xref: /openbmc/linux/block/blk-throttle.c (revision 293d5b43)
1 /*
2  * Interface for controlling IO bandwidth on a request queue
3  *
4  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5  */
6 
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include <linux/blk-cgroup.h>
13 #include "blk.h"
14 
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17 
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20 
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10;	/* 100 ms */
23 
24 static struct blkcg_policy blkcg_policy_throtl;
25 
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct *kthrotld_workqueue;
28 
29 /*
30  * To implement hierarchical throttling, throtl_grps form a tree and bios
31  * are dispatched upwards level by level until they reach the top and get
32  * issued.  When dispatching bios from the children and local group at each
33  * level, if the bios are dispatched into a single bio_list, there's a risk
34  * of a local or child group which can queue many bios at once filling up
35  * the list starving others.
36  *
37  * To avoid such starvation, dispatched bios are queued separately
38  * according to where they came from.  When they are again dispatched to
39  * the parent, they're popped in round-robin order so that no single source
40  * hogs the dispatch window.
41  *
42  * throtl_qnode is used to keep the queued bios separated by their sources.
43  * Bios are queued to throtl_qnode which in turn is queued to
44  * throtl_service_queue and then dispatched in round-robin order.
45  *
46  * It's also used to track the reference counts on blkg's.  A qnode always
47  * belongs to a throtl_grp and gets queued on itself or the parent, so
48  * incrementing the reference of the associated throtl_grp when a qnode is
49  * queued and decrementing when dequeued is enough to keep the whole blkg
50  * tree pinned while bios are in flight.
51  */
52 struct throtl_qnode {
53 	struct list_head	node;		/* service_queue->queued[] */
54 	struct bio_list		bios;		/* queued bios */
55 	struct throtl_grp	*tg;		/* tg this qnode belongs to */
56 };
57 
58 struct throtl_service_queue {
59 	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
60 
61 	/*
62 	 * Bios queued directly to this service_queue or dispatched from
63 	 * children throtl_grp's.
64 	 */
65 	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
66 	unsigned int		nr_queued[2];	/* number of queued bios */
67 
68 	/*
69 	 * RB tree of active children throtl_grp's, which are sorted by
70 	 * their ->disptime.
71 	 */
72 	struct rb_root		pending_tree;	/* RB tree of active tgs */
73 	struct rb_node		*first_pending;	/* first node in the tree */
74 	unsigned int		nr_pending;	/* # queued in the tree */
75 	unsigned long		first_pending_disptime;	/* disptime of the first tg */
76 	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
77 };
78 
79 enum tg_state_flags {
80 	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
81 	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
82 };
83 
84 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
85 
86 struct throtl_grp {
87 	/* must be the first member */
88 	struct blkg_policy_data pd;
89 
90 	/* active throtl group service_queue member */
91 	struct rb_node rb_node;
92 
93 	/* throtl_data this group belongs to */
94 	struct throtl_data *td;
95 
96 	/* this group's service queue */
97 	struct throtl_service_queue service_queue;
98 
99 	/*
100 	 * qnode_on_self is used when bios are directly queued to this
101 	 * throtl_grp so that local bios compete fairly with bios
102 	 * dispatched from children.  qnode_on_parent is used when bios are
103 	 * dispatched from this throtl_grp into its parent and will compete
104 	 * with the sibling qnode_on_parents and the parent's
105 	 * qnode_on_self.
106 	 */
107 	struct throtl_qnode qnode_on_self[2];
108 	struct throtl_qnode qnode_on_parent[2];
109 
110 	/*
111 	 * Dispatch time in jiffies. This is the estimated time when group
112 	 * will unthrottle and is ready to dispatch more bio. It is used as
113 	 * key to sort active groups in service tree.
114 	 */
115 	unsigned long disptime;
116 
117 	unsigned int flags;
118 
119 	/* are there any throtl rules between this group and td? */
120 	bool has_rules[2];
121 
122 	/* bytes per second rate limits */
123 	uint64_t bps[2];
124 
125 	/* IOPS limits */
126 	unsigned int iops[2];
127 
128 	/* Number of bytes disptached in current slice */
129 	uint64_t bytes_disp[2];
130 	/* Number of bio's dispatched in current slice */
131 	unsigned int io_disp[2];
132 
133 	/* When did we start a new slice */
134 	unsigned long slice_start[2];
135 	unsigned long slice_end[2];
136 };
137 
138 struct throtl_data
139 {
140 	/* service tree for active throtl groups */
141 	struct throtl_service_queue service_queue;
142 
143 	struct request_queue *queue;
144 
145 	/* Total Number of queued bios on READ and WRITE lists */
146 	unsigned int nr_queued[2];
147 
148 	/* Work for dispatching throttled bios */
149 	struct work_struct dispatch_work;
150 };
151 
152 static void throtl_pending_timer_fn(unsigned long arg);
153 
154 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
155 {
156 	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
157 }
158 
159 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
160 {
161 	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
162 }
163 
164 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
165 {
166 	return pd_to_blkg(&tg->pd);
167 }
168 
169 /**
170  * sq_to_tg - return the throl_grp the specified service queue belongs to
171  * @sq: the throtl_service_queue of interest
172  *
173  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
174  * embedded in throtl_data, %NULL is returned.
