xref: /openbmc/linux/block/blk-throttle.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include "blk.h"
15 
16 /* Max dispatch from a group in 1 round */
17 static int throtl_grp_quantum = 8;
18 
19 /* Total max dispatch from all groups in one round */
20 static int throtl_quantum = 32;
21 
22 /* Throttling is performed over a slice and after that slice is renewed */
23 #define DFL_THROTL_SLICE_HD (HZ / 10)
24 #define DFL_THROTL_SLICE_SSD (HZ / 50)
25 #define MAX_THROTL_SLICE (HZ)
26 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
27 #define MIN_THROTL_BPS (320 * 1024)
28 #define MIN_THROTL_IOPS (10)
29 #define DFL_LATENCY_TARGET (-1L)
30 #define DFL_IDLE_THRESHOLD (0)
31 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
32 #define LATENCY_FILTERED_SSD (0)
33 /*
34  * For HD, very small latency comes from sequential IO. Such IO is helpless to
35  * help determine if its IO is impacted by others, hence we ignore the IO
36  */
37 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
38 
39 static struct blkcg_policy blkcg_policy_throtl;
40 
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct *kthrotld_workqueue;
43 
44 /*
45  * To implement hierarchical throttling, throtl_grps form a tree and bios
46  * are dispatched upwards level by level until they reach the top and get
47  * issued.  When dispatching bios from the children and local group at each
48  * level, if the bios are dispatched into a single bio_list, there's a risk
49  * of a local or child group which can queue many bios at once filling up
50  * the list starving others.
51  *
52  * To avoid such starvation, dispatched bios are queued separately
53  * according to where they came from.  When they are again dispatched to
54  * the parent, they're popped in round-robin order so that no single source
55  * hogs the dispatch window.
56  *
57  * throtl_qnode is used to keep the queued bios separated by their sources.
58  * Bios are queued to throtl_qnode which in turn is queued to
59  * throtl_service_queue and then dispatched in round-robin order.
60  *
61  * It's also used to track the reference counts on blkg's.  A qnode always
62  * belongs to a throtl_grp and gets queued on itself or the parent, so
63  * incrementing the reference of the associated throtl_grp when a qnode is
64  * queued and decrementing when dequeued is enough to keep the whole blkg
65  * tree pinned while bios are in flight.
66  */
67 struct throtl_qnode {
68 	struct list_head	node;		/* service_queue->queued[] */
69 	struct bio_list		bios;		/* queued bios */
70 	struct throtl_grp	*tg;		/* tg this qnode belongs to */
71 };
72 
73 struct throtl_service_queue {
74 	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
75 
76 	/*
77 	 * Bios queued directly to this service_queue or dispatched from
78 	 * children throtl_grp's.
79 	 */
80 	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
81 	unsigned int		nr_queued[2];	/* number of queued bios */
82 
83 	/*
84 	 * RB tree of active children throtl_grp's, which are sorted by
85 	 * their ->disptime.
86 	 */
87 	struct rb_root_cached	pending_tree;	/* RB tree of active tgs */
88 	unsigned int		nr_pending;	/* # queued in the tree */
89 	unsigned long		first_pending_disptime;	/* disptime of the first tg */
90 	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
91 };
92 
93 enum tg_state_flags {
94 	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
95 	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
96 };
97 
98 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
99 
100 enum {
101 	LIMIT_LOW,
102 	LIMIT_MAX,
103 	LIMIT_CNT,
104 };
105 
106 struct throtl_grp {
107 	/* must be the first member */
108 	struct blkg_policy_data pd;
109 
110 	/* active throtl group service_queue member */
111 	struct rb_node rb_node;
112 
113 	/* throtl_data this group belongs to */
114 	struct throtl_data *td;
115 
116 	/* this group's service queue */
117 	struct throtl_service_queue service_queue;
118 
119 	/*
120 	 * qnode_on_self is used when bios are directly queued to this
121 	 * throtl_grp so that local bios compete fairly with bios
122 	 * dispatched from children.  qnode_on_parent is used when bios are
123 	 * dispatched from this throtl_grp into its parent and will compete
124 	 * with the sibling qnode_on_parents and the parent's
125 	 * qnode_on_self.
126 	 */
127 	struct throtl_qnode qnode_on_self[2];
128 	struct throtl_qnode qnode_on_parent[2];
129 
130 	/*
131 	 * Dispatch time in jiffies. This is the estimated time when group
132 	 * will unthrottle and is ready to dispatch more bio. It is used as
133 	 * key to sort active groups in service tree.
134 	 */
135 	unsigned long disptime;
136 
137 	unsigned int flags;
138 
139 	/* are there any throtl rules between this group and td? */
140 	bool has_rules[2];
141 
142 	/* internally used bytes per second rate limits */
143 	uint64_t bps[2][LIMIT_CNT];
144 	/* user configured bps limits */
145 	uint64_t bps_conf[2][LIMIT_CNT];
146 
147 	/* internally used IOPS limits */
148 	unsigned int iops[2][LIMIT_CNT];
149 	/* user configured IOPS limits */
150 	unsigned int iops_conf[2][LIMIT_CNT];
151 
152 	/* Number of bytes disptached in current slice */
153 	uint64_t bytes_disp[2];
154 	/* Number of bio's dispatched in current slice */
155 	unsigned int io_disp[2];
156 
157 	unsigned long last_low_overflow_time[2];
158 
159 	uint64_t last_bytes_disp[2];
160 	unsigned int last_io_disp[2];
161 
162 	unsigned long last_check_time;
163 
164 	unsigned long latency_target; /* us */
165 	unsigned long latency_target_conf; /* us */
166 	/* When did we start a new slice */
167 	unsigned long slice_start[2];
168 	unsigned long slice_end[2];
169 
170 	unsigned long last_finish_time; /* ns / 1024 */
171 	unsigned long checked_last_finish_time; /* ns / 1024 */
172 	unsigned long avg_idletime; /* ns / 1024 */
173 	unsigned long idletime_threshold; /* us */
174 	unsigned long idletime_threshold_conf; /* us */
175 
176 	unsigned int bio_cnt; /* total bios */
177 	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
178 	unsigned long bio_cnt_reset_time;
179 };
180 
181 /* We measure latency for request size from <= 4k to >= 1M */
182 #define LATENCY_BUCKET_SIZE 9
183 
184 struct latency_bucket {
185 	unsigned long total_latency; /* ns / 1024 */
186 	int samples;
187 };
188 
189 struct avg_latency_bucket {
190 	unsigned long latency; /* ns / 1024 */
191 	bool valid;
192 };
193 
194 struct throtl_data
195 {
196 	/* service tree for active throtl groups */
197 	struct throtl_service_queue service_queue;
198 
199 	struct request_queue *queue;
200 
201 	/* Total Number of queued bios on READ and WRITE lists */
202 	unsigned int nr_queued[2];
203 
204 	unsigned int throtl_slice;
205 
206 	/* Work for dispatching throttled bios */
207 	struct work_struct dispatch_work;
208 	unsigned int limit_index;
209 	bool limit_valid[LIMIT_CNT];
210 
211 	unsigned long low_upgrade_time;
212 	unsigned long low_downgrade_time;
213 
214 	unsigned int scale;
215 
216 	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
217 	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
218 	struct latency_bucket __percpu *latency_buckets[2];
219 	unsigned long last_calculate_time;
220 	unsigned long filtered_latency;
221 
222 	bool track_bio_latency;
223 };
224 
225 static void throtl_pending_timer_fn(struct timer_list *t);
226 
227 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
228 {
229 	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
230 }
231 
232 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
233 {
234 	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
235 }
236 
237 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
238 {
239 	return pd_to_blkg(&tg->pd);
240 }
241 
242 /**
243  * sq_to_tg - return the throl_grp the specified service queue belongs to
244  * @sq: the throtl_service_queue of interest
245  *
246  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
247  * embedded in throtl_data, %NULL is returned.
248  */
249 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
250 {
251 	if (sq && sq->parent_sq)
252 		return container_of(sq, struct throtl_grp, service_queue);
253 	else
254 		return NULL;
255 }
256 
257 /**
258  * sq_to_td - return throtl_data the specified service queue belongs to
259  * @sq: the throtl_service_queue of interest
260  *
261  * A service_queue can be embedded in either a throtl_grp or throtl_data.
262  * Determine the associated throtl_data accordingly and return it.
263  */
264 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
265 {
266 	struct throtl_grp *tg = sq_to_tg(sq);
267 
268 	if (tg)
269 		return tg->td;
270 	else
271 		return container_of(sq, struct throtl_data, service_queue);
272 }
273 
274 /*
275  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
276  * make the IO dispatch more smooth.
277  * Scale up: linearly scale up according to lapsed time since upgrade. For
278  *           every throtl_slice, the limit scales up 1/2 .low limit till the
279  *           limit hits .max limit
280  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
281  */
282 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
283 {
284 	/* arbitrary value to avoid too big scale */
285 	if (td->scale < 4096 && time_after_eq(jiffies,
286 	    td->low_upgrade_time + td->scale * td->throtl_slice))
287 		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
288 
289 	return low + (low >> 1) * td->scale;
290 }
291 
292 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
293 {
294 	struct blkcg_gq *blkg = tg_to_blkg(tg);
295 	struct throtl_data *td;
296 	uint64_t ret;
297 
298 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
299 		return U64_MAX;
300 
301 	td = tg->td;
302 	ret = tg->bps[rw][td->limit_index];
303 	if (ret == 0 && td->limit_index == LIMIT_LOW) {
304 		/* intermediate node or iops isn't 0 */
305 		if (!list_empty(&blkg->blkcg->css.children) ||
306 		    tg->iops[rw][td->limit_index])
307 			return U64_MAX;
308 		else
309 			return MIN_THROTL_BPS;
310 	}
311 
312 	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
313 	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
314 		uint64_t adjusted;
315 
316 		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
317 		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
318 	}
319 	return ret;
320 }
321 
322 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
323 {
324 	struct blkcg_gq *blkg = tg_to_blkg(tg);
325 	struct throtl_data *td;
326 	unsigned int ret;
327 
328 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
329 		return UINT_MAX;
330 
331 	td = tg->td;
332 	ret = tg->iops[rw][td->limit_index];
333 	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
334 		/* intermediate node or bps isn't 0 */
335 		if (!list_empty(&blkg->blkcg->css.children) ||
336 		    tg->bps[rw][td->limit_index])
337 			return UINT_MAX;
338 		else
339 			return MIN_THROTL_IOPS;
340 	}
341 
342 	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
343 	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
344 		uint64_t adjusted;
345 
346 		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
347 		if (adjusted > UINT_MAX)
348 			adjusted = UINT_MAX;
349 		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
350 	}
351 	return ret;
352 }
353 
354 #define request_bucket_index(sectors) \
355 	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
356 
357 /**
358  * throtl_log - log debug message via blktrace
359  * @sq: the service_queue being reported
360  * @fmt: printf format string
361  * @args: printf args
362  *
363  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
364  * throtl_grp; otherwise, just "throtl".
