1 /* 2 * Interface for controlling IO bandwidth on a request queue 3 * 4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 5 */ 6 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/blkdev.h> 10 #include <linux/bio.h> 11 #include <linux/blktrace_api.h> 12 #include "blk-cgroup.h" 13 14 /* Max dispatch from a group in 1 round */ 15 static int throtl_grp_quantum = 8; 16 17 /* Total max dispatch from all groups in one round */ 18 static int throtl_quantum = 32; 19 20 /* Throttling is performed over 100ms slice and after that slice is renewed */ 21 static unsigned long throtl_slice = HZ/10; /* 100 ms */ 22 23 /* A workqueue to queue throttle related work */ 24 static struct workqueue_struct *kthrotld_workqueue; 25 static void throtl_schedule_delayed_work(struct throtl_data *td, 26 unsigned long delay); 27 28 struct throtl_rb_root { 29 struct rb_root rb; 30 struct rb_node *left; 31 unsigned int count; 32 unsigned long min_disptime; 33 }; 34 35 #define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \ 36 .count = 0, .min_disptime = 0} 37 38 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 39 40 struct throtl_grp { 41 /* List of throtl groups on the request queue*/ 42 struct hlist_node tg_node; 43 44 /* active throtl group service_tree member */ 45 struct rb_node rb_node; 46 47 /* 48 * Dispatch time in jiffies. This is the estimated time when group 49 * will unthrottle and is ready to dispatch more bio. It is used as 50 * key to sort active groups in service tree. 51 */ 52 unsigned long disptime; 53 54 struct blkio_group blkg; 55 atomic_t ref; 56 unsigned int flags; 57 58 /* Two lists for READ and WRITE */ 59 struct bio_list bio_lists[2]; 60 61 /* Number of queued bios on READ and WRITE lists */ 62 unsigned int nr_queued[2]; 63 64 /* bytes per second rate limits */ 65 uint64_t bps[2]; 66 67 /* IOPS limits */ 68 unsigned int iops[2]; 69 70 /* Number of bytes disptached in current slice */ 71 uint64_t bytes_disp[2]; 72 /* Number of bio's dispatched in current slice */ 73 unsigned int io_disp[2]; 74 75 /* When did we start a new slice */ 76 unsigned long slice_start[2]; 77 unsigned long slice_end[2]; 78 79 /* Some throttle limits got updated for the group */ 80 bool limits_changed; 81 }; 82 83 struct throtl_data 84 { 85 /* List of throtl groups */ 86 struct hlist_head tg_list; 87 88 /* service tree for active throtl groups */ 89 struct throtl_rb_root tg_service_tree; 90 91 struct throtl_grp root_tg; 92 struct request_queue *queue; 93 94 /* Total Number of queued bios on READ and WRITE lists */ 95 unsigned int nr_queued[2]; 96 97 /* 98 * number of total undestroyed groups 99 */ 100 unsigned int nr_undestroyed_grps; 101 102 /* Work for dispatching throttled bios */ 103 struct delayed_work throtl_work; 104 105 atomic_t limits_changed; 106 }; 107 108 enum tg_state_flags { 109 THROTL_TG_FLAG_on_rr = 0, /* on round-robin busy list */ 110 }; 111 112 #define THROTL_TG_FNS(name) \ 113 static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \ 114 { \ 115 (tg)->flags |= (1 << THROTL_TG_FLAG_##name); \ 116 } \ 117 static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \ 118 { \ 119 (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \ 120 } \ 121 static inline int throtl_tg_##name(const struct throtl_grp *tg) \ 122 { \ 123 return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \ 124 } 125 126 THROTL_TG_FNS(on_rr); 127 128 #define throtl_log_tg(td, tg, fmt, args...) \ 129 blk_add_trace_msg((td)->queue, "throtl %s " fmt, \ 130 blkg_path(&(tg)->blkg), ##args); \ 131 132 #define throtl_log(td, fmt, args...) \ 133 blk_add_trace_msg((td)->queue, "throtl " fmt, ##args) 134 135 static inline struct throtl_grp *tg_of_blkg(struct blkio_group *blkg) 136 { 137 if (blkg) 138 return container_of(blkg, struct throtl_grp, blkg); 139 140 return NULL; 141 } 142 143 static inline int total_nr_queued(struct throtl_data *td) 144 { 145 return (td->nr_queued[0] + td->nr_queued[1]); 146 } 147 148 static inline struct throtl_grp *throtl_ref_get_tg(struct