175  */
176 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
177 {
178 	if (sq && sq->parent_sq)
179 		return container_of(sq, struct throtl_grp, service_queue);
180 	else
181 		return NULL;
182 }
183 
184 /**
185  * sq_to_td - return throtl_data the specified service queue belongs to
186  * @sq: the throtl_service_queue of interest
187  *
188  * A service_queue can be embeded in either a throtl_grp or throtl_data.
189  * Determine the associated throtl_data accordingly and return it.
190  */
191 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
192 {
193 	struct throtl_grp *tg = sq_to_tg(sq);
194 
195 	if (tg)
196 		return tg->td;
197 	else
198 		return container_of(sq, struct throtl_data, service_queue);
199 }
200 
201 /**
202  * throtl_log - log debug message via blktrace
203  * @sq: the service_queue being reported
204  * @fmt: printf format string
205  * @args: printf args
206  *
207  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
208  * throtl_grp; otherwise, just "throtl".
209  */
210 #define throtl_log(sq, fmt, args...)	do {				\
211 	struct throtl_grp *__tg = sq_to_tg((sq));			\
212 	struct throtl_data *__td = sq_to_td((sq));			\
213 									\
214 	(void)__td;							\
215 	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
216 		break;							\
217 	if ((__tg)) {							\
218 		char __pbuf[128];					\
219 									\
220 		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
221 		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
222 	} else {							\
223 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
224 	}								\
225 } while (0)
226 
227 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
228 {
229 	INIT_LIST_HEAD(&qn->node);
230 	bio_list_init(&qn->bios);
231 	qn->tg = tg;
232 }
233 
234 /**
235  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
236  * @bio: bio being added
237  * @qn: qnode to add bio to
238  * @queued: the service_queue->queued[] list @qn belongs to
239  *
240  * Add @bio to @qn and put @qn on @queued if it's not already on.
241  * @qn->tg's reference count is bumped when @qn is activated.  See the
242  * comment on top of throtl_qnode definition for details.
243  */
244 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
245 				 struct list_head *queued)
246 {
247 	bio_list_add(&qn->bios, bio);
248 	if (list_empty(&qn->node)) {
249 		list_add_tail(&qn->node, queued);
250 		blkg_get(tg_to_blkg(qn->tg));
251 	}
252 }
253 
254 /**
255  * throtl_peek_queued - peek the first bio on a qnode list
256  * @queued: the qnode list to peek
257  */
258 static struct bio *throtl_peek_queued(struct list_head *queued)
259 {
260 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
261 	struct bio *bio;
262 
263 	if (list_empty(queued))
264 		return NULL;
265 
266 	bio = bio_list_peek(&qn->bios);
267 	WARN_ON_ONCE(!bio);
268 	return bio;
269 }
270 
271 /**
272  * throtl_pop_queued - pop the first bio form a qnode list
273  * @queued: the qnode list to pop a bio from
274  * @tg_to_put: optional out argument for throtl_grp to put
275  *
276  * Pop the first bio from the qnode list @queued.  After popping, the first
277  * qnode is removed from @queued if empty or moved to the end of @queued so
278  * that the popping order is round-robin.
279  *
280  * When the first qnode is removed, its associated throtl_grp should be put
281  * too.  If @tg_to_put is NULL, this function automatically puts it;
282  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
283  * responsible for putting it.
284  */
285 static struct bio *throtl_pop_queued(struct list_head *queued,
286 				     struct throtl_grp **tg_to_put)
287 {
288 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
289 	struct bio *bio;
290 
291 	if (list_empty(queued))
292 		return NULL;
293 
294 	bio = bio_list_pop(&qn->bios);
295 	WARN_ON_ONCE(!bio);
296 
297 	if (bio_list_empty(&qn->bios)) {
298 		list_del_init(&qn->node);
299 		if (tg_to_put)
300 			*tg_to_put = qn->tg;
301 		else
302 			blkg_put(tg_to_blkg(qn->tg));
303 	} else {
304 		list_move_tail(&qn->node, queued);
305 	}
306 
307 	return bio;
308 }
309 
310 /* init a service_queue, assumes the caller zeroed it */
311 static void throtl_service_queue_init(struct throtl_service_queue *sq)
312 {
313 	INIT_LIST_HEAD(&sq->queued[0]);
314 	INIT_LIST_HEAD(&sq->queued[1]);
315 	sq->pending_tree = RB_ROOT;
316 	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
317 		    (unsigned long)sq);
318 }
319 
320 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
321 {
322 	struct throtl_grp *tg;
323 	int rw;
324 
325 	tg = kzalloc_node(sizeof(*tg), gfp, node);
326 	if (!tg)
327 		return NULL;
328 
329 	throtl_service_queue_init(&tg->service_queue);
330 
331 	for (rw = READ; rw <= WRITE; rw++) {
332 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
333 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
334 	}
335 
336 	RB_CLEAR_NODE(&tg->rb_node);
337 	tg->bps[READ] = -1;
338 	tg->bps[WRITE] = -1;
339 	tg->iops[READ] = -1;
340 	tg->iops[WRITE] = -1;
341 
342 	return &tg->pd;
343 }
344 
345 static void throtl_pd_init(struct blkg_policy_data *pd)
346 {
347 	struct throtl_grp *tg = pd_to_tg(pd);
348 	struct blkcg_gq *blkg = tg_to_blkg(tg);
349 	struct throtl_data *td = blkg->q->td;
350 	struct throtl_service_queue *sq = &tg->service_queue;
351 
352 	/*
353 	 * If on the default hierarchy, we switch to properly hierarchical
354 	 * behavior where limits on a given throtl_grp are applied to the
355 	 * whole subtree rather than just the group itself.  e.g. If 16M
356 	 * read_bps limit is set on the root group, the whole system can't
357 	 * exceed 16M for the device.
