xref: /openbmc/linux/block/blk-throttle.c (revision 612cf4d2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include "blk.h"
14 #include "blk-cgroup-rwstat.h"
15 #include "blk-stat.h"
16 #include "blk-throttle.h"
17 
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
20 
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
23 
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
29 #define MIN_THROTL_BPS (320 * 1024)
30 #define MIN_THROTL_IOPS (10)
31 #define DFL_LATENCY_TARGET (-1L)
32 #define DFL_IDLE_THRESHOLD (0)
33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34 #define LATENCY_FILTERED_SSD (0)
35 /*
36  * For HD, very small latency comes from sequential IO. Such IO is helpless to
37  * help determine if its IO is impacted by others, hence we ignore the IO
38  */
39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
40 
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct *kthrotld_workqueue;
43 
44 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
45 
46 /* We measure latency for request size from <= 4k to >= 1M */
47 #define LATENCY_BUCKET_SIZE 9
48 
49 struct latency_bucket {
50 	unsigned long total_latency; /* ns / 1024 */
51 	int samples;
52 };
53 
54 struct avg_latency_bucket {
55 	unsigned long latency; /* ns / 1024 */
56 	bool valid;
57 };
58 
59 struct throtl_data
60 {
61 	/* service tree for active throtl groups */
62 	struct throtl_service_queue service_queue;
63 
64 	struct request_queue *queue;
65 
66 	/* Total Number of queued bios on READ and WRITE lists */
67 	unsigned int nr_queued[2];
68 
69 	unsigned int throtl_slice;
70 
71 	/* Work for dispatching throttled bios */
72 	struct work_struct dispatch_work;
73 	unsigned int limit_index;
74 	bool limit_valid[LIMIT_CNT];
75 
76 	unsigned long low_upgrade_time;
77 	unsigned long low_downgrade_time;
78 
79 	unsigned int scale;
80 
81 	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82 	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83 	struct latency_bucket __percpu *latency_buckets[2];
84 	unsigned long last_calculate_time;
85 	unsigned long filtered_latency;
86 
87 	bool track_bio_latency;
88 };
89 
90 static void throtl_pending_timer_fn(struct timer_list *t);
91 
92 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
93 {
94 	return pd_to_blkg(&tg->pd);
95 }
96 
97 /**
98  * sq_to_tg - return the throl_grp the specified service queue belongs to
99  * @sq: the throtl_service_queue of interest
100  *
101  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
102  * embedded in throtl_data, %NULL is returned.
103  */
104 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
105 {
106 	if (sq && sq->parent_sq)
107 		return container_of(sq, struct throtl_grp, service_queue);
108 	else
109 		return NULL;
110 }
111 
112 /**
113  * sq_to_td - return throtl_data the specified service queue belongs to
114  * @sq: the throtl_service_queue of interest
115  *
116  * A service_queue can be embedded in either a throtl_grp or throtl_data.
117  * Determine the associated throtl_data accordingly and return it.
118  */
119 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
120 {
121 	struct throtl_grp *tg = sq_to_tg(sq);
122 
123 	if (tg)
124 		return tg->td;
125 	else
126 		return container_of(sq, struct throtl_data, service_queue);
127 }
128 
129 /*
130  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131  * make the IO dispatch more smooth.
132  * Scale up: linearly scale up according to elapsed time since upgrade. For
133  *           every throtl_slice, the limit scales up 1/2 .low limit till the
134  *           limit hits .max limit
135  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
136  */
137 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
138 {
139 	/* arbitrary value to avoid too big scale */
140 	if (td->scale < 4096 && time_after_eq(jiffies,
141 	    td->low_upgrade_time + td->scale * td->throtl_slice))
142 		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
143 
144 	return low + (low >> 1) * td->scale;
145 }
146 
147 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
148 {
149 	struct blkcg_gq *blkg = tg_to_blkg(tg);
150 	struct throtl_data *td;
151 	uint64_t ret;
152 
153 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
154 		return U64_MAX;
155 
156 	td = tg->td;
157 	ret = tg->bps[rw][td->limit_index];
158 	if (ret == 0 && td->limit_index == LIMIT_LOW) {
159 		/* intermediate node or iops isn't 0 */
160 		if (!list_empty(&blkg->blkcg->css.children) ||
161 		    tg->iops[rw][td->limit_index])
162 			return U64_MAX;
163 		else
164 			return MIN_THROTL_BPS;
165 	}
166 
167 	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168 	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
169 		uint64_t adjusted;
170 
171 		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172 		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
173 	}
174 	return ret;
175 }
176 
177 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
178 {
179 	struct blkcg_gq *blkg = tg_to_blkg(tg);
180 	struct throtl_data *td;
181 	unsigned int ret;
182 
183 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
184 		return UINT_MAX;
185 
186 	td = tg->td;
187 	ret = tg->iops[rw][td->limit_index];
188 	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189 		/* intermediate node or bps isn't 0 */
190 		if (!list_empty(&blkg->blkcg->css.children) ||
191 		    tg->bps[rw][td->limit_index])
192 			return UINT_MAX;
193 		else
194 			return MIN_THROTL_IOPS;
195 	}
196 
197 	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198 	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
199 		uint64_t adjusted;
200 
201 		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202 		if (adjusted > UINT_MAX)
203 			adjusted = UINT_MAX;
204 		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
205 	}
206 	return ret;
207 }
208 
209 #define request_bucket_index(sectors) \
210 	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
211 
212 /**
213  * throtl_log - log debug message via blktrace
214  * @sq: the service_queue being reported
215  * @fmt: printf format string
216  * @args: printf args
217  *
218  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219  * throtl_grp; otherwise, just "throtl".
220  */
221 #define throtl_log(sq, fmt, args...)	do {				\
222 	struct throtl_grp *__tg = sq_to_tg((sq));			\
223 	struct throtl_data *__td = sq_to_td((sq));			\
224 									\
225 	(void)__td;							\
226 	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
227 		break;							\
228 	if ((__tg)) {							\
229 		blk_add_cgroup_trace_msg(__td->queue,			\
230 			&tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
231 	} else {							\
232 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
233 	}								\
234 } while (0)
235 
236 static inline unsigned int throtl_bio_data_size(struct bio *bio)
237 {
238 	/* assume it's one sector */
239 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
240 		return 512;
241 	return bio->bi_iter.bi_size;
242 }
243 
244 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
245 {
246 	INIT_LIST_HEAD(&qn->node);
247 	bio_list_init(&qn->bios);
248 	qn->tg = tg;
249 }
250 
251 /**
252  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253  * @bio: bio being added
254  * @qn: qnode to add bio to
255  * @queued: the service_queue->queued[] list @qn belongs to
256  *
257  * Add @bio to @qn and put @qn on @queued if it's not already on.
258  * @qn->tg's reference count is bumped when @qn is activated.  See the
259  * comment on top of throtl_qnode definition for details.
260  */
261 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262 				 struct list_head *queued)
263 {
264 	bio_list_add(&qn->bios, bio);
265 	if (list_empty(&qn->node)) {
266 		list_add_tail(&qn->node, queued);
267 		blkg_get(tg_to_blkg(qn->tg));
268 	}
269 }
270 
271 /**
272  * throtl_peek_queued - peek the first bio on a qnode list
273  * @queued: the qnode list to peek
274  */
275 static struct bio *throtl_peek_queued(struct list_head *queued)
276 {
277 	struct throtl_qnode *qn;
278 	struct bio *bio;
279 
280 	if (list_empty(queued))
281 		return NULL;
282 
283 	qn = list_first_entry(queued, struct throtl_qnode, node);
284 	bio = bio_list_peek(&qn->bios);
285 	WARN_ON_ONCE(!bio);
286 	return bio;
287 }
288 
289 /**
290  * throtl_pop_queued - pop the first bio form a qnode list
291  * @queued: the qnode list to pop a bio from
292  * @tg_to_put: optional out argument for throtl_grp to put
293  *
294  * Pop the first bio from the qnode list @queued.  After popping, the first
295  * qnode is removed from @queued if empty or moved to the end of @queued so
296  * that the popping order is round-robin.
297  *
298  * When the first qnode is removed, its associated throtl_grp should be put
299  * too.  If @tg_to_put is NULL, this function automatically puts it;
300  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301  * responsible for putting it.
302  */
303 static struct bio *throtl_pop_queued(struct list_head *queued,
304 				     struct throtl_grp **tg_to_put)
305 {
306 	struct throtl_qnode *qn;
307 	struct bio *bio;
308 
309 	if (list_empty(queued))
310 		return NULL;
311 
312 	qn = list_first_entry(queued, struct throtl_qnode, node);
313 	bio = bio_list_pop(&qn->bios);
314 	WARN_ON_ONCE(!bio);
315 
316 	if (bio_list_empty(&qn->bios)) {
317 		list_del_init(&qn->node);
318 		if (tg_to_put)
319 			*tg_to_put = qn->tg;
320 		else
321 			blkg_put(tg_to_blkg(qn->tg));
322 	} else {
323 		list_move_tail(&qn->node, queued);
324 	}
325 
326 	return bio;
327 }
328 
329 /* init a service_queue, assumes the caller zeroed it */
330 static void throtl_service_queue_init(struct throtl_service_queue *sq)
331 {
332 	INIT_LIST_HEAD(&sq->queued[READ]);
333 	INIT_LIST_HEAD(&sq->queued[WRITE]);
334 	sq->pending_tree = RB_ROOT_CACHED;
335 	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
336 }
337 
338 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
339 						struct request_queue *q,
340 						struct blkcg *blkcg)
341 {
342 	struct throtl_grp *tg;
343 	int rw;
344 
345 	tg = kzalloc_node(sizeof(*tg), gfp, q->node);
346 	if (!tg)
347 		return NULL;
348 
349 	if (blkg_rwstat_init(&tg->stat_bytes, gfp))
350 		goto err_free_tg;
351 
352 	if (blkg_rwstat_init(&tg->stat_ios, gfp))
353 		goto err_exit_stat_bytes;
354 
355 	throtl_service_queue_init(&tg->service_queue);
356 
357 	for (rw = READ; rw <= WRITE; rw++) {
358 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
359 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
360 	}
361 
362 	RB_CLEAR_NODE(&tg->rb_node);
363 	tg->bps[READ][LIMIT_MAX] = U64_MAX;
364 	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
365 	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
366 	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
367 	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
368 	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
369 	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
370 	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
371 	/* LIMIT_LOW will have default value 0 */
372 
373 	tg->latency_target = DFL_LATENCY_TARGET;
374 	tg->latency_target_conf = DFL_LATENCY_TARGET;
375 	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
376 	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
377 
378 	return &tg->pd;
379 
380 err_exit_stat_bytes:
381 	blkg_rwstat_exit(&tg->stat_bytes);
382 err_free_tg:
383 	kfree(tg);
384 	return NULL;
385 }
386 
387 static void throtl_pd_init(struct blkg_policy_data *pd)
388 {
389 	struct throtl_grp *tg = pd_to_tg(pd);
390 	struct blkcg_gq *blkg = tg_to_blkg(tg);
391 	struct throtl_data *td = blkg->q->td;
392 	struct throtl_service_queue *sq = &tg->service_queue;
393 
394 	/*
395 	 * If on the default hierarchy, we switch to properly hierarchical
396 	 * behavior where limits on a given throtl_grp are applied to the
397 	 * whole subtree rather than just the group itself.  e.g. If 16M
398 	 * read_bps limit is set on a parent group, summary bps of
399 	 * parent group and its subtree groups can't exceed 16M for the
400 	 * device.