throtl_grp *tg) 149 { 150 atomic_inc(&tg->ref); 151 return tg; 152 } 153 154 static void throtl_put_tg(struct throtl_grp *tg) 155 { 156 BUG_ON(atomic_read(&tg->ref) <= 0); 157 if (!atomic_dec_and_test(&tg->ref)) 158 return; 159 kfree(tg); 160 } 161 162 static struct throtl_grp * throtl_find_alloc_tg(struct throtl_data *td, 163 struct cgroup *cgroup) 164 { 165 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup); 166 struct throtl_grp *tg = NULL; 167 void *key = td; 168 struct backing_dev_info *bdi = &td->queue->backing_dev_info; 169 unsigned int major, minor; 170 171 /* 172 * TODO: Speed up blkiocg_lookup_group() by maintaining a radix 173 * tree of blkg (instead of traversing through hash list all 174 * the time. 175 */ 176 177 /* 178 * This is the common case when there are no blkio cgroups. 179 * Avoid lookup in this case 180 */ 181 if (blkcg == &blkio_root_cgroup) 182 tg = &td->root_tg; 183 else 184 tg = tg_of_blkg(blkiocg_lookup_group(blkcg, key)); 185 186 /* Fill in device details for root group */ 187 if (tg && !tg->blkg.dev && bdi->dev && dev_name(bdi->dev)) { 188 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor); 189 tg->blkg.dev = MKDEV(major, minor); 190 goto done; 191 } 192 193 if (tg) 194 goto done; 195 196 tg = kzalloc_node(sizeof(*tg), GFP_ATOMIC, td->queue->node); 197 if (!tg) 198 goto done; 199 200 INIT_HLIST_NODE(&tg->tg_node); 201 RB_CLEAR_NODE(&tg->rb_node); 202 bio_list_init(&tg->bio_lists[0]); 203 bio_list_init(&tg->bio_lists[1]); 204 205 /* 206 * Take the initial reference that will be released on destroy 207 * This can be thought of a joint reference by cgroup and 208 * request queue which will be dropped by either request queue 209 * exit or cgroup deletion path depending on who is exiting first. 210 */ 211 atomic_set(&tg->ref, 1); 212 213 /* Add group onto cgroup list */ 214 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor); 215 blkiocg_add_blkio_group(blkcg, &tg->blkg, (void *)td, 216 MKDEV(major, minor), BLKIO_POLICY_THROTL); 217 218 tg->bps[READ] = blkcg_get_read_bps(blkcg, tg->blkg.dev); 219 tg->bps[WRITE] = blkcg_get_write_bps(blkcg, tg->blkg.dev); 220 tg->iops[READ] = blkcg_get_read_iops(blkcg, tg->blkg.dev); 221 tg->iops[WRITE] = blkcg_get_write_iops(blkcg, tg->blkg.dev); 222 223 hlist_add_head(&tg->tg_node, &td->tg_list); 224 td->nr_undestroyed_grps++; 225 done: 226 return tg; 227 } 228 229 static struct throtl_grp * throtl_get_tg(struct throtl_data *td) 230 { 231 struct cgroup *cgroup; 232 struct throtl_grp *tg = NULL; 233 234 rcu_read_lock(); 235 cgroup = task_cgroup(current, blkio_subsys_id); 236 tg = throtl_find_alloc_tg(td, cgroup); 237 if (!tg) 238 tg = &td->root_tg; 239 rcu_read_unlock(); 240 return tg; 241 } 242 243 static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root) 244 { 245 /* Service tree is empty */ 246 if (!root->count) 247 return NULL; 248 249 if (!root->left) 250 root->left = rb_first(&root->rb); 251 252 if (root->left) 253 return rb_entry_tg(root->left); 254 255 return NULL; 256 } 257 258 static void rb_erase_init(struct rb_node *n, struct rb_root *root) 259 { 260 rb_erase(n, root); 261 RB_CLEAR_NODE(n); 262 } 263 264 static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root) 265 { 266 if (root->left == n) 267 root->left = NULL; 268 rb_erase_init(n, &root->rb); 269 --root->count; 270 } 271 272 static void update_min_dispatch_time(struct throtl_rb_root *st) 273 { 274 struct throtl_grp *tg; 275 276 tg = throtl_rb_first(st); 277 if (!tg) 278 return; 279 280 st->min_disptime = tg->disptime; 281 } 282 283 static void 284 tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg) 285 { 286 struct rb_node **node = &st->rb.rb_node; 287 struct rb_node *parent = NULL; 288 struct throtl_grp *__tg; 289 unsigned long key = tg->disptime; 290 int left = 1; 291 292 while (*node != NULL) { 293 parent = *node; 294 __tg = rb_entry_tg(parent); 295 296 if (time_before(key, __tg->disptime)) 297 node = &parent->rb_left; 298 else { 299 node = &parent->rb_right; 300 left = 0; 301 } 302 } 303 304 if (left) 305 st->left = &tg->rb_node; 306 307 rb_link_node(&tg->rb_node, parent, node); 308 rb_insert_color(&tg->rb_node, &st->rb); 309 } 310 311 static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg) 312 { 313 struct throtl_rb_root *st = &td->tg_service_tree; 314 315 tg_service_tree_add(st, tg); 316 throtl_mark_tg_on_rr(tg); 317 st->count++; 318 } 319 320 static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg) 321 { 322 if (!throtl_tg_on_rr(tg)) 323 __throtl_enqueue_tg(td, tg); 324 } 325 326 static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg) 327 { 328 throtl_rb_erase(&tg->rb_node, &td->tg_service_tree); 329 throtl_clear_tg_on_rr(tg); 330 } 331 332 static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg) 333 { 334 if (throtl_tg_on_rr(tg)) 335 __throtl_dequeue_tg(td, tg); 336 } 337 338 static void throtl_schedule_next_dispatch(struct throtl_data *td) 339 { 340 struct throtl_rb_root *st = &td->tg_service_tree; 341 342 /* 343 * If there are more bios pending, schedule more work. 344 */ 345 if (!total_nr_queued(td)) 346 return; 347 348 BUG_ON(!st->count); 349 350 update_min_dispatch_time(st); 351 352 if (time_before_eq(st->min_disptime, jiffies)) 353 throtl_schedule_delayed_work(td, 0); 354 else 355 throtl_schedule_delayed_work(td, (st->min_disptime - jiffies)); 356 } 357 358 static inline void 359 throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw) 360 { 361 tg->bytes_disp[rw] = 0; 362 tg->io_disp[rw] = 0; 363 tg->slice_start[rw] = jiffies; 364 tg->slice_end[rw] = jiffies + throtl_slice; 365 throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu", 366 rw == READ ? 'R' : 'W', tg->slice_start[rw], 367 tg->slice_end[rw], jiffies); 368 } 369 370 static inline void throtl_set_slice_end(struct throtl_data *td, 371 struct throtl_grp *tg, bool rw, unsigned long jiffy_end) 372 { 373 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); 374 } 375 376 static inline void throtl_extend_slice(struct throtl_data *td, 377 struct throtl_grp *tg, bool rw, unsigned long jiffy_end) 378 { 379 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); 380 throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu", 381 rw == READ ? 'R' : 'W', tg->slice_start[rw], 382 tg->slice_end[rw], jiffies); 383 } 384 385 /* Determine if previously allocated or extended slice is complete or not */ 386 static bool 387 throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw) 388 { 389 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 390 return 0; 391 392 return 1; 393 } 394 395 /* Trim the used slices and adjust slice start accordingly */ 396 static inline void 397 throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw) 398 { 399 unsigned long nr_slices, time_elapsed, io_trim; 400 u64 bytes_trim, tmp; 401 402 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 403 404 /* 405 * If bps are unlimited (-1), then time slice don't get 406 * renewed. Don't try to trim the slice if slice is used. A new 407 * slice will start when appropriate. 408 */ 409 if (throtl_slice_used(td, tg, rw)) 410 return; 411 412 /* 413 * A bio has been dispatched. Also adjust slice_end. It might happen 414 * that initially cgroup limit was very low resulting in high 415 * slice_end, but later limit was bumped up and bio was dispached 416 * sooner, then we need to reduce slice_end. A high bogus slice_end 417 * is bad because it does not allow new slice to start. 