } 904 905 max_wait = max(bps_wait, iops_wait); 906 907 if (wait) 908 *wait = max_wait; 909 910 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 911 throtl_extend_slice(tg, rw, jiffies + max_wait); 912 913 return false; 914 } 915 916 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 917 { 918 bool rw = bio_data_dir(bio); 919 unsigned int bio_size = throtl_bio_data_size(bio); 920 921 /* Charge the bio to the group */ 922 tg->bytes_disp[rw] += bio_size; 923 tg->io_disp[rw]++; 924 tg->last_bytes_disp[rw] += bio_size; 925 tg->last_io_disp[rw]++; 926 927 /* 928 * BIO_THROTTLED is used to prevent the same bio to be throttled 929 * more than once as a throttled bio will go through blk-throtl the 930 * second time when it eventually gets issued. Set it when a bio 931 * is being charged to a tg. 932 */ 933 if (!bio_flagged(bio, BIO_THROTTLED)) 934 bio_set_flag(bio, BIO_THROTTLED); 935 } 936 937 /** 938 * throtl_add_bio_tg - add a bio to the specified throtl_grp 939 * @bio: bio to add 940 * @qn: qnode to use 941 * @tg: the target throtl_grp 942 * 943 * Add @bio to @tg's service_queue using @qn. If @qn is not specified, 944 * tg->qnode_on_self[] is used. 945 */ 946 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, 947 struct throtl_grp *tg) 948 { 949 struct throtl_service_queue *sq = &tg->service_queue; 950 bool rw = bio_data_dir(bio); 951 952 if (!qn) 953 qn = &tg->qnode_on_self[rw]; 954 955 /* 956 * If @tg doesn't currently have any bios queued in the same 957 * direction, queueing @bio can change when @tg should be 958 * dispatched. Mark that @tg was empty. This is automatically 959 * cleared on the next tg_update_disptime(). 960 */ 961 if (!sq->nr_queued[rw]) 962 tg->flags |= THROTL_TG_WAS_EMPTY; 963 964 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); 965 966 sq->nr_queued[rw]++; 967 throtl_enqueue_tg(tg); 968 } 969 970 static void tg_update_disptime(struct throtl_grp *tg) 971 { 972 struct throtl_service_queue *sq = &tg->service_queue; 973 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 974 struct bio *bio; 975 976 bio = throtl_peek_queued(&sq->queued[READ]); 977 if (bio) 978 tg_may_dispatch(tg, bio, &read_wait); 979 980 bio = throtl_peek_queued(&sq->queued[WRITE]); 981 if (bio) 982 tg_may_dispatch(tg, bio, &write_wait); 983 984 min_wait = min(read_wait, write_wait); 985 disptime = jiffies + min_wait; 986 987 /* Update dispatch time */ 988 throtl_dequeue_tg(tg); 989 tg->disptime = disptime; 990 throtl_enqueue_tg(tg); 991 992 /* see throtl_add_bio_tg() */ 993 tg->flags &= ~THROTL_TG_WAS_EMPTY; 994 } 995 996 static void start_parent_slice_with_credit(struct throtl_grp *child_tg, 997 struct throtl_grp *parent_tg, bool rw) 998 { 999 if (throtl_slice_used(parent_tg, rw)) { 1000 throtl_start_new_slice_with_credit(parent_tg, rw, 1001 child_tg->slice_start[rw]); 1002 } 1003 1004 } 1005 1006 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) 1007 { 1008 struct throtl_service_queue *sq = &tg->service_queue; 1009 struct throtl_service_queue *parent_sq = sq->parent_sq; 1010 struct throtl_grp *parent_tg = sq_to_tg(parent_sq); 1011 struct throtl_grp *tg_to_put = NULL; 1012 struct bio *bio; 1013 1014 /* 1015 * @bio is being transferred from @tg to @parent_sq. Popping a bio 1016 * from @tg may put its reference and @parent_sq might end up 1017 * getting released prematurely. Remember the tg to put and put it 1018 * after @bio is transferred to @parent_sq. 1019 */ 1020 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); 1021 sq->nr_queued[rw]--; 1022 1023 throtl_charge_bio(tg, bio); 1024 1025 /* 1026 * If our parent is another tg, we just need to transfer @bio to 1027 * the parent using throtl_add_bio_tg(). If our parent is 1028 * @td->service_queue, @bio is ready to be issued. Put it on its 1029 * bio_lists[] and decrease total number queued. The caller is 1030 * responsible for issuing these bios. 1031 */ 1032 if (parent_tg) { 1033 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); 1034 start_parent_slice_with_credit(tg, parent_tg, rw); 1035 } else { 1036 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], 1037 &parent_sq->queued[rw]); 1038 BUG_ON(tg->td->nr_queued[rw] <= 0); 1039 tg->td->nr_queued[rw]--; 1040 } 1041 1042 throtl_trim_slice(tg, rw); 1043 1044 if (tg_to_put) 1045 blkg_put(tg_to_blkg(tg_to_put)); 1046 } 1047 1048 static int throtl_dispatch_tg(struct throtl_grp *tg) 1049 { 1050 struct throtl_service_queue *sq = &tg->service_queue; 1051 unsigned int nr_reads = 0, nr_writes = 0; 1052 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4; 1053 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads; 1054 struct bio *bio; 1055 1056 /* Try to dispatch 75% READS and 25% WRITES */ 1057 1058 while ((bio = throtl_peek_queued(&sq->queued[READ])) && 1059 tg_may_dispatch(tg, bio, NULL)) { 1060 1061 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1062 nr_reads++; 1063 1064 if (nr_reads >= max_nr_reads) 1065 break; 1066 } 1067 1068 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && 1069 tg_may_dispatch(tg, bio, NULL)) { 1070 1071 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1072 nr_writes++; 1073 1074 if (nr_writes >= max_nr_writes) 1075 break; 1076 } 1077 1078 return nr_reads + nr_writes; 1079 } 1080 1081 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) 1082 { 1083 unsigned int nr_disp = 0; 1084 1085 while (1) { 1086 struct throtl_grp *tg; 1087 struct throtl_service_queue *sq; 1088 1089 if (!parent_sq->nr_pending) 1090 break; 1091 1092 tg = throtl_rb_first(parent_sq); 1093 if (!tg) 1094 break; 1095 1096 if (time_before(jiffies, tg->disptime)) 1097 break; 1098 1099 throtl_dequeue_tg(tg); 1100 1101 nr_disp += throtl_dispatch_tg(tg); 1102 1103 sq = &tg->service_queue; 1104 if (sq->nr_queued[0] || sq->nr_queued[1]) 1105 tg_update_disptime(tg); 1106 1107 if (nr_disp >= THROTL_QUANTUM) 1108 break; 1109 } 1110 1111 return nr_disp; 1112 } 1113 1114 static bool throtl_can_upgrade(struct throtl_data *td, 1115 struct throtl_grp *this_tg); 1116 /** 1117 * throtl_pending_timer_fn - timer function for service_queue->pending_timer 1118 * @t: the pending_timer member of the throtl_service_queue being serviced 1119 * 1120 * This timer is armed when a child throtl_grp with active bio's become 1121 * pending and queued on the service_queue's pending_tree and expires when 1122 * the first child throtl_grp should be dispatched. This function 1123 * dispatches bio's from the children throtl_grps to the parent 1124 * service_queue. 1125 * 1126 * If the parent's parent is another throtl_grp, dispatching is propagated 1127 * by either arming its pending_timer or repeating dispatch directly. If 1128 * the top-level service_tree is reached, throtl_data->dispatch_work is 1129 * kicked so that the ready bio's are issued. 1130 */ 1131 static void throtl_pending_timer_fn(struct timer_list *t) 1132 { 1133 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer); 1134 struct throtl_grp *tg = sq_to_tg(sq); 1135 struct throtl_data *td = sq_to_td(sq); 1136 struct request_queue *q = td->queue; 1137 struct throtl_service_queue *parent_sq; 1138 bool dispatched; 1139 int ret; 1140 1141 spin_lock_irq(&q->queue_lock); 1142 if (throtl_can_upgrade(td, NULL)) 1143 throtl_upgrade_state(td); 1144 1145 again: 1146 parent_sq = sq->parent_sq; 1147 dispatched = false; 1148 1149 while (true) { 1150 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", 1151 sq->nr_queued[READ] + sq->nr_queued[WRITE], 1152 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1153 1154 ret = throtl_select_dispatch(sq); 1155 if (ret) { 1156 throtl_log(sq, "bios disp=%u", ret); 1157 dispatched = true; 1158 } 1159 1160 if (throtl_schedule_next_dispatch(sq, false)) 1161 break; 1162 1163 /* this dispatch windows is still open, relax and repeat */ 1164 spin_unlock_irq(&q->queue_lock); 1165 cpu_relax(); 1166 spin_lock_irq(&q->queue_lock); 1167 } 1168 1169 if (!dispatched) 1170 goto out_unlock; 1171 1172 if (parent_sq) { 1173 /* @parent_sq is another throl_grp, propagate dispatch */ 1174 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1175 tg_update_disptime(tg); 1176 if (!throtl_schedule_next_dispatch(parent_sq, false)) { 1177 /* window is already open, repeat dispatching */ 1178 sq = parent_sq; 1179 tg = sq_to_tg(sq); 1180 goto again; 1181 } 1182 } 1183 } else { 1184 /* reached the top-level, queue issuing */ 1185 queue_work(kthrotld_workqueue, &td->dispatch_work); 1186 } 1187 out_unlock: 1188 spin_unlock_irq(&q->queue_lock); 1189 } 1190 1191 /** 1192 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work 1193 * @work: work item being executed 1194 * 1195 * This function is queued for execution when bios reach the bio_lists[] 1196 * of throtl_data->service_queue. Those bios are ready and issued by this 1197 * function. 1198 */ 1199 static void blk_throtl_dispatch_work_fn(struct work_struct *work) 1200 { 1201 struct throtl_data *td = container_of(work, struct throtl_data, 1202 dispatch_work); 1203 struct throtl_service_queue *td_sq = &td->service_queue; 1204 struct request_queue *q = td->queue; 1205 struct bio_list bio_list_on_stack; 1206 struct bio *bio; 1207 struct blk_plug plug; 1208 int rw; 1209 1210 bio_list_init(&bio_list_on_stack); 1211 1212 spin_lock_irq(&q->queue_lock); 1213 for (rw = READ; rw <= WRITE; rw++) 1214 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) 1215 bio_list_add(&bio_list_on_stack, bio); 1216 spin_unlock_irq(&q->queue_lock); 1217 1218 if (!bio_list_empty(&bio_list_on_stack)) { 1219 blk_start_plug(&plug); 1220 while ((bio = bio_list_pop(&bio_list_on_stack))) 1221 submit_bio_noacct(bio); 1222 blk_finish_plug(&plug); 1223 } 1224 } 1225 1226 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, 1227 int off) 1228 { 1229 struct throtl_grp *tg = pd_to_tg(pd); 1230 u64 v = *(u64 *)((void *)tg + off); 1231 1232 if (v == U64_MAX) 1233 return 0; 1234 return __blkg_prfill_u64(sf, pd, v); 1235 } 1236 1237 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, 1238 int off) 1239 { 1240 struct throtl_grp *tg = pd_to_tg(pd); 1241 unsigned int v = *(unsigned int *)((void *)tg + off); 1242 1243 if (v == UINT_MAX) 1244 return 0; 1245 return __blkg_prfill_u64(sf, pd, v); 1246 } 1247 1248 static int tg_print_conf_u64(struct seq_file *sf, void *v) 1249 { 1250 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, 1251 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1252 return 0; 1253 } 1254 1255 static int tg_print_conf_uint(struct seq_file *sf, void *v) 1256 { 1257 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, 1258 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1259 return 0; 1260 } 1261 1262 static void tg_conf_updated(struct throtl_grp *tg, bool global) 1263 { 1264 struct throtl_service_queue *sq = &tg->service_queue; 1265 struct cgroup_subsys_state *pos_css; 1266 struct blkcg_gq *blkg; 1267 1268 throtl_log(&tg->service_queue, 1269 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", 1270 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), 1271 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); 1272 1273 /* 1274 * Update has_rules[] flags for the updated tg's subtree. A tg is 1275 * considered to have rules if either the tg itself or any of its 1276 * ancestors has rules. This identifies groups without any 1277 * restrictions in the whole hierarchy and allows them to bypass 1278 * blk-throttle. 