401 	 *
402 	 * If not on the default hierarchy, the broken flat hierarchy
403 	 * behavior is retained where all throtl_grps are treated as if
404 	 * they're all separate root groups right below throtl_data.
405 	 * Limits of a group don't interact with limits of other groups
406 	 * regardless of the position of the group in the hierarchy.
407 	 */
408 	sq->parent_sq = &td->service_queue;
409 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
410 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
411 	tg->td = td;
412 }
413 
414 /*
415  * Set has_rules[] if @tg or any of its parents have limits configured.
416  * This doesn't require walking up to the top of the hierarchy as the
417  * parent's has_rules[] is guaranteed to be correct.
418  */
419 static void tg_update_has_rules(struct throtl_grp *tg)
420 {
421 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
422 	struct throtl_data *td = tg->td;
423 	int rw;
424 
425 	for (rw = READ; rw <= WRITE; rw++) {
426 		tg->has_rules_iops[rw] =
427 			(parent_tg && parent_tg->has_rules_iops[rw]) ||
428 			(td->limit_valid[td->limit_index] &&
429 			  tg_iops_limit(tg, rw) != UINT_MAX);
430 		tg->has_rules_bps[rw] =
431 			(parent_tg && parent_tg->has_rules_bps[rw]) ||
432 			(td->limit_valid[td->limit_index] &&
433 			 (tg_bps_limit(tg, rw) != U64_MAX));
434 	}
435 }
436 
437 static void throtl_pd_online(struct blkg_policy_data *pd)
438 {
439 	struct throtl_grp *tg = pd_to_tg(pd);
440 	/*
441 	 * We don't want new groups to escape the limits of its ancestors.
442 	 * Update has_rules[] after a new group is brought online.
443 	 */
444 	tg_update_has_rules(tg);
445 }
446 
447 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
448 static void blk_throtl_update_limit_valid(struct throtl_data *td)
449 {
450 	struct cgroup_subsys_state *pos_css;
451 	struct blkcg_gq *blkg;
452 	bool low_valid = false;
453 
454 	rcu_read_lock();
455 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
456 		struct throtl_grp *tg = blkg_to_tg(blkg);
457 
458 		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
459 		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
460 			low_valid = true;
461 			break;
462 		}
463 	}
464 	rcu_read_unlock();
465 
466 	td->limit_valid[LIMIT_LOW] = low_valid;
467 }
468 #else
469 static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
470 {
471 }
472 #endif
473 
474 static void throtl_upgrade_state(struct throtl_data *td);
475 static void throtl_pd_offline(struct blkg_policy_data *pd)
476 {
477 	struct throtl_grp *tg = pd_to_tg(pd);
478 
479 	tg->bps[READ][LIMIT_LOW] = 0;
480 	tg->bps[WRITE][LIMIT_LOW] = 0;
481 	tg->iops[READ][LIMIT_LOW] = 0;
482 	tg->iops[WRITE][LIMIT_LOW] = 0;
483 
484 	blk_throtl_update_limit_valid(tg->td);
485 
486 	if (!tg->td->limit_valid[tg->td->limit_index])
487 		throtl_upgrade_state(tg->td);
488 }
489 
490 static void throtl_pd_free(struct blkg_policy_data *pd)
491 {
492 	struct throtl_grp *tg = pd_to_tg(pd);
493 
494 	del_timer_sync(&tg->service_queue.pending_timer);
495 	blkg_rwstat_exit(&tg->stat_bytes);
496 	blkg_rwstat_exit(&tg->stat_ios);
497 	kfree(tg);
498 }
499 
500 static struct throtl_grp *
501 throtl_rb_first(struct throtl_service_queue *parent_sq)
502 {
503 	struct rb_node *n;
504 
505 	n = rb_first_cached(&parent_sq->pending_tree);
506 	WARN_ON_ONCE(!n);
507 	if (!n)
508 		return NULL;
509 	return rb_entry_tg(n);
510 }
511 
512 static void throtl_rb_erase(struct rb_node *n,
513 			    struct throtl_service_queue *parent_sq)
514 {
515 	rb_erase_cached(n, &parent_sq->pending_tree);
516 	RB_CLEAR_NODE(n);
517 }
518 
519 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
520 {
521 	struct throtl_grp *tg;
522 
523 	tg = throtl_rb_first(parent_sq);
524 	if (!tg)
525 		return;
526 
527 	parent_sq->first_pending_disptime = tg->disptime;
528 }
529 
530 static void tg_service_queue_add(struct throtl_grp *tg)
531 {
532 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
533 	struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
534 	struct rb_node *parent = NULL;
535 	struct throtl_grp *__tg;
536 	unsigned long key = tg->disptime;
537 	bool leftmost = true;
538 
539 	while (*node != NULL) {
540 		parent = *node;
541 		__tg = rb_entry_tg(parent);
542 
543 		if (time_before(key, __tg->disptime))
544 			node = &parent->rb_left;
545 		else {
546 			node = &parent->rb_right;
547 			leftmost = false;
548 		}
549 	}
550 
551 	rb_link_node(&tg->rb_node, parent, node);
552 	rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
553 			       leftmost);
554 }
555 
556 static void throtl_enqueue_tg(struct throtl_grp *tg)
557 {
558 	if (!(tg->flags & THROTL_TG_PENDING)) {
559 		tg_service_queue_add(tg);
560 		tg->flags |= THROTL_TG_PENDING;
561 		tg->service_queue.parent_sq->nr_pending++;
562 	}
563 }
564 
565 static void throtl_dequeue_tg(struct throtl_grp *tg)
566 {
567 	if (tg->flags & THROTL_TG_PENDING) {
568 		struct throtl_service_queue *parent_sq =
569 			tg->service_queue.parent_sq;
570 
571 		throtl_rb_erase(&tg->rb_node, parent_sq);
572 		--parent_sq->nr_pending;
573 		tg->flags &= ~THROTL_TG_PENDING;
574 	}
575 }
576 
577 /* Call with queue lock held */
578 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
579 					  unsigned long expires)
580 {
581 	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
582 
583 	/*
584 	 * Since we are adjusting the throttle limit dynamically, the sleep
585 	 * time calculated according to previous limit might be invalid. It's
586 	 * possible the cgroup sleep time is very long and no other cgroups
587 	 * have IO running so notify the limit changes. Make sure the cgroup
588 	 * doesn't sleep too long to avoid the missed notification.
589 	 */
590 	if (time_after(expires, max_expire))
591 		expires = max_expire;
592 	mod_timer(&sq->pending_timer, expires);
593 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
594 		   expires - jiffies, jiffies);
595 }
596 
597 /**
598  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
599  * @sq: the service_queue to schedule dispatch for
600  * @force: force scheduling
601  *
602  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
603  * dispatch time of the first pending child.  Returns %true if either timer
604  * is armed or there's no pending child left.  %false if the current
605  * dispatch window is still open and the caller should continue
606  * dispatching.
607  *
608  * If @force is %true, the dispatch timer is always scheduled and this
609  * function is guaranteed to return %true.  This is to be used when the
610  * caller can't dispatch itself and needs to invoke pending_timer
611  * unconditionally.  Note that forced scheduling is likely to induce short
612  * delay before dispatch starts even if @sq->first_pending_disptime is not
613  * in the future and thus shouldn't be used in hot paths.
614  */
615 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
616 					  bool force)
617 {
618 	/* any pending children left? */
619 	if (!sq->nr_pending)
620 		return true;
621 
622 	update_min_dispatch_time(sq);
623 
624 	/* is the next dispatch time in the future? */
625 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
626 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
627 		return true;
628 	}
629 
630 	/* tell the caller to continue dispatching */
631 	return false;
632 }
633 
634 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
635 		bool rw, unsigned long start)
636 {
637 	tg->bytes_disp[rw] = 0;
638 	tg->io_disp[rw] = 0;
639 	tg->carryover_bytes[rw] = 0;
640 	tg->carryover_ios[rw] = 0;
641 
642 	/*
643 	 * Previous slice has expired. We must have trimmed it after last
644 	 * bio dispatch. That means since start of last slice, we never used
645 	 * that bandwidth. Do try to make use of that bandwidth while giving
646 	 * credit.