365  */
366 #define throtl_log(sq, fmt, args...)	do {				\
367 	struct throtl_grp *__tg = sq_to_tg((sq));			\
368 	struct throtl_data *__td = sq_to_td((sq));			\
369 									\
370 	(void)__td;							\
371 	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
372 		break;							\
373 	if ((__tg)) {							\
374 		blk_add_cgroup_trace_msg(__td->queue,			\
375 			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
376 	} else {							\
377 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
378 	}								\
379 } while (0)
380 
381 static inline unsigned int throtl_bio_data_size(struct bio *bio)
382 {
383 	/* assume it's one sector */
384 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
385 		return 512;
386 	return bio->bi_iter.bi_size;
387 }
388 
389 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
390 {
391 	INIT_LIST_HEAD(&qn->node);
392 	bio_list_init(&qn->bios);
393 	qn->tg = tg;
394 }
395 
396 /**
397  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
398  * @bio: bio being added
399  * @qn: qnode to add bio to
400  * @queued: the service_queue->queued[] list @qn belongs to
401  *
402  * Add @bio to @qn and put @qn on @queued if it's not already on.
403  * @qn->tg's reference count is bumped when @qn is activated.  See the
404  * comment on top of throtl_qnode definition for details.
405  */
406 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
407 				 struct list_head *queued)
408 {
409 	bio_list_add(&qn->bios, bio);
410 	if (list_empty(&qn->node)) {
411 		list_add_tail(&qn->node, queued);
412 		blkg_get(tg_to_blkg(qn->tg));
413 	}
414 }
415 
416 /**
417  * throtl_peek_queued - peek the first bio on a qnode list
418  * @queued: the qnode list to peek
419  */
420 static struct bio *throtl_peek_queued(struct list_head *queued)
421 {
422 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
423 	struct bio *bio;
424 
425 	if (list_empty(queued))
426 		return NULL;
427 
428 	bio = bio_list_peek(&qn->bios);
429 	WARN_ON_ONCE(!bio);
430 	return bio;
431 }
432 
433 /**
434  * throtl_pop_queued - pop the first bio form a qnode list
435  * @queued: the qnode list to pop a bio from
436  * @tg_to_put: optional out argument for throtl_grp to put
437  *
438  * Pop the first bio from the qnode list @queued.  After popping, the first
439  * qnode is removed from @queued if empty or moved to the end of @queued so
440  * that the popping order is round-robin.
441  *
442  * When the first qnode is removed, its associated throtl_grp should be put
443  * too.  If @tg_to_put is NULL, this function automatically puts it;
444  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
445  * responsible for putting it.
446  */
447 static struct bio *throtl_pop_queued(struct list_head *queued,
448 				     struct throtl_grp **tg_to_put)
449 {
450 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
451 	struct bio *bio;
452 
453 	if (list_empty(queued))
454 		return NULL;
455 
456 	bio = bio_list_pop(&qn->bios);
457 	WARN_ON_ONCE(!bio);
458 
459 	if (bio_list_empty(&qn->bios)) {
460 		list_del_init(&qn->node);
461 		if (tg_to_put)
462 			*tg_to_put = qn->tg;
463 		else
464 			blkg_put(tg_to_blkg(qn->tg));
465 	} else {
466 		list_move_tail(&qn->node, queued);
467 	}
468 
469 	return bio;
470 }
471 
472 /* init a service_queue, assumes the caller zeroed it */
473 static void throtl_service_queue_init(struct throtl_service_queue *sq)
474 {
475 	INIT_LIST_HEAD(&sq->queued[0]);
476 	INIT_LIST_HEAD(&sq->queued[1]);
477 	sq->pending_tree = RB_ROOT_CACHED;
478 	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
479 }
480 
481 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
482 {
483 	struct throtl_grp *tg;
484 	int rw;
485 
486 	tg = kzalloc_node(sizeof(*tg), gfp, node);
487 	if (!tg)
488 		return NULL;
489 
490 	throtl_service_queue_init(&tg->service_queue);
491 
492 	for (rw = READ; rw <= WRITE; rw++) {
493 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
494 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
495 	}
496 
497 	RB_CLEAR_NODE(&tg->rb_node);
498 	tg->bps[READ][LIMIT_MAX] = U64_MAX;
499 	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
500 	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
501 	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
502 	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
503 	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
504 	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
505 	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
506 	/* LIMIT_LOW will have default value 0 */
507 
508 	tg->latency_target = DFL_LATENCY_TARGET;
509 	tg->latency_target_conf = DFL_LATENCY_TARGET;
510 	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
511 	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
512 
513 	return &tg->pd;
514 }
515 
516 static void throtl_pd_init(struct blkg_policy_data *pd)
517 {
518 	struct throtl_grp *tg = pd_to_tg(pd);
519 	struct blkcg_gq *blkg = tg_to_blkg(tg);
520 	struct throtl_data *td = blkg->q->td;
521 	struct throtl_service_queue *sq = &tg->service_queue;
522 
523 	/*
524 	 * If on the default hierarchy, we switch to properly hierarchical
525 	 * behavior where limits on a given throtl_grp are applied to the
526 	 * whole subtree rather than just the group itself.  e.g. If 16M
527 	 * read_bps limit is set on the root group, the whole system can't
528 	 * exceed 16M for the device.
529 	 *
530 	 * If not on the default hierarchy, the broken flat hierarchy
531 	 * behavior is retained where all throtl_grps are treated as if
532 	 * they're all separate root groups right below throtl_data.
533 	 * Limits of a group don't interact with limits of other groups
534 	 * regardless of the position of the group in the hierarchy.
535 	 */
536 	sq->parent_sq = &td->service_queue;
537 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
538 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
539 	tg->td = td;
540 }
541 
542 /*
543  * Set has_rules[] if @tg or any of its parents have limits configured.
544  * This doesn't require walking up to the top of the hierarchy as the
545  * parent's has_rules[] is guaranteed to be correct.
546  */
547 static void tg_update_has_rules(struct throtl_grp *tg)
548 {
549 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
550 	struct throtl_data *td = tg->td;
551 	int rw;
552 
553 	for (rw = READ; rw <= WRITE; rw++)
554 		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
555 			(td->limit_valid[td->limit_index] &&
556 			 (tg_bps_limit(tg, rw) != U64_MAX ||
557 			  tg_iops_limit(tg, rw) != UINT_MAX));
558 }
559 
560 static void throtl_pd_online(struct blkg_policy_data *pd)
561 {
562 	struct throtl_grp *tg = pd_to_tg(pd);
563 	/*
564 	 * We don't want new groups to escape the limits of its ancestors.
565 	 * Update has_rules[] after a new group is brought online.
