xref: /openbmc/linux/block/blk-throttle.c (revision 67559900)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include "blk.h"
15 #include "blk-cgroup-rwstat.h"
16 #include "blk-throttle.h"
17 
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
20 
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
23 
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
29 #define MIN_THROTL_BPS (320 * 1024)
30 #define MIN_THROTL_IOPS (10)
31 #define DFL_LATENCY_TARGET (-1L)
32 #define DFL_IDLE_THRESHOLD (0)
33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34 #define LATENCY_FILTERED_SSD (0)
35 /*
36  * For HD, very small latency comes from sequential IO. Such IO is helpless to
37  * help determine if its IO is impacted by others, hence we ignore the IO
38  */
39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
40 
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct *kthrotld_workqueue;
43 
44 enum tg_state_flags {
45 	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
46 	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
47 };
48 
49 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
50 
51 /* We measure latency for request size from <= 4k to >= 1M */
52 #define LATENCY_BUCKET_SIZE 9
53 
54 struct latency_bucket {
55 	unsigned long total_latency; /* ns / 1024 */
56 	int samples;
57 };
58 
59 struct avg_latency_bucket {
60 	unsigned long latency; /* ns / 1024 */
61 	bool valid;
62 };
63 
64 struct throtl_data
65 {
66 	/* service tree for active throtl groups */
67 	struct throtl_service_queue service_queue;
68 
69 	struct request_queue *queue;
70 
71 	/* Total Number of queued bios on READ and WRITE lists */
72 	unsigned int nr_queued[2];
73 
74 	unsigned int throtl_slice;
75 
76 	/* Work for dispatching throttled bios */
77 	struct work_struct dispatch_work;
78 	unsigned int limit_index;
79 	bool limit_valid[LIMIT_CNT];
80 
81 	unsigned long low_upgrade_time;
82 	unsigned long low_downgrade_time;
83 
84 	unsigned int scale;
85 
86 	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
87 	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
88 	struct latency_bucket __percpu *latency_buckets[2];
89 	unsigned long last_calculate_time;
90 	unsigned long filtered_latency;
91 
92 	bool track_bio_latency;
93 };
94 
95 static void throtl_pending_timer_fn(struct timer_list *t);
96 
97 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
98 {
99 	return pd_to_blkg(&tg->pd);
100 }
101 
102 /**
103  * sq_to_tg - return the throl_grp the specified service queue belongs to
104  * @sq: the throtl_service_queue of interest
105  *
106  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
107  * embedded in throtl_data, %NULL is returned.
108  */
109 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
110 {
111 	if (sq && sq->parent_sq)
112 		return container_of(sq, struct throtl_grp, service_queue);
113 	else
114 		return NULL;
115 }
116 
117 /**
118  * sq_to_td - return throtl_data the specified service queue belongs to
119  * @sq: the throtl_service_queue of interest
120  *
121  * A service_queue can be embedded in either a throtl_grp or throtl_data.
122  * Determine the associated throtl_data accordingly and return it.
123  */
124 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
125 {
126 	struct throtl_grp *tg = sq_to_tg(sq);
127 
128 	if (tg)
129 		return tg->td;
130 	else
131 		return container_of(sq, struct throtl_data, service_queue);
132 }
133 
134 /*
135  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
136  * make the IO dispatch more smooth.
137  * Scale up: linearly scale up according to lapsed time since upgrade. For
138  *           every throtl_slice, the limit scales up 1/2 .low limit till the
139  *           limit hits .max limit
140  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
141  */
142 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
143 {
144 	/* arbitrary value to avoid too big scale */
145 	if (td->scale < 4096 && time_after_eq(jiffies,
146 	    td->low_upgrade_time + td->scale * td->throtl_slice))
147 		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
148 
149 	return low + (low >> 1) * td->scale;
150 }
151 
152 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
153 {
154 	struct blkcg_gq *blkg = tg_to_blkg(tg);
155 	struct throtl_data *td;
156 	uint64_t ret;
157 
158 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
159 		return U64_MAX;
160 
161 	td = tg->td;
162 	ret = tg->bps[rw][td->limit_index];
163 	if (ret == 0 && td->limit_index == LIMIT_LOW) {
164 		/* intermediate node or iops isn't 0 */
165 		if (!list_empty(&blkg->blkcg->css.children) ||
166 		    tg->iops[rw][td->limit_index])
167 			return U64_MAX;
168 		else
169 			return MIN_THROTL_BPS;
170 	}
171 
172 	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
173 	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
174 		uint64_t adjusted;
175 
176 		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
177 		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
178 	}
179 	return ret;
180 }
181 
182 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
183 {
184 	struct blkcg_gq *blkg = tg_to_blkg(tg);
185 	struct throtl_data *td;
186 	unsigned int ret;
187 
188 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
189 		return UINT_MAX;
190 
191 	td = tg->td;
192 	ret = tg->iops[rw][td->limit_index];
193 	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
194 		/* intermediate node or bps isn't 0 */
195 		if (!list_empty(&blkg->blkcg->css.children) ||
196 		    tg->bps[rw][td->limit_index])
197 			return UINT_MAX;
198 		else
199 			return MIN_THROTL_IOPS;
200 	}
201 
202 	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
203 	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
204 		uint64_t adjusted;
205 
206 		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
207 		if (adjusted > UINT_MAX)
208 			adjusted = UINT_MAX;
209 		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
210 	}
211 	return ret;
212 }
213 
214 #define request_bucket_index(sectors) \
215 	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
216 
217 /**
218  * throtl_log - log debug message via blktrace
219  * @sq: the service_queue being reported
220  * @fmt: printf format string
221  * @args: printf args
222  *
223  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
224  * throtl_grp; otherwise, just "throtl".
225  */
226 #define throtl_log(sq, fmt, args...)	do {				\
227 	struct throtl_grp *__tg = sq_to_tg((sq));			\
228 	struct throtl_data *__td = sq_to_td((sq));			\
229 									\
230 	(void)__td;							\
231 	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
232 		break;							\
233 	if ((__tg)) {							\
234 		blk_add_cgroup_trace_msg(__td->queue,			\
235 			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
236 	} else {							\
237 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
238 	}								\
239 } while (0)
240 
241 static inline unsigned int throtl_bio_data_size(struct bio *bio)
242 {
243 	/* assume it's one sector */
244 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
245 		return 512;
246 	return bio->bi_iter.bi_size;
247 }
248 
249 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
250 {
251 	INIT_LIST_HEAD(&qn->node);
252 	bio_list_init(&qn->bios);
253 	qn->tg = tg;
254 }
255 
256 /**
257  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
258  * @bio: bio being added
259  * @qn: qnode to add bio to
260  * @queued: the service_queue->queued[] list @qn belongs to
261  *
262  * Add @bio to @qn and put @qn on @queued if it's not already on.
263  * @qn->tg's reference count is bumped when @qn is activated.  See the
264  * comment on top of throtl_qnode definition for details.
265  */
266 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
267 				 struct list_head *queued)
268 {
269 	bio_list_add(&qn->bios, bio);
270 	if (list_empty(&qn->node)) {
271 		list_add_tail(&qn->node, queued);
272 		blkg_get(tg_to_blkg(qn->tg));
273 	}
274 }
275 
276 /**
277  * throtl_peek_queued - peek the first bio on a qnode list
278  * @queued: the qnode list to peek
279  */
280 static struct bio *throtl_peek_queued(struct list_head *queued)
281 {
282 	struct throtl_qnode *qn;
283 	struct bio *bio;
284 
285 	if (list_empty(queued))
286 		return NULL;
287 
288 	qn = list_first_entry(queued, struct throtl_qnode, node);
289 	bio = bio_list_peek(&qn->bios);
290 	WARN_ON_ONCE(!bio);
291 	return bio;
292 }
293 
294 /**
295  * throtl_pop_queued - pop the first bio form a qnode list
296  * @queued: the qnode list to pop a bio from
297  * @tg_to_put: optional out argument for throtl_grp to put
298  *
299  * Pop the first bio from the qnode list @queued.  After popping, the first
300  * qnode is removed from @queued if empty or moved to the end of @queued so
301  * that the popping order is round-robin.
302  *
303  * When the first qnode is removed, its associated throtl_grp should be put
304  * too.  If @tg_to_put is NULL, this function automatically puts it;
305  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
306  * responsible for putting it.