358 	 *
359 	 * If not on the default hierarchy, the broken flat hierarchy
360 	 * behavior is retained where all throtl_grps are treated as if
361 	 * they're all separate root groups right below throtl_data.
362 	 * Limits of a group don't interact with limits of other groups
363 	 * regardless of the position of the group in the hierarchy.
364 	 */
365 	sq->parent_sq = &td->service_queue;
366 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
367 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
368 	tg->td = td;
369 }
370 
371 /*
372  * Set has_rules[] if @tg or any of its parents have limits configured.
373  * This doesn't require walking up to the top of the hierarchy as the
374  * parent's has_rules[] is guaranteed to be correct.
375  */
376 static void tg_update_has_rules(struct throtl_grp *tg)
377 {
378 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
379 	int rw;
380 
381 	for (rw = READ; rw <= WRITE; rw++)
382 		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
383 				    (tg->bps[rw] != -1 || tg->iops[rw] != -1);
384 }
385 
386 static void throtl_pd_online(struct blkg_policy_data *pd)
387 {
388 	/*
389 	 * We don't want new groups to escape the limits of its ancestors.
390 	 * Update has_rules[] after a new group is brought online.
391 	 */
392 	tg_update_has_rules(pd_to_tg(pd));
393 }
394 
395 static void throtl_pd_free(struct blkg_policy_data *pd)
396 {
397 	struct throtl_grp *tg = pd_to_tg(pd);
398 
399 	del_timer_sync(&tg->service_queue.pending_timer);
400 	kfree(tg);
401 }
402 
403 static struct throtl_grp *
404 throtl_rb_first(struct throtl_service_queue *parent_sq)
405 {
406 	/* Service tree is empty */
407 	if (!parent_sq->nr_pending)
408 		return NULL;
409 
410 	if (!parent_sq->first_pending)
411 		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
412 
413 	if (parent_sq->first_pending)
414 		return rb_entry_tg(parent_sq->first_pending);
415 
416 	return NULL;
417 }
418 
419 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
420 {
421 	rb_erase(n, root);
422 	RB_CLEAR_NODE(n);
423 }
424 
425 static void throtl_rb_erase(struct rb_node *n,
426 			    struct throtl_service_queue *parent_sq)
427 {
428 	if (parent_sq->first_pending == n)
429 		parent_sq->first_pending = NULL;
430 	rb_erase_init(n, &parent_sq->pending_tree);
431 	--parent_sq->nr_pending;
432 }
433 
434 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
435 {
436 	struct throtl_grp *tg;
437 
438 	tg = throtl_rb_first(parent_sq);
439 	if (!tg)
440 		return;
441 
442 	parent_sq->first_pending_disptime = tg->disptime;
443 }
444 
445 static void tg_service_queue_add(struct throtl_grp *tg)
446 {
447 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
448 	struct rb_node **node = &parent_sq->pending_tree.rb_node;
449 	struct rb_node *parent = NULL;
450 	struct throtl_grp *__tg;
451 	unsigned long key = tg->disptime;
452 	int left = 1;
453 
454 	while (*node != NULL) {
455 		parent = *node;
456 		__tg = rb_entry_tg(parent);
457 
458 		if (time_before(key, __tg->disptime))
459 			node = &parent->rb_left;
460 		else {
461 			node = &parent->rb_right;
462 			left = 0;
463 		}
464 	}
465 
466 	if (left)
467 		parent_sq->first_pending = &tg->rb_node;
468 
469 	rb_link_node(&tg->rb_node, parent, node);
470 	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
471 }
472 
473 static void __throtl_enqueue_tg(struct throtl_grp *tg)
474 {
475 	tg_service_queue_add(tg);
476 	tg->flags |= THROTL_TG_PENDING;
477 	tg->service_queue.parent_sq->nr_pending++;
478 }
479 
480 static void throtl_enqueue_tg(struct throtl_grp *tg)
481 {
482 	if (!(tg->flags & THROTL_TG_PENDING))
483 		__throtl_enqueue_tg(tg);
484 }
485 
486 static void __throtl_dequeue_tg(struct throtl_grp *tg)
487 {
488 	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
489 	tg->flags &= ~THROTL_TG_PENDING;
490 }
491 
492 static void throtl_dequeue_tg(struct throtl_grp *tg)
493 {
494 	if (tg->flags & THROTL_TG_PENDING)
495 		__throtl_dequeue_tg(tg);
496 }
497 
498 /* Call with queue lock held */
499 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
500 					  unsigned long expires)
501 {
502 	mod_timer(&sq->pending_timer, expires);
503 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
504 		   expires - jiffies, jiffies);
505 }
506 
507 /**
508  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
509  * @sq: the service_queue to schedule dispatch for
510  * @force: force scheduling
511  *
512  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
513  * dispatch time of the first pending child.  Returns %true if either timer
514  * is armed or there's no pending child left.  %false if the current
515  * dispatch window is still open and the caller should continue
516  * dispatching.