566 	 */
567 	tg_update_has_rules(tg);
568 }
569 
570 static void blk_throtl_update_limit_valid(struct throtl_data *td)
571 {
572 	struct cgroup_subsys_state *pos_css;
573 	struct blkcg_gq *blkg;
574 	bool low_valid = false;
575 
576 	rcu_read_lock();
577 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
578 		struct throtl_grp *tg = blkg_to_tg(blkg);
579 
580 		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
581 		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
582 			low_valid = true;
583 			break;
584 		}
585 	}
586 	rcu_read_unlock();
587 
588 	td->limit_valid[LIMIT_LOW] = low_valid;
589 }
590 
591 static void throtl_upgrade_state(struct throtl_data *td);
592 static void throtl_pd_offline(struct blkg_policy_data *pd)
593 {
594 	struct throtl_grp *tg = pd_to_tg(pd);
595 
596 	tg->bps[READ][LIMIT_LOW] = 0;
597 	tg->bps[WRITE][LIMIT_LOW] = 0;
598 	tg->iops[READ][LIMIT_LOW] = 0;
599 	tg->iops[WRITE][LIMIT_LOW] = 0;
600 
601 	blk_throtl_update_limit_valid(tg->td);
602 
603 	if (!tg->td->limit_valid[tg->td->limit_index])
604 		throtl_upgrade_state(tg->td);
605 }
606 
607 static void throtl_pd_free(struct blkg_policy_data *pd)
608 {
609 	struct throtl_grp *tg = pd_to_tg(pd);
610 
611 	del_timer_sync(&tg->service_queue.pending_timer);
612 	kfree(tg);
613 }
614 
615 static struct throtl_grp *
616 throtl_rb_first(struct throtl_service_queue *parent_sq)
617 {
618 	struct rb_node *n;
619 	/* Service tree is empty */
620 	if (!parent_sq->nr_pending)
621 		return NULL;
622 
623 	n = rb_first_cached(&parent_sq->pending_tree);
624 	WARN_ON_ONCE(!n);
625 	if (!n)
626 		return NULL;
627 	return rb_entry_tg(n);
628 }
629 
630 static void throtl_rb_erase(struct rb_node *n,
631 			    struct throtl_service_queue *parent_sq)
632 {
633 	rb_erase_cached(n, &parent_sq->pending_tree);
634 	RB_CLEAR_NODE(n);
635 	--parent_sq->nr_pending;
636 }
637 
638 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
639 {
640 	struct throtl_grp *tg;
641 
642 	tg = throtl_rb_first(parent_sq);
643 	if (!tg)
644 		return;
645 
646 	parent_sq->first_pending_disptime = tg->disptime;
647 }
648 
649 static void tg_service_queue_add(struct throtl_grp *tg)
650 {
651 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
652 	struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
653 	struct rb_node *parent = NULL;
654 	struct throtl_grp *__tg;
655 	unsigned long key = tg->disptime;
656 	bool leftmost = true;
657 
658 	while (*node != NULL) {
659 		parent = *node;
660 		__tg = rb_entry_tg(parent);
661 
662 		if (time_before(key, __tg->disptime))
663 			node = &parent->rb_left;
664 		else {
665 			node = &parent->rb_right;
666 			leftmost = false;
667 		}
668 	}
669 
670 	rb_link_node(&tg->rb_node, parent, node);
671 	rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
672 			       leftmost);
673 }
674 
675 static void __throtl_enqueue_tg(struct throtl_grp *tg)
676 {
677 	tg_service_queue_add(tg);
678 	tg->flags |= THROTL_TG_PENDING;
679 	tg->service_queue.parent_sq->nr_pending++;
680 }
681 
682 static void throtl_enqueue_tg(struct throtl_grp *tg)
683 {
684 	if (!(tg->flags & THROTL_TG_PENDING))
685 		__throtl_enqueue_tg(tg);
686 }
687 
688 static void __throtl_dequeue_tg(struct throtl_grp *tg)
689 {
690 	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
691 	tg->flags &= ~THROTL_TG_PENDING;
692 }
693 
694 static void throtl_dequeue_tg(struct throtl_grp *tg)
695 {
696 	if (tg->flags & THROTL_TG_PENDING)
697 		__throtl_dequeue_tg(tg);
698 }
699 
700 /* Call with queue lock held */
701 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
702 					  unsigned long expires)
703 {
704 	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
705 
706 	/*
707 	 * Since we are adjusting the throttle limit dynamically, the sleep
708 	 * time calculated according to previous limit might be invalid. It's
709 	 * possible the cgroup sleep time is very long and no other cgroups
710 	 * have IO running so notify the limit changes. Make sure the cgroup
711 	 * doesn't sleep too long to avoid the missed notification.
712 	 */
713 	if (time_after(expires, max_expire))
714 		expires = max_expire;
715 	mod_timer(&sq->pending_timer, expires);
716 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
717 		   expires - jiffies, jiffies);
718 }
719 
720 /**
721  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
722  * @sq: the service_queue to schedule dispatch for
723  * @force: force scheduling
724  *
725  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
726  * dispatch time of the first pending child.  Returns %true if either timer
727  * is armed or there's no pending child left.  %false if the current
728  * dispatch window is still open and the caller should continue
729  * dispatching.
730  *
731  * If @force is %true, the dispatch timer is always scheduled and this
732  * function is guaranteed to return %true.  This is to be used when the
733  * caller can't dispatch itself and needs to invoke pending_timer
734  * unconditionally.  Note that forced scheduling is likely to induce short
735  * delay before dispatch starts even if @sq->first_pending_disptime is not
736  * in the future and thus shouldn't be used in hot paths.
737  */
738 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
739 					  bool force)
740 {
741 	/* any pending children left? */
742 	if (!sq->nr_pending)
743 		return true;
744 
745 	update_min_dispatch_time(sq);
746 
747 	/* is the next dispatch time in the future? */
748 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
749 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
750 		return true;
751 	}
752 
753 	/* tell the caller to continue dispatching */
754 	return false;
755 }
756 
757 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
758 		bool rw, unsigned long start)
759 {
760 	tg->bytes_disp[rw] = 0;
761 	tg->io_disp[rw] = 0;
762 
763 	/*
764 	 * Previous slice has expired. We must have trimmed it after last
765 	 * bio dispatch. That means since start of last slice, we never used
766 	 * that bandwidth. Do try to make use of that bandwidth while giving
767 	 * credit.
768 	 */
769 	if (time_after_eq(start, tg->slice_start[rw]))
770 		tg->slice_start[rw] = start;
771 
772 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
773 	throtl_log(&tg->service_queue,
774 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
775 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
776 		   tg->slice_end[rw], jiffies);
777 }
778 
779 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
780 {
781 	tg->bytes_disp[rw] = 0;
782 	tg->io_disp[rw] = 0;
783 	tg->slice_start[rw] = jiffies;
784 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
785 	throtl_log(&tg->service_queue,
786 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
787 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
788 		   tg->slice_end[rw], jiffies);
789 }
790 
791 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
792 					unsigned long jiffy_end)
793 {
794 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
795 }
796 
797 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
798 				       unsigned long jiffy_end)
799 {
800 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
801 	throtl_log(&tg->service_queue,
802 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
803 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
804 		   tg->slice_end[rw], jiffies);
805 }
806 
807 /* Determine if previously allocated or extended slice is complete or not */
808 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
809 {
810 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
811 		return false;
812 
813 	return true;
814 }
815 
816 /* Trim the used slices and adjust slice start accordingly */
817 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
818 {
819 	unsigned long nr_slices, time_elapsed, io_trim;
820 	u64 bytes_trim, tmp;
821 
822 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
823 
824 	/*
825 	 * If bps are unlimited (-1), then time slice don't get
826 	 * renewed. Don't try to trim the slice if slice is used. A new
827 	 * slice will start when appropriate.
828 	 */
829 	if (throtl_slice_used(tg, rw))
830 		return;
831 
832 	/*
833 	 * A bio has been dispatched. Also adjust slice_end. It might happen
834 	 * that initially cgroup limit was very low resulting in high
835 	 * slice_end, but later limit was bumped up and bio was dispached
836 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
837 	 * is bad because it does not allow new slice to start.
838 	 */
839 
840 	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
841 
842 	time_elapsed = jiffies - tg->slice_start[rw];
843 
844 	nr_slices = time_elapsed / tg->td->throtl_slice;
845 
846 	if (!nr_slices)
847 		return;
848 	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
849 	do_div(tmp, HZ);
850 	bytes_trim = tmp;
851 
852 	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
853 		HZ;
854 
855 	if (!bytes_trim && !io_trim)
856 		return;
857 
858 	if (tg->bytes_disp[rw] >= bytes_trim)
859 		tg->bytes_disp[rw] -= bytes_trim;
860 	else
861 		tg->bytes_disp[rw] = 0;
862 
863 	if (tg->io_disp[rw] >= io_trim)
864 		tg->io_disp[rw] -= io_trim;
865 	else
866 		tg->io_disp[rw] = 0;
867 
868 	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
869 
870 	throtl_log(&tg->service_queue,
871 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
872 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
873 		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
874 }
875 
876 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
877 				  unsigned long *wait)
878 {
879 	bool rw = bio_data_dir(bio);
880 	unsigned int io_allowed;
881 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
882 	u64 tmp;
883 
884 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
885 
886 	/* Slice has just started. Consider one slice interval */
887 	if (!jiffy_elapsed)
888 		jiffy_elapsed_rnd = tg->td->throtl_slice;
889 
890 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
891 
892 	/*
893 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
894 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
895 	 * will allow dispatch after 1 second and after that slice should
896 	 * have been trimmed.
897 	 */
898 
899 	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
900 	do_div(tmp, HZ);
901 
902 	if (tmp > UINT_MAX)
903 		io_allowed = UINT_MAX;
904 	else
905 		io_allowed = tmp;
906 
907 	if (tg->io_disp[rw] + 1 <= io_allowed) {
908 		if (wait)
909 			*wait = 0;
910 		return true;
911 	}
912 
913 	/* Calc approx time to dispatch */
914 	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
915 
916 	if (wait)
917 		*wait = jiffy_wait;
918 	return false;
919 }
920 
921 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
922 				 unsigned long *wait)
923 {
924 	bool rw = bio_data_dir(bio);
925 	u64 bytes_allowed, extra_bytes, tmp;
926 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
927 	unsigned int bio_size = throtl_bio_data_size(bio);
928 
929 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
930 
931 	/* Slice has just started. Consider one slice interval */
932 	if (!jiffy_elapsed)
933 		jiffy_elapsed_rnd = tg->td->throtl_slice;
934 
935 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
936 
937 	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
938 	do_div(tmp, HZ);
939 	bytes_allowed = tmp;
940 
941 	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
942 		if (wait)
943 			*wait = 0;
944 		return true;
945 	}
946 
947 	/* Calc approx time to dispatch */
948 	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
949 	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
950 
951 	if (!jiffy_wait)
952 		jiffy_wait = 1;
953 
954 	/*
955 	 * This wait time is without taking into consideration the rounding
956 	 * up we did. Add that time also.
957 	 */
958 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
959 	if (wait)
960 		*wait = jiffy_wait;
961 	return false;
962 }
963 
964 /*
965  * Returns whether one can dispatch a bio or not. Also returns approx number
966  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
967  */
968 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
969 			    unsigned long *wait)
970 {
971 	bool rw = bio_data_dir(bio);
972 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
973 
974 	/*
975  	 * Currently whole state machine of group depends on first bio
976 	 * queued in the group bio list. So one should not be calling
977 	 * this function with a different bio if there are other bios
978 	 * queued.
979 	 */
980 	BUG_ON(tg->service_queue.nr_queued[rw] &&
981 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
982 
983 	/* If tg->bps = -1, then BW is unlimited */
984 	if (tg_bps_limit(tg, rw) == U64_MAX &&
985 	    tg_iops_limit(tg, rw) == UINT_MAX) {
986 		if (wait)
987 			*wait = 0;
988 		return true;
989 	}
990 
991 	/*
992 	 * If previous slice expired, start a new one otherwise renew/extend
993 	 * existing slice to make sure it is at least throtl_slice interval
994 	 * long since now. New slice is started only for empty throttle group.