307  */
308 static struct bio *throtl_pop_queued(struct list_head *queued,
309 				     struct throtl_grp **tg_to_put)
310 {
311 	struct throtl_qnode *qn;
312 	struct bio *bio;
313 
314 	if (list_empty(queued))
315 		return NULL;
316 
317 	qn = list_first_entry(queued, struct throtl_qnode, node);
318 	bio = bio_list_pop(&qn->bios);
319 	WARN_ON_ONCE(!bio);
320 
321 	if (bio_list_empty(&qn->bios)) {
322 		list_del_init(&qn->node);
323 		if (tg_to_put)
324 			*tg_to_put = qn->tg;
325 		else
326 			blkg_put(tg_to_blkg(qn->tg));
327 	} else {
328 		list_move_tail(&qn->node, queued);
329 	}
330 
331 	return bio;
332 }
333 
334 /* init a service_queue, assumes the caller zeroed it */
335 static void throtl_service_queue_init(struct throtl_service_queue *sq)
336 {
337 	INIT_LIST_HEAD(&sq->queued[0]);
338 	INIT_LIST_HEAD(&sq->queued[1]);
339 	sq->pending_tree = RB_ROOT_CACHED;
340 	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
341 }
342 
343 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
344 						struct request_queue *q,
345 						struct blkcg *blkcg)
346 {
347 	struct throtl_grp *tg;
348 	int rw;
349 
350 	tg = kzalloc_node(sizeof(*tg), gfp, q->node);
351 	if (!tg)
352 		return NULL;
353 
354 	if (blkg_rwstat_init(&tg->stat_bytes, gfp))
355 		goto err_free_tg;
356 
357 	if (blkg_rwstat_init(&tg->stat_ios, gfp))
358 		goto err_exit_stat_bytes;
359 
360 	throtl_service_queue_init(&tg->service_queue);
361 
362 	for (rw = READ; rw <= WRITE; rw++) {
363 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
364 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
365 	}
366 
367 	RB_CLEAR_NODE(&tg->rb_node);
368 	tg->bps[READ][LIMIT_MAX] = U64_MAX;
369 	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
370 	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
371 	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
372 	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
373 	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
374 	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
375 	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
376 	/* LIMIT_LOW will have default value 0 */
377 
378 	tg->latency_target = DFL_LATENCY_TARGET;
379 	tg->latency_target_conf = DFL_LATENCY_TARGET;
380 	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
381 	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
382 
383 	return &tg->pd;
384 
385 err_exit_stat_bytes:
386 	blkg_rwstat_exit(&tg->stat_bytes);
387 err_free_tg:
388 	kfree(tg);
389 	return NULL;
390 }
391 
392 static void throtl_pd_init(struct blkg_policy_data *pd)
393 {
394 	struct throtl_grp *tg = pd_to_tg(pd);
395 	struct blkcg_gq *blkg = tg_to_blkg(tg);
396 	struct throtl_data *td = blkg->q->td;
397 	struct throtl_service_queue *sq = &tg->service_queue;
398 
399 	/*
400 	 * If on the default hierarchy, we switch to properly hierarchical
401 	 * behavior where limits on a given throtl_grp are applied to the
402 	 * whole subtree rather than just the group itself.  e.g. If 16M
403 	 * read_bps limit is set on the root group, the whole system can't
404 	 * exceed 16M for the device.
405 	 *
406 	 * If not on the default hierarchy, the broken flat hierarchy
407 	 * behavior is retained where all throtl_grps are treated as if
408 	 * they're all separate root groups right below throtl_data.
409 	 * Limits of a group don't interact with limits of other groups
410 	 * regardless of the position of the group in the hierarchy.
411 	 */
412 	sq->parent_sq = &td->service_queue;
413 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
414 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
415 	tg->td = td;
416 }
417 
418 /*
419  * Set has_rules[] if @tg or any of its parents have limits configured.
420  * This doesn't require walking up to the top of the hierarchy as the
421  * parent's has_rules[] is guaranteed to be correct.
422  */
423 static void tg_update_has_rules(struct throtl_grp *tg)
424 {
425 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
426 	struct throtl_data *td = tg->td;
427 	int rw;
428 
429 	for (rw = READ; rw <= WRITE; rw++)
430 		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
431 			(td->limit_valid[td->limit_index] &&
432 			 (tg_bps_limit(tg, rw) != U64_MAX ||
433 			  tg_iops_limit(tg, rw) != UINT_MAX));
434 }
435 
436 static void throtl_pd_online(struct blkg_policy_data *pd)
437 {
438 	struct throtl_grp *tg = pd_to_tg(pd);
439 	/*
440 	 * We don't want new groups to escape the limits of its ancestors.
441 	 * Update has_rules[] after a new group is brought online.
442 	 */
443 	tg_update_has_rules(tg);
444 }
445 
446 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
447 static void blk_throtl_update_limit_valid(struct throtl_data *td)
448 {
449 	struct cgroup_subsys_state *pos_css;
450 	struct blkcg_gq *blkg;
451 	bool low_valid = false;
452 
453 	rcu_read_lock();
454 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
455 		struct throtl_grp *tg = blkg_to_tg(blkg);
456 
457 		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
458 		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
459 			low_valid = true;
460 			break;
461 		}
462 	}
463 	rcu_read_unlock();
464 
465 	td->limit_valid[LIMIT_LOW] = low_valid;
466 }
467 #else
468 static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
469 {
470 }
471 #endif
472 
473 static void throtl_upgrade_state(struct throtl_data *td);
474 static void throtl_pd_offline(struct blkg_policy_data *pd)
475 {
476 	struct throtl_grp *tg = pd_to_tg(pd);
477 
478 	tg->bps[READ][LIMIT_LOW] = 0;
479 	tg->bps[WRITE][LIMIT_LOW] = 0;
480 	tg->iops[READ][LIMIT_LOW] = 0;
481 	tg->iops[WRITE][LIMIT_LOW] = 0;
482 
483 	blk_throtl_update_limit_valid(tg->td);
484 
485 	if (!tg->td->limit_valid[tg->td->limit_index])
486 		throtl_upgrade_state(tg->td);
487 }
488 
489 static void throtl_pd_free(struct blkg_policy_data *pd)
490 {
491 	struct throtl_grp *tg = pd_to_tg(pd);
492 
493 	del_timer_sync(&tg->service_queue.pending_timer);
494 	blkg_rwstat_exit(&tg->stat_bytes);
495 	blkg_rwstat_exit(&tg->stat_ios);
496 	kfree(tg);
497 }
498 
499 static struct throtl_grp *
500 throtl_rb_first(struct throtl_service_queue *parent_sq)
501 {
502 	struct rb_node *n;
503 
504 	n = rb_first_cached(&parent_sq->pending_tree);
505 	WARN_ON_ONCE(!n);
506 	if (!n)
507 		return NULL;
508 	return rb_entry_tg(n);
509 }
510 
511 static void throtl_rb_erase(struct rb_node *n,
512 			    struct throtl_service_queue *parent_sq)
513 {
514 	rb_erase_cached(n, &parent_sq->pending_tree);
515 	RB_CLEAR_NODE(n);
516 	--parent_sq->nr_pending;
517 }
518 
519 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
520 {
521 	struct throtl_grp *tg;
522 
523 	tg = throtl_rb_first(parent_sq);
524 	if (!tg)
525 		return;
526 
527 	parent_sq->first_pending_disptime = tg->disptime;
528 }
529 
530 static void tg_service_queue_add(struct throtl_grp *tg)
531 {
532 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
533 	struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
534 	struct rb_node *parent = NULL;
535 	struct throtl_grp *__tg;
536 	unsigned long key = tg->disptime;
537 	bool leftmost = true;
538 
539 	while (*node != NULL) {
540 		parent = *node;
541 		__tg = rb_entry_tg(parent);
542 
543 		if (time_before(key, __tg->disptime))
544 			node = &parent->rb_left;
545 		else {
546 			node = &parent->rb_right;
547 			leftmost = false;
548 		}
549 	}
550 
551 	rb_link_node(&tg->rb_node, parent, node);
552 	rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
553 			       leftmost);
554 }
555 
556 static void throtl_enqueue_tg(struct throtl_grp *tg)
557 {
558 	if (!(tg->flags & THROTL_TG_PENDING)) {
559 		tg_service_queue_add(tg);
560 		tg->flags |= THROTL_TG_PENDING;
561 		tg->service_queue.parent_sq->nr_pending++;
562 	}
563 }
564 
565 static void throtl_dequeue_tg(struct throtl_grp *tg)
566 {
567 	if (tg->flags & THROTL_TG_PENDING) {
568 		throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
569 		tg->flags &= ~THROTL_TG_PENDING;
570 	}
571 }
572 
573 /* Call with queue lock held */
574 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
575 					  unsigned long expires)
576 {
577 	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
578 
579 	/*
580 	 * Since we are adjusting the throttle limit dynamically, the sleep
581 	 * time calculated according to previous limit might be invalid. It's
582 	 * possible the cgroup sleep time is very long and no other cgroups
583 	 * have IO running so notify the limit changes. Make sure the cgroup
584 	 * doesn't sleep too long to avoid the missed notification.
585 	 */
586 	if (time_after(expires, max_expire))
587 		expires = max_expire;
588 	mod_timer(&sq->pending_timer, expires);
589 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
590 		   expires - jiffies, jiffies);
591 }
592 
593 /**
594  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
595  * @sq: the service_queue to schedule dispatch for
596  * @force: force scheduling
597  *
598  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
599  * dispatch time of the first pending child.  Returns %true if either timer
600  * is armed or there's no pending child left.  %false if the current
601  * dispatch window is still open and the caller should continue
602  * dispatching.
603  *
604  * If @force is %true, the dispatch timer is always scheduled and this
605  * function is guaranteed to return %true.  This is to be used when the
606  * caller can't dispatch itself and needs to invoke pending_timer
607  * unconditionally.  Note that forced scheduling is likely to induce short
608  * delay before dispatch starts even if @sq->first_pending_disptime is not
609  * in the future and thus shouldn't be used in hot paths.
610  */
611 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
612 					  bool force)
613 {
614 	/* any pending children left? */
615 	if (!sq->nr_pending)
616 		return true;
617 
618 	update_min_dispatch_time(sq);
619 
620 	/* is the next dispatch time in the future? */
621 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
622 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
623 		return true;
624 	}
625 
626 	/* tell the caller to continue dispatching */
627 	return false;
628 }
629 
630 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
631 		bool rw, unsigned long start)
632 {
633 	tg->bytes_disp[rw] = 0;
634 	tg->io_disp[rw] = 0;
635 
636 	atomic_set(&tg->io_split_cnt[rw], 0);
637 
638 	/*
639 	 * Previous slice has expired. We must have trimmed it after last
640 	 * bio dispatch. That means since start of last slice, we never used
641 	 * that bandwidth. Do try to make use of that bandwidth while giving
642 	 * credit.
