xref: /openbmc/linux/block/blk-throttle.c (revision 565d76cb)
1 /*
2  * Interface for controlling IO bandwidth on a request queue
3  *
4  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5  */
6 
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
13 
14 /* Max dispatch from a group in 1 round */
15 static int throtl_grp_quantum = 8;
16 
17 /* Total max dispatch from all groups in one round */
18 static int throtl_quantum = 32;
19 
20 /* Throttling is performed over 100ms slice and after that slice is renewed */
21 static unsigned long throtl_slice = HZ/10;	/* 100 ms */
22 
23 /* A workqueue to queue throttle related work */
24 static struct workqueue_struct *kthrotld_workqueue;
25 static void throtl_schedule_delayed_work(struct throtl_data *td,
26 				unsigned long delay);
27 
28 struct throtl_rb_root {
29 	struct rb_root rb;
30 	struct rb_node *left;
31 	unsigned int count;
32 	unsigned long min_disptime;
33 };
34 
35 #define THROTL_RB_ROOT	(struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
36 			.count = 0, .min_disptime = 0}
37 
38 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
39 
40 struct throtl_grp {
41 	/* List of throtl groups on the request queue*/
42 	struct hlist_node tg_node;
43 
44 	/* active throtl group service_tree member */
45 	struct rb_node rb_node;
46 
47 	/*
48 	 * Dispatch time in jiffies. This is the estimated time when group
49 	 * will unthrottle and is ready to dispatch more bio. It is used as
50 	 * key to sort active groups in service tree.
51 	 */
52 	unsigned long disptime;
53 
54 	struct blkio_group blkg;
55 	atomic_t ref;
56 	unsigned int flags;
57 
58 	/* Two lists for READ and WRITE */
59 	struct bio_list bio_lists[2];
60 
61 	/* Number of queued bios on READ and WRITE lists */
62 	unsigned int nr_queued[2];
63 
64 	/* bytes per second rate limits */
65 	uint64_t bps[2];
66 
67 	/* IOPS limits */
68 	unsigned int iops[2];
69 
70 	/* Number of bytes disptached in current slice */
71 	uint64_t bytes_disp[2];
72 	/* Number of bio's dispatched in current slice */
73 	unsigned int io_disp[2];
74 
75 	/* When did we start a new slice */
76 	unsigned long slice_start[2];
77 	unsigned long slice_end[2];
78 
79 	/* Some throttle limits got updated for the group */
80 	bool limits_changed;
81 };
82 
83 struct throtl_data
84 {
85 	/* List of throtl groups */
86 	struct hlist_head tg_list;
87 
88 	/* service tree for active throtl groups */
89 	struct throtl_rb_root tg_service_tree;
90 
91 	struct throtl_grp root_tg;
92 	struct request_queue *queue;
93 
94 	/* Total Number of queued bios on READ and WRITE lists */
95 	unsigned int nr_queued[2];
96 
97 	/*
98 	 * number of total undestroyed groups
99 	 */
100 	unsigned int nr_undestroyed_grps;
101 
102 	/* Work for dispatching throttled bios */
103 	struct delayed_work throtl_work;
104 
105 	atomic_t limits_changed;
106 };
107 
108 enum tg_state_flags {
109 	THROTL_TG_FLAG_on_rr = 0,	/* on round-robin busy list */
110 };
111 
112 #define THROTL_TG_FNS(name)						\
113 static inline void throtl_mark_tg_##name(struct throtl_grp *tg)		\
114 {									\
115 	(tg)->flags |= (1 << THROTL_TG_FLAG_##name);			\
116 }									\
117 static inline void throtl_clear_tg_##name(struct throtl_grp *tg)	\
118 {									\
119 	(tg)->flags &= ~(1 << THROTL_TG_FLAG_##name);			\
120 }									\
121 static inline int throtl_tg_##name(const struct throtl_grp *tg)		\
122 {									\
123 	return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0;	\
124 }
125 
126 THROTL_TG_FNS(on_rr);
127 
128 #define throtl_log_tg(td, tg, fmt, args...)				\
129 	blk_add_trace_msg((td)->queue, "throtl %s " fmt,		\
130 				blkg_path(&(tg)->blkg), ##args);      	\
131 
132 #define throtl_log(td, fmt, args...)	\
133 	blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
134 
135 static inline struct throtl_grp *tg_of_blkg(struct blkio_group *blkg)
136 {
137 	if (blkg)
138 		return container_of(blkg, struct throtl_grp, blkg);
139 
140 	return NULL;
141 }
142 
143 static inline int total_nr_queued(struct throtl_data *td)
144 {
145 	return (td->nr_queued[0] + td->nr_queued[1]);
146 }
147 
148 static inline struct throtl_grp *throtl_ref_get_tg(struct throtl_grp *tg)
149 {
150 	atomic_inc(&tg->ref);
151 	return tg;
152 }
153 
154 static void throtl_put_tg(struct throtl_grp *tg)
155 {
156 	BUG_ON(atomic_read(&tg->ref) <= 0);
157 	if (!atomic_dec_and_test(&tg->ref))
158 		return;
159 	kfree(tg);
160 }
161 
162 static struct throtl_grp * throtl_find_alloc_tg(struct throtl_data *td,
163 			struct cgroup *cgroup)
164 {
165 	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
166 	struct throtl_grp *tg = NULL;
167 	void *key = td;
168 	struct backing_dev_info *bdi = &td->queue->backing_dev_info;
169 	unsigned int major, minor;
170 
171 	/*
172 	 * TODO: Speed up blkiocg_lookup_group() by maintaining a radix
173 	 * tree of blkg (instead of traversing through hash list all
174 	 * the time.