995 	 * If there is queued bio, that means there should be an active
996 	 * slice and it should be extended instead.
997 	 */
998 	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
999 		throtl_start_new_slice(tg, rw);
1000 	else {
1001 		if (time_before(tg->slice_end[rw],
1002 		    jiffies + tg->td->throtl_slice))
1003 			throtl_extend_slice(tg, rw,
1004 				jiffies + tg->td->throtl_slice);
1005 	}
1006 
1007 	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
1008 	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1009 		if (wait)
1010 			*wait = 0;
1011 		return true;
1012 	}
1013 
1014 	max_wait = max(bps_wait, iops_wait);
1015 
1016 	if (wait)
1017 		*wait = max_wait;
1018 
1019 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1020 		throtl_extend_slice(tg, rw, jiffies + max_wait);
1021 
1022 	return false;
1023 }
1024 
1025 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1026 {
1027 	bool rw = bio_data_dir(bio);
1028 	unsigned int bio_size = throtl_bio_data_size(bio);
1029 
1030 	/* Charge the bio to the group */
1031 	tg->bytes_disp[rw] += bio_size;
1032 	tg->io_disp[rw]++;
1033 	tg->last_bytes_disp[rw] += bio_size;
1034 	tg->last_io_disp[rw]++;
1035 
1036 	/*
1037 	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1038 	 * more than once as a throttled bio will go through blk-throtl the
1039 	 * second time when it eventually gets issued.  Set it when a bio
1040 	 * is being charged to a tg.
1041 	 */
1042 	if (!bio_flagged(bio, BIO_THROTTLED))
1043 		bio_set_flag(bio, BIO_THROTTLED);
1044 }
1045 
1046 /**
1047  * throtl_add_bio_tg - add a bio to the specified throtl_grp
1048  * @bio: bio to add
1049  * @qn: qnode to use
1050  * @tg: the target throtl_grp
1051  *
1052  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1053  * tg->qnode_on_self[] is used.
1054  */
1055 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1056 			      struct throtl_grp *tg)
1057 {
1058 	struct throtl_service_queue *sq = &tg->service_queue;
1059 	bool rw = bio_data_dir(bio);
1060 
1061 	if (!qn)
1062 		qn = &tg->qnode_on_self[rw];
1063 
1064 	/*
1065 	 * If @tg doesn't currently have any bios queued in the same
1066 	 * direction, queueing @bio can change when @tg should be
1067 	 * dispatched.  Mark that @tg was empty.  This is automatically
1068 	 * cleaered on the next tg_update_disptime().
1069 	 */
1070 	if (!sq->nr_queued[rw])
1071 		tg->flags |= THROTL_TG_WAS_EMPTY;
1072 
1073 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1074 
1075 	sq->nr_queued[rw]++;
1076 	throtl_enqueue_tg(tg);
1077 }
1078 
1079 static void tg_update_disptime(struct throtl_grp *tg)
1080 {
1081 	struct throtl_service_queue *sq = &tg->service_queue;
1082 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1083 	struct bio *bio;
1084 
1085 	bio = throtl_peek_queued(&sq->queued[READ]);
1086 	if (bio)
1087 		tg_may_dispatch(tg, bio, &read_wait);
1088 
1089 	bio = throtl_peek_queued(&sq->queued[WRITE]);
1090 	if (bio)
1091 		tg_may_dispatch(tg, bio, &write_wait);
1092 
1093 	min_wait = min(read_wait, write_wait);
1094 	disptime = jiffies + min_wait;
1095 
1096 	/* Update dispatch time */
1097 	throtl_dequeue_tg(tg);
1098 	tg->disptime = disptime;
1099 	throtl_enqueue_tg(tg);
1100 
1101 	/* see throtl_add_bio_tg() */
1102 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1103 }
1104 
1105 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1106 					struct throtl_grp *parent_tg, bool rw)
1107 {
1108 	if (throtl_slice_used(parent_tg, rw)) {
1109 		throtl_start_new_slice_with_credit(parent_tg, rw,
1110 				child_tg->slice_start[rw]);
1111 	}
1112 
1113 }
1114 
1115 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1116 {
1117 	struct throtl_service_queue *sq = &tg->service_queue;
1118 	struct throtl_service_queue *parent_sq = sq->parent_sq;
1119 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1120 	struct throtl_grp *tg_to_put = NULL;
1121 	struct bio *bio;
1122 
1123 	/*
1124 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1125 	 * from @tg may put its reference and @parent_sq might end up
1126 	 * getting released prematurely.  Remember the tg to put and put it
1127 	 * after @bio is transferred to @parent_sq.
1128 	 */
1129 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1130 	sq->nr_queued[rw]--;
1131 
1132 	throtl_charge_bio(tg, bio);
1133 
1134 	/*
1135 	 * If our parent is another tg, we just need to transfer @bio to
1136 	 * the parent using throtl_add_bio_tg().  If our parent is
1137 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1138 	 * bio_lists[] and decrease total number queued.  The caller is
1139 	 * responsible for issuing these bios.
1140 	 */
1141 	if (parent_tg) {
1142 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1143 		start_parent_slice_with_credit(tg, parent_tg, rw);
1144 	} else {
1145 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1146 				     &parent_sq->queued[rw]);
1147 		BUG_ON(tg->td->nr_queued[rw] <= 0);
1148 		tg->td->nr_queued[rw]--;
1149 	}
1150 
1151 	throtl_trim_slice(tg, rw);
1152 
1153 	if (tg_to_put)
1154 		blkg_put(tg_to_blkg(tg_to_put));
1155 }
1156 
1157 static int throtl_dispatch_tg(struct throtl_grp *tg)
1158 {
1159 	struct throtl_service_queue *sq = &tg->service_queue;
1160 	unsigned int nr_reads = 0, nr_writes = 0;
1161 	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1162 	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1163 	struct bio *bio;
1164 
1165 	/* Try to dispatch 75% READS and 25% WRITES */
1166 
1167 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1168 	       tg_may_dispatch(tg, bio, NULL)) {
1169 
1170 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1171 		nr_reads++;
1172 
1173 		if (nr_reads >= max_nr_reads)
1174 			break;
1175 	}
1176 
1177 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1178 	       tg_may_dispatch(tg, bio, NULL)) {
1179 
1180 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1181 		nr_writes++;
1182 
1183 		if (nr_writes >= max_nr_writes)
1184 			break;
1185 	}
1186 
1187 	return nr_reads + nr_writes;
1188 }
1189 
1190 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1191 {
1192 	unsigned int nr_disp = 0;
1193 
1194 	while (1) {
1195 		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1196 		struct throtl_service_queue *sq;
1197 
1198 		if (!tg)
1199 			break;
1200 
1201 		if (time_before(jiffies, tg->disptime))
1202 			break;
1203 
1204 		throtl_dequeue_tg(tg);
1205 
1206 		nr_disp += throtl_dispatch_tg(tg);
1207 
1208 		sq = &tg->service_queue;
1209 		if (sq->nr_queued[0] || sq->nr_queued[1])
1210 			tg_update_disptime(tg);
1211 
1212 		if (nr_disp >= throtl_quantum)
1213 			break;
1214 	}
1215 
1216 	return nr_disp;
1217 }
1218 
1219 static bool throtl_can_upgrade(struct throtl_data *td,
1220 	struct throtl_grp *this_tg);
1221 /**
1222  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1223  * @t: the pending_timer member of the throtl_service_queue being serviced
1224  *
1225  * This timer is armed when a child throtl_grp with active bio's become
1226  * pending and queued on the service_queue's pending_tree and expires when
1227  * the first child throtl_grp should be dispatched.  This function
1228  * dispatches bio's from the children throtl_grps to the parent
1229  * service_queue.
1230  *
1231  * If the parent's parent is another throtl_grp, dispatching is propagated
1232  * by either arming its pending_timer or repeating dispatch directly.  If
1233  * the top-level service_tree is reached, throtl_data->dispatch_work is
1234  * kicked so that the ready bio's are issued.
1235  */
1236 static void throtl_pending_timer_fn(struct timer_list *t)
1237 {
1238 	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1239 	struct throtl_grp *tg = sq_to_tg(sq);
1240 	struct throtl_data *td = sq_to_td(sq);
1241 	struct request_queue *q = td->queue;
1242 	struct throtl_service_queue *parent_sq;
1243 	bool dispatched;
1244 	int ret;
1245 
1246 	spin_lock_irq(&q->queue_lock);
1247 	if (throtl_can_upgrade(td, NULL))
1248 		throtl_upgrade_state(td);
1249 
1250 again:
1251 	parent_sq = sq->parent_sq;
1252 	dispatched = false;
1253 
1254 	while (true) {
1255 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1256 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1257 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1258 
1259 		ret = throtl_select_dispatch(sq);
1260 		if (ret) {
1261 			throtl_log(sq, "bios disp=%u", ret);
1262 			dispatched = true;
1263 		}
1264 
1265 		if (throtl_schedule_next_dispatch(sq, false))
1266 			break;
1267 
1268 		/* this dispatch windows is still open, relax and repeat */
1269 		spin_unlock_irq(&q->queue_lock);
1270 		cpu_relax();
1271 		spin_lock_irq(&q->queue_lock);
1272 	}
1273 
1274 	if (!dispatched)
1275 		goto out_unlock;
1276 
1277 	if (parent_sq) {
1278 		/* @parent_sq is another throl_grp, propagate dispatch */
1279 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1280 			tg_update_disptime(tg);
1281 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1282 				/* window is already open, repeat dispatching */
1283 				sq = parent_sq;
1284 				tg = sq_to_tg(sq);
1285 				goto again;
1286 			}
1287 		}
1288 	} else {
1289 		/* reached the top-level, queue issueing */
1290 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1291 	}
1292 out_unlock:
1293 	spin_unlock_irq(&q->queue_lock);
1294 }
1295 
1296 /**
1297  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1298  * @work: work item being executed
1299  *
1300  * This function is queued for execution when bio's reach the bio_lists[]
1301  * of throtl_data->service_queue.  Those bio's are ready and issued by this
1302  * function.