1279 */ 1280 blkg_for_each_descendant_pre(blkg, pos_css, 1281 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { 1282 struct throtl_grp *this_tg = blkg_to_tg(blkg); 1283 struct throtl_grp *parent_tg; 1284 1285 tg_update_has_rules(this_tg); 1286 /* ignore root/second level */ 1287 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || 1288 !blkg->parent->parent) 1289 continue; 1290 parent_tg = blkg_to_tg(blkg->parent); 1291 /* 1292 * make sure all children has lower idle time threshold and 1293 * higher latency target 1294 */ 1295 this_tg->idletime_threshold = min(this_tg->idletime_threshold, 1296 parent_tg->idletime_threshold); 1297 this_tg->latency_target = max(this_tg->latency_target, 1298 parent_tg->latency_target); 1299 } 1300 1301 /* 1302 * We're already holding queue_lock and know @tg is valid. Let's 1303 * apply the new config directly. 1304 * 1305 * Restart the slices for both READ and WRITES. It might happen 1306 * that a group's limit are dropped suddenly and we don't want to 1307 * account recently dispatched IO with new low rate. 1308 */ 1309 throtl_start_new_slice(tg, READ); 1310 throtl_start_new_slice(tg, WRITE); 1311 1312 if (tg->flags & THROTL_TG_PENDING) { 1313 tg_update_disptime(tg); 1314 throtl_schedule_next_dispatch(sq->parent_sq, true); 1315 } 1316 } 1317 1318 static ssize_t tg_set_conf(struct kernfs_open_file *of, 1319 char *buf, size_t nbytes, loff_t off, bool is_u64) 1320 { 1321 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1322 struct blkg_conf_ctx ctx; 1323 struct throtl_grp *tg; 1324 int ret; 1325 u64 v; 1326 1327 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1328 if (ret) 1329 return ret; 1330 1331 ret = -EINVAL; 1332 if (sscanf(ctx.body, "%llu", &v) != 1) 1333 goto out_finish; 1334 if (!v) 1335 v = U64_MAX; 1336 1337 tg = blkg_to_tg(ctx.blkg); 1338 1339 if (is_u64) 1340 *(u64 *)((void *)tg + of_cft(of)->private) = v; 1341 else 1342 *(unsigned int *)((void *)tg + of_cft(of)->private) = v; 1343 1344 tg_conf_updated(tg, false); 1345 ret = 0; 1346 out_finish: 1347 blkg_conf_finish(&ctx); 1348 return ret ?: nbytes; 1349 } 1350 1351 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, 1352 char *buf, size_t nbytes, loff_t off) 1353 { 1354 return tg_set_conf(of, buf, nbytes, off, true); 1355 } 1356 1357 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, 1358 char *buf, size_t nbytes, loff_t off) 1359 { 1360 return tg_set_conf(of, buf, nbytes, off, false); 1361 } 1362 1363 static int tg_print_rwstat(struct seq_file *sf, void *v) 1364 { 1365 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1366 blkg_prfill_rwstat, &blkcg_policy_throtl, 1367 seq_cft(sf)->private, true); 1368 return 0; 1369 } 1370 1371 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf, 1372 struct blkg_policy_data *pd, int off) 1373 { 1374 struct blkg_rwstat_sample sum; 1375 1376 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off, 1377 &sum); 1378 return __blkg_prfill_rwstat(sf, pd, &sum); 1379 } 1380 1381 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v) 1382 { 1383 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1384 tg_prfill_rwstat_recursive, &blkcg_policy_throtl, 1385 seq_cft(sf)->private, true); 1386 return 0; 1387 } 1388 1389 static struct cftype throtl_legacy_files[] = { 1390 { 1391 .name = "throttle.read_bps_device", 1392 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]), 1393 .seq_show = tg_print_conf_u64, 1394 .write = tg_set_conf_u64, 1395 }, 1396 { 1397 .name = "throttle.write_bps_device", 1398 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]), 1399 .seq_show = tg_print_conf_u64, 1400 .write = tg_set_conf_u64, 1401 }, 1402 { 1403 .name = "throttle.read_iops_device", 1404 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]), 1405 .seq_show = tg_print_conf_uint, 1406 .write = tg_set_conf_uint, 1407 }, 1408 { 1409 .name = "throttle.write_iops_device", 1410 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]), 1411 .seq_show = tg_print_conf_uint, 1412 .write = tg_set_conf_uint, 1413 }, 1414 { 1415 .name = "throttle.io_service_bytes", 1416 .private = offsetof(struct throtl_grp, stat_bytes), 1417 .seq_show = tg_print_rwstat, 1418 }, 1419 { 1420 .name = "throttle.io_service_bytes_recursive", 1421 .private = offsetof(struct throtl_grp, stat_bytes), 1422 .seq_show = tg_print_rwstat_recursive, 1423 }, 1424 { 1425 .name = "throttle.io_serviced", 1426 .private = offsetof(struct throtl_grp, stat_ios), 1427 .seq_show = tg_print_rwstat, 1428 }, 1429 { 1430 .name = "throttle.io_serviced_recursive", 1431 .private = offsetof(struct throtl_grp, stat_ios), 1432 .seq_show = tg_print_rwstat_recursive, 1433 }, 1434 { } /* terminate */ 1435 }; 1436 1437 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, 1438 int off) 1439 { 1440 struct throtl_grp *tg = pd_to_tg(pd); 1441 const char *dname = blkg_dev_name(pd->blkg); 1442 char bufs[4][21] = { "max", "max", "max", "max" }; 1443 u64 bps_dft; 1444 unsigned int iops_dft; 1445 char idle_time[26] = ""; 1446 char latency_time[26] = ""; 1447 1448 if (!dname) 1449 return 0; 1450 1451 if (off == LIMIT_LOW) { 1452 bps_dft = 0; 1453 iops_dft = 0; 1454 } else { 1455 bps_dft = U64_MAX; 1456 iops_dft = UINT_MAX; 1457 } 1458 1459 if (tg->bps_conf[READ][off] == bps_dft && 