517  *
518  * If @force is %true, the dispatch timer is always scheduled and this
519  * function is guaranteed to return %true.  This is to be used when the
520  * caller can't dispatch itself and needs to invoke pending_timer
521  * unconditionally.  Note that forced scheduling is likely to induce short
522  * delay before dispatch starts even if @sq->first_pending_disptime is not
523  * in the future and thus shouldn't be used in hot paths.
524  */
525 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
526 					  bool force)
527 {
528 	/* any pending children left? */
529 	if (!sq->nr_pending)
530 		return true;
531 
532 	update_min_dispatch_time(sq);
533 
534 	/* is the next dispatch time in the future? */
535 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
536 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
537 		return true;
538 	}
539 
540 	/* tell the caller to continue dispatching */
541 	return false;
542 }
543 
544 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
545 		bool rw, unsigned long start)
546 {
547 	tg->bytes_disp[rw] = 0;
548 	tg->io_disp[rw] = 0;
549 
550 	/*
551 	 * Previous slice has expired. We must have trimmed it after last
552 	 * bio dispatch. That means since start of last slice, we never used
553 	 * that bandwidth. Do try to make use of that bandwidth while giving
554 	 * credit.
555 	 */
556 	if (time_after_eq(start, tg->slice_start[rw]))
557 		tg->slice_start[rw] = start;
558 
559 	tg->slice_end[rw] = jiffies + throtl_slice;
560 	throtl_log(&tg->service_queue,
561 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
562 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
563 		   tg->slice_end[rw], jiffies);
564 }
565 
566 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
567 {
568 	tg->bytes_disp[rw] = 0;
569 	tg->io_disp[rw] = 0;
570 	tg->slice_start[rw] = jiffies;
571 	tg->slice_end[rw] = jiffies + throtl_slice;
572 	throtl_log(&tg->service_queue,
573 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
574 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
575 		   tg->slice_end[rw], jiffies);
576 }
577 
578 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
579 					unsigned long jiffy_end)
580 {
581 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
582 }
583 
584 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
585 				       unsigned long jiffy_end)
586 {
587 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
588 	throtl_log(&tg->service_queue,
589 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
590 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
591 		   tg->slice_end[rw], jiffies);
592 }
593 
594 /* Determine if previously allocated or extended slice is complete or not */
595 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
596 {
597 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
598 		return false;
599 
600 	return 1;
601 }
602 
603 /* Trim the used slices and adjust slice start accordingly */
604 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
605 {
606 	unsigned long nr_slices, time_elapsed, io_trim;
607 	u64 bytes_trim, tmp;
608 
609 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
610 
611 	/*
612 	 * If bps are unlimited (-1), then time slice don't get
613 	 * renewed. Don't try to trim the slice if slice is used. A new
614 	 * slice will start when appropriate.
615 	 */
616 	if (throtl_slice_used(tg, rw))
617 		return;
618 
619 	/*
620 	 * A bio has been dispatched. Also adjust slice_end. It might happen
621 	 * that initially cgroup limit was very low resulting in high
622 	 * slice_end, but later limit was bumped up and bio was dispached
623 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
624 	 * is bad because it does not allow new slice to start.
625 	 */
626 
627 	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
628 
629 	time_elapsed = jiffies - tg->slice_start[rw];
630 
631 	nr_slices = time_elapsed / throtl_slice;
632 
633 	if (!nr_slices)
634 		return;
635 	tmp = tg->bps[rw] * throtl_slice * nr_slices;
636 	do_div(tmp, HZ);
637 	bytes_trim = tmp;
638 
639 	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
640 
641 	if (!bytes_trim && !io_trim)
642 		return;
643 
644 	if (tg->bytes_disp[rw] >= bytes_trim)
645 		tg->bytes_disp[rw] -= bytes_trim;
646 	else
647 		tg->bytes_disp[rw] = 0;
648 
649 	if (tg->io_disp[rw] >= io_trim)
650 		tg->io_disp[rw] -= io_trim;
651 	else
652 		tg->io_disp[rw] = 0;
653 
654 	tg->slice_start[rw] += nr_slices * throtl_slice;
655 
656 	throtl_log(&tg->service_queue,
657 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
658 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
659 		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
660 }
661 
662 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
663 				  unsigned long *wait)
664 {
665 	bool rw = bio_data_dir(bio);
666 	unsigned int io_allowed;
667 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
668 	u64 tmp;
669 
670 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
671 
672 	/* Slice has just started. Consider one slice interval */
673 	if (!jiffy_elapsed)
674 		jiffy_elapsed_rnd = throtl_slice;
675 
676 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
677 
678 	/*
679 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
680 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
681 	 * will allow dispatch after 1 second and after that slice should
682 	 * have been trimmed.