1303  */
1304 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1305 {
1306 	struct throtl_data *td = container_of(work, struct throtl_data,
1307 					      dispatch_work);
1308 	struct throtl_service_queue *td_sq = &td->service_queue;
1309 	struct request_queue *q = td->queue;
1310 	struct bio_list bio_list_on_stack;
1311 	struct bio *bio;
1312 	struct blk_plug plug;
1313 	int rw;
1314 
1315 	bio_list_init(&bio_list_on_stack);
1316 
1317 	spin_lock_irq(&q->queue_lock);
1318 	for (rw = READ; rw <= WRITE; rw++)
1319 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1320 			bio_list_add(&bio_list_on_stack, bio);
1321 	spin_unlock_irq(&q->queue_lock);
1322 
1323 	if (!bio_list_empty(&bio_list_on_stack)) {
1324 		blk_start_plug(&plug);
1325 		while((bio = bio_list_pop(&bio_list_on_stack)))
1326 			generic_make_request(bio);
1327 		blk_finish_plug(&plug);
1328 	}
1329 }
1330 
1331 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1332 			      int off)
1333 {
1334 	struct throtl_grp *tg = pd_to_tg(pd);
1335 	u64 v = *(u64 *)((void *)tg + off);
1336 
1337 	if (v == U64_MAX)
1338 		return 0;
1339 	return __blkg_prfill_u64(sf, pd, v);
1340 }
1341 
1342 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1343 			       int off)
1344 {
1345 	struct throtl_grp *tg = pd_to_tg(pd);
1346 	unsigned int v = *(unsigned int *)((void *)tg + off);
1347 
1348 	if (v == UINT_MAX)
1349 		return 0;
1350 	return __blkg_prfill_u64(sf, pd, v);
1351 }
1352 
1353 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1354 {
1355 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1356 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1357 	return 0;
1358 }
1359 
1360 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1361 {
1362 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1363 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1364 	return 0;
1365 }
1366 
1367 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1368 {
1369 	struct throtl_service_queue *sq = &tg->service_queue;
1370 	struct cgroup_subsys_state *pos_css;
1371 	struct blkcg_gq *blkg;
1372 
1373 	throtl_log(&tg->service_queue,
1374 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1375 		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1376 		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1377 
1378 	/*
1379 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1380 	 * considered to have rules if either the tg itself or any of its
1381 	 * ancestors has rules.  This identifies groups without any
1382 	 * restrictions in the whole hierarchy and allows them to bypass
1383 	 * blk-throttle.
1384 	 */
1385 	blkg_for_each_descendant_pre(blkg, pos_css,
1386 			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1387 		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1388 		struct throtl_grp *parent_tg;
1389 
1390 		tg_update_has_rules(this_tg);
1391 		/* ignore root/second level */
1392 		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1393 		    !blkg->parent->parent)
1394 			continue;
1395 		parent_tg = blkg_to_tg(blkg->parent);
1396 		/*
1397 		 * make sure all children has lower idle time threshold and
1398 		 * higher latency target
1399 		 */
1400 		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1401 				parent_tg->idletime_threshold);
1402 		this_tg->latency_target = max(this_tg->latency_target,
1403 				parent_tg->latency_target);
1404 	}
1405 
1406 	/*
1407 	 * We're already holding queue_lock and know @tg is valid.  Let's
1408 	 * apply the new config directly.
1409 	 *
1410 	 * Restart the slices for both READ and WRITES. It might happen
1411 	 * that a group's limit are dropped suddenly and we don't want to
1412 	 * account recently dispatched IO with new low rate.
1413 	 */
1414 	throtl_start_new_slice(tg, 0);
1415 	throtl_start_new_slice(tg, 1);
1416 
1417 	if (tg->flags & THROTL_TG_PENDING) {
1418 		tg_update_disptime(tg);
1419 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1420 	}
1421 }
1422 
1423 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1424 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1425 {
1426 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1427 	struct blkg_conf_ctx ctx;
1428 	struct throtl_grp *tg;
1429 	int ret;
1430 	u64 v;
1431 
1432 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1433 	if (ret)
1434 		return ret;
1435 
1436 	ret = -EINVAL;
1437 	if (sscanf(ctx.body, "%llu", &v) != 1)
1438 		goto out_finish;
1439 	if (!v)
1440 		v = U64_MAX;
1441 
1442 	tg = blkg_to_tg(ctx.blkg);
1443 
1444 	if (is_u64)
1445 		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1446 	else
1447 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1448 
1449 	tg_conf_updated(tg, false);
1450 	ret = 0;
1451 out_finish:
1452 	blkg_conf_finish(&ctx);
1453 	return ret ?: nbytes;
1454 }
1455 
1456 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1457 			       char *buf, size_t nbytes, loff_t off)
1458 {
1459 	return tg_set_conf(of, buf, nbytes, off, true);
1460 }
1461 
1462 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1463 				char *buf, size_t nbytes, loff_t off)
1464 {
1465 	return tg_set_conf(of, buf, nbytes, off, false);
1466 }
1467 
1468 static struct cftype throtl_legacy_files[] = {
1469 	{
1470 		.name = "throttle.read_bps_device",
1471 		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1472 		.seq_show = tg_print_conf_u64,
1473 		.write = tg_set_conf_u64,
1474 	},
1475 	{
1476 		.name = "throttle.write_bps_device",
1477 		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1478 		.seq_show = tg_print_conf_u64,
1479 		.write = tg_set_conf_u64,
1480 	},
1481 	{
1482 		.name = "throttle.read_iops_device",
1483 		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1484 		.seq_show = tg_print_conf_uint,
1485 		.write = tg_set_conf_uint,
1486 	},
1487 	{
1488 		.name = "throttle.write_iops_device",
1489 		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1490 		.seq_show = tg_print_conf_uint,
1491 		.write = tg_set_conf_uint,
1492 	},
1493 	{
1494 		.name = "throttle.io_service_bytes",
1495 		.private = (unsigned long)&blkcg_policy_throtl,
1496 		.seq_show = blkg_print_stat_bytes,
1497 	},
1498 	{
1499 		.name = "throttle.io_service_bytes_recursive",
1500 		.private = (unsigned long)&blkcg_policy_throtl,
1501 		.seq_show = blkg_print_stat_bytes_recursive,
1502 	},
1503 	{
1504 		.name = "throttle.io_serviced",
1505 		.private = (unsigned long)&blkcg_policy_throtl,
1506 		.seq_show = blkg_print_stat_ios,
1507 	},
1508 	{
1509 		.name = "throttle.io_serviced_recursive",
1510 		.private = (unsigned long)&blkcg_policy_throtl,
1511 		.seq_show = blkg_print_stat_ios_recursive,
1512 	},
1513 	{ }	/* terminate */
1514 };
1515 
1516 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1517 			 int off)
1518 {
1519 	struct throtl_grp *tg = pd_to_tg(pd);
1520 	const char *dname = blkg_dev_name(pd->blkg);
1521 	char bufs[4][21] = { "max", "max", "max", "max" };
1522 	u64 bps_dft;
1523 	unsigned int iops_dft;
1524 	char idle_time[26] = "";
1525 	char latency_time[26] = "";
1526 
1527 	if (!dname)
1528 		return 0;
1529 
1530 	if (off == LIMIT_LOW) {
1531 		bps_dft = 0;
1532 		iops_dft = 0;
1533 	} else {
1534 		bps_dft = U64_MAX;
1535 		iops_dft = UINT_MAX;
1536 	}
1537 
1538 	if (tg->bps_conf[READ][off] == bps_dft &&
1539 	    tg->bps_conf[WRITE][off] == bps_dft &&
1540 	    tg->iops_conf[READ][off] == iops_dft &&
1541 	    tg->iops_conf[WRITE][off] == iops_dft &&
1542 	    (off != LIMIT_LOW ||
1543 	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1544 	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1545 		return 0;
1546 
1547 	if (tg->bps_conf[READ][off] != U64_MAX)
1548 		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1549 			tg->bps_conf[READ][off]);
1550 	if (tg->bps_conf[WRITE][off] != U64_MAX)
1551 		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1552 			tg->bps_conf[WRITE][off]);
1553 	if (tg->iops_conf[READ][off] != UINT_MAX)
1554 		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1555 			tg->iops_conf[READ][off]);
1556 	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1557 		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1558 			tg->iops_conf[WRITE][off]);
1559 	if (off == LIMIT_LOW) {
1560 		if (tg->idletime_threshold_conf == ULONG_MAX)
1561 			strcpy(idle_time, " idle=max");
1562 		else
1563 			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1564 				tg->idletime_threshold_conf);
1565 
1566 		if (tg->latency_target_conf == ULONG_MAX)
1567 			strcpy(latency_time, " latency=max");
1568 		else
1569 			snprintf(latency_time, sizeof(latency_time),
1570 				" latency=%lu", tg->latency_target_conf);
1571 	}
1572 
1573 	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1574 		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1575 		   latency_time);
1576 	return 0;
1577 }
1578 
1579 static int tg_print_limit(struct seq_file *sf, void *v)
1580 {
1581 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1582 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1583 	return 0;
1584 }
1585 
1586 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1587 			  char *buf, size_t nbytes, loff_t off)
1588 {