1460 tg->bps_conf[WRITE][off] == bps_dft && 1461 tg->iops_conf[READ][off] == iops_dft && 1462 tg->iops_conf[WRITE][off] == iops_dft && 1463 (off != LIMIT_LOW || 1464 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD && 1465 tg->latency_target_conf == DFL_LATENCY_TARGET))) 1466 return 0; 1467 1468 if (tg->bps_conf[READ][off] != U64_MAX) 1469 snprintf(bufs[0], sizeof(bufs[0]), "%llu", 1470 tg->bps_conf[READ][off]); 1471 if (tg->bps_conf[WRITE][off] != U64_MAX) 1472 snprintf(bufs[1], sizeof(bufs[1]), "%llu", 1473 tg->bps_conf[WRITE][off]); 1474 if (tg->iops_conf[READ][off] != UINT_MAX) 1475 snprintf(bufs[2], sizeof(bufs[2]), "%u", 1476 tg->iops_conf[READ][off]); 1477 if (tg->iops_conf[WRITE][off] != UINT_MAX) 1478 snprintf(bufs[3], sizeof(bufs[3]), "%u", 1479 tg->iops_conf[WRITE][off]); 1480 if (off == LIMIT_LOW) { 1481 if (tg->idletime_threshold_conf == ULONG_MAX) 1482 strcpy(idle_time, " idle=max"); 1483 else 1484 snprintf(idle_time, sizeof(idle_time), " idle=%lu", 1485 tg->idletime_threshold_conf); 1486 1487 if (tg->latency_target_conf == ULONG_MAX) 1488 strcpy(latency_time, " latency=max"); 1489 else 1490 snprintf(latency_time, sizeof(latency_time), 1491 " latency=%lu", tg->latency_target_conf); 1492 } 1493 1494 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n", 1495 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time, 1496 latency_time); 1497 return 0; 1498 } 1499 1500 static int tg_print_limit(struct seq_file *sf, void *v) 1501 { 1502 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, 1503 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1504 return 0; 1505 } 1506 1507 static ssize_t tg_set_limit(struct kernfs_open_file *of, 1508 char *buf, size_t nbytes, loff_t off) 1509 { 1510 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1511 struct blkg_conf_ctx ctx; 1512 struct throtl_grp *tg; 1513 u64 v[4]; 1514 unsigned long idle_time; 1515 unsigned long latency_time; 1516 int ret; 1517 int index = of_cft(of)->private; 1518 1519 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1520 if (ret) 1521 return ret; 1522 1523 tg = blkg_to_tg(ctx.blkg); 1524 1525 v[0] = tg->bps_conf[READ][index]; 1526 v[1] = tg->bps_conf[WRITE][index]; 1527 v[2] = tg->iops_conf[READ][index]; 1528 v[3] = tg->iops_conf[WRITE][index]; 1529 1530 idle_time = tg->idletime_threshold_conf; 1531 latency_time = tg->latency_target_conf; 1532 while (true) { 1533 char tok[27]; /* wiops=18446744073709551616 */ 1534 char *p; 1535 u64 val = U64_MAX; 1536 int len; 1537 1538 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) 1539 break; 1540 if (tok[0] == '\0') 1541 break; 1542 ctx.body += len; 1543 1544 ret = -EINVAL; 1545 p = tok; 1546 strsep(&p, "="); 1547 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) 1548 goto out_finish; 1549 1550 ret = -ERANGE; 1551 if (!val) 1552 goto out_finish; 1553 1554 ret = -EINVAL; 1555 if (!strcmp(tok, "rbps") && val > 1) 1556 v[0] = val; 1557 else if (!strcmp(tok, "wbps") && val > 1) 1558 v[1] = val; 1559 else if (!strcmp(tok, "riops") && val > 1) 1560 v[2] = min_t(u64, val, UINT_MAX); 1561 else if (!strcmp(tok, "wiops") && val > 1) 1562 v[3] = min_t(u64, val, UINT_MAX); 1563 else if (off == LIMIT_LOW && !strcmp(tok, "idle")) 1564 idle_time = val; 1565 else if (off == LIMIT_LOW && !strcmp(tok, "latency")) 1566 latency_time = val; 1567 else 1568 goto out_finish; 1569 } 1570 1571 tg->bps_conf[READ][index] = v[0]; 1572 tg->bps_conf[WRITE][index] = v[1]; 1573 tg->iops_conf[READ][index] = v[2]; 1574 tg->iops_conf[WRITE][index] = v[3]; 1575 1576 if (index == LIMIT_MAX) { 1577 tg->bps[READ][index] = v[0]; 1578 tg->bps[WRITE][index] = v[1]; 1579 tg->iops[READ][index] = v[2]; 1580 tg->iops[WRITE][index] = v[3]; 1581 } 1582 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW], 1583 tg->bps_conf[READ][LIMIT_MAX]); 1584 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW], 1585 tg->bps_conf[WRITE][LIMIT_MAX]); 1586 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW], 1587 tg->iops_conf[READ][LIMIT_MAX]); 1588 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW], 1589 tg->iops_conf[WRITE][LIMIT_MAX]); 1590 tg->idletime_threshold_conf = idle_time; 1591 tg->latency_target_conf = latency_time; 1592 1593 /* force user to configure all settings for low limit */ 1594 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] || 1595 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) || 1596 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD || 1597 tg->latency_target_conf == DFL_LATENCY_TARGET) { 1598 tg->bps[READ][LIMIT_LOW] = 0; 1599 tg->bps[WRITE][LIMIT_LOW] = 0; 1600 tg->iops[READ][LIMIT_LOW] = 0; 1601 tg->iops[WRITE][LIMIT_LOW] = 0; 1602 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 1603 tg->latency_target = DFL_LATENCY_TARGET; 1604 } else if (index == LIMIT_LOW) { 1605 tg->idletime_threshold = tg->idletime_threshold_conf; 1606 tg->latency_target = tg->latency_target_conf; 1607 } 1608 1609 blk_throtl_update_limit_valid(tg->td); 1610 if (tg->td->limit_valid[LIMIT_LOW]) { 1611 if (index == LIMIT_LOW) 1612 tg->td->limit_index = LIMIT_LOW; 1613 } else 1614 tg->td->limit_index = LIMIT_MAX; 1615 tg_conf_updated(tg, index == LIMIT_LOW && 1616 tg->td->limit_valid[LIMIT_LOW]); 1617 ret = 0; 1618 out_finish: 1619 blkg_conf_finish(&ctx); 1620 return ret ?: nbytes; 1621 } 1622 1623 static struct cftype throtl_files[] = { 1624 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 1625 { 1626 .name = "low", 1627 .flags = CFTYPE_NOT_ON_ROOT, 1628 .seq_show = tg_print_limit, 1629 .write = tg_set_limit, 