643 	 */
644 	if (time_after_eq(start, tg->slice_start[rw]))
645 		tg->slice_start[rw] = start;
646 
647 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
648 	throtl_log(&tg->service_queue,
649 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
650 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
651 		   tg->slice_end[rw], jiffies);
652 }
653 
654 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
655 {
656 	tg->bytes_disp[rw] = 0;
657 	tg->io_disp[rw] = 0;
658 	tg->slice_start[rw] = jiffies;
659 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
660 
661 	atomic_set(&tg->io_split_cnt[rw], 0);
662 
663 	throtl_log(&tg->service_queue,
664 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
665 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
666 		   tg->slice_end[rw], jiffies);
667 }
668 
669 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
670 					unsigned long jiffy_end)
671 {
672 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
673 }
674 
675 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
676 				       unsigned long jiffy_end)
677 {
678 	throtl_set_slice_end(tg, rw, jiffy_end);
679 	throtl_log(&tg->service_queue,
680 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
681 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
682 		   tg->slice_end[rw], jiffies);
683 }
684 
685 /* Determine if previously allocated or extended slice is complete or not */
686 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
687 {
688 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
689 		return false;
690 
691 	return true;
692 }
693 
694 /* Trim the used slices and adjust slice start accordingly */
695 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
696 {
697 	unsigned long nr_slices, time_elapsed, io_trim;
698 	u64 bytes_trim, tmp;
699 
700 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
701 
702 	/*
703 	 * If bps are unlimited (-1), then time slice don't get
704 	 * renewed. Don't try to trim the slice if slice is used. A new
705 	 * slice will start when appropriate.
706 	 */
707 	if (throtl_slice_used(tg, rw))
708 		return;
709 
710 	/*
711 	 * A bio has been dispatched. Also adjust slice_end. It might happen
712 	 * that initially cgroup limit was very low resulting in high
713 	 * slice_end, but later limit was bumped up and bio was dispatched
714 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
715 	 * is bad because it does not allow new slice to start.
716 	 */
717 
718 	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
719 
720 	time_elapsed = jiffies - tg->slice_start[rw];
721 
722 	nr_slices = time_elapsed / tg->td->throtl_slice;
723 
724 	if (!nr_slices)
725 		return;
726 	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
727 	do_div(tmp, HZ);
728 	bytes_trim = tmp;
729 
730 	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
731 		HZ;
732 
733 	if (!bytes_trim && !io_trim)
734 		return;
735 
736 	if (tg->bytes_disp[rw] >= bytes_trim)
737 		tg->bytes_disp[rw] -= bytes_trim;
738 	else
739 		tg->bytes_disp[rw] = 0;
740 
741 	if (tg->io_disp[rw] >= io_trim)
742 		tg->io_disp[rw] -= io_trim;
743 	else
744 		tg->io_disp[rw] = 0;
745 
746 	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
747 
748 	throtl_log(&tg->service_queue,
749 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
750 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
751 		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
752 }
753 
754 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
755 				  u32 iops_limit, unsigned long *wait)
756 {
757 	bool rw = bio_data_dir(bio);
758 	unsigned int io_allowed;
759 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
760 	u64 tmp;
761 
762 	if (iops_limit == UINT_MAX) {
763 		if (wait)
764 			*wait = 0;
765 		return true;
766 	}
767 
768 	jiffy_elapsed = jiffies - tg->slice_start[rw];
769 
770 	/* Round up to the next throttle slice, wait time must be nonzero */
771 	jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
772 
773 	/*
774 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
775 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
776 	 * will allow dispatch after 1 second and after that slice should
777 	 * have been trimmed.
778 	 */
779 
780 	tmp = (u64)iops_limit * jiffy_elapsed_rnd;
781 	do_div(tmp, HZ);
782 
783 	if (tmp > UINT_MAX)
784 		io_allowed = UINT_MAX;
785 	else
786 		io_allowed = tmp;
787 
788 	if (tg->io_disp[rw] + 1 <= io_allowed) {
789 		if (wait)
790 			*wait = 0;
791 		return true;
792 	}
793 
794 	/* Calc approx time to dispatch */
795 	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
796 
797 	if (wait)
798 		*wait = jiffy_wait;
799 	return false;
800 }
801 
802 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
803 				 u64 bps_limit, unsigned long *wait)
804 {
805 	bool rw = bio_data_dir(bio);
806 	u64 bytes_allowed, extra_bytes, tmp;
807 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
808 	unsigned int bio_size = throtl_bio_data_size(bio);
809 
810 	if (bps_limit == U64_MAX) {
811 		if (wait)
812 			*wait = 0;
813 		return true;
814 	}
815 
816 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
817 
818 	/* Slice has just started. Consider one slice interval */
819 	if (!jiffy_elapsed)
820 		jiffy_elapsed_rnd = tg->td->throtl_slice;
821 
822 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
823 
824 	tmp = bps_limit * jiffy_elapsed_rnd;
825 	do_div(tmp, HZ);
826 	bytes_allowed = tmp;
827 
828 	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
829 		if (wait)
830 			*wait = 0;
831 		return true;
832 	}
833 
834 	/* Calc approx time to dispatch */
835 	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
836 	jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
837 
838 	if (!jiffy_wait)
839 		jiffy_wait = 1;
840 
841 	/*
842 	 * This wait time is without taking into consideration the rounding
843 	 * up we did. Add that time also.
844 	 */
845 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
846 	if (wait)
847 		*wait = jiffy_wait;
848 	return false;
849 }
850 
851 /*
852  * Returns whether one can dispatch a bio or not. Also returns approx number
853  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
854  */
855 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
856 			    unsigned long *wait)
857 {
858 	bool rw = bio_data_dir(bio);
859 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
860 	u64 bps_limit = tg_bps_limit(tg, rw);
861 	u32 iops_limit = tg_iops_limit(tg, rw);
862 
863 	/*
864  	 * Currently whole state machine of group depends on first bio
865 	 * queued in the group bio list. So one should not be calling
866 	 * this function with a different bio if there are other bios
867 	 * queued.
868 	 */
869 	BUG_ON(tg->service_queue.nr_queued[rw] &&
870 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
871 
872 	/* If tg->bps = -1, then BW is unlimited */
873 	if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
874 		if (wait)
875 			*wait = 0;
876 		return true;
877 	}
878 
879 	/*
880 	 * If previous slice expired, start a new one otherwise renew/extend
881 	 * existing slice to make sure it is at least throtl_slice interval
882 	 * long since now. New slice is started only for empty throttle group.
883 	 * If there is queued bio, that means there should be an active
884 	 * slice and it should be extended instead.
885 	 */
886 	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
887 		throtl_start_new_slice(tg, rw);
888 	else {
889 		if (time_before(tg->slice_end[rw],
890 		    jiffies + tg->td->throtl_slice))
891 			throtl_extend_slice(tg, rw,
892 				jiffies + tg->td->throtl_slice);
893 	}
894 
895 	if (iops_limit != UINT_MAX)
896 		tg->io_disp[rw] += atomic_xchg(&tg->io_split_cnt[rw], 0);
897 
898 	if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
899 	    tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
900 		if (wait)
901 			*wait = 0;
902 		return true;
903 	}
904 
905 	max_wait = max(bps_wait, iops_wait);
906 
907 	if (wait)
908 		*wait = max_wait;
909 
910 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
911 		throtl_extend_slice(tg, rw, jiffies + max_wait);
912 
913 	return false;
914 }
915 
916 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
917 {
918 	bool rw = bio_data_dir(bio);
919 	unsigned int bio_size = throtl_bio_data_size(bio);
920 
921 	/* Charge the bio to the group */
922 	tg->bytes_disp[rw] += bio_size;
923 	tg->io_disp[rw]++;
924 	tg->last_bytes_disp[rw] += bio_size;
925 	tg->last_io_disp[rw]++;
926 
927 	/*
928 	 * BIO_THROTTLED is used to prevent the same bio to be throttled
929 	 * more than once as a throttled bio will go through blk-throtl the
930 	 * second time when it eventually gets issued.  Set it when a bio
931 	 * is being charged to a tg.
932 	 */
933 	if (!bio_flagged(bio, BIO_THROTTLED))
934 		bio_set_flag(bio, BIO_THROTTLED);
935 }
936 
937 /**
938  * throtl_add_bio_tg - add a bio to the specified throtl_grp
939  * @bio: bio to add
940  * @qn: qnode to use
941  * @tg: the target throtl_grp
942  *
943  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
944  * tg->qnode_on_self[] is used.
945  */
946 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
947 			      struct throtl_grp *tg)
948 {
949 	struct throtl_service_queue *sq = &tg->service_queue;
950 	bool rw = bio_data_dir(bio);
951 
952 	if (!qn)
953 		qn = &tg->qnode_on_self[rw];
954 
955 	/*
956 	 * If @tg doesn't currently have any bios queued in the same
957 	 * direction, queueing @bio can change when @tg should be
958 	 * dispatched.  Mark that @tg was empty.  This is automatically
959 	 * cleared on the next tg_update_disptime().