647 	 */
648 	if (time_after(start, tg->slice_start[rw]))
649 		tg->slice_start[rw] = start;
650 
651 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
652 	throtl_log(&tg->service_queue,
653 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
654 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
655 		   tg->slice_end[rw], jiffies);
656 }
657 
658 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
659 					  bool clear_carryover)
660 {
661 	tg->bytes_disp[rw] = 0;
662 	tg->io_disp[rw] = 0;
663 	tg->slice_start[rw] = jiffies;
664 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
665 	if (clear_carryover) {
666 		tg->carryover_bytes[rw] = 0;
667 		tg->carryover_ios[rw] = 0;
668 	}
669 
670 	throtl_log(&tg->service_queue,
671 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
672 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
673 		   tg->slice_end[rw], jiffies);
674 }
675 
676 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
677 					unsigned long jiffy_end)
678 {
679 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
680 }
681 
682 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
683 				       unsigned long jiffy_end)
684 {
685 	throtl_set_slice_end(tg, rw, jiffy_end);
686 	throtl_log(&tg->service_queue,
687 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
688 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
689 		   tg->slice_end[rw], jiffies);
690 }
691 
692 /* Determine if previously allocated or extended slice is complete or not */
693 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
694 {
695 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
696 		return false;
697 
698 	return true;
699 }
700 
701 /* Trim the used slices and adjust slice start accordingly */
702 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
703 {
704 	unsigned long nr_slices, time_elapsed, io_trim;
705 	u64 bytes_trim, tmp;
706 
707 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
708 
709 	/*
710 	 * If bps are unlimited (-1), then time slice don't get
711 	 * renewed. Don't try to trim the slice if slice is used. A new
712 	 * slice will start when appropriate.
713 	 */
714 	if (throtl_slice_used(tg, rw))
715 		return;
716 
717 	/*
718 	 * A bio has been dispatched. Also adjust slice_end. It might happen
719 	 * that initially cgroup limit was very low resulting in high
720 	 * slice_end, but later limit was bumped up and bio was dispatched
721 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
722 	 * is bad because it does not allow new slice to start.
723 	 */
724 
725 	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
726 
727 	time_elapsed = jiffies - tg->slice_start[rw];
728 
729 	nr_slices = time_elapsed / tg->td->throtl_slice;
730 
731 	if (!nr_slices)
732 		return;
733 	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
734 	do_div(tmp, HZ);
735 	bytes_trim = tmp;
736 
737 	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
738 		HZ;
739 
740 	if (!bytes_trim && !io_trim)
741 		return;
742 
743 	if (tg->bytes_disp[rw] >= bytes_trim)
744 		tg->bytes_disp[rw] -= bytes_trim;
745 	else
746 		tg->bytes_disp[rw] = 0;
747 
748 	if (tg->io_disp[rw] >= io_trim)
749 		tg->io_disp[rw] -= io_trim;
750 	else
751 		tg->io_disp[rw] = 0;
752 
753 	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
754 
755 	throtl_log(&tg->service_queue,
756 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
757 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
758 		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
759 }
760 
761 static unsigned int calculate_io_allowed(u32 iops_limit,
762 					 unsigned long jiffy_elapsed)
763 {
764 	unsigned int io_allowed;
765 	u64 tmp;
766 
767 	/*
768 	 * jiffy_elapsed should not be a big value as minimum iops can be
769 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
770 	 * will allow dispatch after 1 second and after that slice should
771 	 * have been trimmed.
772 	 */
773 
774 	tmp = (u64)iops_limit * jiffy_elapsed;
775 	do_div(tmp, HZ);
776 
777 	if (tmp > UINT_MAX)
778 		io_allowed = UINT_MAX;
779 	else
780 		io_allowed = tmp;
781 
782 	return io_allowed;
783 }
784 
785 static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
786 {
787 	return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
788 }
789 
790 static void __tg_update_carryover(struct throtl_grp *tg, bool rw)
791 {
792 	unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
793 	u64 bps_limit = tg_bps_limit(tg, rw);
794 	u32 iops_limit = tg_iops_limit(tg, rw);
795 
796 	/*
797 	 * If config is updated while bios are still throttled, calculate and
798 	 * accumulate how many bytes/ios are waited across changes. And
799 	 * carryover_bytes/ios will be used to calculate new wait time under new
800 	 * configuration.
801 	 */
802 	if (bps_limit != U64_MAX)
803 		tg->carryover_bytes[rw] +=
804 			calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
805 			tg->bytes_disp[rw];
806 	if (iops_limit != UINT_MAX)
807 		tg->carryover_ios[rw] +=
808 			calculate_io_allowed(iops_limit, jiffy_elapsed) -
809 			tg->io_disp[rw];
810 }
811 
812 static void tg_update_carryover(struct throtl_grp *tg)
813 {
814 	if (tg->service_queue.nr_queued[READ])
815 		__tg_update_carryover(tg, READ);
816 	if (tg->service_queue.nr_queued[WRITE])
817 		__tg_update_carryover(tg, WRITE);
818 
819 	/* see comments in struct throtl_grp for meaning of these fields. */
820 	throtl_log(&tg->service_queue, "%s: %llu %llu %u %u\n", __func__,
821 		   tg->carryover_bytes[READ], tg->carryover_bytes[WRITE],
822 		   tg->carryover_ios[READ], tg->carryover_ios[WRITE]);
823 }
824 
825 static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
826 				 u32 iops_limit)
827 {
828 	bool rw = bio_data_dir(bio);
829 	unsigned int io_allowed;
830 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
831 
832 	if (iops_limit == UINT_MAX) {
833 		return 0;
834 	}
835 
836 	jiffy_elapsed = jiffies - tg->slice_start[rw];
837 
838 	/* Round up to the next throttle slice, wait time must be nonzero */
839 	jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
840 	io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) +
841 		     tg->carryover_ios[rw];
842 	if (tg->io_disp[rw] + 1 <= io_allowed) {
843 		return 0;
844 	}
845 
846 	/* Calc approx time to dispatch */
847 	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
848 	return jiffy_wait;
849 }
850 
851 static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
852 				u64 bps_limit)
853 {
854 	bool rw = bio_data_dir(bio);
855 	u64 bytes_allowed, extra_bytes;
856 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
857 	unsigned int bio_size = throtl_bio_data_size(bio);
858 
859 	/* no need to throttle if this bio's bytes have been accounted */
860 	if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
861 		return 0;
862 	}
863 
864 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
865 
866 	/* Slice has just started. Consider one slice interval */
867 	if (!jiffy_elapsed)
868 		jiffy_elapsed_rnd = tg->td->throtl_slice;
869 
870 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
871 	bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) +
872 			tg->carryover_bytes[rw];
873 	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
874 		return 0;
875 	}
876 
877 	/* Calc approx time to dispatch */
878 	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
879 	jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
880 
881 	if (!jiffy_wait)
882 		jiffy_wait = 1;
883 
884 	/*
885 	 * This wait time is without taking into consideration the rounding
886 	 * up we did. Add that time also.
887 	 */
888 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
889 	return jiffy_wait;
890 }
891 
892 /*
893  * Returns whether one can dispatch a bio or not. Also returns approx number
894  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
895  */
896 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
897 			    unsigned long *wait)
898 {
899 	bool rw = bio_data_dir(bio);
900 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
901 	u64 bps_limit = tg_bps_limit(tg, rw);
902 	u32 iops_limit = tg_iops_limit(tg, rw);
903 
904 	/*
905  	 * Currently whole state machine of group depends on first bio
906 	 * queued in the group bio list. So one should not be calling
907 	 * this function with a different bio if there are other bios
908 	 * queued.
909 	 */
910 	BUG_ON(tg->service_queue.nr_queued[rw] &&
911 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
912 
913 	/* If tg->bps = -1, then BW is unlimited */
914 	if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
915 	    tg->flags & THROTL_TG_CANCELING) {
916 		if (wait)
917 			*wait = 0;
918 		return true;
919 	}
920 
921 	/*
922 	 * If previous slice expired, start a new one otherwise renew/extend
923 	 * existing slice to make sure it is at least throtl_slice interval
924 	 * long since now. New slice is started only for empty throttle group.
925 	 * If there is queued bio, that means there should be an active
926 	 * slice and it should be extended instead.
927 	 */
928 	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
929 		throtl_start_new_slice(tg, rw, true);
930 	else {
931 		if (time_before(tg->slice_end[rw],
932 		    jiffies + tg->td->throtl_slice))
933 			throtl_extend_slice(tg, rw,
934 				jiffies + tg->td->throtl_slice);
935 	}
936 
937 	bps_wait = tg_within_bps_limit(tg, bio, bps_limit);
938 	iops_wait = tg_within_iops_limit(tg, bio, iops_limit);
939 	if (bps_wait + iops_wait == 0) {
940 		if (wait)
941 			*wait = 0;
942 		return true;
943 	}
944 
945 	max_wait = max(bps_wait, iops_wait);
946 
947 	if (wait)
948 		*wait = max_wait;
949 
950 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
951 		throtl_extend_slice(tg, rw, jiffies + max_wait);
952 
953 	return false;
954 }
955 
956 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
957 {
958 	bool rw = bio_data_dir(bio);
959 	unsigned int bio_size = throtl_bio_data_size(bio);
960 
961 	/* Charge the bio to the group */
962 	if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
963 		tg->bytes_disp[rw] += bio_size;
964 		tg->last_bytes_disp[rw] += bio_size;
965 	}
966 
967 	tg->io_disp[rw]++;
968 	tg->last_io_disp[rw]++;
969 }
970 
971 /**
972  * throtl_add_bio_tg - add a bio to the specified throtl_grp
973  * @bio: bio to add
974  * @qn: qnode to use
975  * @tg: the target throtl_grp
976  *
977  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
978  * tg->qnode_on_self[] is used.
979  */
980 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
981 			      struct throtl_grp *tg)
982 {
983 	struct throtl_service_queue *sq = &tg->service_queue;
984 	bool rw = bio_data_dir(bio);
985 
986 	if (!qn)
987 		qn = &tg->qnode_on_self[rw];
988 
989 	/*
990 	 * If @tg doesn't currently have any bios queued in the same
991 	 * direction, queueing @bio can change when @tg should be
992 	 * dispatched.  Mark that @tg was empty.  This is automatically
993 	 * cleared on the next tg_update_disptime().