1630 .private = LIMIT_LOW, 1631 }, 1632 #endif 1633 { 1634 .name = "max", 1635 .flags = CFTYPE_NOT_ON_ROOT, 1636 .seq_show = tg_print_limit, 1637 .write = tg_set_limit, 1638 .private = LIMIT_MAX, 1639 }, 1640 { } /* terminate */ 1641 }; 1642 1643 static void throtl_shutdown_wq(struct request_queue *q) 1644 { 1645 struct throtl_data *td = q->td; 1646 1647 cancel_work_sync(&td->dispatch_work); 1648 } 1649 1650 struct blkcg_policy blkcg_policy_throtl = { 1651 .dfl_cftypes = throtl_files, 1652 .legacy_cftypes = throtl_legacy_files, 1653 1654 .pd_alloc_fn = throtl_pd_alloc, 1655 .pd_init_fn = throtl_pd_init, 1656 .pd_online_fn = throtl_pd_online, 1657 .pd_offline_fn = throtl_pd_offline, 1658 .pd_free_fn = throtl_pd_free, 1659 }; 1660 1661 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg) 1662 { 1663 unsigned long rtime = jiffies, wtime = jiffies; 1664 1665 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]) 1666 rtime = tg->last_low_overflow_time[READ]; 1667 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) 1668 wtime = tg->last_low_overflow_time[WRITE]; 1669 return min(rtime, wtime); 1670 } 1671 1672 /* tg should not be an intermediate node */ 1673 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg) 1674 { 1675 struct throtl_service_queue *parent_sq; 1676 struct throtl_grp *parent = tg; 1677 unsigned long ret = __tg_last_low_overflow_time(tg); 1678 1679 while (true) { 1680 parent_sq = parent->service_queue.parent_sq; 1681 parent = sq_to_tg(parent_sq); 1682 if (!parent) 1683 break; 1684 1685 /* 1686 * The parent doesn't have low limit, it always reaches low 1687 * limit. Its overflow time is useless for children 1688 */ 1689 if (!parent->bps[READ][LIMIT_LOW] && 1690 !parent->iops[READ][LIMIT_LOW] && 1691 !parent->bps[WRITE][LIMIT_LOW] && 1692 !parent->iops[WRITE][LIMIT_LOW]) 1693 continue; 1694 if (time_after(__tg_last_low_overflow_time(parent), ret)) 1695 ret = __tg_last_low_overflow_time(parent); 1696 } 1697 return ret; 1698 } 1699 1700 static bool throtl_tg_is_idle(struct throtl_grp *tg) 1701 { 1702 /* 1703 * cgroup is idle if: 1704 * - single idle is too long, longer than a fixed value (in case user 1705 * configure a too big threshold) or 4 times of idletime threshold 1706 * - average think time is more than threshold 1707 * - IO latency is largely below threshold 1708 */ 1709 unsigned long time; 1710 bool ret; 1711 1712 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold); 1713 ret = tg->latency_target == DFL_LATENCY_TARGET || 1714 tg->idletime_threshold == DFL_IDLE_THRESHOLD || 1715 (ktime_get_ns() >> 10) - tg->last_finish_time > time || 1716 tg->avg_idletime > tg->idletime_threshold || 1717 (tg->latency_target && tg->bio_cnt && 1718 tg->bad_bio_cnt * 5 < tg->bio_cnt); 1719 throtl_log(&tg->service_queue, 1720 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d", 1721 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt, 1722 tg->bio_cnt, ret, tg->td->scale); 1723 return ret; 1724 } 1725 1726 static bool throtl_tg_can_upgrade(struct throtl_grp *tg) 1727 { 1728 struct throtl_service_queue *sq = &tg->service_queue; 1729 bool read_limit, write_limit; 1730 1731 /* 1732 * if cgroup reaches low limit (if low limit is 0, the cgroup always 1733 * reaches), it's ok to upgrade to next limit 1734 */ 1735 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]; 1736 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]; 1737 if (!read_limit && !write_limit) 1738 return true; 1739 if (read_limit && sq->nr_queued[READ] && 1740 (!write_limit || sq->nr_queued[WRITE])) 1741 return true; 1742 if (write_limit && sq->nr_queued[WRITE] && 1743 (!read_limit || sq->nr_queued[READ])) 1744 return true; 1745 1746 if (time_after_eq(jiffies, 1747 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) && 1748 throtl_tg_is_idle(tg)) 1749 return true; 1750 return false; 1751 } 1752 1753 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg) 1754 { 1755 while (true) { 1756 if (throtl_tg_can_upgrade(tg)) 1757 return true; 1758 tg = sq_to_tg(tg->service_queue.parent_sq); 1759 if (!tg || !tg_to_blkg(tg)->parent) 1760 return false; 1761 } 1762 return false; 1763 } 1764 1765 static bool throtl_can_upgrade(struct throtl_data *td, 1766 struct throtl_grp *this_tg) 1767 { 1768 struct cgroup_subsys_state *pos_css; 1769 struct blkcg_gq *blkg; 1770 1771 if (td->limit_index != LIMIT_LOW) 1772 return false; 1773 1774 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice)) 1775 return false; 1776 1777 rcu_read_lock(); 1778 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1779 struct throtl_grp *tg = blkg_to_tg(blkg); 1780 1781 if (tg == this_tg) 1782 continue; 1783 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1784 continue; 1785 if (!throtl_hierarchy_can_upgrade(tg)) { 1786 rcu_read_unlock(); 1787 return false; 1788 } 1789 } 1790 rcu_read_unlock(); 1791 return true; 1792 } 1793 1794 static void throtl_upgrade_check(struct throtl_grp *tg) 1795 { 1796 unsigned long now = jiffies; 1797 1798 if (tg->td->limit_index != LIMIT_LOW) 1799 return; 1800 1801 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1802 return; 1803 1804 tg->last_check_time = now; 1805 1806 if (!time_after_eq(now, 1807 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice)) 1808 return; 1809 1810 if (throtl_can_upgrade(tg->td, NULL)) 1811 throtl_upgrade_state(tg->td); 1812 } 1813 1814 static void throtl_upgrade_state(struct throtl_data *td) 1815 { 1816 struct cgroup_subsys_state *pos_css; 1817 struct blkcg_gq *blkg; 1818 1819 throtl_log(&td->service_queue, "upgrade