175 	 */
176 
177 	/*
178 	 * This is the common case when there are no blkio cgroups.
179  	 * Avoid lookup in this case
180  	 */
181 	if (blkcg == &blkio_root_cgroup)
182 		tg = &td->root_tg;
183 	else
184 		tg = tg_of_blkg(blkiocg_lookup_group(blkcg, key));
185 
186 	/* Fill in device details for root group */
187 	if (tg && !tg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
188 		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
189 		tg->blkg.dev = MKDEV(major, minor);
190 		goto done;
191 	}
192 
193 	if (tg)
194 		goto done;
195 
196 	tg = kzalloc_node(sizeof(*tg), GFP_ATOMIC, td->queue->node);
197 	if (!tg)
198 		goto done;
199 
200 	INIT_HLIST_NODE(&tg->tg_node);
201 	RB_CLEAR_NODE(&tg->rb_node);
202 	bio_list_init(&tg->bio_lists[0]);
203 	bio_list_init(&tg->bio_lists[1]);
204 
205 	/*
206 	 * Take the initial reference that will be released on destroy
207 	 * This can be thought of a joint reference by cgroup and
208 	 * request queue which will be dropped by either request queue
209 	 * exit or cgroup deletion path depending on who is exiting first.
210 	 */
211 	atomic_set(&tg->ref, 1);
212 
213 	/* Add group onto cgroup list */
214 	sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
215 	blkiocg_add_blkio_group(blkcg, &tg->blkg, (void *)td,
216 				MKDEV(major, minor), BLKIO_POLICY_THROTL);
217 
218 	tg->bps[READ] = blkcg_get_read_bps(blkcg, tg->blkg.dev);
219 	tg->bps[WRITE] = blkcg_get_write_bps(blkcg, tg->blkg.dev);
220 	tg->iops[READ] = blkcg_get_read_iops(blkcg, tg->blkg.dev);
221 	tg->iops[WRITE] = blkcg_get_write_iops(blkcg, tg->blkg.dev);
222 
223 	hlist_add_head(&tg->tg_node, &td->tg_list);
224 	td->nr_undestroyed_grps++;
225 done:
226 	return tg;
227 }
228 
229 static struct throtl_grp * throtl_get_tg(struct throtl_data *td)
230 {
231 	struct cgroup *cgroup;
232 	struct throtl_grp *tg = NULL;
233 
234 	rcu_read_lock();
235 	cgroup = task_cgroup(current, blkio_subsys_id);
236 	tg = throtl_find_alloc_tg(td, cgroup);
237 	if (!tg)
238 		tg = &td->root_tg;
239 	rcu_read_unlock();
240 	return tg;
241 }
242 
243 static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
244 {
245 	/* Service tree is empty */
246 	if (!root->count)
247 		return NULL;
248 
249 	if (!root->left)
250 		root->left = rb_first(&root->rb);
251 
252 	if (root->left)
253 		return rb_entry_tg(root->left);
254 
255 	return NULL;
256 }
257 
258 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
259 {
260 	rb_erase(n, root);
261 	RB_CLEAR_NODE(n);
262 }
263 
264 static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
265 {
266 	if (root->left == n)
267 		root->left = NULL;
268 	rb_erase_init(n, &root->rb);
269 	--root->count;
270 }
271 
272 static void update_min_dispatch_time(struct throtl_rb_root *st)
273 {
274 	struct throtl_grp *tg;
275 
276 	tg = throtl_rb_first(st);
277 	if (!tg)
278 		return;
279 
280 	st->min_disptime = tg->disptime;
281 }
282 
283 static void
284 tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
285 {
286 	struct rb_node **node = &st->rb.rb_node;
287 	struct rb_node *parent = NULL;
288 	struct throtl_grp *__tg;
289 	unsigned long key = tg->disptime;
290 	int left = 1;
291 
292 	while (*node != NULL) {
293 		parent = *node;
294 		__tg = rb_entry_tg(parent);
295 
296 		if (time_before(key, __tg->disptime))
297 			node = &parent->rb_left;
298 		else {
299 			node = &parent->rb_right;
300 			left = 0;
301 		}
302 	}
303 
304 	if (left)
305 		st->left = &tg->rb_node;
306 
307 	rb_link_node(&tg->rb_node, parent, node);
308 	rb_insert_color(&tg->rb_node, &st->rb);
309 }
310 
311 static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
312 {
313 	struct throtl_rb_root *st = &td->tg_service_tree;
314 
315 	tg_service_tree_add(st, tg);
316 	throtl_mark_tg_on_rr(tg);
317 	st->count++;
318 }
319 
320 static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
321 {
322 	if (!throtl_tg_on_rr(tg))
323 		__throtl_enqueue_tg(td, tg);
324 }
325 
326 static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
327 {
328 	throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
329 	throtl_clear_tg_on_rr(tg);
330 }
331 
332 static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
333 {
334 	if (throtl_tg_on_rr(tg))
335 		__throtl_dequeue_tg(td, tg);
336 }
337 
338 static void throtl_schedule_next_dispatch(struct throtl_data *td)