994 	 */
995 	if (!sq->nr_queued[rw])
996 		tg->flags |= THROTL_TG_WAS_EMPTY;
997 
998 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
999 
1000 	sq->nr_queued[rw]++;
1001 	throtl_enqueue_tg(tg);
1002 }
1003 
1004 static void tg_update_disptime(struct throtl_grp *tg)
1005 {
1006 	struct throtl_service_queue *sq = &tg->service_queue;
1007 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1008 	struct bio *bio;
1009 
1010 	bio = throtl_peek_queued(&sq->queued[READ]);
1011 	if (bio)
1012 		tg_may_dispatch(tg, bio, &read_wait);
1013 
1014 	bio = throtl_peek_queued(&sq->queued[WRITE]);
1015 	if (bio)
1016 		tg_may_dispatch(tg, bio, &write_wait);
1017 
1018 	min_wait = min(read_wait, write_wait);
1019 	disptime = jiffies + min_wait;
1020 
1021 	/* Update dispatch time */
1022 	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
1023 	tg->disptime = disptime;
1024 	tg_service_queue_add(tg);
1025 
1026 	/* see throtl_add_bio_tg() */
1027 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1028 }
1029 
1030 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1031 					struct throtl_grp *parent_tg, bool rw)
1032 {
1033 	if (throtl_slice_used(parent_tg, rw)) {
1034 		throtl_start_new_slice_with_credit(parent_tg, rw,
1035 				child_tg->slice_start[rw]);
1036 	}
1037 
1038 }
1039 
1040 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1041 {
1042 	struct throtl_service_queue *sq = &tg->service_queue;
1043 	struct throtl_service_queue *parent_sq = sq->parent_sq;
1044 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1045 	struct throtl_grp *tg_to_put = NULL;
1046 	struct bio *bio;
1047 
1048 	/*
1049 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1050 	 * from @tg may put its reference and @parent_sq might end up
1051 	 * getting released prematurely.  Remember the tg to put and put it
1052 	 * after @bio is transferred to @parent_sq.
1053 	 */
1054 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1055 	sq->nr_queued[rw]--;
1056 
1057 	throtl_charge_bio(tg, bio);
1058 
1059 	/*
1060 	 * If our parent is another tg, we just need to transfer @bio to
1061 	 * the parent using throtl_add_bio_tg().  If our parent is
1062 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1063 	 * bio_lists[] and decrease total number queued.  The caller is
1064 	 * responsible for issuing these bios.
1065 	 */
1066 	if (parent_tg) {
1067 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1068 		start_parent_slice_with_credit(tg, parent_tg, rw);
1069 	} else {
1070 		bio_set_flag(bio, BIO_BPS_THROTTLED);
1071 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1072 				     &parent_sq->queued[rw]);
1073 		BUG_ON(tg->td->nr_queued[rw] <= 0);
1074 		tg->td->nr_queued[rw]--;
1075 	}
1076 
1077 	throtl_trim_slice(tg, rw);
1078 
1079 	if (tg_to_put)
1080 		blkg_put(tg_to_blkg(tg_to_put));
1081 }
1082 
1083 static int throtl_dispatch_tg(struct throtl_grp *tg)
1084 {
1085 	struct throtl_service_queue *sq = &tg->service_queue;
1086 	unsigned int nr_reads = 0, nr_writes = 0;
1087 	unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1088 	unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1089 	struct bio *bio;
1090 
1091 	/* Try to dispatch 75% READS and 25% WRITES */
1092 
1093 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1094 	       tg_may_dispatch(tg, bio, NULL)) {
1095 
1096 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1097 		nr_reads++;
1098 
1099 		if (nr_reads >= max_nr_reads)
1100 			break;
1101 	}
1102 
1103 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1104 	       tg_may_dispatch(tg, bio, NULL)) {
1105 
1106 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1107 		nr_writes++;
1108 
1109 		if (nr_writes >= max_nr_writes)
1110 			break;
1111 	}
1112 
1113 	return nr_reads + nr_writes;
1114 }
1115 
1116 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1117 {
1118 	unsigned int nr_disp = 0;
1119 
1120 	while (1) {
1121 		struct throtl_grp *tg;
1122 		struct throtl_service_queue *sq;
1123 
1124 		if (!parent_sq->nr_pending)
1125 			break;
1126 
1127 		tg = throtl_rb_first(parent_sq);
1128 		if (!tg)
1129 			break;
1130 
1131 		if (time_before(jiffies, tg->disptime))
1132 			break;
1133 
1134 		nr_disp += throtl_dispatch_tg(tg);
1135 
1136 		sq = &tg->service_queue;
1137 		if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
1138 			tg_update_disptime(tg);
1139 		else
1140 			throtl_dequeue_tg(tg);
1141 
1142 		if (nr_disp >= THROTL_QUANTUM)
1143 			break;
1144 	}
1145 
1146 	return nr_disp;
1147 }
1148 
1149 static bool throtl_can_upgrade(struct throtl_data *td,
1150 	struct throtl_grp *this_tg);
1151 /**
1152  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1153  * @t: the pending_timer member of the throtl_service_queue being serviced
1154  *
1155  * This timer is armed when a child throtl_grp with active bio's become
1156  * pending and queued on the service_queue's pending_tree and expires when
1157  * the first child throtl_grp should be dispatched.  This function
1158  * dispatches bio's from the children throtl_grps to the parent
1159  * service_queue.
1160  *
1161  * If the parent's parent is another throtl_grp, dispatching is propagated
1162  * by either arming its pending_timer or repeating dispatch directly.  If
1163  * the top-level service_tree is reached, throtl_data->dispatch_work is
1164  * kicked so that the ready bio's are issued.
1165  */
1166 static void throtl_pending_timer_fn(struct timer_list *t)
1167 {
1168 	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1169 	struct throtl_grp *tg = sq_to_tg(sq);
1170 	struct throtl_data *td = sq_to_td(sq);
1171 	struct throtl_service_queue *parent_sq;
1172 	struct request_queue *q;
1173 	bool dispatched;
1174 	int ret;
1175 
1176 	/* throtl_data may be gone, so figure out request queue by blkg */
1177 	if (tg)
1178 		q = tg->pd.blkg->q;
1179 	else
1180 		q = td->queue;
1181 
1182 	spin_lock_irq(&q->queue_lock);
1183 
1184 	if (!q->root_blkg)
1185 		goto out_unlock;
1186 
1187 	if (throtl_can_upgrade(td, NULL))
1188 		throtl_upgrade_state(td);
1189 
1190 again:
1191 	parent_sq = sq->parent_sq;
1192 	dispatched = false;
1193 
1194 	while (true) {
1195 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1196 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1197 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1198 
1199 		ret = throtl_select_dispatch(sq);
1200 		if (ret) {
1201 			throtl_log(sq, "bios disp=%u", ret);
1202 			dispatched = true;
1203 		}
1204 
1205 		if (throtl_schedule_next_dispatch(sq, false))
1206 			break;
1207 
1208 		/* this dispatch windows is still open, relax and repeat */
1209 		spin_unlock_irq(&q->queue_lock);
1210 		cpu_relax();
1211 		spin_lock_irq(&q->queue_lock);
1212 	}
1213 
1214 	if (!dispatched)
1215 		goto out_unlock;
1216 
1217 	if (parent_sq) {
1218 		/* @parent_sq is another throl_grp, propagate dispatch */
1219 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1220 			tg_update_disptime(tg);
1221 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1222 				/* window is already open, repeat dispatching */
1223 				sq = parent_sq;
1224 				tg = sq_to_tg(sq);
1225 				goto again;
1226 			}
1227 		}
1228 	} else {
1229 		/* reached the top-level, queue issuing */
1230 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1231 	}
1232 out_unlock:
1233 	spin_unlock_irq(&q->queue_lock);
1234 }
1235 
1236 /**
1237  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1238  * @work: work item being executed
1239  *
1240  * This function is queued for execution when bios reach the bio_lists[]
1241  * of throtl_data->service_queue.  Those bios are ready and issued by this
1242  * function.
1243  */
1244 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1245 {
1246 	struct throtl_data *td = container_of(work, struct throtl_data,
1247 					      dispatch_work);
1248 	struct throtl_service_queue *td_sq = &td->service_queue;
1249 	struct request_queue *q = td->queue;
1250 	struct bio_list bio_list_on_stack;
1251 	struct bio *bio;
1252 	struct blk_plug plug;
1253 	int rw;
1254 
1255 	bio_list_init(&bio_list_on_stack);
1256 
1257 	spin_lock_irq(&q->queue_lock);
1258 	for (rw = READ; rw <= WRITE; rw++)
1259 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1260 			bio_list_add(&bio_list_on_stack, bio);
1261 	spin_unlock_irq(&q->queue_lock);
1262 
1263 	if (!bio_list_empty(&bio_list_on_stack)) {
1264 		blk_start_plug(&plug);
1265 		while ((bio = bio_list_pop(&bio_list_on_stack)))
1266 			submit_bio_noacct_nocheck(bio);
1267 		blk_finish_plug(&plug);
1268 	}
1269 }
1270 
1271 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1272 			      int off)
1273 {
1274 	struct throtl_grp *tg = pd_to_tg(pd);
1275 	u64 v = *(u64 *)((void *)tg + off);
1276 
1277 	if (v == U64_MAX)
1278 		return 0;
1279 	return __blkg_prfill_u64(sf, pd, v);
1280 }
1281 
1282 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1283 			       int off)
1284 {
1285 	struct throtl_grp *tg = pd_to_tg(pd);
1286 	unsigned int v = *(unsigned int *)((void *)tg + off);
1287 
1288 	if (v == UINT_MAX)
1289 		return 0;
1290 	return __blkg_prfill_u64(sf, pd, v);
1291 }
1292 
1293 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1294 {
1295 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1296 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1297 	return 0;
1298 }
1299 
1300 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1301 {
1302 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1303 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1304 	return 0;
1305 }
1306 
1307 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1308 {
1309 	struct throtl_service_queue *sq = &tg->service_queue;
1310 	struct cgroup_subsys_state *pos_css;
1311 	struct blkcg_gq *blkg;
1312 
1313 	throtl_log(&tg->service_queue,
1314 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1315 		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1316 		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1317 
1318 	/*
1319 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1320 	 * considered to have rules if either the tg itself or any of its
1321 	 * ancestors has rules.  This identifies groups without any
1322 	 * restrictions in the whole hierarchy and allows them to bypass
1323 	 * blk-throttle.