683 	 */
684 
685 	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
686 	do_div(tmp, HZ);
687 
688 	if (tmp > UINT_MAX)
689 		io_allowed = UINT_MAX;
690 	else
691 		io_allowed = tmp;
692 
693 	if (tg->io_disp[rw] + 1 <= io_allowed) {
694 		if (wait)
695 			*wait = 0;
696 		return true;
697 	}
698 
699 	/* Calc approx time to dispatch */
700 	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
701 
702 	if (jiffy_wait > jiffy_elapsed)
703 		jiffy_wait = jiffy_wait - jiffy_elapsed;
704 	else
705 		jiffy_wait = 1;
706 
707 	if (wait)
708 		*wait = jiffy_wait;
709 	return 0;
710 }
711 
712 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
713 				 unsigned long *wait)
714 {
715 	bool rw = bio_data_dir(bio);
716 	u64 bytes_allowed, extra_bytes, tmp;
717 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
718 
719 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
720 
721 	/* Slice has just started. Consider one slice interval */
722 	if (!jiffy_elapsed)
723 		jiffy_elapsed_rnd = throtl_slice;
724 
725 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
726 
727 	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
728 	do_div(tmp, HZ);
729 	bytes_allowed = tmp;
730 
731 	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
732 		if (wait)
733 			*wait = 0;
734 		return true;
735 	}
736 
737 	/* Calc approx time to dispatch */
738 	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
739 	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
740 
741 	if (!jiffy_wait)
742 		jiffy_wait = 1;
743 
744 	/*
745 	 * This wait time is without taking into consideration the rounding
746 	 * up we did. Add that time also.
747 	 */
748 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
749 	if (wait)
750 		*wait = jiffy_wait;
751 	return 0;
752 }
753 
754 /*
755  * Returns whether one can dispatch a bio or not. Also returns approx number
756  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
757  */
758 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
759 			    unsigned long *wait)
760 {
761 	bool rw = bio_data_dir(bio);
762 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
763 
764 	/*
765  	 * Currently whole state machine of group depends on first bio
766 	 * queued in the group bio list. So one should not be calling
767 	 * this function with a different bio if there are other bios
768 	 * queued.
769 	 */
770 	BUG_ON(tg->service_queue.nr_queued[rw] &&
771 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
772 
773 	/* If tg->bps = -1, then BW is unlimited */
774 	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
775 		if (wait)
776 			*wait = 0;
777 		return true;
778 	}
779 
780 	/*
781 	 * If previous slice expired, start a new one otherwise renew/extend
782 	 * existing slice to make sure it is at least throtl_slice interval
783 	 * long since now.
784 	 */
785 	if (throtl_slice_used(tg, rw))
786 		throtl_start_new_slice(tg, rw);
787 	else {
788 		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
789 			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
790 	}
791 
792 	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
793 	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
794 		if (wait)
795 			*wait = 0;
796 		return 1;
797 	}
798 
799 	max_wait = max(bps_wait, iops_wait);
800 
801 	if (wait)
802 		*wait = max_wait;
803 
804 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
805 		throtl_extend_slice(tg, rw, jiffies + max_wait);
806 
807 	return 0;
808 }
809 
810 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
811 {
812 	bool rw = bio_data_dir(bio);
813 
814 	/* Charge the bio to the group */
815 	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
816 	tg->io_disp[rw]++;
817 
818 	/*
819 	 * REQ_THROTTLED is used to prevent the same bio to be throttled
820 	 * more than once as a throttled bio will go through blk-throtl the
821 	 * second time when it eventually gets issued.  Set it when a bio
822 	 * is being charged to a tg.
823 	 */
824 	if (!(bio->bi_opf & REQ_THROTTLED))
825 		bio->bi_opf |= REQ_THROTTLED;
826 }
827 
828 /**
829  * throtl_add_bio_tg - add a bio to the specified throtl_grp
830  * @bio: bio to add
831  * @qn: qnode to use
832  * @tg: the target throtl_grp
833  *
834  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
835  * tg->qnode_on_self[] is used.
836  */
837 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
838 			      struct throtl_grp *tg)
839 {
840 	struct throtl_service_queue *sq = &tg->service_queue;
841 	bool rw = bio_data_dir(bio);
842 
843 	if (!qn)
844 		qn = &tg->qnode_on_self[rw];
845 
846 	/*
847 	 * If @tg doesn't currently have any bios queued in the same
848 	 * direction, queueing @bio can change when @tg should be
849 	 * dispatched.  Mark that @tg was empty.  This is automatically
850 	 * cleaered on the next tg_update_disptime().
851 	 */
852 	if (!sq->nr_queued[rw])
853 		tg->flags |= THROTL_TG_WAS_EMPTY;
854 
855 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
856 
857 	sq->nr_queued[rw]++;
858 	throtl_enqueue_tg(tg);
859 }
860 
861 static void tg_update_disptime(struct throtl_grp *tg)
862 {
863 	struct throtl_service_queue *sq = &tg->service_queue;
864 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
865 	struct bio *bio;
866 
867 	if ((bio = throtl_peek_queued(&sq->queued[READ])))
868 		tg_may_dispatch(tg, bio, &read_wait);
869 
870 	if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
871 		tg_may_dispatch(tg, bio, &write_wait);
872 
873 	min_wait = min(read_wait, write_wait);
874 	disptime = jiffies + min_wait;
875 
876 	/* Update dispatch time */
877 	throtl_dequeue_tg(tg);
878 	tg->disptime = disptime;
879 	throtl_enqueue_tg(tg);
880 
881 	/* see throtl_add_bio_tg() */
882 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
883 }
884 
885 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
886 					struct throtl_grp *parent_tg, bool rw)
887 {
888 	if (throtl_slice_used(parent_tg, rw)) {
889 		throtl_start_new_slice_with_credit(parent_tg, rw,
890 				child_tg->slice_start[rw]);
891 	}
892 
893 }
894 
895 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
896 {
897 	struct throtl_service_queue *sq = &tg->service_queue;
898 	struct throtl_service_queue *parent_sq = sq->parent_sq;
899 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
900 	struct throtl_grp *tg_to_put = NULL;
901 	struct bio *bio;
902 
903 	/*
904 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
905 	 * from @tg may put its reference and @parent_sq might end up
906 	 * getting released prematurely.  Remember the tg to put and put it
907 	 * after @bio is transferred to @parent_sq.