418 */ 419 420 throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice); 421 422 time_elapsed = jiffies - tg->slice_start[rw]; 423 424 nr_slices = time_elapsed / throtl_slice; 425 426 if (!nr_slices) 427 return; 428 tmp = tg->bps[rw] * throtl_slice * nr_slices; 429 do_div(tmp, HZ); 430 bytes_trim = tmp; 431 432 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ; 433 434 if (!bytes_trim && !io_trim) 435 return; 436 437 if (tg->bytes_disp[rw] >= bytes_trim) 438 tg->bytes_disp[rw] -= bytes_trim; 439 else 440 tg->bytes_disp[rw] = 0; 441 442 if (tg->io_disp[rw] >= io_trim) 443 tg->io_disp[rw] -= io_trim; 444 else 445 tg->io_disp[rw] = 0; 446 447 tg->slice_start[rw] += nr_slices * throtl_slice; 448 449 throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu" 450 " start=%lu end=%lu jiffies=%lu", 451 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, 452 tg->slice_start[rw], tg->slice_end[rw], jiffies); 453 } 454 455 static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg, 456 struct bio *bio, unsigned long *wait) 457 { 458 bool rw = bio_data_dir(bio); 459 unsigned int io_allowed; 460 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 461 u64 tmp; 462 463 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 464 465 /* Slice has just started. Consider one slice interval */ 466 if (!jiffy_elapsed) 467 jiffy_elapsed_rnd = throtl_slice; 468 469 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); 470 471 /* 472 * jiffy_elapsed_rnd should not be a big value as minimum iops can be 473 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 474 * will allow dispatch after 1 second and after that slice should 475 * have been trimmed. 476 */ 477 478 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd; 479 do_div(tmp, HZ); 480 481 if (tmp > UINT_MAX) 482 io_allowed = UINT_MAX; 483 else 484 io_allowed = tmp; 485 486 if (tg->io_disp[rw] + 1 <= io_allowed) { 487 if (wait) 488 *wait = 0; 489 return 1; 490 } 491 492 /* Calc approx time to dispatch */ 493 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1; 494 495 if (jiffy_wait > jiffy_elapsed) 496 jiffy_wait = jiffy_wait - jiffy_elapsed; 497 else 498 jiffy_wait = 1; 499 500 if (wait) 501 *wait = jiffy_wait; 502 return 0; 503 } 504 505 static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg, 506 struct bio *bio, unsigned long *wait) 507 { 508 bool rw = bio_data_dir(bio); 509 u64 bytes_allowed, extra_bytes, tmp; 510 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 511 512 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 513 514 /* Slice has just started. Consider one slice interval */ 515 if (!jiffy_elapsed) 516 jiffy_elapsed_rnd = throtl_slice; 517 518 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); 519 520 tmp = tg->bps[rw] * jiffy_elapsed_rnd; 521 do_div(tmp, HZ); 522 bytes_allowed = tmp; 523 524 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) { 525 if (wait) 526 *wait = 0; 527 return 1; 528 } 529 530 /* Calc approx time to dispatch */ 531 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed; 532 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]); 533 534 if (!jiffy_wait) 535 jiffy_wait = 1; 536 537 /* 538 * This wait time is without taking into consideration the rounding 539 * up we did. Add that time also. 540 */ 541 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 542 if (wait) 543 *wait = jiffy_wait; 544 return 0; 545 } 546 547 /* 548 * Returns whether one can dispatch a bio or not. Also returns approx number 549 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 550 */ 551 static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg, 552 struct bio *bio, unsigned long *wait) 553 { 554 bool rw = bio_data_dir(bio); 555 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 556 557 /* 558 * Currently whole state machine of group depends on first bio 559 * queued in the group bio list. So one should not be calling 560 * this function with a different bio if there are other bios 561 * queued. 