1589 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1590 	struct blkg_conf_ctx ctx;
1591 	struct throtl_grp *tg;
1592 	u64 v[4];
1593 	unsigned long idle_time;
1594 	unsigned long latency_time;
1595 	int ret;
1596 	int index = of_cft(of)->private;
1597 
1598 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1599 	if (ret)
1600 		return ret;
1601 
1602 	tg = blkg_to_tg(ctx.blkg);
1603 
1604 	v[0] = tg->bps_conf[READ][index];
1605 	v[1] = tg->bps_conf[WRITE][index];
1606 	v[2] = tg->iops_conf[READ][index];
1607 	v[3] = tg->iops_conf[WRITE][index];
1608 
1609 	idle_time = tg->idletime_threshold_conf;
1610 	latency_time = tg->latency_target_conf;
1611 	while (true) {
1612 		char tok[27];	/* wiops=18446744073709551616 */
1613 		char *p;
1614 		u64 val = U64_MAX;
1615 		int len;
1616 
1617 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1618 			break;
1619 		if (tok[0] == '\0')
1620 			break;
1621 		ctx.body += len;
1622 
1623 		ret = -EINVAL;
1624 		p = tok;
1625 		strsep(&p, "=");
1626 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1627 			goto out_finish;
1628 
1629 		ret = -ERANGE;
1630 		if (!val)
1631 			goto out_finish;
1632 
1633 		ret = -EINVAL;
1634 		if (!strcmp(tok, "rbps"))
1635 			v[0] = val;
1636 		else if (!strcmp(tok, "wbps"))
1637 			v[1] = val;
1638 		else if (!strcmp(tok, "riops"))
1639 			v[2] = min_t(u64, val, UINT_MAX);
1640 		else if (!strcmp(tok, "wiops"))
1641 			v[3] = min_t(u64, val, UINT_MAX);
1642 		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1643 			idle_time = val;
1644 		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1645 			latency_time = val;
1646 		else
1647 			goto out_finish;
1648 	}
1649 
1650 	tg->bps_conf[READ][index] = v[0];
1651 	tg->bps_conf[WRITE][index] = v[1];
1652 	tg->iops_conf[READ][index] = v[2];
1653 	tg->iops_conf[WRITE][index] = v[3];
1654 
1655 	if (index == LIMIT_MAX) {
1656 		tg->bps[READ][index] = v[0];
1657 		tg->bps[WRITE][index] = v[1];
1658 		tg->iops[READ][index] = v[2];
1659 		tg->iops[WRITE][index] = v[3];
1660 	}
1661 	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1662 		tg->bps_conf[READ][LIMIT_MAX]);
1663 	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1664 		tg->bps_conf[WRITE][LIMIT_MAX]);
1665 	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1666 		tg->iops_conf[READ][LIMIT_MAX]);
1667 	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1668 		tg->iops_conf[WRITE][LIMIT_MAX]);
1669 	tg->idletime_threshold_conf = idle_time;
1670 	tg->latency_target_conf = latency_time;
1671 
1672 	/* force user to configure all settings for low limit  */
1673 	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1674 	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1675 	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1676 	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
1677 		tg->bps[READ][LIMIT_LOW] = 0;
1678 		tg->bps[WRITE][LIMIT_LOW] = 0;
1679 		tg->iops[READ][LIMIT_LOW] = 0;
1680 		tg->iops[WRITE][LIMIT_LOW] = 0;
1681 		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1682 		tg->latency_target = DFL_LATENCY_TARGET;
1683 	} else if (index == LIMIT_LOW) {
1684 		tg->idletime_threshold = tg->idletime_threshold_conf;
1685 		tg->latency_target = tg->latency_target_conf;
1686 	}
1687 
1688 	blk_throtl_update_limit_valid(tg->td);
1689 	if (tg->td->limit_valid[LIMIT_LOW]) {
1690 		if (index == LIMIT_LOW)
1691 			tg->td->limit_index = LIMIT_LOW;
1692 	} else
1693 		tg->td->limit_index = LIMIT_MAX;
1694 	tg_conf_updated(tg, index == LIMIT_LOW &&
1695 		tg->td->limit_valid[LIMIT_LOW]);
1696 	ret = 0;
1697 out_finish:
1698 	blkg_conf_finish(&ctx);
1699 	return ret ?: nbytes;
1700 }
1701 
1702 static struct cftype throtl_files[] = {
1703 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1704 	{
1705 		.name = "low",
1706 		.flags = CFTYPE_NOT_ON_ROOT,
1707 		.seq_show = tg_print_limit,
1708 		.write = tg_set_limit,
1709 		.private = LIMIT_LOW,
1710 	},
1711 #endif
1712 	{
1713 		.name = "max",
1714 		.flags = CFTYPE_NOT_ON_ROOT,
1715 		.seq_show = tg_print_limit,
1716 		.write = tg_set_limit,
1717 		.private = LIMIT_MAX,
1718 	},
1719 	{ }	/* terminate */
1720 };
1721 
1722 static void throtl_shutdown_wq(struct request_queue *q)
1723 {
1724 	struct throtl_data *td = q->td;
1725 
1726 	cancel_work_sync(&td->dispatch_work);
1727 }
1728 
1729 static struct blkcg_policy blkcg_policy_throtl = {
1730 	.dfl_cftypes		= throtl_files,
1731 	.legacy_cftypes		= throtl_legacy_files,
1732 
1733 	.pd_alloc_fn		= throtl_pd_alloc,
1734 	.pd_init_fn		= throtl_pd_init,
1735 	.pd_online_fn		= throtl_pd_online,
1736 	.pd_offline_fn		= throtl_pd_offline,
1737 	.pd_free_fn		= throtl_pd_free,
1738 };
1739 
1740 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1741 {
1742 	unsigned long rtime = jiffies, wtime = jiffies;
1743 
1744 	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1745 		rtime = tg->last_low_overflow_time[READ];
1746 	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1747 		wtime = tg->last_low_overflow_time[WRITE];
1748 	return min(rtime, wtime);
1749 }
1750 
1751 /* tg should not be an intermediate node */
1752 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1753 {
1754 	struct throtl_service_queue *parent_sq;
1755 	struct throtl_grp *parent = tg;
1756 	unsigned long ret = __tg_last_low_overflow_time(tg);
1757 
1758 	while (true) {
1759 		parent_sq = parent->service_queue.parent_sq;
1760 		parent = sq_to_tg(parent_sq);
1761 		if (!parent)
1762 			break;
1763 
1764 		/*
1765 		 * The parent doesn't have low limit, it always reaches low
1766 		 * limit. Its overflow time is useless for children
1767 		 */
1768 		if (!parent->bps[READ][LIMIT_LOW] &&
1769 		    !parent->iops[READ][LIMIT_LOW] &&
1770 		    !parent->bps[WRITE][LIMIT_LOW] &&
1771 		    !parent->iops[WRITE][LIMIT_LOW])
1772 			continue;
1773 		if (time_after(__tg_last_low_overflow_time(parent), ret))
1774 			ret = __tg_last_low_overflow_time(parent);
1775 	}
1776 	return ret;
1777 }
1778 
1779 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1780 {
1781 	/*
1782 	 * cgroup is idle if:
1783 	 * - single idle is too long, longer than a fixed value (in case user
1784 	 *   configure a too big threshold) or 4 times of idletime threshold
1785 	 * - average think time is more than threshold
1786 	 * - IO latency is largely below threshold
1787 	 */
1788 	unsigned long time;
1789 	bool ret;
1790 
1791 	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1792 	ret = tg->latency_target == DFL_LATENCY_TARGET ||
1793 	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1794 	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1795 	      tg->avg_idletime > tg->idletime_threshold ||
1796 	      (tg->latency_target && tg->bio_cnt &&
1797 		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1798 	throtl_log(&tg->service_queue,
1799 		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1800 		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1801 		tg->bio_cnt, ret, tg->td->scale);
1802 	return ret;
1803 }
1804 
1805 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1806 {
1807 	struct throtl_service_queue *sq = &tg->service_queue;
1808 	bool read_limit, write_limit;
1809 
1810 	/*
1811 	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1812 	 * reaches), it's ok to upgrade to next limit
1813 	 */
1814 	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1815 	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1816 	if (!read_limit && !write_limit)
1817 		return true;
1818 	if (read_limit && sq->nr_queued[READ] &&
1819 	    (!write_limit || sq->nr_queued[WRITE]))
1820 		return true;
1821 	if (write_limit && sq->nr_queued[WRITE] &&
1822 	    (!read_limit || sq->nr_queued[READ]))
1823 		return true;
1824 
1825 	if (time_after_eq(jiffies,
1826 		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1827 	    throtl_tg_is_idle(tg))
1828 		return true;
1829 	return false;
1830 }
1831 
1832 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1833 {
1834 	while (true) {
1835 		if (throtl_tg_can_upgrade(tg))
1836 			return true;
1837 		tg = sq_to_tg(tg->service_queue.parent_sq);
1838 		if (!tg || !tg_to_blkg(tg)->parent)
1839 			return false;
1840 	}
1841 	return false;
1842 }
1843 
1844 static bool throtl_can_upgrade(struct throtl_data *td,
1845 	struct throtl_grp *this_tg)
1846 {
1847 	struct cgroup_subsys_state *pos_css;
1848 	struct blkcg_gq *blkg;
1849 
1850 	if (td->limit_index != LIMIT_LOW)
1851 		return false;
1852 
1853 	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1854 		return false;
1855 
1856 	rcu_read_lock();
1857 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1858 		struct throtl_grp *tg = blkg_to_tg(blkg);
1859 
1860 		if (tg == this_tg)
1861 			continue;
1862 		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1863 			continue;
1864 		if (!throtl_hierarchy_can_upgrade(tg)) {
1865 			rcu_read_unlock();
1866 			return false;
1867 		}
1868 	}
1869 	rcu_read_unlock();
1870 	return true;
1871 }
1872 
1873 static void throtl_upgrade_check(struct throtl_grp *tg)
1874 {
1875 	unsigned long now = jiffies;
1876 
1877 	if (tg->td->limit_index != LIMIT_LOW)
1878 		return;
1879 