908 	 */
909 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
910 	sq->nr_queued[rw]--;
911 
912 	throtl_charge_bio(tg, bio);
913 
914 	/*
915 	 * If our parent is another tg, we just need to transfer @bio to
916 	 * the parent using throtl_add_bio_tg().  If our parent is
917 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
918 	 * bio_lists[] and decrease total number queued.  The caller is
919 	 * responsible for issuing these bios.
920 	 */
921 	if (parent_tg) {
922 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
923 		start_parent_slice_with_credit(tg, parent_tg, rw);
924 	} else {
925 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
926 				     &parent_sq->queued[rw]);
927 		BUG_ON(tg->td->nr_queued[rw] <= 0);
928 		tg->td->nr_queued[rw]--;
929 	}
930 
931 	throtl_trim_slice(tg, rw);
932 
933 	if (tg_to_put)
934 		blkg_put(tg_to_blkg(tg_to_put));
935 }
936 
937 static int throtl_dispatch_tg(struct throtl_grp *tg)
938 {
939 	struct throtl_service_queue *sq = &tg->service_queue;
940 	unsigned int nr_reads = 0, nr_writes = 0;
941 	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
942 	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
943 	struct bio *bio;
944 
945 	/* Try to dispatch 75% READS and 25% WRITES */
946 
947 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
948 	       tg_may_dispatch(tg, bio, NULL)) {
949 
950 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
951 		nr_reads++;
952 
953 		if (nr_reads >= max_nr_reads)
954 			break;
955 	}
956 
957 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
958 	       tg_may_dispatch(tg, bio, NULL)) {
959 
960 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
961 		nr_writes++;
962 
963 		if (nr_writes >= max_nr_writes)
964 			break;
965 	}
966 
967 	return nr_reads + nr_writes;
968 }
969 
970 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
971 {
972 	unsigned int nr_disp = 0;
973 
974 	while (1) {
975 		struct throtl_grp *tg = throtl_rb_first(parent_sq);
976 		struct throtl_service_queue *sq = &tg->service_queue;
977 
978 		if (!tg)
979 			break;
980 
981 		if (time_before(jiffies, tg->disptime))
982 			break;
983 
984 		throtl_dequeue_tg(tg);
985 
986 		nr_disp += throtl_dispatch_tg(tg);
987 
988 		if (sq->nr_queued[0] || sq->nr_queued[1])
989 			tg_update_disptime(tg);
990 
991 		if (nr_disp >= throtl_quantum)
992 			break;
993 	}
994 
995 	return nr_disp;
996 }
997 
998 /**
999  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1000  * @arg: the throtl_service_queue being serviced
1001  *
1002  * This timer is armed when a child throtl_grp with active bio's become
1003  * pending and queued on the service_queue's pending_tree and expires when
1004  * the first child throtl_grp should be dispatched.  This function
1005  * dispatches bio's from the children throtl_grps to the parent
1006  * service_queue.
1007  *
1008  * If the parent's parent is another throtl_grp, dispatching is propagated
1009  * by either arming its pending_timer or repeating dispatch directly.  If
1010  * the top-level service_tree is reached, throtl_data->dispatch_work is
1011  * kicked so that the ready bio's are issued.
1012  */
1013 static void throtl_pending_timer_fn(unsigned long arg)
1014 {
1015 	struct throtl_service_queue *sq = (void *)arg;
1016 	struct throtl_grp *tg = sq_to_tg(sq);
1017 	struct throtl_data *td = sq_to_td(sq);
1018 	struct request_queue *q = td->queue;
1019 	struct throtl_service_queue *parent_sq;
1020 	bool dispatched;
1021 	int ret;
1022 
1023 	spin_lock_irq(q->queue_lock);
1024 again:
1025 	parent_sq = sq->parent_sq;
1026 	dispatched = false;
1027 
1028 	while (true) {
1029 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1030 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1031 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1032 
1033 		ret = throtl_select_dispatch(sq);
1034 		if (ret) {
1035 			throtl_log(sq, "bios disp=%u", ret);
1036 			dispatched = true;
1037 		}
1038 
1039 		if (throtl_schedule_next_dispatch(sq, false))
1040 			break;
1041 
1042 		/* this dispatch windows is still open, relax and repeat */
1043 		spin_unlock_irq(q->queue_lock);
1044 		cpu_relax();
1045 		spin_lock_irq(q->queue_lock);
1046 	}
1047 
1048 	if (!dispatched)
1049 		goto out_unlock;
1050 
1051 	if (parent_sq) {
1052 		/* @parent_sq is another throl_grp, propagate dispatch */
1053 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1054 			tg_update_disptime(tg);
1055 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1056 				/* window is already open, repeat dispatching */
1057 				sq = parent_sq;
1058 				tg = sq_to_tg(sq);
1059 				goto again;
1060 			}
1061 		}
1062 	} else {
1063 		/* reached the top-level, queue issueing */
1064 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1065 	}
1066 out_unlock:
1067 	spin_unlock_irq(q->queue_lock);
1068 }
1069 
1070 /**
1071  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1072  * @work: work item being executed
1073  *
1074  * This function is queued for execution when bio's reach the bio_lists[]
1075  * of throtl_data->service_queue.  Those bio's are ready and issued by this
1076  * function.