1324 	 */
1325 	blkg_for_each_descendant_pre(blkg, pos_css,
1326 			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1327 		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1328 		struct throtl_grp *parent_tg;
1329 
1330 		tg_update_has_rules(this_tg);
1331 		/* ignore root/second level */
1332 		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1333 		    !blkg->parent->parent)
1334 			continue;
1335 		parent_tg = blkg_to_tg(blkg->parent);
1336 		/*
1337 		 * make sure all children has lower idle time threshold and
1338 		 * higher latency target
1339 		 */
1340 		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1341 				parent_tg->idletime_threshold);
1342 		this_tg->latency_target = max(this_tg->latency_target,
1343 				parent_tg->latency_target);
1344 	}
1345 
1346 	/*
1347 	 * We're already holding queue_lock and know @tg is valid.  Let's
1348 	 * apply the new config directly.
1349 	 *
1350 	 * Restart the slices for both READ and WRITES. It might happen
1351 	 * that a group's limit are dropped suddenly and we don't want to
1352 	 * account recently dispatched IO with new low rate.
1353 	 */
1354 	throtl_start_new_slice(tg, READ, false);
1355 	throtl_start_new_slice(tg, WRITE, false);
1356 
1357 	if (tg->flags & THROTL_TG_PENDING) {
1358 		tg_update_disptime(tg);
1359 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1360 	}
1361 }
1362 
1363 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1364 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1365 {
1366 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1367 	struct blkg_conf_ctx ctx;
1368 	struct throtl_grp *tg;
1369 	int ret;
1370 	u64 v;
1371 
1372 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1373 	if (ret)
1374 		return ret;
1375 
1376 	ret = -EINVAL;
1377 	if (sscanf(ctx.body, "%llu", &v) != 1)
1378 		goto out_finish;
1379 	if (!v)
1380 		v = U64_MAX;
1381 
1382 	tg = blkg_to_tg(ctx.blkg);
1383 	tg_update_carryover(tg);
1384 
1385 	if (is_u64)
1386 		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1387 	else
1388 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1389 
1390 	tg_conf_updated(tg, false);
1391 	ret = 0;
1392 out_finish:
1393 	blkg_conf_finish(&ctx);
1394 	return ret ?: nbytes;
1395 }
1396 
1397 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1398 			       char *buf, size_t nbytes, loff_t off)
1399 {
1400 	return tg_set_conf(of, buf, nbytes, off, true);
1401 }
1402 
1403 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1404 				char *buf, size_t nbytes, loff_t off)
1405 {
1406 	return tg_set_conf(of, buf, nbytes, off, false);
1407 }
1408 
1409 static int tg_print_rwstat(struct seq_file *sf, void *v)
1410 {
1411 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1412 			  blkg_prfill_rwstat, &blkcg_policy_throtl,
1413 			  seq_cft(sf)->private, true);
1414 	return 0;
1415 }
1416 
1417 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1418 				      struct blkg_policy_data *pd, int off)
1419 {
1420 	struct blkg_rwstat_sample sum;
1421 
1422 	blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1423 				  &sum);
1424 	return __blkg_prfill_rwstat(sf, pd, &sum);
1425 }
1426 
1427 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1428 {
1429 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1430 			  tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1431 			  seq_cft(sf)->private, true);
1432 	return 0;
1433 }
1434 
1435 static struct cftype throtl_legacy_files[] = {
1436 	{
1437 		.name = "throttle.read_bps_device",
1438 		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1439 		.seq_show = tg_print_conf_u64,
1440 		.write = tg_set_conf_u64,
1441 	},
1442 	{
1443 		.name = "throttle.write_bps_device",
1444 		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1445 		.seq_show = tg_print_conf_u64,
1446 		.write = tg_set_conf_u64,
1447 	},
1448 	{
1449 		.name = "throttle.read_iops_device",
1450 		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1451 		.seq_show = tg_print_conf_uint,
1452 		.write = tg_set_conf_uint,
1453 	},
1454 	{
1455 		.name = "throttle.write_iops_device",
1456 		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1457 		.seq_show = tg_print_conf_uint,
1458 		.write = tg_set_conf_uint,
1459 	},
1460 	{
1461 		.name = "throttle.io_service_bytes",
1462 		.private = offsetof(struct throtl_grp, stat_bytes),
1463 		.seq_show = tg_print_rwstat,
1464 	},
1465 	{
1466 		.name = "throttle.io_service_bytes_recursive",
1467 		.private = offsetof(struct throtl_grp, stat_bytes),
1468 		.seq_show = tg_print_rwstat_recursive,
1469 	},
1470 	{
1471 		.name = "throttle.io_serviced",
1472 		.private = offsetof(struct throtl_grp, stat_ios),
1473 		.seq_show = tg_print_rwstat,
1474 	},
1475 	{
1476 		.name = "throttle.io_serviced_recursive",
1477 		.private = offsetof(struct throtl_grp, stat_ios),
1478 		.seq_show = tg_print_rwstat_recursive,
1479 	},
1480 	{ }	/* terminate */
1481 };
1482 
1483 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1484 			 int off)
1485 {
1486 	struct throtl_grp *tg = pd_to_tg(pd);
1487 	const char *dname = blkg_dev_name(pd->blkg);
1488 	char bufs[4][21] = { "max", "max", "max", "max" };
1489 	u64 bps_dft;
1490 	unsigned int iops_dft;
1491 	char idle_time[26] = "";
1492 	char latency_time[26] = "";
1493 
1494 	if (!dname)
1495 		return 0;
1496 
1497 	if (off == LIMIT_LOW) {
1498 		bps_dft = 0;
1499 		iops_dft = 0;
1500 	} else {
1501 		bps_dft = U64_MAX;
1502 		iops_dft = UINT_MAX;
1503 	}
1504 
1505 	if (tg->bps_conf[READ][off] == bps_dft &&
1506 	    tg->bps_conf[WRITE][off] == bps_dft &&
1507 	    tg->iops_conf[READ][off] == iops_dft &&
1508 	    tg->iops_conf[WRITE][off] == iops_dft &&
1509 	    (off != LIMIT_LOW ||
1510 	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1511 	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1512 		return 0;
1513 
1514 	if (tg->bps_conf[READ][off] != U64_MAX)
1515 		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1516 			tg->bps_conf[READ][off]);
1517 	if (tg->bps_conf[WRITE][off] != U64_MAX)
1518 		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1519 			tg->bps_conf[WRITE][off]);
1520 	if (tg->iops_conf[READ][off] != UINT_MAX)
1521 		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1522 			tg->iops_conf[READ][off]);
1523 	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1524 		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1525 			tg->iops_conf[WRITE][off]);
1526 	if (off == LIMIT_LOW) {
1527 		if (tg->idletime_threshold_conf == ULONG_MAX)
1528 			strcpy(idle_time, " idle=max");
1529 		else
1530 			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1531 				tg->idletime_threshold_conf);
1532 
1533 		if (tg->latency_target_conf == ULONG_MAX)
1534 			strcpy(latency_time, " latency=max");
1535 		else
1536 			snprintf(latency_time, sizeof(latency_time),
1537 				" latency=%lu", tg->latency_target_conf);
1538 	}
1539 
1540 	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1541 		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1542 		   latency_time);
1543 	return 0;
1544 }
1545 
1546 static int tg_print_limit(struct seq_file *sf, void *v)
1547 {
1548 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1549 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1550 	return 0;
1551 }
1552 
1553 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1554 			  char *buf, size_t nbytes, loff_t off)
1555 {
1556 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1557 	struct blkg_conf_ctx ctx;
1558 	struct throtl_grp *tg;
1559 	u64 v[4];
1560 	unsigned long idle_time;
1561 	unsigned long latency_time;
1562 	int ret;
1563 	int index = of_cft(of)->private;
1564 
1565 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1566 	if (ret)
1567 		return ret;
1568 
1569 	tg = blkg_to_tg(ctx.blkg);
1570 	tg_update_carryover(tg);
1571 
1572 	v[0] = tg->bps_conf[READ][index];
1573 	v[1] = tg->bps_conf[WRITE][index];
1574 	v[2] = tg->iops_conf[READ][index];
1575 	v[3] = tg->iops_conf[WRITE][index];
1576 
1577 	idle_time = tg->idletime_threshold_conf;
1578 	latency_time = tg->latency_target_conf;
1579 	while (true) {
1580 		char tok[27];	/* wiops=18446744073709551616 */
1581 		char *p;
1582 		u64 val = U64_MAX;
1583 		int len;
1584 
1585 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1586 			break;