960 	 */
961 	if (!sq->nr_queued[rw])
962 		tg->flags |= THROTL_TG_WAS_EMPTY;
963 
964 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
965 
966 	sq->nr_queued[rw]++;
967 	throtl_enqueue_tg(tg);
968 }
969 
970 static void tg_update_disptime(struct throtl_grp *tg)
971 {
972 	struct throtl_service_queue *sq = &tg->service_queue;
973 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
974 	struct bio *bio;
975 
976 	bio = throtl_peek_queued(&sq->queued[READ]);
977 	if (bio)
978 		tg_may_dispatch(tg, bio, &read_wait);
979 
980 	bio = throtl_peek_queued(&sq->queued[WRITE]);
981 	if (bio)
982 		tg_may_dispatch(tg, bio, &write_wait);
983 
984 	min_wait = min(read_wait, write_wait);
985 	disptime = jiffies + min_wait;
986 
987 	/* Update dispatch time */
988 	throtl_dequeue_tg(tg);
989 	tg->disptime = disptime;
990 	throtl_enqueue_tg(tg);
991 
992 	/* see throtl_add_bio_tg() */
993 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
994 }
995 
996 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
997 					struct throtl_grp *parent_tg, bool rw)
998 {
999 	if (throtl_slice_used(parent_tg, rw)) {
1000 		throtl_start_new_slice_with_credit(parent_tg, rw,
1001 				child_tg->slice_start[rw]);
1002 	}
1003 
1004 }
1005 
1006 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1007 {
1008 	struct throtl_service_queue *sq = &tg->service_queue;
1009 	struct throtl_service_queue *parent_sq = sq->parent_sq;
1010 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1011 	struct throtl_grp *tg_to_put = NULL;
1012 	struct bio *bio;
1013 
1014 	/*
1015 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1016 	 * from @tg may put its reference and @parent_sq might end up
1017 	 * getting released prematurely.  Remember the tg to put and put it
1018 	 * after @bio is transferred to @parent_sq.
1019 	 */
1020 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1021 	sq->nr_queued[rw]--;
1022 
1023 	throtl_charge_bio(tg, bio);
1024 
1025 	/*
1026 	 * If our parent is another tg, we just need to transfer @bio to
1027 	 * the parent using throtl_add_bio_tg().  If our parent is
1028 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1029 	 * bio_lists[] and decrease total number queued.  The caller is
1030 	 * responsible for issuing these bios.
1031 	 */
1032 	if (parent_tg) {
1033 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1034 		start_parent_slice_with_credit(tg, parent_tg, rw);
1035 	} else {
1036 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1037 				     &parent_sq->queued[rw]);
1038 		BUG_ON(tg->td->nr_queued[rw] <= 0);
1039 		tg->td->nr_queued[rw]--;
1040 	}
1041 
1042 	throtl_trim_slice(tg, rw);
1043 
1044 	if (tg_to_put)
1045 		blkg_put(tg_to_blkg(tg_to_put));
1046 }
1047 
1048 static int throtl_dispatch_tg(struct throtl_grp *tg)
1049 {
1050 	struct throtl_service_queue *sq = &tg->service_queue;
1051 	unsigned int nr_reads = 0, nr_writes = 0;
1052 	unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1053 	unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1054 	struct bio *bio;
1055 
1056 	/* Try to dispatch 75% READS and 25% WRITES */
1057 
1058 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1059 	       tg_may_dispatch(tg, bio, NULL)) {
1060 
1061 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1062 		nr_reads++;
1063 
1064 		if (nr_reads >= max_nr_reads)
1065 			break;
1066 	}
1067 
1068 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1069 	       tg_may_dispatch(tg, bio, NULL)) {
1070 
1071 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1072 		nr_writes++;
1073 
1074 		if (nr_writes >= max_nr_writes)
1075 			break;
1076 	}
1077 
1078 	return nr_reads + nr_writes;
1079 }
1080 
1081 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1082 {
1083 	unsigned int nr_disp = 0;
1084 
1085 	while (1) {
1086 		struct throtl_grp *tg;
1087 		struct throtl_service_queue *sq;
1088 
1089 		if (!parent_sq->nr_pending)
1090 			break;
1091 
1092 		tg = throtl_rb_first(parent_sq);
1093 		if (!tg)
1094 			break;
1095 
1096 		if (time_before(jiffies, tg->disptime))
1097 			break;
1098 
1099 		throtl_dequeue_tg(tg);
1100 
1101 		nr_disp += throtl_dispatch_tg(tg);
1102 
1103 		sq = &tg->service_queue;
1104 		if (sq->nr_queued[0] || sq->nr_queued[1])
1105 			tg_update_disptime(tg);
1106 
1107 		if (nr_disp >= THROTL_QUANTUM)
1108 			break;
1109 	}
1110 
1111 	return nr_disp;
1112 }
1113 
1114 static bool throtl_can_upgrade(struct throtl_data *td,
1115 	struct throtl_grp *this_tg);
1116 /**
1117  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1118  * @t: the pending_timer member of the throtl_service_queue being serviced
1119  *
1120  * This timer is armed when a child throtl_grp with active bio's become
1121  * pending and queued on the service_queue's pending_tree and expires when
1122  * the first child throtl_grp should be dispatched.  This function
1123  * dispatches bio's from the children throtl_grps to the parent
1124  * service_queue.
1125  *
1126  * If the parent's parent is another throtl_grp, dispatching is propagated
1127  * by either arming its pending_timer or repeating dispatch directly.  If
1128  * the top-level service_tree is reached, throtl_data->dispatch_work is
1129  * kicked so that the ready bio's are issued.
1130  */
1131 static void throtl_pending_timer_fn(struct timer_list *t)
1132 {
1133 	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1134 	struct throtl_grp *tg = sq_to_tg(sq);
1135 	struct throtl_data *td = sq_to_td(sq);
1136 	struct request_queue *q = td->queue;
1137 	struct throtl_service_queue *parent_sq;
1138 	bool dispatched;
1139 	int ret;
1140 
1141 	spin_lock_irq(&q->queue_lock);
1142 	if (throtl_can_upgrade(td, NULL))
1143 		throtl_upgrade_state(td);
1144 
1145 again:
1146 	parent_sq = sq->parent_sq;
1147 	dispatched = false;
1148 
1149 	while (true) {
1150 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1151 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1152 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1153 
1154 		ret = throtl_select_dispatch(sq);
1155 		if (ret) {
1156 			throtl_log(sq, "bios disp=%u", ret);
1157 			dispatched = true;
1158 		}
1159 
1160 		if (throtl_schedule_next_dispatch(sq, false))
1161 			break;
1162 
1163 		/* this dispatch windows is still open, relax and repeat */
1164 		spin_unlock_irq(&q->queue_lock);
1165 		cpu_relax();
1166 		spin_lock_irq(&q->queue_lock);
1167 	}
1168 
1169 	if (!dispatched)
1170 		goto out_unlock;
1171 
1172 	if (parent_sq) {
1173 		/* @parent_sq is another throl_grp, propagate dispatch */
1174 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1175 			tg_update_disptime(tg);
1176 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1177 				/* window is already open, repeat dispatching */
1178 				sq = parent_sq;
1179 				tg = sq_to_tg(sq);
1180 				goto again;
1181 			}
1182 		}
1183 	} else {
1184 		/* reached the top-level, queue issuing */
1185 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1186 	}
1187 out_unlock:
1188 	spin_unlock_irq(&q->queue_lock);
1189 }
1190 
1191 /**
1192  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1193  * @work: work item being executed
1194  *
1195  * This function is queued for execution when bios reach the bio_lists[]
1196  * of throtl_data->service_queue.  Those bios are ready and issued by this
1197  * function.
1198  */
1199 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1200 {
1201 	struct throtl_data *td = container_of(work, struct throtl_data,
1202 					      dispatch_work);
1203 	struct throtl_service_queue *td_sq = &td->service_queue;
1204 	struct request_queue *q = td->queue;
1205 	struct bio_list bio_list_on_stack;
1206 	struct bio *bio;
1207 	struct blk_plug plug;
1208 	int rw;
1209 
1210 	bio_list_init(&bio_list_on_stack);
1211 
1212 	spin_lock_irq(&q->queue_lock);
1213 	for (rw = READ; rw <= WRITE; rw++)
1214 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1215 			bio_list_add(&bio_list_on_stack, bio);
1216 	spin_unlock_irq(&q->queue_lock);
1217 
1218 	if (!bio_list_empty(&bio_list_on_stack)) {
1219 		blk_start_plug(&plug);
1220 		while ((bio = bio_list_pop(&bio_list_on_stack)))
1221 			submit_bio_noacct(bio);
1222 		blk_finish_plug(&plug);
1223 	}
1224 }
1225 
1226 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1227 			      int off)
1228 {
1229 	struct throtl_grp *tg = pd_to_tg(pd);
1230 	u64 v = *(u64 *)((void *)tg + off);
1231 
1232 	if (v == U64_MAX)
1233 		return 0;
1234 	return __blkg_prfill_u64(sf, pd, v);
1235 }
1236 
1237 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1238 			       int off)
1239 {
1240 	struct throtl_grp *tg = pd_to_tg(pd);
1241 	unsigned int v = *(unsigned int *)((void *)tg + off);
1242 
1243 	if (v == UINT_MAX)
1244 		return 0;
1245 	return __blkg_prfill_u64(sf, pd, v);
1246 }
1247 
1248 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1249 {
1250 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1251 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1252 	return 0;
1253 }
1254 
1255 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1256 {
1257 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1258 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1259 	return 0;
1260 }
1261 
1262 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1263 {
1264 	struct throtl_service_queue *sq = &tg->service_queue;
1265 	struct cgroup_subsys_state *pos_css;
1266 	struct blkcg_gq *blkg;
1267 
1268 	throtl_log(&tg->service_queue,
1269 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1270 		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1271 		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1272 
1273 	/*
1274 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1275 	 * considered to have rules if either the tg itself or any of its
1276 	 * ancestors has rules.  This identifies groups without any
1277 	 * restrictions in the whole hierarchy and allows them to bypass
1278 	 * blk-throttle.