339 {
340 	struct throtl_rb_root *st = &td->tg_service_tree;
341 
342 	/*
343 	 * If there are more bios pending, schedule more work.
344 	 */
345 	if (!total_nr_queued(td))
346 		return;
347 
348 	BUG_ON(!st->count);
349 
350 	update_min_dispatch_time(st);
351 
352 	if (time_before_eq(st->min_disptime, jiffies))
353 		throtl_schedule_delayed_work(td, 0);
354 	else
355 		throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
356 }
357 
358 static inline void
359 throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
360 {
361 	tg->bytes_disp[rw] = 0;
362 	tg->io_disp[rw] = 0;
363 	tg->slice_start[rw] = jiffies;
364 	tg->slice_end[rw] = jiffies + throtl_slice;
365 	throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
366 			rw == READ ? 'R' : 'W', tg->slice_start[rw],
367 			tg->slice_end[rw], jiffies);
368 }
369 
370 static inline void throtl_set_slice_end(struct throtl_data *td,
371 		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
372 {
373 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
374 }
375 
376 static inline void throtl_extend_slice(struct throtl_data *td,
377 		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
378 {
379 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
380 	throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
381 			rw == READ ? 'R' : 'W', tg->slice_start[rw],
382 			tg->slice_end[rw], jiffies);
383 }
384 
385 /* Determine if previously allocated or extended slice is complete or not */
386 static bool
387 throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
388 {
389 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
390 		return 0;
391 
392 	return 1;
393 }
394 
395 /* Trim the used slices and adjust slice start accordingly */
396 static inline void
397 throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
398 {
399 	unsigned long nr_slices, time_elapsed, io_trim;
400 	u64 bytes_trim, tmp;
401 
402 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
403 
404 	/*
405 	 * If bps are unlimited (-1), then time slice don't get
406 	 * renewed. Don't try to trim the slice if slice is used. A new
407 	 * slice will start when appropriate.
408 	 */
409 	if (throtl_slice_used(td, tg, rw))
410 		return;
411 
412 	/*
413 	 * A bio has been dispatched. Also adjust slice_end. It might happen
414 	 * that initially cgroup limit was very low resulting in high
415 	 * slice_end, but later limit was bumped up and bio was dispached
416 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
417 	 * is bad because it does not allow new slice to start.
418 	 */
419 
420 	throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);
421 
422 	time_elapsed = jiffies - tg->slice_start[rw];
423 
424 	nr_slices = time_elapsed / throtl_slice;
425 
426 	if (!nr_slices)
427 		return;
428 	tmp = tg->bps[rw] * throtl_slice * nr_slices;
429 	do_div(tmp, HZ);
430 	bytes_trim = tmp;
431 
432 	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
433 
434 	if (!bytes_trim && !io_trim)
435 		return;
436 
437 	if (tg->bytes_disp[rw] >= bytes_trim)
438 		tg->bytes_disp[rw] -= bytes_trim;
439 	else
440 		tg->bytes_disp[rw] = 0;
441 
442 	if (tg->io_disp[rw] >= io_trim)
443 		tg->io_disp[rw] -= io_trim;
444 	else
445 		tg->io_disp[rw] = 0;
446 
447 	tg->slice_start[rw] += nr_slices * throtl_slice;
448 
449 	throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
450 			" start=%lu end=%lu jiffies=%lu",
451 			rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
452 			tg->slice_start[rw], tg->slice_end[rw], jiffies);
453 }
454 
455 static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
456 		struct bio *bio, unsigned long *wait)
457 {
458 	bool rw = bio_data_dir(bio);
459 	unsigned int io_allowed;
460 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
461 	u64 tmp;
462 
463 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
464 
465 	/* Slice has just started. Consider one slice interval */
466 	if (!jiffy_elapsed)
467 		jiffy_elapsed_rnd = throtl_slice;
468 
469 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
470 
471 	/*
472 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
473 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
474 	 * will allow dispatch after 1 second and after that slice should
475 	 * have been trimmed.