1587 		if (tok[0] == '\0')
1588 			break;
1589 		ctx.body += len;
1590 
1591 		ret = -EINVAL;
1592 		p = tok;
1593 		strsep(&p, "=");
1594 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1595 			goto out_finish;
1596 
1597 		ret = -ERANGE;
1598 		if (!val)
1599 			goto out_finish;
1600 
1601 		ret = -EINVAL;
1602 		if (!strcmp(tok, "rbps") && val > 1)
1603 			v[0] = val;
1604 		else if (!strcmp(tok, "wbps") && val > 1)
1605 			v[1] = val;
1606 		else if (!strcmp(tok, "riops") && val > 1)
1607 			v[2] = min_t(u64, val, UINT_MAX);
1608 		else if (!strcmp(tok, "wiops") && val > 1)
1609 			v[3] = min_t(u64, val, UINT_MAX);
1610 		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1611 			idle_time = val;
1612 		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1613 			latency_time = val;
1614 		else
1615 			goto out_finish;
1616 	}
1617 
1618 	tg->bps_conf[READ][index] = v[0];
1619 	tg->bps_conf[WRITE][index] = v[1];
1620 	tg->iops_conf[READ][index] = v[2];
1621 	tg->iops_conf[WRITE][index] = v[3];
1622 
1623 	if (index == LIMIT_MAX) {
1624 		tg->bps[READ][index] = v[0];
1625 		tg->bps[WRITE][index] = v[1];
1626 		tg->iops[READ][index] = v[2];
1627 		tg->iops[WRITE][index] = v[3];
1628 	}
1629 	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1630 		tg->bps_conf[READ][LIMIT_MAX]);
1631 	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1632 		tg->bps_conf[WRITE][LIMIT_MAX]);
1633 	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1634 		tg->iops_conf[READ][LIMIT_MAX]);
1635 	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1636 		tg->iops_conf[WRITE][LIMIT_MAX]);
1637 	tg->idletime_threshold_conf = idle_time;
1638 	tg->latency_target_conf = latency_time;
1639 
1640 	/* force user to configure all settings for low limit  */
1641 	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1642 	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1643 	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1644 	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
1645 		tg->bps[READ][LIMIT_LOW] = 0;
1646 		tg->bps[WRITE][LIMIT_LOW] = 0;
1647 		tg->iops[READ][LIMIT_LOW] = 0;
1648 		tg->iops[WRITE][LIMIT_LOW] = 0;
1649 		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1650 		tg->latency_target = DFL_LATENCY_TARGET;
1651 	} else if (index == LIMIT_LOW) {
1652 		tg->idletime_threshold = tg->idletime_threshold_conf;
1653 		tg->latency_target = tg->latency_target_conf;
1654 	}
1655 
1656 	blk_throtl_update_limit_valid(tg->td);
1657 	if (tg->td->limit_valid[LIMIT_LOW]) {
1658 		if (index == LIMIT_LOW)
1659 			tg->td->limit_index = LIMIT_LOW;
1660 	} else
1661 		tg->td->limit_index = LIMIT_MAX;
1662 	tg_conf_updated(tg, index == LIMIT_LOW &&
1663 		tg->td->limit_valid[LIMIT_LOW]);
1664 	ret = 0;
1665 out_finish:
1666 	blkg_conf_finish(&ctx);
1667 	return ret ?: nbytes;
1668 }
1669 
1670 static struct cftype throtl_files[] = {
1671 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1672 	{
1673 		.name = "low",
1674 		.flags = CFTYPE_NOT_ON_ROOT,
1675 		.seq_show = tg_print_limit,
1676 		.write = tg_set_limit,
1677 		.private = LIMIT_LOW,
1678 	},
1679 #endif
1680 	{
1681 		.name = "max",
1682 		.flags = CFTYPE_NOT_ON_ROOT,
1683 		.seq_show = tg_print_limit,
1684 		.write = tg_set_limit,
1685 		.private = LIMIT_MAX,
1686 	},
1687 	{ }	/* terminate */
1688 };
1689 
1690 static void throtl_shutdown_wq(struct request_queue *q)
1691 {
1692 	struct throtl_data *td = q->td;
1693 
1694 	cancel_work_sync(&td->dispatch_work);
1695 }
1696 
1697 struct blkcg_policy blkcg_policy_throtl = {
1698 	.dfl_cftypes		= throtl_files,
1699 	.legacy_cftypes		= throtl_legacy_files,
1700 
1701 	.pd_alloc_fn		= throtl_pd_alloc,
1702 	.pd_init_fn		= throtl_pd_init,
1703 	.pd_online_fn		= throtl_pd_online,
1704 	.pd_offline_fn		= throtl_pd_offline,
1705 	.pd_free_fn		= throtl_pd_free,
1706 };
1707 
1708 void blk_throtl_cancel_bios(struct gendisk *disk)
1709 {
1710 	struct request_queue *q = disk->queue;
1711 	struct cgroup_subsys_state *pos_css;
1712 	struct blkcg_gq *blkg;
1713 
1714 	spin_lock_irq(&q->queue_lock);
1715 	/*
1716 	 * queue_lock is held, rcu lock is not needed here technically.
1717 	 * However, rcu lock is still held to emphasize that following
1718 	 * path need RCU protection and to prevent warning from lockdep.
1719 	 */
1720 	rcu_read_lock();
1721 	blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1722 		struct throtl_grp *tg = blkg_to_tg(blkg);
1723 		struct throtl_service_queue *sq = &tg->service_queue;
1724 
1725 		/*
1726 		 * Set the flag to make sure throtl_pending_timer_fn() won't
1727 		 * stop until all throttled bios are dispatched.
1728 		 */
1729 		tg->flags |= THROTL_TG_CANCELING;
1730 
1731 		/*
1732 		 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1733 		 * will be inserted to service queue without THROTL_TG_PENDING
1734 		 * set in tg_update_disptime below. Then IO dispatched from
1735 		 * child in tg_dispatch_one_bio will trigger double insertion
1736 		 * and corrupt the tree.
1737 		 */
1738 		if (!(tg->flags & THROTL_TG_PENDING))
1739 			continue;
1740 
1741 		/*
1742 		 * Update disptime after setting the above flag to make sure
1743 		 * throtl_select_dispatch() won't exit without dispatching.
1744 		 */
1745 		tg_update_disptime(tg);
1746 
1747 		throtl_schedule_pending_timer(sq, jiffies + 1);
1748 	}
1749 	rcu_read_unlock();
1750 	spin_unlock_irq(&q->queue_lock);
1751 }
1752 
1753 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1754 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1755 {
1756 	unsigned long rtime = jiffies, wtime = jiffies;
1757 
1758 	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1759 		rtime = tg->last_low_overflow_time[READ];
1760 	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1761 		wtime = tg->last_low_overflow_time[WRITE];
1762 	return min(rtime, wtime);
1763 }
1764 
1765 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1766 {
1767 	struct throtl_service_queue *parent_sq;
1768 	struct throtl_grp *parent = tg;
1769 	unsigned long ret = __tg_last_low_overflow_time(tg);
1770 
1771 	while (true) {
1772 		parent_sq = parent->service_queue.parent_sq;
1773 		parent = sq_to_tg(parent_sq);
1774 		if (!parent)
1775 			break;
1776 
1777 		/*
1778 		 * The parent doesn't have low limit, it always reaches low
1779 		 * limit. Its overflow time is useless for children
1780 		 */
1781 		if (!parent->bps[READ][LIMIT_LOW] &&
1782 		    !parent->iops[READ][LIMIT_LOW] &&
1783 		    !parent->bps[WRITE][LIMIT_LOW] &&
1784 		    !parent->iops[WRITE][LIMIT_LOW])
1785 			continue;
1786 		if (time_after(__tg_last_low_overflow_time(parent), ret))
1787 			ret = __tg_last_low_overflow_time(parent);
1788 	}
1789 	return ret;
1790 }
1791 
1792 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1793 {
1794 	/*
1795 	 * cgroup is idle if:
1796 	 * - single idle is too long, longer than a fixed value (in case user
1797 	 *   configure a too big threshold) or 4 times of idletime threshold
1798 	 * - average think time is more than threshold
1799 	 * - IO latency is largely below threshold
1800 	 */
1801 	unsigned long time;
1802 	bool ret;
1803 
1804 	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1805 	ret = tg->latency_target == DFL_LATENCY_TARGET ||
1806 	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1807 	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1808 	      tg->avg_idletime > tg->idletime_threshold ||
1809 	      (tg->latency_target && tg->bio_cnt &&
1810 		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1811 	throtl_log(&tg->service_queue,
1812 		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1813 		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1814 		tg->bio_cnt, ret, tg->td->scale);
1815 	return ret;
1816 }
1817 
1818 static bool throtl_low_limit_reached(struct throtl_grp *tg, int rw)
1819 {
1820 	struct throtl_service_queue *sq = &tg->service_queue;
1821 	bool limit = tg->bps[rw][LIMIT_LOW] || tg->iops[rw][LIMIT_LOW];
1822 
1823 	/*
1824 	 * if low limit is zero, low limit is always reached.
1825 	 * if low limit is non-zero, we can check if there is any request
1826 	 * is queued to determine if low limit is reached as we throttle
1827 	 * request according to limit.