1077  */
1078 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1079 {
1080 	struct throtl_data *td = container_of(work, struct throtl_data,
1081 					      dispatch_work);
1082 	struct throtl_service_queue *td_sq = &td->service_queue;
1083 	struct request_queue *q = td->queue;
1084 	struct bio_list bio_list_on_stack;
1085 	struct bio *bio;
1086 	struct blk_plug plug;
1087 	int rw;
1088 
1089 	bio_list_init(&bio_list_on_stack);
1090 
1091 	spin_lock_irq(q->queue_lock);
1092 	for (rw = READ; rw <= WRITE; rw++)
1093 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1094 			bio_list_add(&bio_list_on_stack, bio);
1095 	spin_unlock_irq(q->queue_lock);
1096 
1097 	if (!bio_list_empty(&bio_list_on_stack)) {
1098 		blk_start_plug(&plug);
1099 		while((bio = bio_list_pop(&bio_list_on_stack)))
1100 			generic_make_request(bio);
1101 		blk_finish_plug(&plug);
1102 	}
1103 }
1104 
1105 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1106 			      int off)
1107 {
1108 	struct throtl_grp *tg = pd_to_tg(pd);
1109 	u64 v = *(u64 *)((void *)tg + off);
1110 
1111 	if (v == -1)
1112 		return 0;
1113 	return __blkg_prfill_u64(sf, pd, v);
1114 }
1115 
1116 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1117 			       int off)
1118 {
1119 	struct throtl_grp *tg = pd_to_tg(pd);
1120 	unsigned int v = *(unsigned int *)((void *)tg + off);
1121 
1122 	if (v == -1)
1123 		return 0;
1124 	return __blkg_prfill_u64(sf, pd, v);
1125 }
1126 
1127 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1128 {
1129 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1130 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1131 	return 0;
1132 }
1133 
1134 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1135 {
1136 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1137 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1138 	return 0;
1139 }
1140 
1141 static void tg_conf_updated(struct throtl_grp *tg)
1142 {
1143 	struct throtl_service_queue *sq = &tg->service_queue;
1144 	struct cgroup_subsys_state *pos_css;
1145 	struct blkcg_gq *blkg;
1146 
1147 	throtl_log(&tg->service_queue,
1148 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1149 		   tg->bps[READ], tg->bps[WRITE],
1150 		   tg->iops[READ], tg->iops[WRITE]);
1151 
1152 	/*
1153 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1154 	 * considered to have rules if either the tg itself or any of its
1155 	 * ancestors has rules.  This identifies groups without any
1156 	 * restrictions in the whole hierarchy and allows them to bypass
1157 	 * blk-throttle.
1158 	 */
1159 	blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1160 		tg_update_has_rules(blkg_to_tg(blkg));
1161 
1162 	/*
1163 	 * We're already holding queue_lock and know @tg is valid.  Let's
1164 	 * apply the new config directly.
1165 	 *
1166 	 * Restart the slices for both READ and WRITES. It might happen
1167 	 * that a group's limit are dropped suddenly and we don't want to
1168 	 * account recently dispatched IO with new low rate.