562 */ 563 BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw])); 564 565 /* If tg->bps = -1, then BW is unlimited */ 566 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) { 567 if (wait) 568 *wait = 0; 569 return 1; 570 } 571 572 /* 573 * If previous slice expired, start a new one otherwise renew/extend 574 * existing slice to make sure it is at least throtl_slice interval 575 * long since now. 576 */ 577 if (throtl_slice_used(td, tg, rw)) 578 throtl_start_new_slice(td, tg, rw); 579 else { 580 if (time_before(tg->slice_end[rw], jiffies + throtl_slice)) 581 throtl_extend_slice(td, tg, rw, jiffies + throtl_slice); 582 } 583 584 if (tg_with_in_bps_limit(td, tg, bio, &bps_wait) 585 && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) { 586 if (wait) 587 *wait = 0; 588 return 1; 589 } 590 591 max_wait = max(bps_wait, iops_wait); 592 593 if (wait) 594 *wait = max_wait; 595 596 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 597 throtl_extend_slice(td, tg, rw, jiffies + max_wait); 598 599 return 0; 600 } 601 602 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 603 { 604 bool rw = bio_data_dir(bio); 605 bool sync = bio->bi_rw & REQ_SYNC; 606 607 /* Charge the bio to the group */ 608 tg->bytes_disp[rw] += bio->bi_size; 609 tg->io_disp[rw]++; 610 611 /* 612 * TODO: This will take blkg->stats_lock. Figure out a way 613 * to avoid this cost. 614 */ 615 blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, rw, sync); 616 } 617 618 static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg, 619 struct bio *bio) 620 { 621 bool rw = bio_data_dir(bio); 622 623 bio_list_add(&tg->bio_lists[rw], bio); 624 /* Take a bio reference on tg */ 625 throtl_ref_get_tg(tg); 626 tg->nr_queued[rw]++; 627 td->nr_queued[rw]++; 628 throtl_enqueue_tg(td, tg); 629 } 630 631 static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg) 632 { 633 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 634 struct bio *bio; 635 636 if ((bio = bio_list_peek(&tg->bio_lists[READ]))) 637 tg_may_dispatch(td, tg, bio, &read_wait); 638 639 if ((bio = bio_list_peek(&tg->bio_lists[WRITE]))) 640 tg_may_dispatch(td, tg, bio, &write_wait); 641 642 min_wait = min(read_wait, write_wait); 643 disptime = jiffies + min_wait; 644 645 /* Update dispatch time */ 646 throtl_dequeue_tg(td, tg); 647 tg->disptime = disptime; 648 throtl_enqueue_tg(td, tg); 649 } 650 651 static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg, 652 bool rw, struct bio_list *bl) 653 { 654 struct bio *bio; 655 656 bio = bio_list_pop(&tg->bio_lists[rw]); 657 tg->nr_queued[rw]--; 658 /* Drop bio reference on tg */ 659 throtl_put_tg(tg); 660 661 BUG_ON(td->nr_queued[rw] <= 0); 662 td->nr_queued[rw]--; 663 664 throtl_charge_bio(tg, bio); 665 bio_list_add(bl, bio); 666 bio->bi_rw |= REQ_THROTTLED; 667 668 throtl_trim_slice(td, tg, rw); 669 } 670 671 static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg, 672 struct bio_list *bl) 673 { 674 unsigned int nr_reads = 0, nr_writes = 0; 675 unsigned int max_nr_reads = throtl_grp_quantum*3/4; 676 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; 677 struct bio *bio; 678 679 /* Try to dispatch 75% READS and 25% WRITES */ 680 681 while ((bio = bio_list_peek(&tg->bio_lists[READ])) 682 && tg_may_dispatch(td, tg, bio, NULL)) { 683 684 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl); 685 nr_reads++; 686 687 if (nr_reads >= max_nr_reads) 688 break; 689 } 690 691 while ((bio = bio_list_peek(&tg->bio_lists[WRITE])) 692 && tg_may_dispatch(td, tg, bio, NULL)) { 693 694 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl); 695 nr_writes++; 696 697 if (nr_writes >= max_nr_writes) 698 break; 699 } 700 701 return nr_reads + nr_writes; 702 } 703 704 static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl) 705 { 706 unsigned int nr_disp = 0; 707 struct throtl_grp *tg; 708 struct throtl_rb_root *st = &td->tg_service_tree; 709 710 while (1) { 711 tg = throtl_rb_first(st); 712 713 if (!tg) 714 break; 715 716 if (time_before(jiffies, tg->disptime)) 717 break; 718 719 throtl_dequeue_tg(td, tg); 720 721 nr_disp += throtl_dispatch_tg(td, tg, bl); 722 723 if (tg->nr_queued[0] || tg->nr_queued[1]) { 724 tg_update_disptime(td, tg); 725 throtl_enqueue_tg(td, tg); 726 } 727 728 if (nr_disp >= throtl_quantum) 729 break; 730 } 731 732 return nr_disp; 733 } 734 735 static void throtl_process_limit_change(struct throtl_data *td) 736 { 737 struct throtl_grp *tg; 738 struct hlist_node *pos, *n; 739 740 if (!atomic_read(&td->limits_changed)) 741 return; 742 743 throtl_log(td, "limit changed =%d", atomic_read(&td->limits_changed)); 744 745 /* 746 * Make sure updates from throtl_update_blkio_group_read_bps() group 747 * of functions to tg->limits_changed are visible. We do not 748 * want update td->limits_changed to be visible but update to 749 * tg->limits_changed not being visible yet on this cpu. Hence 750 * the read barrier. 