1279 	 */
1280 	blkg_for_each_descendant_pre(blkg, pos_css,
1281 			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1282 		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1283 		struct throtl_grp *parent_tg;
1284 
1285 		tg_update_has_rules(this_tg);
1286 		/* ignore root/second level */
1287 		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1288 		    !blkg->parent->parent)
1289 			continue;
1290 		parent_tg = blkg_to_tg(blkg->parent);
1291 		/*
1292 		 * make sure all children has lower idle time threshold and
1293 		 * higher latency target
1294 		 */
1295 		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1296 				parent_tg->idletime_threshold);
1297 		this_tg->latency_target = max(this_tg->latency_target,
1298 				parent_tg->latency_target);
1299 	}
1300 
1301 	/*
1302 	 * We're already holding queue_lock and know @tg is valid.  Let's
1303 	 * apply the new config directly.
1304 	 *
1305 	 * Restart the slices for both READ and WRITES. It might happen
1306 	 * that a group's limit are dropped suddenly and we don't want to
1307 	 * account recently dispatched IO with new low rate.
1308 	 */
1309 	throtl_start_new_slice(tg, READ);
1310 	throtl_start_new_slice(tg, WRITE);
1311 
1312 	if (tg->flags & THROTL_TG_PENDING) {
1313 		tg_update_disptime(tg);
1314 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1315 	}
1316 }
1317 
1318 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1319 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1320 {
1321 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1322 	struct blkg_conf_ctx ctx;
1323 	struct throtl_grp *tg;
1324 	int ret;
1325 	u64 v;
1326 
1327 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1328 	if (ret)
1329 		return ret;
1330 
1331 	ret = -EINVAL;
1332 	if (sscanf(ctx.body, "%llu", &v) != 1)
1333 		goto out_finish;
1334 	if (!v)
1335 		v = U64_MAX;
1336 
1337 	tg = blkg_to_tg(ctx.blkg);
1338 
1339 	if (is_u64)
1340 		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1341 	else
1342 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1343 
1344 	tg_conf_updated(tg, false);
1345 	ret = 0;
1346 out_finish:
1347 	blkg_conf_finish(&ctx);
1348 	return ret ?: nbytes;
1349 }
1350 
1351 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1352 			       char *buf, size_t nbytes, loff_t off)
1353 {
1354 	return tg_set_conf(of, buf, nbytes, off, true);
1355 }
1356 
1357 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1358 				char *buf, size_t nbytes, loff_t off)
1359 {
1360 	return tg_set_conf(of, buf, nbytes, off, false);
1361 }
1362 
1363 static int tg_print_rwstat(struct seq_file *sf, void *v)
1364 {
1365 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1366 			  blkg_prfill_rwstat, &blkcg_policy_throtl,
1367 			  seq_cft(sf)->private, true);
1368 	return 0;
1369 }
1370 
1371 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1372 				      struct blkg_policy_data *pd, int off)
1373 {
1374 	struct blkg_rwstat_sample sum;
1375 
1376 	blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1377 				  &sum);
1378 	return __blkg_prfill_rwstat(sf, pd, &sum);
1379 }
1380 
1381 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1382 {
1383 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1384 			  tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1385 			  seq_cft(sf)->private, true);
1386 	return 0;
1387 }
1388 
1389 static struct cftype throtl_legacy_files[] = {
1390 	{
1391 		.name = "throttle.read_bps_device",
1392 		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1393 		.seq_show = tg_print_conf_u64,
1394 		.write = tg_set_conf_u64,
1395 	},
1396 	{
1397 		.name = "throttle.write_bps_device",
1398 		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1399 		.seq_show = tg_print_conf_u64,
1400 		.write = tg_set_conf_u64,
1401 	},
1402 	{
1403 		.name = "throttle.read_iops_device",
1404 		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1405 		.seq_show = tg_print_conf_uint,
1406 		.write = tg_set_conf_uint,
1407 	},
1408 	{
1409 		.name = "throttle.write_iops_device",
1410 		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1411 		.seq_show = tg_print_conf_uint,
1412 		.write = tg_set_conf_uint,
1413 	},
1414 	{
1415 		.name = "throttle.io_service_bytes",
1416 		.private = offsetof(struct throtl_grp, stat_bytes),
1417 		.seq_show = tg_print_rwstat,
1418 	},
1419 	{
1420 		.name = "throttle.io_service_bytes_recursive",
1421 		.private = offsetof(struct throtl_grp, stat_bytes),
1422 		.seq_show = tg_print_rwstat_recursive,
1423 	},
1424 	{
1425 		.name = "throttle.io_serviced",
1426 		.private = offsetof(struct throtl_grp, stat_ios),
1427 		.seq_show = tg_print_rwstat,
1428 	},
1429 	{
1430 		.name = "throttle.io_serviced_recursive",
1431 		.private = offsetof(struct throtl_grp, stat_ios),
1432 		.seq_show = tg_print_rwstat_recursive,
1433 	},
1434 	{ }	/* terminate */
1435 };
1436 
1437 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1438 			 int off)
1439 {
1440 	struct throtl_grp *tg = pd_to_tg(pd);
1441 	const char *dname = blkg_dev_name(pd->blkg);
1442 	char bufs[4][21] = { "max", "max", "max", "max" };
1443 	u64 bps_dft;
1444 	unsigned int iops_dft;
1445 	char idle_time[26] = "";
1446 	char latency_time[26] = "";
1447 
1448 	if (!dname)
1449 		return 0;
1450 
1451 	if (off == LIMIT_LOW) {
1452 		bps_dft = 0;
1453 		iops_dft = 0;
1454 	} else {
1455 		bps_dft = U64_MAX;
1456 		iops_dft = UINT_MAX;
1457 	}
1458 
1459 	if (tg->bps_conf[READ][off] == bps_dft &&
1460 	    tg->bps_conf[WRITE][off] == bps_dft &&
1461 	    tg->iops_conf[READ][off] == iops_dft &&
1462 	    tg->iops_conf[WRITE][off] == iops_dft &&
1463 	    (off != LIMIT_LOW ||
1464 	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1465 	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1466 		return 0;
1467 
1468 	if (tg->bps_conf[READ][off] != U64_MAX)
1469 		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1470 			tg->bps_conf[READ][off]);
1471 	if (tg->bps_conf[WRITE][off] != U64_MAX)
1472 		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1473 			tg->bps_conf[WRITE][off]);
1474 	if (tg->iops_conf[READ][off] != UINT_MAX)
1475 		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1476 			tg->iops_conf[READ][off]);
1477 	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1478 		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1479 			tg->iops_conf[WRITE][off]);
1480 	if (off == LIMIT_LOW) {
1481 		if (tg->idletime_threshold_conf == ULONG_MAX)
1482 			strcpy(idle_time, " idle=max");
1483 		else
1484 			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1485 				tg->idletime_threshold_conf);
1486 
1487 		if (tg->latency_target_conf == ULONG_MAX)
1488 			strcpy(latency_time, " latency=max");
1489 		else
1490 			snprintf(latency_time, sizeof(latency_time),
1491 				" latency=%lu", tg->latency_target_conf);
1492 	}
1493 
1494 	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1495 		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1496 		   latency_time);
1497 	return 0;
1498 }
1499 
1500 static int tg_print_limit(struct seq_file *sf, void *v)
1501 {
1502 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1503 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1504 	return 0;
1505 }
1506 
1507 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1508 			  char *buf, size_t nbytes, loff_t off)
1509 {
1510 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1511 	struct blkg_conf_ctx ctx;
1512 	struct throtl_grp *tg;
1513 	u64 v[4];
1514 	unsigned long idle_time;
1515 	unsigned long latency_time;
1516 	int ret;
1517 	int index = of_cft(of)->private;
1518 
1519 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1520 	if (ret)
1521 		return ret;
1522 
1523 	tg = blkg_to_tg(ctx.blkg);
1524 
1525 	v[0] = tg->bps_conf[READ][index];
1526 	v[1] = tg->bps_conf[WRITE][index];
1527 	v[2] = tg->iops_conf[READ][index];
1528 	v[3] = tg->iops_conf[WRITE][index];
1529 
1530 	idle_time = tg->idletime_threshold_conf;
1531 	latency_time = tg->latency_target_conf;
1532 	while (true) {
1533 		char tok[27];	/* wiops=18446744073709551616 */
1534 		char *p;
1535 		u64 val = U64_MAX;
1536 		int len;
1537 
1538 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1539 			break;
1540 		if (tok[0] == '\0')
1541 			break;
1542 		ctx.body += len;
1543 
1544 		ret = -EINVAL;
1545 		p = tok;
1546 		strsep(&p, "=");
1547 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1548 			goto out_finish;
1549 
1550 		ret = -ERANGE;
1551 		if (!val)
1552 			goto out_finish;
1553 
1554 		ret = -EINVAL;
1555 		if (!strcmp(tok, "rbps") && val > 1)
1556 			v[0] = val;
1557 		else if (!strcmp(tok, "wbps") && val > 1)
1558 			v[1] = val;
1559 		else if (!strcmp(tok, "riops") && val > 1)
1560 			v[2] = min_t(u64, val, UINT_MAX);
1561 		else if (!strcmp(tok, "wiops") && val > 1)
1562 			v[3] = min_t(u64, val, UINT_MAX);