1880 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1881 		return;
1882 
1883 	tg->last_check_time = now;
1884 
1885 	if (!time_after_eq(now,
1886 	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1887 		return;
1888 
1889 	if (throtl_can_upgrade(tg->td, NULL))
1890 		throtl_upgrade_state(tg->td);
1891 }
1892 
1893 static void throtl_upgrade_state(struct throtl_data *td)
1894 {
1895 	struct cgroup_subsys_state *pos_css;
1896 	struct blkcg_gq *blkg;
1897 
1898 	throtl_log(&td->service_queue, "upgrade to max");
1899 	td->limit_index = LIMIT_MAX;
1900 	td->low_upgrade_time = jiffies;
1901 	td->scale = 0;
1902 	rcu_read_lock();
1903 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1904 		struct throtl_grp *tg = blkg_to_tg(blkg);
1905 		struct throtl_service_queue *sq = &tg->service_queue;
1906 
1907 		tg->disptime = jiffies - 1;
1908 		throtl_select_dispatch(sq);
1909 		throtl_schedule_next_dispatch(sq, true);
1910 	}
1911 	rcu_read_unlock();
1912 	throtl_select_dispatch(&td->service_queue);
1913 	throtl_schedule_next_dispatch(&td->service_queue, true);
1914 	queue_work(kthrotld_workqueue, &td->dispatch_work);
1915 }
1916 
1917 static void throtl_downgrade_state(struct throtl_data *td, int new)
1918 {
1919 	td->scale /= 2;
1920 
1921 	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1922 	if (td->scale) {
1923 		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1924 		return;
1925 	}
1926 
1927 	td->limit_index = new;
1928 	td->low_downgrade_time = jiffies;
1929 }
1930 
1931 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1932 {
1933 	struct throtl_data *td = tg->td;
1934 	unsigned long now = jiffies;
1935 
1936 	/*
1937 	 * If cgroup is below low limit, consider downgrade and throttle other
1938 	 * cgroups
1939 	 */
1940 	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1941 	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1942 					td->throtl_slice) &&
1943 	    (!throtl_tg_is_idle(tg) ||
1944 	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1945 		return true;
1946 	return false;
1947 }
1948 
1949 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1950 {
1951 	while (true) {
1952 		if (!throtl_tg_can_downgrade(tg))
1953 			return false;
1954 		tg = sq_to_tg(tg->service_queue.parent_sq);
1955 		if (!tg || !tg_to_blkg(tg)->parent)
1956 			break;
1957 	}
1958 	return true;
1959 }
1960 
1961 static void throtl_downgrade_check(struct throtl_grp *tg)
1962 {
1963 	uint64_t bps;
1964 	unsigned int iops;
1965 	unsigned long elapsed_time;
1966 	unsigned long now = jiffies;
1967 
1968 	if (tg->td->limit_index != LIMIT_MAX ||
1969 	    !tg->td->limit_valid[LIMIT_LOW])
1970 		return;
1971 	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1972 		return;
1973 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1974 		return;
1975 
1976 	elapsed_time = now - tg->last_check_time;
1977 	tg->last_check_time = now;
1978 
1979 	if (time_before(now, tg_last_low_overflow_time(tg) +
1980 			tg->td->throtl_slice))
1981 		return;
1982 
1983 	if (tg->bps[READ][LIMIT_LOW]) {
1984 		bps = tg->last_bytes_disp[READ] * HZ;
1985 		do_div(bps, elapsed_time);
1986 		if (bps >= tg->bps[READ][LIMIT_LOW])
1987 			tg->last_low_overflow_time[READ] = now;
1988 	}
1989 
1990 	if (tg->bps[WRITE][LIMIT_LOW]) {
1991 		bps = tg->last_bytes_disp[WRITE] * HZ;
1992 		do_div(bps, elapsed_time);
1993 		if (bps >= tg->bps[WRITE][LIMIT_LOW])
1994 			tg->last_low_overflow_time[WRITE] = now;
1995 	}
1996 
1997 	if (tg->iops[READ][LIMIT_LOW]) {
1998 		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1999 		if (iops >= tg->iops[READ][LIMIT_LOW])
2000 			tg->last_low_overflow_time[READ] = now;
2001 	}
2002 
2003 	if (tg->iops[WRITE][LIMIT_LOW]) {
2004 		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2005 		if (iops >= tg->iops[WRITE][LIMIT_LOW])
2006 			tg->last_low_overflow_time[WRITE] = now;
2007 	}
2008 
2009 	/*
2010 	 * If cgroup is below low limit, consider downgrade and throttle other
2011 	 * cgroups
2012 	 */
2013 	if (throtl_hierarchy_can_downgrade(tg))
2014 		throtl_downgrade_state(tg->td, LIMIT_LOW);
2015 
2016 	tg->last_bytes_disp[READ] = 0;
2017 	tg->last_bytes_disp[WRITE] = 0;
2018 	tg->last_io_disp[READ] = 0;
2019 	tg->last_io_disp[WRITE] = 0;
2020 }
2021 
2022 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2023 {
2024 	unsigned long now = ktime_get_ns() >> 10;
2025 	unsigned long last_finish_time = tg->last_finish_time;
2026 
2027 	if (now <= last_finish_time || last_finish_time == 0 ||
2028 	    last_finish_time == tg->checked_last_finish_time)
2029 		return;
2030 
2031 	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2032 	tg->checked_last_finish_time = last_finish_time;
2033 }
2034 
2035 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2036 static void throtl_update_latency_buckets(struct throtl_data *td)
2037 {
2038 	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2039 	int i, cpu, rw;
2040 	unsigned long last_latency[2] = { 0 };
2041 	unsigned long latency[2];
2042 
2043 	if (!blk_queue_nonrot(td->queue))
2044 		return;
2045 	if (time_before(jiffies, td->last_calculate_time + HZ))
2046 		return;
2047 	td->last_calculate_time = jiffies;
2048 
2049 	memset(avg_latency, 0, sizeof(avg_latency));
2050 	for (rw = READ; rw <= WRITE; rw++) {
2051 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2052 			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2053 
2054 			for_each_possible_cpu(cpu) {
2055 				struct latency_bucket *bucket;
2056 
2057 				/* this isn't race free, but ok in practice */
2058 				bucket = per_cpu_ptr(td->latency_buckets[rw],
2059 					cpu);
2060 				tmp->total_latency += bucket[i].total_latency;
2061 				tmp->samples += bucket[i].samples;
2062 				bucket[i].total_latency = 0;
2063 				bucket[i].samples = 0;
2064 			}
2065 
2066 			if (tmp->samples >= 32) {
2067 				int samples = tmp->samples;
2068 
2069 				latency[rw] = tmp->total_latency;
2070 
2071 				tmp->total_latency = 0;
2072 				tmp->samples = 0;
2073 				latency[rw] /= samples;
2074 				if (latency[rw] == 0)
2075 					continue;
2076 				avg_latency[rw][i].latency = latency[rw];
2077 			}
2078 		}
2079 	}
2080 
2081 	for (rw = READ; rw <= WRITE; rw++) {
2082 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2083 			if (!avg_latency[rw][i].latency) {
2084 				if (td->avg_buckets[rw][i].latency < last_latency[rw])
2085 					td->avg_buckets[rw][i].latency =
2086 						last_latency[rw];
2087 				continue;
2088 			}
2089 
2090 			if (!td->avg_buckets[rw][i].valid)
2091 				latency[rw] = avg_latency[rw][i].latency;
2092 			else
2093 				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2094 					avg_latency[rw][i].latency) >> 3;
2095 
2096 			td->avg_buckets[rw][i].latency = max(latency[rw],
2097 				last_latency[rw]);
2098 			td->avg_buckets[rw][i].valid = true;
2099 			last_latency[rw] = td->avg_buckets[rw][i].latency;
2100 		}
2101 	}
2102 
2103 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2104 		throtl_log(&td->service_queue,
2105 			"Latency bucket %d: read latency=%ld, read valid=%d, "
2106 			"write latency=%ld, write valid=%d", i,
2107 			td->avg_buckets[READ][i].latency,
2108 			td->avg_buckets[READ][i].valid,
2109 			td->avg_buckets[WRITE][i].latency,
2110 			td->avg_buckets[WRITE][i].valid);
2111 }
2112 #else
2113 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2114 {
2115 }
2116 #endif
2117 
2118 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2119 		    struct bio *bio)
2120 {
2121 	struct throtl_qnode *qn = NULL;
2122 	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2123 	struct throtl_service_queue *sq;
2124 	bool rw = bio_data_dir(bio);
2125 	bool throttled = false;
2126 	struct throtl_data *td = tg->td;
2127 
2128 	WARN_ON_ONCE(!rcu_read_lock_held());
2129 
2130 	/* see throtl_charge_bio() */
2131 	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2132 		goto out;
2133 
2134 	spin_lock_irq(&q->queue_lock);
2135 
2136 	throtl_update_latency_buckets(td);
2137 
2138 	blk_throtl_update_idletime(tg);
2139 
2140 	sq = &tg->service_queue;
2141 
2142 again:
2143 	while (true) {
2144 		if (tg->last_low_overflow_time[rw] == 0)
2145 			tg->last_low_overflow_time[rw] = jiffies;
2146 		throtl_downgrade_check(tg);
2147 		throtl_upgrade_check(tg);
2148 		/* throtl is FIFO - if bios are already queued, should queue */
2149 		if (sq->nr_queued[rw])
2150 			break;
2151 
2152 		/* if above limits, break to queue */
2153 		if (!tg_may_dispatch(tg, bio, NULL)) {
2154 			tg->last_low_overflow_time[rw] = jiffies;
2155 			if (throtl_can_upgrade(td, tg)) {
2156 				throtl_upgrade_state(td);
2157 				goto again;
2158 			}
2159 			break;
2160 		}
2161 
2162 		/* within limits, let's charge and dispatch directly */
2163 		throtl_charge_bio(tg, bio);
2164 
2165 		/*
2166 		 * We need to trim slice even when bios are not being queued
2167 		 * otherwise it might happen that a bio is not queued for
2168 		 * a long time and slice keeps on extending and trim is not
2169 		 * called for a long time. Now if limits are reduced suddenly
2170 		 * we take into account all the IO dispatched so far at new
2171 		 * low rate and * newly queued IO gets a really long dispatch
2172 		 * time.