476 	 */
477 
478 	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
479 	do_div(tmp, HZ);
480 
481 	if (tmp > UINT_MAX)
482 		io_allowed = UINT_MAX;
483 	else
484 		io_allowed = tmp;
485 
486 	if (tg->io_disp[rw] + 1 <= io_allowed) {
487 		if (wait)
488 			*wait = 0;
489 		return 1;
490 	}
491 
492 	/* Calc approx time to dispatch */
493 	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
494 
495 	if (jiffy_wait > jiffy_elapsed)
496 		jiffy_wait = jiffy_wait - jiffy_elapsed;
497 	else
498 		jiffy_wait = 1;
499 
500 	if (wait)
501 		*wait = jiffy_wait;
502 	return 0;
503 }
504 
505 static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
506 		struct bio *bio, unsigned long *wait)
507 {
508 	bool rw = bio_data_dir(bio);
509 	u64 bytes_allowed, extra_bytes, tmp;
510 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
511 
512 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
513 
514 	/* Slice has just started. Consider one slice interval */
515 	if (!jiffy_elapsed)
516 		jiffy_elapsed_rnd = throtl_slice;
517 
518 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
519 
520 	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
521 	do_div(tmp, HZ);
522 	bytes_allowed = tmp;
523 
524 	if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
525 		if (wait)
526 			*wait = 0;
527 		return 1;
528 	}
529 
530 	/* Calc approx time to dispatch */
531 	extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
532 	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
533 
534 	if (!jiffy_wait)
535 		jiffy_wait = 1;
536 
537 	/*
538 	 * This wait time is without taking into consideration the rounding
539 	 * up we did. Add that time also.
540 	 */
541 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
542 	if (wait)
543 		*wait = jiffy_wait;
544 	return 0;
545 }
546 
547 /*
548  * Returns whether one can dispatch a bio or not. Also returns approx number
549  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
550  */
551 static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
552 				struct bio *bio, unsigned long *wait)
553 {
554 	bool rw = bio_data_dir(bio);
555 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
556 
557 	/*
558  	 * Currently whole state machine of group depends on first bio
559 	 * queued in the group bio list. So one should not be calling
560 	 * this function with a different bio if there are other bios
561 	 * queued.
562 	 */
563 	BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
564 
565 	/* If tg->bps = -1, then BW is unlimited */
566 	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
567 		if (wait)
568 			*wait = 0;
569 		return 1;
570 	}
571 
572 	/*
573 	 * If previous slice expired, start a new one otherwise renew/extend
574 	 * existing slice to make sure it is at least throtl_slice interval
575 	 * long since now.
576 	 */
577 	if (throtl_slice_used(td, tg, rw))
578 		throtl_start_new_slice(td, tg, rw);
579 	else {
580 		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
581 			throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
582 	}
583 
584 	if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
585 	    && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
586 		if (wait)
587 			*wait = 0;
588 		return 1;
589 	}
590 
591 	max_wait = max(bps_wait, iops_wait);
592 
593 	if (wait)
594 		*wait = max_wait;
595 
596 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
597 		throtl_extend_slice(td, tg, rw, jiffies + max_wait);
598 
599 	return 0;
600 }
601 
602 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
603 {
604 	bool rw = bio_data_dir(bio);
605 	bool sync = bio->bi_rw & REQ_SYNC;
606 
607 	/* Charge the bio to the group */
608 	tg->bytes_disp[rw] += bio->bi_size;
609 	tg->io_disp[rw]++;
610 
611 	/*
612 	 * TODO: This will take blkg->stats_lock. Figure out a way
613 	 * to avoid this cost.