to max"); 1820 td->limit_index = LIMIT_MAX; 1821 td->low_upgrade_time = jiffies; 1822 td->scale = 0; 1823 rcu_read_lock(); 1824 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1825 struct throtl_grp *tg = blkg_to_tg(blkg); 1826 struct throtl_service_queue *sq = &tg->service_queue; 1827 1828 tg->disptime = jiffies - 1; 1829 throtl_select_dispatch(sq); 1830 throtl_schedule_next_dispatch(sq, true); 1831 } 1832 rcu_read_unlock(); 1833 throtl_select_dispatch(&td->service_queue); 1834 throtl_schedule_next_dispatch(&td->service_queue, true); 1835 queue_work(kthrotld_workqueue, &td->dispatch_work); 1836 } 1837 1838 static void throtl_downgrade_state(struct throtl_data *td) 1839 { 1840 td->scale /= 2; 1841 1842 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale); 1843 if (td->scale) { 1844 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice; 1845 return; 1846 } 1847 1848 td->limit_index = LIMIT_LOW; 1849 td->low_downgrade_time = jiffies; 1850 } 1851 1852 static bool throtl_tg_can_downgrade(struct throtl_grp *tg) 1853 { 1854 struct throtl_data *td = tg->td; 1855 unsigned long now = jiffies; 1856 1857 /* 1858 * If cgroup is below low limit, consider downgrade and throttle other 1859 * cgroups 1860 */ 1861 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) && 1862 time_after_eq(now, tg_last_low_overflow_time(tg) + 1863 td->throtl_slice) && 1864 (!throtl_tg_is_idle(tg) || 1865 !list_empty(&tg_to_blkg(tg)->blkcg->css.children))) 1866 return true; 1867 return false; 1868 } 1869 1870 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg) 1871 { 1872 while (true) { 1873 if (!throtl_tg_can_downgrade(tg)) 1874 return false; 1875 tg = sq_to_tg(tg->service_queue.parent_sq); 1876 if (!tg || !tg_to_blkg(tg)->parent) 1877 break; 1878 } 1879 return true; 1880 } 1881 1882 static void throtl_downgrade_check(struct throtl_grp *tg) 1883 { 1884 uint64_t bps; 1885 unsigned int iops; 1886 unsigned long elapsed_time; 1887 unsigned long now = jiffies; 1888 1889 if (tg->td->limit_index != LIMIT_MAX || 1890 !tg->td->limit_valid[LIMIT_LOW]) 1891 return; 1892 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1893 return; 1894 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1895 return; 1896 1897 elapsed_time = now - tg->last_check_time; 1898 tg->last_check_time = now; 1899 1900 if (time_before(now, tg_last_low_overflow_time(tg) + 1901 tg->td->throtl_slice)) 1902 return; 1903 1904 if (tg->bps[READ][LIMIT_LOW]) { 1905 bps = tg->last_bytes_disp[READ] * HZ; 1906 do_div(bps, elapsed_time); 1907 if (bps >= tg->bps[READ][LIMIT_LOW]) 1908 tg->last_low_overflow_time[READ] = now; 1909 } 1910 1911 if (tg->bps[WRITE][LIMIT_LOW]) { 1912 bps = tg->last_bytes_disp[WRITE] * HZ; 1913 do_div(bps, elapsed_time); 1914 if (bps >= tg->bps[WRITE][LIMIT_LOW]) 1915 tg->last_low_overflow_time[WRITE] = now; 1916 } 1917 1918 if (tg->iops[READ][LIMIT_LOW]) { 1919 tg->last_io_disp[READ] += atomic_xchg(&tg->last_io_split_cnt[READ], 0); 1920 iops = tg->last_io_disp[READ] * HZ / elapsed_time; 1921 if (iops >= tg->iops[READ][LIMIT_LOW]) 1922 tg->last_low_overflow_time[READ] = now; 1923 } 1924 1925 if (tg->iops[WRITE][LIMIT_LOW]) { 1926 tg->last_io_disp[WRITE] += atomic_xchg(&tg->last_io_split_cnt[WRITE], 0); 1927 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time; 1928 if (iops >= tg->iops[WRITE][LIMIT_LOW]) 1929 tg->last_low_overflow_time[WRITE] = now; 1930 } 1931 1932 /* 1933 * If cgroup is below low limit, consider downgrade and throttle other 1934 * cgroups 1935 */ 1936 if (throtl_hierarchy_can_downgrade(tg)) 1937 throtl_downgrade_state(tg->td); 1938 1939 tg->last_bytes_disp[READ] = 0; 1940 tg->last_bytes_disp[WRITE] = 0; 1941 tg->last_io_disp[READ] = 0; 1942 tg->last_io_disp[WRITE] = 0; 1943 } 1944 1945 static void blk_throtl_update_idletime(struct throtl_grp *tg) 1946 { 1947 unsigned long now; 1948 unsigned long last_finish_time = tg->last_finish_time; 1949 1950 if (last_finish_time == 0) 1951 return; 1952 1953 now = ktime_get_ns() >> 10; 1954 if (now <= last_finish_time || 1955 last_finish_time == tg->checked_last_finish_time) 1956 return; 1957 1958 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3; 1959 tg->checked_last_finish_time = last_finish_time; 1960 } 1961 1962 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 1963 static void throtl_update_latency_buckets(struct throtl_data *td) 1964 { 1965 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE]; 1966 int i, cpu, rw; 1967 unsigned long last_latency[2] = { 0 }; 1968 unsigned long latency[2]; 1969 1970 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW]) 1971 return; 1972 if (time_before(jiffies, td->last_calculate_time + HZ)) 1973 return; 1974 td->last_calculate_time = jiffies; 1975 1976 memset(avg_latency, 0, sizeof(avg_latency)); 1977 for (rw = READ; rw <= WRITE; rw++) { 1978 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 1979 struct latency_bucket *tmp = &td->tmp_buckets[rw][i]; 1980 1981 for_each_possible_cpu(cpu) { 1982 struct latency_bucket *bucket; 1983 1984 /* this isn't race free, but ok in practice */ 1985 bucket = per_cpu_ptr(td->latency_buckets[rw], 1986 cpu); 1987 tmp->total_latency += bucket[i].total_latency; 1988 tmp->samples += bucket[i].samples; 1989 bucket[i].total_latency = 0; 1990 bucket[i].samples = 0; 1991 } 1992 1993 if (tmp->samples >= 32) { 1994 int samples = tmp->samples; 1995 1996 latency[rw] = tmp->total_latency; 1997 1998 tmp->total_latency = 0; 1999 tmp->samples = 0; 2000 latency[rw] /= samples; 2001 if (latency[rw] == 0) 2002 continue; 