2173 		 *
2174 		 * So keep on trimming slice even if bio is not queued.
2175 		 */
2176 		throtl_trim_slice(tg, rw);
2177 
2178 		/*
2179 		 * @bio passed through this layer without being throttled.
2180 		 * Climb up the ladder.  If we''re already at the top, it
2181 		 * can be executed directly.
2182 		 */
2183 		qn = &tg->qnode_on_parent[rw];
2184 		sq = sq->parent_sq;
2185 		tg = sq_to_tg(sq);
2186 		if (!tg)
2187 			goto out_unlock;
2188 	}
2189 
2190 	/* out-of-limit, queue to @tg */
2191 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2192 		   rw == READ ? 'R' : 'W',
2193 		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2194 		   tg_bps_limit(tg, rw),
2195 		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2196 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2197 
2198 	tg->last_low_overflow_time[rw] = jiffies;
2199 
2200 	td->nr_queued[rw]++;
2201 	throtl_add_bio_tg(bio, qn, tg);
2202 	throttled = true;
2203 
2204 	/*
2205 	 * Update @tg's dispatch time and force schedule dispatch if @tg
2206 	 * was empty before @bio.  The forced scheduling isn't likely to
2207 	 * cause undue delay as @bio is likely to be dispatched directly if
2208 	 * its @tg's disptime is not in the future.
2209 	 */
2210 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2211 		tg_update_disptime(tg);
2212 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2213 	}
2214 
2215 out_unlock:
2216 	spin_unlock_irq(&q->queue_lock);
2217 out:
2218 	bio_set_flag(bio, BIO_THROTTLED);
2219 
2220 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2221 	if (throttled || !td->track_bio_latency)
2222 		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2223 #endif
2224 	return throttled;
2225 }
2226 
2227 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2228 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2229 	int op, unsigned long time)
2230 {
2231 	struct latency_bucket *latency;
2232 	int index;
2233 
2234 	if (!td || td->limit_index != LIMIT_LOW ||
2235 	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2236 	    !blk_queue_nonrot(td->queue))
2237 		return;
2238 
2239 	index = request_bucket_index(size);
2240 
2241 	latency = get_cpu_ptr(td->latency_buckets[op]);
2242 	latency[index].total_latency += time;
2243 	latency[index].samples++;
2244 	put_cpu_ptr(td->latency_buckets[op]);
2245 }
2246 
2247 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2248 {
2249 	struct request_queue *q = rq->q;
2250 	struct throtl_data *td = q->td;
2251 
2252 	throtl_track_latency(td, rq->throtl_size, req_op(rq), time_ns >> 10);
2253 }
2254 
2255 void blk_throtl_bio_endio(struct bio *bio)
2256 {
2257 	struct blkcg_gq *blkg;
2258 	struct throtl_grp *tg;
2259 	u64 finish_time_ns;
2260 	unsigned long finish_time;
2261 	unsigned long start_time;
2262 	unsigned long lat;
2263 	int rw = bio_data_dir(bio);
2264 
2265 	blkg = bio->bi_blkg;
2266 	if (!blkg)
2267 		return;
2268 	tg = blkg_to_tg(blkg);
2269 
2270 	finish_time_ns = ktime_get_ns();
2271 	tg->last_finish_time = finish_time_ns >> 10;
2272 
2273 	start_time = bio_issue_time(&bio->bi_issue) >> 10;
2274 	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2275 	if (!start_time || finish_time <= start_time)
2276 		return;
2277 
2278 	lat = finish_time - start_time;
2279 	/* this is only for bio based driver */
2280 	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2281 		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2282 				     bio_op(bio), lat);
2283 
2284 	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2285 		int bucket;
2286 		unsigned int threshold;
2287 
2288 		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2289 		threshold = tg->td->avg_buckets[rw][bucket].latency +
2290 			tg->latency_target;
2291 		if (lat > threshold)
2292 			tg->bad_bio_cnt++;
2293 		/*
2294 		 * Not race free, could get wrong count, which means cgroups
2295 		 * will be throttled
2296 		 */
2297 		tg->bio_cnt++;
2298 	}
2299 
2300 	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2301 		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2302 		tg->bio_cnt /= 2;
2303 		tg->bad_bio_cnt /= 2;
2304 	}
2305 }
2306 #endif
2307 
2308 /*
2309  * Dispatch all bios from all children tg's queued on @parent_sq.  On
2310  * return, @parent_sq is guaranteed to not have any active children tg's
2311  * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2312  */
2313 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2314 {
2315 	struct throtl_grp *tg;
2316 
2317 	while ((tg = throtl_rb_first(parent_sq))) {
2318 		struct throtl_service_queue *sq = &tg->service_queue;
2319 		struct bio *bio;
2320 
2321 		throtl_dequeue_tg(tg);
2322 
2323 		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2324 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2325 		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2326 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2327 	}
2328 }
2329 
2330 /**
2331  * blk_throtl_drain - drain throttled bios
2332  * @q: request_queue to drain throttled bios for
2333  *
2334  * Dispatch all currently throttled bios on @q through ->make_request_fn().
2335  */
2336 void blk_throtl_drain(struct request_queue *q)
2337 	__releases(&q->queue_lock) __acquires(&q->queue_lock)
2338 {
2339 	struct throtl_data *td = q->td;
2340 	struct blkcg_gq *blkg;
2341 	struct cgroup_subsys_state *pos_css;
2342 	struct bio *bio;
2343 	int rw;
2344 
2345 	rcu_read_lock();
2346 
2347 	/*
2348 	 * Drain each tg while doing post-order walk on the blkg tree, so
2349 	 * that all bios are propagated to td->service_queue.  It'd be
2350 	 * better to walk service_queue tree directly but blkg walk is
2351 	 * easier.
2352 	 */
2353 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2354 		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2355 
2356 	/* finally, transfer bios from top-level tg's into the td */
2357 	tg_drain_bios(&td->service_queue);
2358 
2359 	rcu_read_unlock();
2360 	spin_unlock_irq(&q->queue_lock);
2361 
2362 	/* all bios now should be in td->service_queue, issue them */
2363 	for (rw = READ; rw <= WRITE; rw++)
2364 		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2365 						NULL)))
2366 			generic_make_request(bio);
2367 
2368 	spin_lock_irq(&q->queue_lock);
2369 }
2370 
2371 int blk_throtl_init(struct request_queue *q)
2372 {
2373 	struct throtl_data *td;
2374 	int ret;
2375 
2376 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2377 	if (!td)
2378 		return -ENOMEM;
2379 	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2380 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2381 	if (!td->latency_buckets[READ]) {
2382 		kfree(td);
2383 		return -ENOMEM;
2384 	}
2385 	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2386 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2387 	if (!td->latency_buckets[WRITE]) {
2388 		free_percpu(td->latency_buckets[READ]);
2389 		kfree(td);
2390 		return -ENOMEM;
2391 	}
2392 
2393 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2394 	throtl_service_queue_init(&td->service_queue);
2395 
2396 	q->td = td;
2397 	td->queue = q;
2398 
2399 	td->limit_valid[LIMIT_MAX] = true;
2400 	td->limit_index = LIMIT_MAX;
2401 	td->low_upgrade_time = jiffies;
2402 	td->low_downgrade_time = jiffies;
2403 
2404 	/* activate policy */
2405 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2406 	if (ret) {
2407 		free_percpu(td->latency_buckets[READ]);
2408 		free_percpu(td->latency_buckets[WRITE]);
2409 		kfree(td);
2410 	}
2411 	return ret;
2412 }
2413 
2414 void blk_throtl_exit(struct request_queue *q)
2415 {
2416 	BUG_ON(!q->td);
2417 	throtl_shutdown_wq(q);
2418 	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2419 	free_percpu(q->td->latency_buckets[READ]);
2420 	free_percpu(q->td->latency_buckets[WRITE]);
2421 	kfree(q->td);
2422 }
2423 
2424 void blk_throtl_register_queue(struct request_queue *q)
2425 {
2426 	struct throtl_data *td;
2427 	int i;
2428 
2429 	td = q->td;
2430 	BUG_ON(!td);
2431 
2432 	if (blk_queue_nonrot(q)) {
2433 		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2434 		td->filtered_latency = LATENCY_FILTERED_SSD;
2435 	} else {
2436 		td->throtl_slice = DFL_THROTL_SLICE_HD;
2437 		td->filtered_latency = LATENCY_FILTERED_HD;
2438 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2439 			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2440 			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2441 		}
2442 	}
2443 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2444 	/* if no low limit, use previous default */
2445 	td->throtl_slice = DFL_THROTL_SLICE_HD;
2446 #endif
2447 
2448 	td->track_bio_latency = !queue_is_mq(q);
2449 	if (!td->track_bio_latency)
2450 		blk_stat_enable_accounting(q);
2451 }
2452 
2453 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2454 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2455 {
2456 	if (!q->td)
2457 		return -EINVAL;
2458 	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2459 }
2460 
2461 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2462 	const char *page, size_t count)
2463 {
2464 	unsigned long v;
2465 	unsigned long t;
2466 
2467 	if (!q->td)
2468 		return -EINVAL;
2469 	if (kstrtoul(page, 10, &v))
2470 		return -EINVAL;
2471 	t = msecs_to_jiffies(v);
2472 	if (t == 0 || t > MAX_THROTL_SLICE)
2473 		return -EINVAL;
2474 	q->td->throtl_slice = t;
2475 	return count;
2476 }
2477 #endif
2478 
2479 static int __init throtl_init(void)
2480 {
2481 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2482 	if (!kthrotld_workqueue)
2483 		panic("Failed to create kthrotld\n");
2484 
2485 	return blkcg_policy_register(&blkcg_policy_throtl);
2486 }
2487 
2488 module_init(throtl_init);
2489