614 	 */
615 	blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, rw, sync);
616 }
617 
618 static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
619 			struct bio *bio)
620 {
621 	bool rw = bio_data_dir(bio);
622 
623 	bio_list_add(&tg->bio_lists[rw], bio);
624 	/* Take a bio reference on tg */
625 	throtl_ref_get_tg(tg);
626 	tg->nr_queued[rw]++;
627 	td->nr_queued[rw]++;
628 	throtl_enqueue_tg(td, tg);
629 }
630 
631 static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
632 {
633 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
634 	struct bio *bio;
635 
636 	if ((bio = bio_list_peek(&tg->bio_lists[READ])))
637 		tg_may_dispatch(td, tg, bio, &read_wait);
638 
639 	if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
640 		tg_may_dispatch(td, tg, bio, &write_wait);
641 
642 	min_wait = min(read_wait, write_wait);
643 	disptime = jiffies + min_wait;
644 
645 	/* Update dispatch time */
646 	throtl_dequeue_tg(td, tg);
647 	tg->disptime = disptime;
648 	throtl_enqueue_tg(td, tg);
649 }
650 
651 static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
652 				bool rw, struct bio_list *bl)
653 {
654 	struct bio *bio;
655 
656 	bio = bio_list_pop(&tg->bio_lists[rw]);
657 	tg->nr_queued[rw]--;
658 	/* Drop bio reference on tg */
659 	throtl_put_tg(tg);
660 
661 	BUG_ON(td->nr_queued[rw] <= 0);
662 	td->nr_queued[rw]--;
663 
664 	throtl_charge_bio(tg, bio);
665 	bio_list_add(bl, bio);
666 	bio->bi_rw |= REQ_THROTTLED;
667 
668 	throtl_trim_slice(td, tg, rw);
669 }
670 
671 static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
672 				struct bio_list *bl)
673 {
674 	unsigned int nr_reads = 0, nr_writes = 0;
675 	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
676 	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
677 	struct bio *bio;
678 
679 	/* Try to dispatch 75% READS and 25% WRITES */
680 
681 	while ((bio = bio_list_peek(&tg->bio_lists[READ]))
682 		&& tg_may_dispatch(td, tg, bio, NULL)) {
683 
684 		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
685 		nr_reads++;
686 
687 		if (nr_reads >= max_nr_reads)
688 			break;
689 	}
690 
691 	while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
692 		&& tg_may_dispatch(td, tg, bio, NULL)) {
693 
694 		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
695 		nr_writes++;
696 
697 		if (nr_writes >= max_nr_writes)
698 			break;
699 	}
700 
701 	return nr_reads + nr_writes;
702 }
703 
704 static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
705 {
706 	unsigned int nr_disp = 0;
707 	struct throtl_grp *tg;
708 	struct throtl_rb_root *st = &td->tg_service_tree;
709 
710 	while (1) {
711 		tg = throtl_rb_first(st);
712 
713 		if (!tg)
714 			break;
715 
716 		if (time_before(jiffies, tg->disptime))
717 			break;
718 
719 		throtl_dequeue_tg(td, tg);
720 
721 		nr_disp += throtl_dispatch_tg(td, tg, bl);
722 
723 		if (tg->nr_queued[0] || tg->nr_queued[1]) {
724 			tg_update_disptime(td, tg);
725 			throtl_enqueue_tg(td, tg);
726 		}
727 
728 		if (nr_disp >= throtl_quantum)
729 			break;
730 	}
731 
732 	return nr_disp;
733 }
734 
735 static void throtl_process_limit_change(struct throtl_data *td)
736 {
737 	struct throtl_grp *tg;
738 	struct hlist_node *pos, *n;
739 
740 	if (!atomic_read(&td->limits_changed))
741 		return;
742 
743 	throtl_log(td, "limit changed =%d", atomic_read(&td->limits_changed));
744 
745 	/*
746 	 * Make sure updates from throtl_update_blkio_group_read_bps() group
747 	 * of functions to tg->limits_changed are visible. We do not
748 	 * want update td->limits_changed to be visible but update to
749 	 * tg->limits_changed not being visible yet on this cpu. Hence
750 	 * the read barrier.