751 */ 752 smp_rmb(); 753 754 hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) { 755 if (throtl_tg_on_rr(tg) && tg->limits_changed) { 756 throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu" 757 " riops=%u wiops=%u", tg->bps[READ], 758 tg->bps[WRITE], tg->iops[READ], 759 tg->iops[WRITE]); 760 tg_update_disptime(td, tg); 761 tg->limits_changed = false; 762 } 763 } 764 765 smp_mb__before_atomic_dec(); 766 atomic_dec(&td->limits_changed); 767 smp_mb__after_atomic_dec(); 768 } 769 770 /* Dispatch throttled bios. Should be called without queue lock held. */ 771 static int throtl_dispatch(struct request_queue *q) 772 { 773 struct throtl_data *td = q->td; 774 unsigned int nr_disp = 0; 775 struct bio_list bio_list_on_stack; 776 struct bio *bio; 777 778 spin_lock_irq(q->queue_lock); 779 780 throtl_process_limit_change(td); 781 782 if (!total_nr_queued(td)) 783 goto out; 784 785 bio_list_init(&bio_list_on_stack); 786 787 throtl_log(td, "dispatch nr_queued=%lu read=%u write=%u", 788 total_nr_queued(td), td->nr_queued[READ], 789 td->nr_queued[WRITE]); 790 791 nr_disp = throtl_select_dispatch(td, &bio_list_on_stack); 792 793 if (nr_disp) 794 throtl_log(td, "bios disp=%u", nr_disp); 795 796 throtl_schedule_next_dispatch(td); 797 out: 798 spin_unlock_irq(q->queue_lock); 799 800 /* 801 * If we dispatched some requests, unplug the queue to make sure 802 * immediate dispatch 803 */ 804 if (nr_disp) { 805 while((bio = bio_list_pop(&bio_list_on_stack))) 806 generic_make_request(bio); 807 blk_unplug(q); 808 } 809 return nr_disp; 810 } 811 812 void blk_throtl_work(struct work_struct *work) 813 { 814 struct throtl_data *td = container_of(work, struct throtl_data, 815 throtl_work.work); 816 struct request_queue *q = td->queue; 817 818 throtl_dispatch(q); 819 } 820 821 /* Call with queue lock held */ 822 static void 823 throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay) 824 { 825 826 struct delayed_work *dwork = &td->throtl_work; 827 828 if (total_nr_queued(td) > 0) { 829 /* 830 * We might have a work scheduled to be executed in future. 831 * Cancel that and schedule a new one. 832 */ 833 __cancel_delayed_work(dwork); 834 queue_delayed_work(kthrotld_workqueue, dwork, delay); 835 throtl_log(td, "schedule work. delay=%lu jiffies=%lu", 836 delay, jiffies); 837 } 838 } 839 840 static void 841 throtl_destroy_tg(struct throtl_data *td, struct throtl_grp *tg) 842 { 843 /* Something wrong if we are trying to remove same group twice */ 844 BUG_ON(hlist_unhashed(&tg->tg_node)); 845 846 hlist_del_init(&tg->tg_node); 847 848 /* 849 * Put the reference taken at the time of creation so that when all 850 * queues are gone, group can be destroyed. 851 */ 852 throtl_put_tg(tg); 853 td->nr_undestroyed_grps--; 854 } 855 856 static void throtl_release_tgs(struct throtl_data *td) 857 { 858 struct hlist_node *pos, *n; 859 struct throtl_grp *tg; 860 861 hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) { 862 /* 863 * If cgroup removal path got to blk_group first and removed 864 * it from cgroup list, then it will take care of destroying 865 * cfqg also. 866 */ 867 if (!blkiocg_del_blkio_group(&tg->blkg)) 868 throtl_destroy_tg(td, tg); 869 } 870 } 871 872 static void throtl_td_free(struct throtl_data *td) 873 { 874 kfree(td); 875 } 876 877 /* 878 * Blk cgroup controller notification saying that blkio_group object is being 879 * delinked as associated cgroup object is going away. That also means that 880 * no new IO will come in this group. So get rid of this group as soon as 881 * any pending IO in the group is finished. 