2003 avg_latency[rw][i].latency = latency[rw]; 2004 } 2005 } 2006 } 2007 2008 for (rw = READ; rw <= WRITE; rw++) { 2009 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2010 if (!avg_latency[rw][i].latency) { 2011 if (td->avg_buckets[rw][i].latency < last_latency[rw]) 2012 td->avg_buckets[rw][i].latency = 2013 last_latency[rw]; 2014 continue; 2015 } 2016 2017 if (!td->avg_buckets[rw][i].valid) 2018 latency[rw] = avg_latency[rw][i].latency; 2019 else 2020 latency[rw] = (td->avg_buckets[rw][i].latency * 7 + 2021 avg_latency[rw][i].latency) >> 3; 2022 2023 td->avg_buckets[rw][i].latency = max(latency[rw], 2024 last_latency[rw]); 2025 td->avg_buckets[rw][i].valid = true; 2026 last_latency[rw] = td->avg_buckets[rw][i].latency; 2027 } 2028 } 2029 2030 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) 2031 throtl_log(&td->service_queue, 2032 "Latency bucket %d: read latency=%ld, read valid=%d, " 2033 "write latency=%ld, write valid=%d", i, 2034 td->avg_buckets[READ][i].latency, 2035 td->avg_buckets[READ][i].valid, 2036 td->avg_buckets[WRITE][i].latency, 2037 td->avg_buckets[WRITE][i].valid); 2038 } 2039 #else 2040 static inline void throtl_update_latency_buckets(struct throtl_data *td) 2041 { 2042 } 2043 #endif 2044 2045 void blk_throtl_charge_bio_split(struct bio *bio) 2046 { 2047 struct blkcg_gq *blkg = bio->bi_blkg; 2048 struct throtl_grp *parent = blkg_to_tg(blkg); 2049 struct throtl_service_queue *parent_sq; 2050 bool rw = bio_data_dir(bio); 2051 2052 do { 2053 if (!parent->has_rules[rw]) 2054 break; 2055 2056 atomic_inc(&parent->io_split_cnt[rw]); 2057 atomic_inc(&parent->last_io_split_cnt[rw]); 2058 2059 parent_sq = parent->service_queue.parent_sq; 2060 parent = sq_to_tg(parent_sq); 2061 } while (parent); 2062 } 2063 2064 bool __blk_throtl_bio(struct bio *bio) 2065 { 2066 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2067 struct blkcg_gq *blkg = bio->bi_blkg; 2068 struct throtl_qnode *qn = NULL; 2069 struct throtl_grp *tg = blkg_to_tg(blkg); 2070 struct throtl_service_queue *sq; 2071 bool rw = bio_data_dir(bio); 2072 bool throttled = false; 2073 struct throtl_data *td = tg->td; 2074 2075 rcu_read_lock(); 2076 2077 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) { 2078 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf, 2079 bio->bi_iter.bi_size); 2080 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1); 2081 } 2082 2083 spin_lock_irq(&q->queue_lock); 2084 2085 throtl_update_latency_buckets(td); 2086 2087 blk_throtl_update_idletime(tg); 2088 2089 sq = &tg->service_queue; 2090 2091 again: 2092 while (true) { 2093 if (tg->last_low_overflow_time[rw] == 0) 2094 tg->last_low_overflow_time[rw] = jiffies; 2095 throtl_downgrade_check(tg); 2096 throtl_upgrade_check(tg); 2097 /* throtl is FIFO - if bios are already queued, should queue */ 2098 if (sq->nr_queued[rw]) 2099 break; 2100 2101 /* if above limits, break to queue */ 2102 if (!tg_may_dispatch(tg, bio, NULL)) { 2103 tg->last_low_overflow_time[rw] = jiffies; 2104 if (throtl_can_upgrade(td, tg)) { 2105 throtl_upgrade_state(td); 2106 goto again; 2107 } 2108 break; 2109 } 2110 2111 /* within limits, let's charge and dispatch directly */ 2112 throtl_charge_bio(tg, bio); 2113 2114 /* 2115 * We need to trim slice even when bios are not being queued 2116 * otherwise it might happen that a bio is not queued for 2117 * a long time and slice keeps on extending and trim is not 2118 * called for a long time. Now if limits are reduced suddenly 2119 * we take into account all the IO dispatched so far at new 2120 * low rate and * newly queued IO gets a really long dispatch 2121 * time. 2122 * 2123 * So keep on trimming slice even if bio is not queued. 2124 */ 2125 throtl_trim_slice(tg, rw); 2126 2127 /* 2128 * @bio passed through this layer without being throttled. 2129 * Climb up the ladder. If we're already at the top, it 2130 * can be executed directly. 2131 */ 2132 qn = &tg->qnode_on_parent[rw]; 2133 sq = sq->parent_sq; 2134 tg = sq_to_tg(sq); 2135 if (!tg) 2136 goto out_unlock; 2137 } 2138 2139 /* out-of-limit, queue to @tg */ 2140 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", 2141 rw == READ ? 'R' : 'W', 2142 tg->bytes_disp[rw], bio->bi_iter.bi_size, 2143 tg_bps_limit(tg, rw), 2144 tg->io_disp[rw], tg_iops_limit(tg, rw), 2145 sq->nr_queued[READ], sq->nr_queued[WRITE]); 2146 2147 tg->last_low_overflow_time[rw] = jiffies; 2148 2149 td->nr_queued[rw]++; 2150 throtl_add_bio_tg(bio, qn, tg); 2151 throttled = true; 2152 2153 /* 2154 * Update @tg's dispatch time and force schedule dispatch if @tg 2155 * was empty before @bio. The forced scheduling isn't likely to 2156 * cause undue delay as @bio is likely to be dispatched directly if 2157 * its @tg's disptime is not in the future. 2158 */ 2159 if (tg->flags & THROTL_TG_WAS_EMPTY) { 2160 tg_update_disptime(tg); 2161 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); 2162 } 2163 2164 out_unlock: 2165 spin_unlock_irq(&q->queue_lock); 2166 bio_set_flag(bio, BIO_THROTTLED); 2167 2168 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2169 if (throttled || !td->track_bio_latency) 2170 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY; 2171 #endif 2172 rcu_read_unlock(); 2173 return throttled; 2174 } 2175 2176 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2177 static void throtl_track_latency(struct throtl_data *td, sector_t size, 2178 int op, unsigned long time) 2179 { 2180 struct latency_bucket *latency; 2181 int index; 2182 2183 if (!td || td->limit_index != LIMIT_LOW || 2184 !