1828 	 */
1829 	return !limit || sq->nr_queued[rw];
1830 }
1831 
1832 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1833 {
1834 	/*
1835 	 * cgroup reaches low limit when low limit of READ and WRITE are
1836 	 * both reached, it's ok to upgrade to next limit if cgroup reaches
1837 	 * low limit
1838 	 */
1839 	if (throtl_low_limit_reached(tg, READ) &&
1840 	    throtl_low_limit_reached(tg, WRITE))
1841 		return true;
1842 
1843 	if (time_after_eq(jiffies,
1844 		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1845 	    throtl_tg_is_idle(tg))
1846 		return true;
1847 	return false;
1848 }
1849 
1850 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1851 {
1852 	while (true) {
1853 		if (throtl_tg_can_upgrade(tg))
1854 			return true;
1855 		tg = sq_to_tg(tg->service_queue.parent_sq);
1856 		if (!tg || !tg_to_blkg(tg)->parent)
1857 			return false;
1858 	}
1859 	return false;
1860 }
1861 
1862 static bool throtl_can_upgrade(struct throtl_data *td,
1863 	struct throtl_grp *this_tg)
1864 {
1865 	struct cgroup_subsys_state *pos_css;
1866 	struct blkcg_gq *blkg;
1867 
1868 	if (td->limit_index != LIMIT_LOW)
1869 		return false;
1870 
1871 	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1872 		return false;
1873 
1874 	rcu_read_lock();
1875 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1876 		struct throtl_grp *tg = blkg_to_tg(blkg);
1877 
1878 		if (tg == this_tg)
1879 			continue;
1880 		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1881 			continue;
1882 		if (!throtl_hierarchy_can_upgrade(tg)) {
1883 			rcu_read_unlock();
1884 			return false;
1885 		}
1886 	}
1887 	rcu_read_unlock();
1888 	return true;
1889 }
1890 
1891 static void throtl_upgrade_check(struct throtl_grp *tg)
1892 {
1893 	unsigned long now = jiffies;
1894 
1895 	if (tg->td->limit_index != LIMIT_LOW)
1896 		return;
1897 
1898 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1899 		return;
1900 
1901 	tg->last_check_time = now;
1902 
1903 	if (!time_after_eq(now,
1904 	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1905 		return;
1906 
1907 	if (throtl_can_upgrade(tg->td, NULL))
1908 		throtl_upgrade_state(tg->td);
1909 }
1910 
1911 static void throtl_upgrade_state(struct throtl_data *td)
1912 {
1913 	struct cgroup_subsys_state *pos_css;
1914 	struct blkcg_gq *blkg;
1915 
1916 	throtl_log(&td->service_queue, "upgrade to max");
1917 	td->limit_index = LIMIT_MAX;
1918 	td->low_upgrade_time = jiffies;
1919 	td->scale = 0;
1920 	rcu_read_lock();
1921 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1922 		struct throtl_grp *tg = blkg_to_tg(blkg);
1923 		struct throtl_service_queue *sq = &tg->service_queue;
1924 
1925 		tg->disptime = jiffies - 1;
1926 		throtl_select_dispatch(sq);
1927 		throtl_schedule_next_dispatch(sq, true);
1928 	}
1929 	rcu_read_unlock();
1930 	throtl_select_dispatch(&td->service_queue);
1931 	throtl_schedule_next_dispatch(&td->service_queue, true);
1932 	queue_work(kthrotld_workqueue, &td->dispatch_work);
1933 }
1934 
1935 static void throtl_downgrade_state(struct throtl_data *td)
1936 {
1937 	td->scale /= 2;
1938 
1939 	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1940 	if (td->scale) {
1941 		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1942 		return;
1943 	}
1944 
1945 	td->limit_index = LIMIT_LOW;
1946 	td->low_downgrade_time = jiffies;
1947 }
1948 
1949 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1950 {
1951 	struct throtl_data *td = tg->td;
1952 	unsigned long now = jiffies;
1953 
1954 	/*
1955 	 * If cgroup is below low limit, consider downgrade and throttle other
1956 	 * cgroups
1957 	 */
1958 	if (time_after_eq(now, tg_last_low_overflow_time(tg) +
1959 					td->throtl_slice) &&
1960 	    (!throtl_tg_is_idle(tg) ||
1961 	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1962 		return true;
1963 	return false;
1964 }
1965 
1966 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1967 {
1968 	struct throtl_data *td = tg->td;
1969 
1970 	if (time_before(jiffies, td->low_upgrade_time + td->throtl_slice))
1971 		return false;
1972 
1973 	while (true) {
1974 		if (!throtl_tg_can_downgrade(tg))
1975 			return false;
1976 		tg = sq_to_tg(tg->service_queue.parent_sq);
1977 		if (!tg || !tg_to_blkg(tg)->parent)
1978 			break;
1979 	}
1980 	return true;
1981 }
1982 
1983 static void throtl_downgrade_check(struct throtl_grp *tg)
1984 {
1985 	uint64_t bps;
1986 	unsigned int iops;
1987 	unsigned long elapsed_time;
1988 	unsigned long now = jiffies;
1989 
1990 	if (tg->td->limit_index != LIMIT_MAX ||
1991 	    !tg->td->limit_valid[LIMIT_LOW])
1992 		return;
1993 	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1994 		return;
1995 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1996 		return;
1997 
1998 	elapsed_time = now - tg->last_check_time;
1999 	tg->last_check_time = now;
2000 
2001 	if (time_before(now, tg_last_low_overflow_time(tg) +
2002 			tg->td->throtl_slice))
2003 		return;
2004 
2005 	if (tg->bps[READ][LIMIT_LOW]) {
2006 		bps = tg->last_bytes_disp[READ] * HZ;
2007 		do_div(bps, elapsed_time);
2008 		if (bps >= tg->bps[READ][LIMIT_LOW])
2009 			tg->last_low_overflow_time[READ] = now;
2010 	}
2011 
2012 	if (tg->bps[WRITE][LIMIT_LOW]) {
2013 		bps = tg->last_bytes_disp[WRITE] * HZ;
2014 		do_div(bps, elapsed_time);
2015 		if (bps >= tg->bps[WRITE][LIMIT_LOW])
2016 			tg->last_low_overflow_time[WRITE] = now;
2017 	}
2018 
2019 	if (tg->iops[READ][LIMIT_LOW]) {
2020 		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2021 		if (iops >= tg->iops[READ][LIMIT_LOW])
2022 			tg->last_low_overflow_time[READ] = now;
2023 	}
2024 
2025 	if (tg->iops[WRITE][LIMIT_LOW]) {
2026 		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2027 		if (iops >= tg->iops[WRITE][LIMIT_LOW])
2028 			tg->last_low_overflow_time[WRITE] = now;
2029 	}
2030 
2031 	/*
2032 	 * If cgroup is below low limit, consider downgrade and throttle other
2033 	 * cgroups
2034 	 */
2035 	if (throtl_hierarchy_can_downgrade(tg))
2036 		throtl_downgrade_state(tg->td);
2037 
2038 	tg->last_bytes_disp[READ] = 0;
2039 	tg->last_bytes_disp[WRITE] = 0;
2040 	tg->last_io_disp[READ] = 0;
2041 	tg->last_io_disp[WRITE] = 0;
2042 }
2043 
2044 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2045 {
2046 	unsigned long now;
2047 	unsigned long last_finish_time = tg->last_finish_time;
2048 
2049 	if (last_finish_time == 0)
2050 		return;
2051 
2052 	now = ktime_get_ns() >> 10;
2053 	if (now <= last_finish_time ||
2054 	    last_finish_time == tg->checked_last_finish_time)
2055 		return;
2056 
2057 	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2058 	tg->checked_last_finish_time = last_finish_time;
2059 }
2060 
2061 static void throtl_update_latency_buckets(struct throtl_data *td)
2062 {
2063 	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2064 	int i, cpu, rw;
2065 	unsigned long last_latency[2] = { 0 };
2066 	unsigned long latency[2];
2067 
2068 	if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2069 		return;
2070 	if (time_before(jiffies, td->last_calculate_time + HZ))
2071 		return;
2072 	td->last_calculate_time = jiffies;
2073 
2074 	memset(avg_latency, 0, sizeof(avg_latency));
2075 	for (rw = READ; rw <= WRITE; rw++) {
2076 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2077 			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2078 
2079 			for_each_possible_cpu(cpu) {
2080 				struct latency_bucket *bucket;
2081 
2082 				/* this isn't race free, but ok in practice */
2083 				bucket = per_cpu_ptr(td->latency_buckets[rw],
2084 					cpu);
2085 				tmp->total_latency += bucket[i].total_latency;
2086 				tmp->samples += bucket[i].samples;
2087 				bucket[i].total_latency = 0;
2088 				bucket[i].samples = 0;
2089 			}
2090 
2091 			if (tmp->samples >= 32) {
2092 				int samples = tmp->samples;
2093 
2094 				latency[rw] = tmp->total_latency;
2095 
2096 				tmp->total_latency = 0;
2097 				tmp->samples = 0;
2098 				latency[rw] /= samples;
2099 				if (latency[rw] == 0)
2100 					continue;
2101 				avg_latency[rw][i].latency = latency[rw];
2102 			}
2103 		}
2104 	}
2105 
2106 	for (rw = READ; rw <= WRITE; rw++) {
2107 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2108 			if (!avg_latency[rw][i].latency) {
2109 				if (td->avg_buckets[rw][i].latency < last_latency[rw])
2110 					td->avg_buckets[rw][i].latency =
2111 						last_latency[rw];
2112 				continue;
2113 			}
2114 
2115 			if (!td->avg_buckets[rw][i].valid)
2116 				latency[rw] = avg_latency[rw][i].latency;
2117 			else
2118 				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2119 					avg_latency[rw][i].latency) >> 3;
2120 
2121 			td->avg_buckets[rw][i].latency = max(latency[rw],
2122 				last_latency[rw]);
2123 			td->avg_buckets[rw][i].valid = true;
2124 			last_latency[rw] = td->avg_buckets[rw][i].latency;
2125 		}
2126 	}
2127 
2128 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2129 		throtl_log(&td->service_queue,
2130 			"Latency bucket %d: read latency=%ld, read valid=%d, "
2131 			"write latency=%ld, write valid=%d", i,
2132 			td->avg_buckets[READ][i].latency,
2133 			td->avg_buckets[READ][i].valid,
2134 			td->avg_buckets[WRITE][i].latency,
2135 			td->avg_buckets[WRITE][i].valid);
2136 }
2137 #else
2138 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2139 {
2140 }
2141 
2142 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2143 {
2144 }
2145 
2146 static void throtl_downgrade_check(struct throtl_grp *tg)
2147 {
2148 }
2149 
2150 static void throtl_upgrade_check(struct throtl_grp *tg)
2151 {
2152 }
2153 
2154 static bool throtl_can_upgrade(struct throtl_data *td,
2155 	struct throtl_grp *this_tg)
2156 {
2157 	return false;
2158 }
2159 
2160 static void throtl_upgrade_state(struct throtl_data *td)
2161 {
2162 }
2163 #endif
2164 
2165 bool __blk_throtl_bio(struct bio *bio)
2166 {
2167 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2168 	struct blkcg_gq *blkg = bio->bi_blkg;
2169 	struct throtl_qnode *qn = NULL;
2170 	struct throtl_grp *tg = blkg_to_tg(blkg);
2171 	struct throtl_service_queue *sq;
2172 	bool rw = bio_data_dir(bio);
2173 	bool throttled = false;
2174 	struct throtl_data *td = tg->td;
2175 
2176 	rcu_read_lock();
2177 
2178 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2179 		blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2180 				bio->bi_iter.bi_size);
2181 		blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2182 	}
2183 
2184 	spin_lock_irq(&q->queue_lock);
2185 
2186 	throtl_update_latency_buckets(td);
2187 
2188 	blk_throtl_update_idletime(tg);
2189 
2190 	sq = &tg->service_queue;
2191 
2192 again:
2193 	while (true) {
2194 		if (tg->last_low_overflow_time[rw] == 0)
2195 			tg->last_low_overflow_time[rw] = jiffies;
2196 		throtl_downgrade_check(tg);
2197 		throtl_upgrade_check(tg);
2198 		/* throtl is FIFO - if bios are already queued, should queue */
2199 		if (sq->nr_queued[rw])
2200 			break;
2201 
2202 		/* if above limits, break to queue */
2203 		if (!tg_may_dispatch(tg, bio, NULL)) {
2204 			tg->last_low_overflow_time[rw] = jiffies;
2205 			if (throtl_can_upgrade(td, tg)) {
2206 				throtl_upgrade_state(td);
2207 				goto again;
2208 			}
2209 			break;
2210 		}
2211 
2212 		/* within limits, let's charge and dispatch directly */
2213 		throtl_charge_bio(tg, bio);
2214 
2215 		/*
2216 		 * We need to trim slice even when bios are not being queued
2217 		 * otherwise it might happen that a bio is not queued for
2218 		 * a long time and slice keeps on extending and trim is not
2219 		 * called for a long time. Now if limits are reduced suddenly
2220 		 * we take into account all the IO dispatched so far at new
2221 		 * low rate and * newly queued IO gets a really long dispatch
2222 		 * time.