882 * 883 * This function is called under rcu_read_lock(). key is the rcu protected 884 * pointer. That means "key" is a valid throtl_data pointer as long as we are 885 * rcu read lock. 886 * 887 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means 888 * it should not be NULL as even if queue was going away, cgroup deltion 889 * path got to it first. 890 */ 891 void throtl_unlink_blkio_group(void *key, struct blkio_group *blkg) 892 { 893 unsigned long flags; 894 struct throtl_data *td = key; 895 896 spin_lock_irqsave(td->queue->queue_lock, flags); 897 throtl_destroy_tg(td, tg_of_blkg(blkg)); 898 spin_unlock_irqrestore(td->queue->queue_lock, flags); 899 } 900 901 /* 902 * For all update functions, key should be a valid pointer because these 903 * update functions are called under blkcg_lock, that means, blkg is 904 * valid and in turn key is valid. queue exit path can not race becuase 905 * of blkcg_lock 906 * 907 * Can not take queue lock in update functions as queue lock under blkcg_lock 908 * is not allowed. Under other paths we take blkcg_lock under queue_lock. 909 */ 910 static void throtl_update_blkio_group_read_bps(void *key, 911 struct blkio_group *blkg, u64 read_bps) 912 { 913 struct throtl_data *td = key; 914 915 tg_of_blkg(blkg)->bps[READ] = read_bps; 916 /* Make sure read_bps is updated before setting limits_changed */ 917 smp_wmb(); 918 tg_of_blkg(blkg)->limits_changed = true; 919 920 /* Make sure tg->limits_changed is updated before td->limits_changed */ 921 smp_mb__before_atomic_inc(); 922 atomic_inc(&td->limits_changed); 923 smp_mb__after_atomic_inc(); 924 925 /* Schedule a work now to process the limit change */ 926 throtl_schedule_delayed_work(td, 0); 927 } 928 929 static void throtl_update_blkio_group_write_bps(void *key, 930 struct blkio_group *blkg, u64 write_bps) 931 { 932 struct throtl_data *td = key; 933 934 tg_of_blkg(blkg)->bps[WRITE] = write_bps; 935 smp_wmb(); 936 tg_of_blkg(blkg)->limits_changed = true; 937 smp_mb__before_atomic_inc(); 938 atomic_inc(&td->limits_changed); 939 smp_mb__after_atomic_inc(); 940 throtl_schedule_delayed_work(td, 0); 941 } 942 943 static void throtl_update_blkio_group_read_iops(void *key, 944 struct blkio_group *blkg, unsigned int read_iops) 945 { 946 struct throtl_data *td = key; 947 948 tg_of_blkg(blkg)->iops[READ] = read_iops; 949 smp_wmb(); 950 tg_of_blkg(blkg)->limits_changed = true; 951 smp_mb__before_atomic_inc(); 952 atomic_inc(&td->limits_changed); 953 smp_mb__after_atomic_inc(); 954 throtl_schedule_delayed_work(td, 0); 955 } 956 957 static void throtl_update_blkio_group_write_iops(void *key, 958 struct blkio_group *blkg, unsigned int write_iops) 959 { 960 struct throtl_data *td = key; 961 962 tg_of_blkg(blkg)->iops[WRITE] = write_iops; 963 smp_wmb(); 964 tg_of_blkg(blkg)->limits_changed = true; 965 smp_mb__before_atomic_inc(); 966 atomic_inc(&td->limits_changed); 967 smp_mb__after_atomic_inc(); 968 throtl_schedule_delayed_work(td, 0); 969 } 970 971 void throtl_shutdown_timer_wq(struct request_queue *q) 972 { 973 struct throtl_data *td = q->td; 974 975 cancel_delayed_work_sync(&td->throtl_work); 976 } 977 978 static struct blkio_policy_type blkio_policy_throtl = { 979 .ops = { 980 .blkio_unlink_group_fn = throtl_unlink_blkio_group, 981 .blkio_update_group_read_bps_fn = 982 throtl_update_blkio_group_read_bps, 983 .blkio_update_group_write_bps_fn = 984 throtl_update_blkio_group_write_bps, 985 .blkio_update_group_read_iops_fn = 986 throtl_update_blkio_group_read_iops, 987 .blkio_update_group_write_iops_fn = 988 throtl_update_blkio_group_write_iops, 989 }, 990 .plid = BLKIO_POLICY_THROTL, 991 }; 992 993 int blk_throtl_bio(struct request_queue *q, struct bio **biop) 994 { 995 struct throtl_data *td = q->td; 996 struct throtl_grp *tg; 997 struct bio *bio = *biop; 998 bool rw = bio_data_dir(bio), update_disptime = true; 999 1000 if (bio->bi_rw & REQ_THROTTLED) { 1001 bio->bi_rw &= ~REQ_THROTTLED; 1002 return 0; 1003 } 1004 1005 spin_lock_irq(q->queue_lock); 1006 tg = throtl_get_tg(td); 1007 1008 if (tg->nr_queued[rw]) { 1009 /* 1010 * There is already another bio queued in same dir. No 1011 * need to update dispatch time. 1012 * Still update the disptime if rate limits on this group 1013 * were changed. 