751 	 */
752 	smp_rmb();
753 
754 	hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
755 		if (throtl_tg_on_rr(tg) && tg->limits_changed) {
756 			throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
757 				" riops=%u wiops=%u", tg->bps[READ],
758 				tg->bps[WRITE], tg->iops[READ],
759 				tg->iops[WRITE]);
760 			tg_update_disptime(td, tg);
761 			tg->limits_changed = false;
762 		}
763 	}
764 
765 	smp_mb__before_atomic_dec();
766 	atomic_dec(&td->limits_changed);
767 	smp_mb__after_atomic_dec();
768 }
769 
770 /* Dispatch throttled bios. Should be called without queue lock held. */
771 static int throtl_dispatch(struct request_queue *q)
772 {
773 	struct throtl_data *td = q->td;
774 	unsigned int nr_disp = 0;
775 	struct bio_list bio_list_on_stack;
776 	struct bio *bio;
777 
778 	spin_lock_irq(q->queue_lock);
779 
780 	throtl_process_limit_change(td);
781 
782 	if (!total_nr_queued(td))
783 		goto out;
784 
785 	bio_list_init(&bio_list_on_stack);
786 
787 	throtl_log(td, "dispatch nr_queued=%lu read=%u write=%u",
788 			total_nr_queued(td), td->nr_queued[READ],
789 			td->nr_queued[WRITE]);
790 
791 	nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
792 
793 	if (nr_disp)
794 		throtl_log(td, "bios disp=%u", nr_disp);
795 
796 	throtl_schedule_next_dispatch(td);
797 out:
798 	spin_unlock_irq(q->queue_lock);
799 
800 	/*
801 	 * If we dispatched some requests, unplug the queue to make sure
802 	 * immediate dispatch
803 	 */
804 	if (nr_disp) {
805 		while((bio = bio_list_pop(&bio_list_on_stack)))
806 			generic_make_request(bio);
807 		blk_unplug(q);
808 	}
809 	return nr_disp;
810 }
811 
812 void blk_throtl_work(struct work_struct *work)
813 {
814 	struct throtl_data *td = container_of(work, struct throtl_data,
815 					throtl_work.work);
816 	struct request_queue *q = td->queue;
817 
818 	throtl_dispatch(q);
819 }
820 
821 /* Call with queue lock held */
822 static void
823 throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
824 {
825 
826 	struct delayed_work *dwork = &td->throtl_work;
827 
828 	if (total_nr_queued(td) > 0) {
829 		/*
830 		 * We might have a work scheduled to be executed in future.
831 		 * Cancel that and schedule a new one.
832 		 */
833 		__cancel_delayed_work(dwork);
834 		queue_delayed_work(kthrotld_workqueue, dwork, delay);
835 		throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
836 				delay, jiffies);
837 	}
838 }
839 
840 static void
841 throtl_destroy_tg(struct throtl_data *td, struct throtl_grp *tg)
842 {
843 	/* Something wrong if we are trying to remove same group twice */
844 	BUG_ON(hlist_unhashed(&tg->tg_node));
845 
846 	hlist_del_init(&tg->tg_node);
847 
848 	/*
849 	 * Put the reference taken at the time of creation so that when all
850 	 * queues are gone, group can be destroyed.
851 	 */
852 	throtl_put_tg(tg);
853 	td->nr_undestroyed_grps--;
854 }
855 
856 static void throtl_release_tgs(struct throtl_data *td)
857 {
858 	struct hlist_node *pos, *n;
859 	struct throtl_grp *tg;
860 
861 	hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
862 		/*
863 		 * If cgroup removal path got to blk_group first and removed
864 		 * it from cgroup list, then it will take care of destroying
865 		 * cfqg also.
866 		 */
867 		if (!blkiocg_del_blkio_group(&tg->blkg))
868 			throtl_destroy_tg(td, tg);
869 	}
870 }
871 
872 static void throtl_td_free(struct throtl_data *td)
873 {
874 	kfree(td);
875 }
876 
877 /*
878  * Blk cgroup controller notification saying that blkio_group object is being
879  * delinked as associated cgroup object is going away. That also means that
880  * no new IO will come in this group. So get rid of this group as soon as
881  * any pending IO in the group is finished.
882  *
883  * This function is called under rcu_read_lock(). key is the rcu protected
884  * pointer. That means "key" is a valid throtl_data pointer as long as we are
885  * rcu read lock.
886  *
887  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
888  * it should not be NULL as even if queue was going away, cgroup deltion
889  * path got to it first.
890  */
891 void throtl_unlink_blkio_group(void *key, struct blkio_group *blkg)
892 {
893 	unsigned long flags;
894 	struct throtl_data *td = key;
895 
896 	spin_lock_irqsave(td->queue->queue_lock, flags);
897 	throtl_destroy_tg(td, tg_of_blkg(blkg));
898 	spin_unlock_irqrestore(td->queue->queue_lock, flags);
899 }
900 
901 /*
902  * For all update functions, key should be a valid pointer because these
903  * update functions are called under blkcg_lock, that means, blkg is
904  * valid and in turn key is valid. queue exit path can not race becuase
905  * of blkcg_lock
906  *
907  * Can not take queue lock in update functions as queue lock under blkcg_lock
908  * is not allowed. Under other paths we take blkcg_lock under queue_lock.