(op == REQ_OP_READ || op == REQ_OP_WRITE) || 2185 !blk_queue_nonrot(td->queue)) 2186 return; 2187 2188 index = request_bucket_index(size); 2189 2190 latency = get_cpu_ptr(td->latency_buckets[op]); 2191 latency[index].total_latency += time; 2192 latency[index].samples++; 2193 put_cpu_ptr(td->latency_buckets[op]); 2194 } 2195 2196 void blk_throtl_stat_add(struct request *rq, u64 time_ns) 2197 { 2198 struct request_queue *q = rq->q; 2199 struct throtl_data *td = q->td; 2200 2201 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq), 2202 time_ns >> 10); 2203 } 2204 2205 void blk_throtl_bio_endio(struct bio *bio) 2206 { 2207 struct blkcg_gq *blkg; 2208 struct throtl_grp *tg; 2209 u64 finish_time_ns; 2210 unsigned long finish_time; 2211 unsigned long start_time; 2212 unsigned long lat; 2213 int rw = bio_data_dir(bio); 2214 2215 blkg = bio->bi_blkg; 2216 if (!blkg) 2217 return; 2218 tg = blkg_to_tg(blkg); 2219 if (!tg->td->limit_valid[LIMIT_LOW]) 2220 return; 2221 2222 finish_time_ns = ktime_get_ns(); 2223 tg->last_finish_time = finish_time_ns >> 10; 2224 2225 start_time = bio_issue_time(&bio->bi_issue) >> 10; 2226 finish_time = __bio_issue_time(finish_time_ns) >> 10; 2227 if (!start_time || finish_time <= start_time) 2228 return; 2229 2230 lat = finish_time - start_time; 2231 /* this is only for bio based driver */ 2232 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY)) 2233 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue), 2234 bio_op(bio), lat); 2235 2236 if (tg->latency_target && lat >= tg->td->filtered_latency) { 2237 int bucket; 2238 unsigned int threshold; 2239 2240 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue)); 2241 threshold = tg->td->avg_buckets[rw][bucket].latency + 2242 tg->latency_target; 2243 if (lat > threshold) 2244 tg->bad_bio_cnt++; 2245 /* 2246 * Not race free, could get wrong count, which means cgroups 2247 * will be throttled 2248 */ 2249 tg->bio_cnt++; 2250 } 2251 2252 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) { 2253 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies; 2254 tg->bio_cnt /= 2; 2255 tg->bad_bio_cnt /= 2; 2256 } 2257 } 2258 #endif 2259 2260 int blk_throtl_init(struct request_queue *q) 2261 { 2262 struct throtl_data *td; 2263 int ret; 2264 2265 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 2266 if (!td) 2267 return -ENOMEM; 2268 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) * 2269 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2270 if (!td->latency_buckets[READ]) { 2271 kfree(td); 2272 return -ENOMEM; 2273 } 2274 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) * 2275 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2276 if (!td->latency_buckets[WRITE]) { 2277 free_percpu(td->latency_buckets[READ]); 2278 kfree(td); 2279 return -ENOMEM; 2280 } 2281 2282 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); 2283 throtl_service_queue_init(&td->service_queue); 2284 2285 q->td = td; 2286 td->queue = q; 2287 2288 td->limit_valid[LIMIT_MAX] = true; 2289 td->limit_index = LIMIT_MAX; 2290 td->low_upgrade_time = jiffies; 2291 td->low_downgrade_time = jiffies; 2292 2293 /* activate policy */ 2294 ret = blkcg_activate_policy(q, &blkcg_policy_throtl); 2295 if (ret) { 2296 free_percpu(td->latency_buckets[READ]); 2297 free_percpu(td->latency_buckets[WRITE]); 2298 kfree(td); 2299 } 2300 return ret; 2301 } 2302 2303 void blk_throtl_exit(struct request_queue *q) 2304 { 2305 BUG_ON(!q->td); 2306 del_timer_sync(&q->td->service_queue.pending_timer); 2307 throtl_shutdown_wq(q); 2308 blkcg_deactivate_policy(q, &blkcg_policy_throtl); 2309 free_percpu(q->td->latency_buckets[READ]); 2310 free_percpu(q->td->latency_buckets[WRITE]); 2311 kfree(q->td); 2312 } 2313 2314 void blk_throtl_register_queue(struct request_queue *q) 2315 { 2316 struct throtl_data *td; 2317 int i; 2318 2319 td = q->td; 2320 BUG_ON(!td); 2321 2322 if (blk_queue_nonrot(q)) { 2323 td->throtl_slice = DFL_THROTL_SLICE_SSD; 2324 td->filtered_latency = LATENCY_FILTERED_SSD; 2325 } else { 2326 td->throtl_slice = DFL_THROTL_SLICE_HD; 2327 td->filtered_latency = LATENCY_FILTERED_HD; 2328 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2329 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY; 2330 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY; 2331 } 2332 } 2333 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW 2334 /* if no low limit, use previous default */ 2335 td->throtl_slice = DFL_THROTL_SLICE_HD; 2336 #endif 2337 2338 td->track_bio_latency = !queue_is_mq(q); 2339 if (!td->track_bio_latency) 2340 blk_stat_enable_accounting(q); 2341 } 2342 2343 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2344 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page) 2345 { 2346 if (!q->td) 2347 return -EINVAL; 2348 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice)); 2349 } 2350 2351 ssize_t blk_throtl_sample_time_store(struct request_queue *q, 2352 const char *page, size_t count) 2353 { 2354 unsigned long v; 2355 unsigned long t; 2356 2357 if (!q->td) 2358 return -EINVAL; 2359 if (kstrtoul(page, 10, &v)) 2360 return -EINVAL; 2361 t = msecs_to_jiffies(v); 2362 if (t == 0 || t > MAX_THROTL_SLICE) 2363 return -EINVAL; 2364 q->td->throtl_slice = t; 2365 return count; 2366 } 2367 #endif 2368 2369 static int __init throtl_init(void) 2370 { 2371 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 2372 if (!kthrotld_workqueue) 2373 panic("Failed to create kthrotld\n"); 2374 2375 return blkcg_policy_register(&blkcg_policy_throtl); 2376 } 2377 2378 module_init(throtl_init); 2379