1014 */ 1015 if (!tg->limits_changed) 1016 update_disptime = false; 1017 else 1018 tg->limits_changed = false; 1019 1020 goto queue_bio; 1021 } 1022 1023 /* Bio is with-in rate limit of group */ 1024 if (tg_may_dispatch(td, tg, bio, NULL)) { 1025 throtl_charge_bio(tg, bio); 1026 goto out; 1027 } 1028 1029 queue_bio: 1030 throtl_log_tg(td, tg, "[%c] bio. bdisp=%u sz=%u bps=%llu" 1031 " iodisp=%u iops=%u queued=%d/%d", 1032 rw == READ ? 'R' : 'W', 1033 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw], 1034 tg->io_disp[rw], tg->iops[rw], 1035 tg->nr_queued[READ], tg->nr_queued[WRITE]); 1036 1037 throtl_add_bio_tg(q->td, tg, bio); 1038 *biop = NULL; 1039 1040 if (update_disptime) { 1041 tg_update_disptime(td, tg); 1042 throtl_schedule_next_dispatch(td); 1043 } 1044 1045 out: 1046 spin_unlock_irq(q->queue_lock); 1047 return 0; 1048 } 1049 1050 int blk_throtl_init(struct request_queue *q) 1051 { 1052 struct throtl_data *td; 1053 struct throtl_grp *tg; 1054 1055 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 1056 if (!td) 1057 return -ENOMEM; 1058 1059 INIT_HLIST_HEAD(&td->tg_list); 1060 td->tg_service_tree = THROTL_RB_ROOT; 1061 atomic_set(&td->limits_changed, 0); 1062 1063 /* Init root group */ 1064 tg = &td->root_tg; 1065 INIT_HLIST_NODE(&tg->tg_node); 1066 RB_CLEAR_NODE(&tg->rb_node); 1067 bio_list_init(&tg->bio_lists[0]); 1068 bio_list_init(&tg->bio_lists[1]); 1069 1070 /* Practically unlimited BW */ 1071 tg->bps[0] = tg->bps[1] = -1; 1072 tg->iops[0] = tg->iops[1] = -1; 1073 1074 /* 1075 * Set root group reference to 2. One reference will be dropped when 1076 * all groups on tg_list are being deleted during queue exit. Other 1077 * reference will remain there as we don't want to delete this group 1078 * as it is statically allocated and gets destroyed when throtl_data 1079 * goes away. 1080 */ 1081 atomic_set(&tg->ref, 2); 1082 hlist_add_head(&tg->tg_node, &td->tg_list); 1083 td->nr_undestroyed_grps++; 1084 1085 INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work); 1086 1087 rcu_read_lock(); 1088 blkiocg_add_blkio_group(&blkio_root_cgroup, &tg->blkg, (void *)td, 1089 0, BLKIO_POLICY_THROTL); 1090 rcu_read_unlock(); 1091 1092 /* Attach throtl data to request queue */ 1093 td->queue = q; 1094 q->td = td; 1095 return 0; 1096 } 1097 1098 void blk_throtl_exit(struct request_queue *q) 1099 { 1100 struct throtl_data *td = q->td; 1101 bool wait = false; 1102 1103 BUG_ON(!td); 1104 1105 throtl_shutdown_timer_wq(q); 1106 1107 spin_lock_irq(q->queue_lock); 1108 throtl_release_tgs(td); 1109 1110 /* If there are other groups */ 1111 if (td->nr_undestroyed_grps > 0) 1112 wait = true; 1113 1114 spin_unlock_irq(q->queue_lock); 1115 1116 /* 1117 * Wait for tg->blkg->key accessors to exit their grace periods. 1118 * Do this wait only if there are other undestroyed groups out 1119 * there (other than root group). This can happen if cgroup deletion 1120 * path claimed the responsibility of cleaning up a group before 1121 * queue cleanup code get to the group. 1122 * 1123 * Do not call synchronize_rcu() unconditionally as there are drivers 1124 * which create/delete request queue hundreds of times during scan/boot 1125 * and synchronize_rcu() can take significant time and slow down boot. 1126 */ 1127 if (wait) 1128 synchronize_rcu(); 1129 1130 /* 1131 * Just being safe to make sure after previous flush if some body did 1132 * update limits through cgroup and another work got queued, cancel 1133 * it. 1134 */ 1135 throtl_shutdown_timer_wq(q); 1136 throtl_td_free(td); 1137 } 1138 1139 static int __init throtl_init(void) 1140 { 1141 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 1142 if (!kthrotld_workqueue) 1143 panic("Failed to create kthrotld\n"); 1144 1145 blkio_policy_register(&blkio_policy_throtl); 1146 return 0; 1147 } 1148 1149 module_init(throtl_init); 1150