1563 		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1564 			idle_time = val;
1565 		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1566 			latency_time = val;
1567 		else
1568 			goto out_finish;
1569 	}
1570 
1571 	tg->bps_conf[READ][index] = v[0];
1572 	tg->bps_conf[WRITE][index] = v[1];
1573 	tg->iops_conf[READ][index] = v[2];
1574 	tg->iops_conf[WRITE][index] = v[3];
1575 
1576 	if (index == LIMIT_MAX) {
1577 		tg->bps[READ][index] = v[0];
1578 		tg->bps[WRITE][index] = v[1];
1579 		tg->iops[READ][index] = v[2];
1580 		tg->iops[WRITE][index] = v[3];
1581 	}
1582 	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1583 		tg->bps_conf[READ][LIMIT_MAX]);
1584 	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1585 		tg->bps_conf[WRITE][LIMIT_MAX]);
1586 	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1587 		tg->iops_conf[READ][LIMIT_MAX]);
1588 	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1589 		tg->iops_conf[WRITE][LIMIT_MAX]);
1590 	tg->idletime_threshold_conf = idle_time;
1591 	tg->latency_target_conf = latency_time;
1592 
1593 	/* force user to configure all settings for low limit  */
1594 	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1595 	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1596 	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1597 	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
1598 		tg->bps[READ][LIMIT_LOW] = 0;
1599 		tg->bps[WRITE][LIMIT_LOW] = 0;
1600 		tg->iops[READ][LIMIT_LOW] = 0;
1601 		tg->iops[WRITE][LIMIT_LOW] = 0;
1602 		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1603 		tg->latency_target = DFL_LATENCY_TARGET;
1604 	} else if (index == LIMIT_LOW) {
1605 		tg->idletime_threshold = tg->idletime_threshold_conf;
1606 		tg->latency_target = tg->latency_target_conf;
1607 	}
1608 
1609 	blk_throtl_update_limit_valid(tg->td);
1610 	if (tg->td->limit_valid[LIMIT_LOW]) {
1611 		if (index == LIMIT_LOW)
1612 			tg->td->limit_index = LIMIT_LOW;
1613 	} else
1614 		tg->td->limit_index = LIMIT_MAX;
1615 	tg_conf_updated(tg, index == LIMIT_LOW &&
1616 		tg->td->limit_valid[LIMIT_LOW]);
1617 	ret = 0;
1618 out_finish:
1619 	blkg_conf_finish(&ctx);
1620 	return ret ?: nbytes;
1621 }
1622 
1623 static struct cftype throtl_files[] = {
1624 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1625 	{
1626 		.name = "low",
1627 		.flags = CFTYPE_NOT_ON_ROOT,
1628 		.seq_show = tg_print_limit,
1629 		.write = tg_set_limit,
1630 		.private = LIMIT_LOW,
1631 	},
1632 #endif
1633 	{
1634 		.name = "max",
1635 		.flags = CFTYPE_NOT_ON_ROOT,
1636 		.seq_show = tg_print_limit,
1637 		.write = tg_set_limit,
1638 		.private = LIMIT_MAX,
1639 	},
1640 	{ }	/* terminate */
1641 };
1642 
1643 static void throtl_shutdown_wq(struct request_queue *q)
1644 {
1645 	struct throtl_data *td = q->td;
1646 
1647 	cancel_work_sync(&td->dispatch_work);
1648 }
1649 
1650 struct blkcg_policy blkcg_policy_throtl = {
1651 	.dfl_cftypes		= throtl_files,
1652 	.legacy_cftypes		= throtl_legacy_files,
1653 
1654 	.pd_alloc_fn		= throtl_pd_alloc,
1655 	.pd_init_fn		= throtl_pd_init,
1656 	.pd_online_fn		= throtl_pd_online,
1657 	.pd_offline_fn		= throtl_pd_offline,
1658 	.pd_free_fn		= throtl_pd_free,
1659 };
1660 
1661 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1662 {
1663 	unsigned long rtime = jiffies, wtime = jiffies;
1664 
1665 	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1666 		rtime = tg->last_low_overflow_time[READ];
1667 	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1668 		wtime = tg->last_low_overflow_time[WRITE];
1669 	return min(rtime, wtime);
1670 }
1671 
1672 /* tg should not be an intermediate node */
1673 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1674 {
1675 	struct throtl_service_queue *parent_sq;
1676 	struct throtl_grp *parent = tg;
1677 	unsigned long ret = __tg_last_low_overflow_time(tg);
1678 
1679 	while (true) {
1680 		parent_sq = parent->service_queue.parent_sq;
1681 		parent = sq_to_tg(parent_sq);
1682 		if (!parent)
1683 			break;
1684 
1685 		/*
1686 		 * The parent doesn't have low limit, it always reaches low
1687 		 * limit. Its overflow time is useless for children
1688 		 */
1689 		if (!parent->bps[READ][LIMIT_LOW] &&
1690 		    !parent->iops[READ][LIMIT_LOW] &&
1691 		    !parent->bps[WRITE][LIMIT_LOW] &&
1692 		    !parent->iops[WRITE][LIMIT_LOW])
1693 			continue;
1694 		if (time_after(__tg_last_low_overflow_time(parent), ret))
1695 			ret = __tg_last_low_overflow_time(parent);
1696 	}
1697 	return ret;
1698 }
1699 
1700 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1701 {
1702 	/*
1703 	 * cgroup is idle if:
1704 	 * - single idle is too long, longer than a fixed value (in case user
1705 	 *   configure a too big threshold) or 4 times of idletime threshold
1706 	 * - average think time is more than threshold
1707 	 * - IO latency is largely below threshold
1708 	 */
1709 	unsigned long time;
1710 	bool ret;
1711 
1712 	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1713 	ret = tg->latency_target == DFL_LATENCY_TARGET ||
1714 	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1715 	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1716 	      tg->avg_idletime > tg->idletime_threshold ||
1717 	      (tg->latency_target && tg->bio_cnt &&
1718 		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1719 	throtl_log(&tg->service_queue,
1720 		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1721 		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1722 		tg->bio_cnt, ret, tg->td->scale);
1723 	return ret;
1724 }
1725 
1726 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1727 {
1728 	struct throtl_service_queue *sq = &tg->service_queue;
1729 	bool read_limit, write_limit;
1730 
1731 	/*
1732 	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1733 	 * reaches), it's ok to upgrade to next limit
1734 	 */
1735 	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1736 	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1737 	if (!read_limit && !write_limit)
1738 		return true;
1739 	if (read_limit && sq->nr_queued[READ] &&
1740 	    (!write_limit || sq->nr_queued[WRITE]))
1741 		return true;
1742 	if (write_limit && sq->nr_queued[WRITE] &&
1743 	    (!read_limit || sq->nr_queued[READ]))
1744 		return true;
1745 
1746 	if (time_after_eq(jiffies,
1747 		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1748 	    throtl_tg_is_idle(tg))
1749 		return true;
1750 	return false;
1751 }
1752 
1753 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1754 {
1755 	while (true) {
1756 		if (throtl_tg_can_upgrade(tg))
1757 			return true;
1758 		tg = sq_to_tg(tg->service_queue.parent_sq);
1759 		if (!tg || !tg_to_blkg(tg)->parent)
1760 			return false;
1761 	}
1762 	return false;
1763 }
1764 
1765 static bool throtl_can_upgrade(struct throtl_data *td,
1766 	struct throtl_grp *this_tg)
1767 {
1768 	struct cgroup_subsys_state *pos_css;
1769 	struct blkcg_gq *blkg;
1770 
1771 	if (td->limit_index != LIMIT_LOW)
1772 		return false;
1773 
1774 	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1775 		return false;
1776 
1777 	rcu_read_lock();
1778 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1779 		struct throtl_grp *tg = blkg_to_tg(blkg);
1780 
1781 		if (tg == this_tg)
1782 			continue;
1783 		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1784 			continue;
1785 		if (!throtl_hierarchy_can_upgrade(tg)) {
1786 			rcu_read_unlock();
1787 			return false;
1788 		}
1789 	}
1790 	rcu_read_unlock();
1791 	return true;
1792 }
1793 
1794 static void throtl_upgrade_check(struct throtl_grp *tg)
1795 {
1796 	unsigned long now = jiffies;
1797 
1798 	if (tg->td->limit_index != LIMIT_LOW)
1799 		return;
1800 
1801 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1802 		return;
1803 
1804 	tg->last_check_time = now;
1805 
1806 	if (!time_after_eq(now,
1807 	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1808 		return;
1809 
1810 	if (throtl_can_upgrade(tg->td, NULL))
1811 		throtl_upgrade_state(tg->td);
1812 }
1813 
1814 static void throtl_upgrade_state(struct throtl_data *td)
1815 {
1816 	struct cgroup_subsys_state *pos_css;
1817 	struct blkcg_gq *blkg;
1818 
1819 	throtl_log(&td->service_queue, "upgrade to max");
1820 	td->limit_index = LIMIT_MAX;
1821 	td->low_upgrade_time = jiffies;
1822 	td->scale = 0;
1823 	rcu_read_lock();
1824 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1825 		struct throtl_grp *tg = blkg_to_tg(blkg);
1826 		struct throtl_service_queue *sq = &tg->service_queue;
1827 
1828 		tg->disptime = jiffies - 1;
1829 		throtl_select_dispatch(sq);
1830 		throtl_schedule_next_dispatch(sq, true);
1831 	}
1832 	rcu_read_unlock();
1833 	throtl_select_dispatch(&td->service_queue);
1834 	throtl_schedule_next_dispatch(&td->service_queue, true);
1835 	queue_work(kthrotld_workqueue, &td->dispatch_work);
1836 }
1837 
1838 static void throtl_downgrade_state(struct throtl_data *td)