2223 		 *
2224 		 * So keep on trimming slice even if bio is not queued.
2225 		 */
2226 		throtl_trim_slice(tg, rw);
2227 
2228 		/*
2229 		 * @bio passed through this layer without being throttled.
2230 		 * Climb up the ladder.  If we're already at the top, it
2231 		 * can be executed directly.
2232 		 */
2233 		qn = &tg->qnode_on_parent[rw];
2234 		sq = sq->parent_sq;
2235 		tg = sq_to_tg(sq);
2236 		if (!tg) {
2237 			bio_set_flag(bio, BIO_BPS_THROTTLED);
2238 			goto out_unlock;
2239 		}
2240 	}
2241 
2242 	/* out-of-limit, queue to @tg */
2243 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2244 		   rw == READ ? 'R' : 'W',
2245 		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2246 		   tg_bps_limit(tg, rw),
2247 		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2248 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2249 
2250 	tg->last_low_overflow_time[rw] = jiffies;
2251 
2252 	td->nr_queued[rw]++;
2253 	throtl_add_bio_tg(bio, qn, tg);
2254 	throttled = true;
2255 
2256 	/*
2257 	 * Update @tg's dispatch time and force schedule dispatch if @tg
2258 	 * was empty before @bio.  The forced scheduling isn't likely to
2259 	 * cause undue delay as @bio is likely to be dispatched directly if
2260 	 * its @tg's disptime is not in the future.
2261 	 */
2262 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2263 		tg_update_disptime(tg);
2264 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2265 	}
2266 
2267 out_unlock:
2268 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2269 	if (throttled || !td->track_bio_latency)
2270 		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2271 #endif
2272 	spin_unlock_irq(&q->queue_lock);
2273 
2274 	rcu_read_unlock();
2275 	return throttled;
2276 }
2277 
2278 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2279 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2280 				 enum req_op op, unsigned long time)
2281 {
2282 	const bool rw = op_is_write(op);
2283 	struct latency_bucket *latency;
2284 	int index;
2285 
2286 	if (!td || td->limit_index != LIMIT_LOW ||
2287 	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2288 	    !blk_queue_nonrot(td->queue))
2289 		return;
2290 
2291 	index = request_bucket_index(size);
2292 
2293 	latency = get_cpu_ptr(td->latency_buckets[rw]);
2294 	latency[index].total_latency += time;
2295 	latency[index].samples++;
2296 	put_cpu_ptr(td->latency_buckets[rw]);
2297 }
2298 
2299 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2300 {
2301 	struct request_queue *q = rq->q;
2302 	struct throtl_data *td = q->td;
2303 
2304 	throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2305 			     time_ns >> 10);
2306 }
2307 
2308 void blk_throtl_bio_endio(struct bio *bio)
2309 {
2310 	struct blkcg_gq *blkg;
2311 	struct throtl_grp *tg;
2312 	u64 finish_time_ns;
2313 	unsigned long finish_time;
2314 	unsigned long start_time;
2315 	unsigned long lat;
2316 	int rw = bio_data_dir(bio);
2317 
2318 	blkg = bio->bi_blkg;
2319 	if (!blkg)
2320 		return;
2321 	tg = blkg_to_tg(blkg);
2322 	if (!tg->td->limit_valid[LIMIT_LOW])
2323 		return;
2324 
2325 	finish_time_ns = ktime_get_ns();
2326 	tg->last_finish_time = finish_time_ns >> 10;
2327 
2328 	start_time = bio_issue_time(&bio->bi_issue) >> 10;
2329 	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2330 	if (!start_time || finish_time <= start_time)
2331 		return;
2332 
2333 	lat = finish_time - start_time;
2334 	/* this is only for bio based driver */
2335 	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2336 		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2337 				     bio_op(bio), lat);
2338 
2339 	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2340 		int bucket;
2341 		unsigned int threshold;
2342 
2343 		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2344 		threshold = tg->td->avg_buckets[rw][bucket].latency +
2345 			tg->latency_target;
2346 		if (lat > threshold)
2347 			tg->bad_bio_cnt++;
2348 		/*
2349 		 * Not race free, could get wrong count, which means cgroups
2350 		 * will be throttled
2351 		 */
2352 		tg->bio_cnt++;
2353 	}
2354 
2355 	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2356 		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2357 		tg->bio_cnt /= 2;
2358 		tg->bad_bio_cnt /= 2;
2359 	}
2360 }
2361 #endif
2362 
2363 int blk_throtl_init(struct gendisk *disk)
2364 {
2365 	struct request_queue *q = disk->queue;
2366 	struct throtl_data *td;
2367 	int ret;
2368 
2369 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2370 	if (!td)
2371 		return -ENOMEM;
2372 	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2373 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2374 	if (!td->latency_buckets[READ]) {
2375 		kfree(td);
2376 		return -ENOMEM;
2377 	}
2378 	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2379 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2380 	if (!td->latency_buckets[WRITE]) {
2381 		free_percpu(td->latency_buckets[READ]);
2382 		kfree(td);
2383 		return -ENOMEM;
2384 	}
2385 
2386 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2387 	throtl_service_queue_init(&td->service_queue);
2388 
2389 	q->td = td;
2390 	td->queue = q;
2391 
2392 	td->limit_valid[LIMIT_MAX] = true;
2393 	td->limit_index = LIMIT_MAX;
2394 	td->low_upgrade_time = jiffies;
2395 	td->low_downgrade_time = jiffies;
2396 
2397 	/* activate policy */
2398 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2399 	if (ret) {
2400 		free_percpu(td->latency_buckets[READ]);
2401 		free_percpu(td->latency_buckets[WRITE]);
2402 		kfree(td);
2403 	}
2404 	return ret;
2405 }
2406 
2407 void blk_throtl_exit(struct gendisk *disk)
2408 {
2409 	struct request_queue *q = disk->queue;
2410 
2411 	BUG_ON(!q->td);
2412 	del_timer_sync(&q->td->service_queue.pending_timer);
2413 	throtl_shutdown_wq(q);
2414 	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2415 	free_percpu(q->td->latency_buckets[READ]);
2416 	free_percpu(q->td->latency_buckets[WRITE]);
2417 	kfree(q->td);
2418 }
2419 
2420 void blk_throtl_register(struct gendisk *disk)
2421 {
2422 	struct request_queue *q = disk->queue;
2423 	struct throtl_data *td;
2424 	int i;
2425 
2426 	td = q->td;
2427 	BUG_ON(!td);
2428 
2429 	if (blk_queue_nonrot(q)) {
2430 		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2431 		td->filtered_latency = LATENCY_FILTERED_SSD;
2432 	} else {
2433 		td->throtl_slice = DFL_THROTL_SLICE_HD;
2434 		td->filtered_latency = LATENCY_FILTERED_HD;
2435 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2436 			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2437 			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2438 		}
2439 	}
2440 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2441 	/* if no low limit, use previous default */
2442 	td->throtl_slice = DFL_THROTL_SLICE_HD;
2443 #endif
2444 
2445 	td->track_bio_latency = !queue_is_mq(q);
2446 	if (!td->track_bio_latency)
2447 		blk_stat_enable_accounting(q);
2448 }
2449 
2450 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2451 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2452 {
2453 	if (!q->td)
2454 		return -EINVAL;
2455 	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2456 }
2457 
2458 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2459 	const char *page, size_t count)
2460 {
2461 	unsigned long v;
2462 	unsigned long t;
2463 
2464 	if (!q->td)
2465 		return -EINVAL;
2466 	if (kstrtoul(page, 10, &v))
2467 		return -EINVAL;
2468 	t = msecs_to_jiffies(v);
2469 	if (t == 0 || t > MAX_THROTL_SLICE)
2470 		return -EINVAL;
2471 	q->td->throtl_slice = t;
2472 	return count;
2473 }
2474 #endif
2475 
2476 static int __init throtl_init(void)
2477 {
2478 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2479 	if (!kthrotld_workqueue)
2480 		panic("Failed to create kthrotld\n");
2481 
2482 	return blkcg_policy_register(&blkcg_policy_throtl);
2483 }
2484 
2485 module_init(throtl_init);
2486