909  */
910 static void throtl_update_blkio_group_read_bps(void *key,
911 				struct blkio_group *blkg, u64 read_bps)
912 {
913 	struct throtl_data *td = key;
914 
915 	tg_of_blkg(blkg)->bps[READ] = read_bps;
916 	/* Make sure read_bps is updated before setting limits_changed */
917 	smp_wmb();
918 	tg_of_blkg(blkg)->limits_changed = true;
919 
920 	/* Make sure tg->limits_changed is updated before td->limits_changed */
921 	smp_mb__before_atomic_inc();
922 	atomic_inc(&td->limits_changed);
923 	smp_mb__after_atomic_inc();
924 
925 	/* Schedule a work now to process the limit change */
926 	throtl_schedule_delayed_work(td, 0);
927 }
928 
929 static void throtl_update_blkio_group_write_bps(void *key,
930 				struct blkio_group *blkg, u64 write_bps)
931 {
932 	struct throtl_data *td = key;
933 
934 	tg_of_blkg(blkg)->bps[WRITE] = write_bps;
935 	smp_wmb();
936 	tg_of_blkg(blkg)->limits_changed = true;
937 	smp_mb__before_atomic_inc();
938 	atomic_inc(&td->limits_changed);
939 	smp_mb__after_atomic_inc();
940 	throtl_schedule_delayed_work(td, 0);
941 }
942 
943 static void throtl_update_blkio_group_read_iops(void *key,
944 			struct blkio_group *blkg, unsigned int read_iops)
945 {
946 	struct throtl_data *td = key;
947 
948 	tg_of_blkg(blkg)->iops[READ] = read_iops;
949 	smp_wmb();
950 	tg_of_blkg(blkg)->limits_changed = true;
951 	smp_mb__before_atomic_inc();
952 	atomic_inc(&td->limits_changed);
953 	smp_mb__after_atomic_inc();
954 	throtl_schedule_delayed_work(td, 0);
955 }
956 
957 static void throtl_update_blkio_group_write_iops(void *key,
958 			struct blkio_group *blkg, unsigned int write_iops)
959 {
960 	struct throtl_data *td = key;
961 
962 	tg_of_blkg(blkg)->iops[WRITE] = write_iops;
963 	smp_wmb();
964 	tg_of_blkg(blkg)->limits_changed = true;
965 	smp_mb__before_atomic_inc();
966 	atomic_inc(&td->limits_changed);
967 	smp_mb__after_atomic_inc();
968 	throtl_schedule_delayed_work(td, 0);
969 }
970 
971 void throtl_shutdown_timer_wq(struct request_queue *q)
972 {
973 	struct throtl_data *td = q->td;
974 
975 	cancel_delayed_work_sync(&td->throtl_work);
976 }
977 
978 static struct blkio_policy_type blkio_policy_throtl = {
979 	.ops = {
980 		.blkio_unlink_group_fn = throtl_unlink_blkio_group,
981 		.blkio_update_group_read_bps_fn =
982 					throtl_update_blkio_group_read_bps,
983 		.blkio_update_group_write_bps_fn =
984 					throtl_update_blkio_group_write_bps,
985 		.blkio_update_group_read_iops_fn =
986 					throtl_update_blkio_group_read_iops,
987 		.blkio_update_group_write_iops_fn =
988 					throtl_update_blkio_group_write_iops,
989 	},
990 	.plid = BLKIO_POLICY_THROTL,
991 };
992 
993 int blk_throtl_bio(struct request_queue *q, struct bio **biop)
994 {
995 	struct throtl_data *td = q->td;
996 	struct throtl_grp *tg;
997 	struct bio *bio = *biop;
998 	bool rw = bio_data_dir(bio), update_disptime = true;
999 
1000 	if (bio->bi_rw & REQ_THROTTLED) {
1001 		bio->bi_rw &= ~REQ_THROTTLED;
1002 		return 0;
1003 	}
1004 
1005 	spin_lock_irq(q->queue_lock);
1006 	tg = throtl_get_tg(td);
1007 
1008 	if (tg->nr_queued[rw]) {
1009 		/*
1010 		 * There is already another bio queued in same dir. No
1011 		 * need to update dispatch time.
1012 		 * Still update the disptime if rate limits on this group
1013 		 * were changed.