1839 {
1840 	td->scale /= 2;
1841 
1842 	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1843 	if (td->scale) {
1844 		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1845 		return;
1846 	}
1847 
1848 	td->limit_index = LIMIT_LOW;
1849 	td->low_downgrade_time = jiffies;
1850 }
1851 
1852 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1853 {
1854 	struct throtl_data *td = tg->td;
1855 	unsigned long now = jiffies;
1856 
1857 	/*
1858 	 * If cgroup is below low limit, consider downgrade and throttle other
1859 	 * cgroups
1860 	 */
1861 	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1862 	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1863 					td->throtl_slice) &&
1864 	    (!throtl_tg_is_idle(tg) ||
1865 	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1866 		return true;
1867 	return false;
1868 }
1869 
1870 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1871 {
1872 	while (true) {
1873 		if (!throtl_tg_can_downgrade(tg))
1874 			return false;
1875 		tg = sq_to_tg(tg->service_queue.parent_sq);
1876 		if (!tg || !tg_to_blkg(tg)->parent)
1877 			break;
1878 	}
1879 	return true;
1880 }
1881 
1882 static void throtl_downgrade_check(struct throtl_grp *tg)
1883 {
1884 	uint64_t bps;
1885 	unsigned int iops;
1886 	unsigned long elapsed_time;
1887 	unsigned long now = jiffies;
1888 
1889 	if (tg->td->limit_index != LIMIT_MAX ||
1890 	    !tg->td->limit_valid[LIMIT_LOW])
1891 		return;
1892 	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1893 		return;
1894 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1895 		return;
1896 
1897 	elapsed_time = now - tg->last_check_time;
1898 	tg->last_check_time = now;
1899 
1900 	if (time_before(now, tg_last_low_overflow_time(tg) +
1901 			tg->td->throtl_slice))
1902 		return;
1903 
1904 	if (tg->bps[READ][LIMIT_LOW]) {
1905 		bps = tg->last_bytes_disp[READ] * HZ;
1906 		do_div(bps, elapsed_time);
1907 		if (bps >= tg->bps[READ][LIMIT_LOW])
1908 			tg->last_low_overflow_time[READ] = now;
1909 	}
1910 
1911 	if (tg->bps[WRITE][LIMIT_LOW]) {
1912 		bps = tg->last_bytes_disp[WRITE] * HZ;
1913 		do_div(bps, elapsed_time);
1914 		if (bps >= tg->bps[WRITE][LIMIT_LOW])
1915 			tg->last_low_overflow_time[WRITE] = now;
1916 	}
1917 
1918 	if (tg->iops[READ][LIMIT_LOW]) {
1919 		tg->last_io_disp[READ] += atomic_xchg(&tg->last_io_split_cnt[READ], 0);
1920 		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1921 		if (iops >= tg->iops[READ][LIMIT_LOW])
1922 			tg->last_low_overflow_time[READ] = now;
1923 	}
1924 
1925 	if (tg->iops[WRITE][LIMIT_LOW]) {
1926 		tg->last_io_disp[WRITE] += atomic_xchg(&tg->last_io_split_cnt[WRITE], 0);
1927 		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1928 		if (iops >= tg->iops[WRITE][LIMIT_LOW])
1929 			tg->last_low_overflow_time[WRITE] = now;
1930 	}
1931 
1932 	/*
1933 	 * If cgroup is below low limit, consider downgrade and throttle other
1934 	 * cgroups
1935 	 */
1936 	if (throtl_hierarchy_can_downgrade(tg))
1937 		throtl_downgrade_state(tg->td);
1938 
1939 	tg->last_bytes_disp[READ] = 0;
1940 	tg->last_bytes_disp[WRITE] = 0;
1941 	tg->last_io_disp[READ] = 0;
1942 	tg->last_io_disp[WRITE] = 0;
1943 }
1944 
1945 static void blk_throtl_update_idletime(struct throtl_grp *tg)
1946 {
1947 	unsigned long now;
1948 	unsigned long last_finish_time = tg->last_finish_time;
1949 
1950 	if (last_finish_time == 0)
1951 		return;
1952 
1953 	now = ktime_get_ns() >> 10;
1954 	if (now <= last_finish_time ||
1955 	    last_finish_time == tg->checked_last_finish_time)
1956 		return;
1957 
1958 	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
1959 	tg->checked_last_finish_time = last_finish_time;
1960 }
1961 
1962 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1963 static void throtl_update_latency_buckets(struct throtl_data *td)
1964 {
1965 	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
1966 	int i, cpu, rw;
1967 	unsigned long last_latency[2] = { 0 };
1968 	unsigned long latency[2];
1969 
1970 	if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
1971 		return;
1972 	if (time_before(jiffies, td->last_calculate_time + HZ))
1973 		return;
1974 	td->last_calculate_time = jiffies;
1975 
1976 	memset(avg_latency, 0, sizeof(avg_latency));
1977 	for (rw = READ; rw <= WRITE; rw++) {
1978 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
1979 			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
1980 
1981 			for_each_possible_cpu(cpu) {
1982 				struct latency_bucket *bucket;
1983 
1984 				/* this isn't race free, but ok in practice */
1985 				bucket = per_cpu_ptr(td->latency_buckets[rw],
1986 					cpu);
1987 				tmp->total_latency += bucket[i].total_latency;
1988 				tmp->samples += bucket[i].samples;
1989 				bucket[i].total_latency = 0;
1990 				bucket[i].samples = 0;
1991 			}
1992 
1993 			if (tmp->samples >= 32) {
1994 				int samples = tmp->samples;
1995 
1996 				latency[rw] = tmp->total_latency;
1997 
1998 				tmp->total_latency = 0;
1999 				tmp->samples = 0;
2000 				latency[rw] /= samples;
2001 				if (latency[rw] == 0)
2002 					continue;
2003 				avg_latency[rw][i].latency = latency[rw];
2004 			}
2005 		}
2006 	}
2007 
2008 	for (rw = READ; rw <= WRITE; rw++) {
2009 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2010 			if (!avg_latency[rw][i].latency) {
2011 				if (td->avg_buckets[rw][i].latency < last_latency[rw])
2012 					td->avg_buckets[rw][i].latency =
2013 						last_latency[rw];
2014 				continue;
2015 			}
2016 
2017 			if (!td->avg_buckets[rw][i].valid)
2018 				latency[rw] = avg_latency[rw][i].latency;
2019 			else
2020 				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2021 					avg_latency[rw][i].latency) >> 3;
2022 
2023 			td->avg_buckets[rw][i].latency = max(latency[rw],
2024 				last_latency[rw]);
2025 			td->avg_buckets[rw][i].valid = true;
2026 			last_latency[rw] = td->avg_buckets[rw][i].latency;
2027 		}
2028 	}
2029 
2030 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2031 		throtl_log(&td->service_queue,
2032 			"Latency bucket %d: read latency=%ld, read valid=%d, "
2033 			"write latency=%ld, write valid=%d", i,
2034 			td->avg_buckets[READ][i].latency,
2035 			td->avg_buckets[READ][i].valid,
2036 			td->avg_buckets[WRITE][i].latency,
2037 			td->avg_buckets[WRITE][i].valid);
2038 }
2039 #else
2040 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2041 {
2042 }
2043 #endif
2044 
2045 void blk_throtl_charge_bio_split(struct bio *bio)
2046 {
2047 	struct blkcg_gq *blkg = bio->bi_blkg;
2048 	struct throtl_grp *parent = blkg_to_tg(blkg);
2049 	struct throtl_service_queue *parent_sq;
2050 	bool rw = bio_data_dir(bio);
2051 
2052 	do {
2053 		if (!parent->has_rules[rw])
2054 			break;
2055 
2056 		atomic_inc(&parent->io_split_cnt[rw]);
2057 		atomic_inc(&parent->last_io_split_cnt[rw]);
2058 
2059 		parent_sq = parent->service_queue.parent_sq;
2060 		parent = sq_to_tg(parent_sq);
2061 	} while (parent);
2062 }
2063 
2064 bool __blk_throtl_bio(struct bio *bio)
2065 {
2066 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2067 	struct blkcg_gq *blkg = bio->bi_blkg;
2068 	struct throtl_qnode *qn = NULL;
2069 	struct throtl_grp *tg = blkg_to_tg(blkg);
2070 	struct throtl_service_queue *sq;
2071 	bool rw = bio_data_dir(bio);
2072 	bool throttled = false;
2073 	struct throtl_data *td = tg->td;
2074 
2075 	rcu_read_lock();
2076 
2077 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2078 		blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2079 				bio->bi_iter.bi_size);
2080 		blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2081 	}
2082 
2083 	spin_lock_irq(&q->queue_lock);
2084 
2085 	throtl_update_latency_buckets(td);
2086 
2087 	blk_throtl_update_idletime(tg);
2088 
2089 	sq = &tg->service_queue;
2090 
2091 again:
2092 	while (true) {
2093 		if (tg->last_low_overflow_time[rw] == 0)
2094 			tg->last_low_overflow_time[rw] = jiffies;
2095 		throtl_downgrade_check(tg);
2096 		throtl_upgrade_check(tg);
2097 		/* throtl is FIFO - if bios are already queued, should queue */
2098 		if (sq->nr_queued[rw])
2099 			break;
2100 
2101 		/* if above limits, break to queue */
2102 		if (!tg_may_dispatch(tg, bio, NULL)) {
2103 			tg->last_low_overflow_time[rw] = jiffies;
2104 			if (throtl_can_upgrade(td, tg)) {
2105 				throtl_upgrade_state(td);
2106 				goto again;
2107 			}
2108 			break;
2109 		}
2110 
2111 		/* within limits, let's charge and dispatch directly */
2112 		throtl_charge_bio(tg, bio);
2113 
2114 		/*
2115 		 * We need to trim slice even when bios are not being queued
2116 		 * otherwise it might happen that a bio is not queued for
2117 		 * a long time and slice keeps on extending and trim is not
2118 		 * called for a long time. Now if limits are reduced suddenly
2119 		 * we take into account all the IO dispatched so far at new
2120 		 * low rate and * newly queued IO gets a really long dispatch
2121 		 * time.
2122 		 *
2123 		 * So keep on trimming slice even if bio is not queued.
2124 		 */
2125 		throtl_trim_slice(tg, rw);
2126 
2127 		/*
2128 		 * @bio passed through this layer without being throttled.
2129 		 * Climb up the ladder.  If we're already at the top, it
2130 		 * can be executed directly.
2131 		 */
2132 		qn = &tg->qnode_on_parent[rw];
2133 		sq = sq->parent_sq;
2134 		tg = sq_to_tg(sq);
2135 		if (!tg)
2136 			goto out_unlock;
2137 	}
2138 
2139 	/* out-of-limit, queue to @tg */
2140 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2141 		   rw == READ ? 'R' : 'W',
2142 		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2143 		   tg_bps_limit(tg, rw),
2144 		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2145 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2146 
2147 	tg->last_low_overflow_time[rw] = jiffies;
2148 
2149 	td->nr_queued[rw]++;
2150 	throtl_add_bio_tg(bio, qn, tg);
2151 	throttled = true;
2152 
2153 	/*
2154 	 * Update @tg's dispatch time and force schedule dispatch if @tg
2155 	 * was empty before @bio.  The forced scheduling isn't likely to
2156 	 * cause undue delay as @bio is likely to be dispatched directly if
2157 	 * its @tg's disptime is not in the future.
2158 	 */
2159 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2160 		tg_update_disptime(tg);
2161 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2162 	}
2163 
2164 out_unlock:
2165 	spin_unlock_irq(&q->queue_lock);
2166 	bio_set_flag(bio, BIO_THROTTLED);
2167 
2168 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2169 	if (throttled || !td->track_bio_latency)
2170 		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2171 #endif
2172 	rcu_read_unlock();
2173 	return throttled;
2174 }
2175 
2176 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2177 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2178 	int op, unsigned long time)
2179 {
2180 	struct latency_bucket *latency;
2181 	int index;
2182 
2183 	if (!td || td->limit_index != LIMIT_LOW ||
2184 	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2185 	    !blk_queue_nonrot(td->queue))
2186 		return;
2187 
2188 	index = request_bucket_index(size);
2189 
2190 	latency = get_cpu_ptr(td->latency_buckets[op]);
2191 	latency[index].total_latency += time;
2192 	latency[index].samples++;
2193 	put_cpu_ptr(td->latency_buckets[op]);
2194 }
2195 
2196 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2197 {
2198 	struct request_queue *q = rq->q;
2199 	struct throtl_data *td = q->td;
2200 
2201 	throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2202 			     time_ns >> 10);
2203 }
2204 
2205 void blk_throtl_bio_endio(struct bio *bio)
2206 {
2207 	struct blkcg_gq *blkg;
2208 	struct throtl_grp *tg;
2209 	u64 finish_time_ns;
2210 	unsigned long finish_time;
2211 	unsigned long start_time;
2212 	unsigned long lat;
2213 	int rw = bio_data_dir(bio);
2214 
2215 	blkg = bio->bi_blkg;
2216 	if (!blkg)
2217 		return;
2218 	tg = blkg_to_tg(blkg);
2219 	if (!tg->td->limit_valid[LIMIT_LOW])
2220 		return;
2221 
2222 	finish_time_ns = ktime_get_ns();
2223 	tg->last_finish_time = finish_time_ns >> 10;
2224 
2225 	start_time = bio_issue_time(&bio->bi_issue) >> 10;
2226 	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2227 	if (!start_time || finish_time <= start_time)
2228 		return;
2229 
2230 	lat = finish_time - start_time;
2231 	/* this is only for bio based driver */
2232 	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2233 		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2234 				     bio_op(bio), lat);
2235 
2236 	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2237 		int bucket;
2238 		unsigned int threshold;
2239 
2240 		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2241 		threshold = tg->td->avg_buckets[rw][bucket].latency +
2242 			tg->latency_target;
2243 		if (lat > threshold)
2244 			tg->bad_bio_cnt++;
2245 		/*
2246 		 * Not race free, could get wrong count, which means cgroups
2247 		 * will be throttled
2248 		 */
2249 		tg->bio_cnt++;
2250 	}
2251 
2252 	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2253 		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2254 		tg->bio_cnt /= 2;
2255 		tg->bad_bio_cnt /= 2;
2256 	}
2257 }
2258 #endif
2259 
2260 int blk_throtl_init(struct request_queue *q)
2261 {
2262 	struct throtl_data *td;
2263 	int ret;
2264 
2265 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2266 	if (!td)
2267 		return -ENOMEM;
2268 	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2269 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2270 	if (!td->latency_buckets[READ]) {
2271 		kfree(td);
2272 		return -ENOMEM;
2273 	}
2274 	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2275 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2276 	if (!td->latency_buckets[WRITE]) {
2277 		free_percpu(td->latency_buckets[READ]);
2278 		kfree(td);
2279 		return -ENOMEM;
2280 	}
2281 
2282 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2283 	throtl_service_queue_init(&td->service_queue);
2284 
2285 	q->td = td;
2286 	td->queue = q;
2287 
2288 	td->limit_valid[LIMIT_MAX] = true;
2289 	td->limit_index = LIMIT_MAX;
2290 	td->low_upgrade_time = jiffies;
2291 	td->low_downgrade_time = jiffies;
2292 
2293 	/* activate policy */
2294 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2295 	if (ret) {
2296 		free_percpu(td->latency_buckets[READ]);
2297 		free_percpu(td->latency_buckets[WRITE]);
2298 		kfree(td);
2299 	}
2300 	return ret;
2301 }
2302 
2303 void blk_throtl_exit(struct request_queue *q)
2304 {
2305 	BUG_ON(!q->td);
2306 	del_timer_sync(&q->td->service_queue.pending_timer);
2307 	throtl_shutdown_wq(q);
2308 	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2309 	free_percpu(q->td->latency_buckets[READ]);
2310 	free_percpu(q->td->latency_buckets[WRITE]);
2311 	kfree(q->td);
2312 }
2313 
2314 void blk_throtl_register_queue(struct request_queue *q)
2315 {
2316 	struct throtl_data *td;
2317 	int i;
2318 
2319 	td = q->td;
2320 	BUG_ON(!td);
2321 
2322 	if (blk_queue_nonrot(q)) {
2323 		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2324 		td->filtered_latency = LATENCY_FILTERED_SSD;
2325 	} else {
2326 		td->throtl_slice = DFL_THROTL_SLICE_HD;
2327 		td->filtered_latency = LATENCY_FILTERED_HD;
2328 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2329 			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2330 			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2331 		}
2332 	}
2333 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2334 	/* if no low limit, use previous default */
2335 	td->throtl_slice = DFL_THROTL_SLICE_HD;
2336 #endif
2337 
2338 	td->track_bio_latency = !queue_is_mq(q);
2339 	if (!td->track_bio_latency)
2340 		blk_stat_enable_accounting(q);
2341 }
2342 
2343 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2344 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2345 {
2346 	if (!q->td)
2347 		return -EINVAL;
2348 	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2349 }
2350 
2351 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2352 	const char *page, size_t count)
2353 {
2354 	unsigned long v;
2355 	unsigned long t;
2356 
2357 	if (!q->td)
2358 		return -EINVAL;
2359 	if (kstrtoul(page, 10, &v))
2360 		return -EINVAL;
2361 	t = msecs_to_jiffies(v);
2362 	if (t == 0 || t > MAX_THROTL_SLICE)
2363 		return -EINVAL;
2364 	q->td->throtl_slice = t;
2365 	return count;
2366 }
2367 #endif
2368 
2369 static int __init throtl_init(void)
2370 {
2371 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2372 	if (!kthrotld_workqueue)
2373 		panic("Failed to create kthrotld\n");
2374 
2375 	return blkcg_policy_register(&blkcg_policy_throtl);
2376 }
2377 
2378 module_init(throtl_init);
2379