1014 		 */
1015 		if (!tg->limits_changed)
1016 			update_disptime = false;
1017 		else
1018 			tg->limits_changed = false;
1019 
1020 		goto queue_bio;
1021 	}
1022 
1023 	/* Bio is with-in rate limit of group */
1024 	if (tg_may_dispatch(td, tg, bio, NULL)) {
1025 		throtl_charge_bio(tg, bio);
1026 		goto out;
1027 	}
1028 
1029 queue_bio:
1030 	throtl_log_tg(td, tg, "[%c] bio. bdisp=%u sz=%u bps=%llu"
1031 			" iodisp=%u iops=%u queued=%d/%d",
1032 			rw == READ ? 'R' : 'W',
1033 			tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1034 			tg->io_disp[rw], tg->iops[rw],
1035 			tg->nr_queued[READ], tg->nr_queued[WRITE]);
1036 
1037 	throtl_add_bio_tg(q->td, tg, bio);
1038 	*biop = NULL;
1039 
1040 	if (update_disptime) {
1041 		tg_update_disptime(td, tg);
1042 		throtl_schedule_next_dispatch(td);
1043 	}
1044 
1045 out:
1046 	spin_unlock_irq(q->queue_lock);
1047 	return 0;
1048 }
1049 
1050 int blk_throtl_init(struct request_queue *q)
1051 {
1052 	struct throtl_data *td;
1053 	struct throtl_grp *tg;
1054 
1055 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1056 	if (!td)
1057 		return -ENOMEM;
1058 
1059 	INIT_HLIST_HEAD(&td->tg_list);
1060 	td->tg_service_tree = THROTL_RB_ROOT;
1061 	atomic_set(&td->limits_changed, 0);
1062 
1063 	/* Init root group */
1064 	tg = &td->root_tg;
1065 	INIT_HLIST_NODE(&tg->tg_node);
1066 	RB_CLEAR_NODE(&tg->rb_node);
1067 	bio_list_init(&tg->bio_lists[0]);
1068 	bio_list_init(&tg->bio_lists[1]);
1069 
1070 	/* Practically unlimited BW */
1071 	tg->bps[0] = tg->bps[1] = -1;
1072 	tg->iops[0] = tg->iops[1] = -1;
1073 
1074 	/*
1075 	 * Set root group reference to 2. One reference will be dropped when
1076 	 * all groups on tg_list are being deleted during queue exit. Other
1077 	 * reference will remain there as we don't want to delete this group
1078 	 * as it is statically allocated and gets destroyed when throtl_data
1079 	 * goes away.
1080 	 */
1081 	atomic_set(&tg->ref, 2);
1082 	hlist_add_head(&tg->tg_node, &td->tg_list);
1083 	td->nr_undestroyed_grps++;
1084 
1085 	INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1086 
1087 	rcu_read_lock();
1088 	blkiocg_add_blkio_group(&blkio_root_cgroup, &tg->blkg, (void *)td,
1089 					0, BLKIO_POLICY_THROTL);
1090 	rcu_read_unlock();
1091 
1092 	/* Attach throtl data to request queue */
1093 	td->queue = q;
1094 	q->td = td;
1095 	return 0;
1096 }
1097 
1098 void blk_throtl_exit(struct request_queue *q)
1099 {
1100 	struct throtl_data *td = q->td;
1101 	bool wait = false;
1102 
1103 	BUG_ON(!td);
1104 
1105 	throtl_shutdown_timer_wq(q);
1106 
1107 	spin_lock_irq(q->queue_lock);
1108 	throtl_release_tgs(td);
1109 
1110 	/* If there are other groups */
1111 	if (td->nr_undestroyed_grps > 0)
1112 		wait = true;
1113 
1114 	spin_unlock_irq(q->queue_lock);
1115 
1116 	/*
1117 	 * Wait for tg->blkg->key accessors to exit their grace periods.
1118 	 * Do this wait only if there are other undestroyed groups out
1119 	 * there (other than root group). This can happen if cgroup deletion
1120 	 * path claimed the responsibility of cleaning up a group before
1121 	 * queue cleanup code get to the group.
1122 	 *
1123 	 * Do not call synchronize_rcu() unconditionally as there are drivers
1124 	 * which create/delete request queue hundreds of times during scan/boot
1125 	 * and synchronize_rcu() can take significant time and slow down boot.
1126 	 */
1127 	if (wait)
1128 		synchronize_rcu();
1129 
1130 	/*
1131 	 * Just being safe to make sure after previous flush if some body did
1132 	 * update limits through cgroup and another work got queued, cancel
1133 	 * it.
1134 	 */
1135 	throtl_shutdown_timer_wq(q);
1136 	throtl_td_free(td);
1137 }
1138 
1139 static int __init throtl_init(void)
1140 {
1141 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1142 	if (!kthrotld_workqueue)
1143 		panic("Failed to create kthrotld\n");
1144 
1145 	blkio_policy_register(&blkio_policy_throtl);
1146 	return 0;
1147 }
1148 
1149 module_init(throtl_init);
1150