1169 	 */
1170 	throtl_start_new_slice(tg, 0);
1171 	throtl_start_new_slice(tg, 1);
1172 
1173 	if (tg->flags & THROTL_TG_PENDING) {
1174 		tg_update_disptime(tg);
1175 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1176 	}
1177 }
1178 
1179 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1180 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1181 {
1182 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1183 	struct blkg_conf_ctx ctx;
1184 	struct throtl_grp *tg;
1185 	int ret;
1186 	u64 v;
1187 
1188 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1189 	if (ret)
1190 		return ret;
1191 
1192 	ret = -EINVAL;
1193 	if (sscanf(ctx.body, "%llu", &v) != 1)
1194 		goto out_finish;
1195 	if (!v)
1196 		v = -1;
1197 
1198 	tg = blkg_to_tg(ctx.blkg);
1199 
1200 	if (is_u64)
1201 		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1202 	else
1203 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1204 
1205 	tg_conf_updated(tg);
1206 	ret = 0;
1207 out_finish:
1208 	blkg_conf_finish(&ctx);
1209 	return ret ?: nbytes;
1210 }
1211 
1212 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1213 			       char *buf, size_t nbytes, loff_t off)
1214 {
1215 	return tg_set_conf(of, buf, nbytes, off, true);
1216 }
1217 
1218 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1219 				char *buf, size_t nbytes, loff_t off)
1220 {
1221 	return tg_set_conf(of, buf, nbytes, off, false);
1222 }
1223 
1224 static struct cftype throtl_legacy_files[] = {
1225 	{
1226 		.name = "throttle.read_bps_device",
1227 		.private = offsetof(struct throtl_grp, bps[READ]),
1228 		.seq_show = tg_print_conf_u64,
1229 		.write = tg_set_conf_u64,
1230 	},
1231 	{
1232 		.name = "throttle.write_bps_device",
1233 		.private = offsetof(struct throtl_grp, bps[WRITE]),
1234 		.seq_show = tg_print_conf_u64,
1235 		.write = tg_set_conf_u64,
1236 	},
1237 	{
1238 		.name = "throttle.read_iops_device",
1239 		.private = offsetof(struct throtl_grp, iops[READ]),
1240 		.seq_show = tg_print_conf_uint,
1241 		.write = tg_set_conf_uint,
1242 	},
1243 	{
1244 		.name = "throttle.write_iops_device",
1245 		.private = offsetof(struct throtl_grp, iops[WRITE]),
1246 		.seq_show = tg_print_conf_uint,
1247 		.write = tg_set_conf_uint,
1248 	},
1249 	{
1250 		.name = "throttle.io_service_bytes",
1251 		.private = (unsigned long)&blkcg_policy_throtl,
1252 		.seq_show = blkg_print_stat_bytes,
1253 	},
1254 	{
1255 		.name = "throttle.io_serviced",
1256 		.private = (unsigned long)&blkcg_policy_throtl,
1257 		.seq_show = blkg_print_stat_ios,
1258 	},
1259 	{ }	/* terminate */
1260 };
1261 
1262 static u64 tg_prfill_max(struct seq_file *sf, struct blkg_policy_data *pd,
1263 			 int off)
1264 {
1265 	struct throtl_grp *tg = pd_to_tg(pd);
1266 	const char *dname = blkg_dev_name(pd->blkg);
1267 	char bufs[4][21] = { "max", "max", "max", "max" };
1268 
1269 	if (!dname)
1270 		return 0;
1271 	if (tg->bps[READ] == -1 && tg->bps[WRITE] == -1 &&
1272 	    tg->iops[READ] == -1 && tg->iops[WRITE] == -1)
1273 		return 0;
1274 
1275 	if (tg->bps[READ] != -1)
1276 		snprintf(bufs[0], sizeof(bufs[0]), "%llu", tg->bps[READ]);
1277 	if (tg->bps[WRITE] != -1)
1278 		snprintf(bufs[1], sizeof(bufs[1]), "%llu", tg->bps[WRITE]);
1279 	if (tg->iops[READ] != -1)
1280 		snprintf(bufs[2], sizeof(bufs[2]), "%u", tg->iops[READ]);
1281 	if (tg->iops[WRITE] != -1)
1282 		snprintf(bufs[3], sizeof(bufs[3]), "%u", tg->iops[WRITE]);
1283 
1284 	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
1285 		   dname, bufs[0], bufs[1], bufs[2], bufs[3]);
1286 	return 0;
1287 }
1288 
1289 static int tg_print_max(struct seq_file *sf, void *v)
1290 {
1291 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_max,
1292 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1293 	return 0;
1294 }
1295 
1296 static ssize_t tg_set_max(struct kernfs_open_file *of,
1297 			  char *buf, size_t nbytes, loff_t off)
1298 {
1299 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1300 	struct blkg_conf_ctx ctx;
1301 	struct throtl_grp *tg;
1302 	u64 v[4];
1303 	int ret;
1304 
1305 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1306 	if (ret)
1307 		return ret;
1308 
1309 	tg = blkg_to_tg(ctx.blkg);
1310 
1311 	v[0] = tg->bps[READ];
1312 	v[1] = tg->bps[WRITE];
1313 	v[2] = tg->iops[READ];
1314 	v[3] = tg->iops[WRITE];
1315 
1316 	while (true) {
1317 		char tok[27];	/* wiops=18446744073709551616 */
1318 		char *p;
1319 		u64 val = -1;
1320 		int len;
1321 
1322 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1323 			break;
1324 		if (tok[0] == '\0')
1325 			break;
1326 		ctx.body += len;
1327 
1328 		ret = -EINVAL;
1329 		p = tok;
1330 		strsep(&p, "=");
1331 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1332 			goto out_finish;
1333 
1334 		ret = -ERANGE;
1335 		if (!val)
1336 			goto out_finish;
1337 
1338 		ret = -EINVAL;
1339 		if (!strcmp(tok, "rbps"))
1340 			v[0] = val;
1341 		else if (!strcmp(tok, "wbps"))
1342 			v[1] = val;
1343 		else if (!strcmp(tok, "riops"))
1344 			v[2] = min_t(u64, val, UINT_MAX);
1345 		else if (!strcmp(tok, "wiops"))
1346 			v[3] = min_t(u64, val, UINT_MAX);
1347 		else
1348 			goto out_finish;
1349 	}
1350 
1351 	tg->bps[READ] = v[0];
1352 	tg->bps[WRITE] = v[1];
1353 	tg->iops[READ] = v[2];
1354 	tg->iops[WRITE] = v[3];
1355 
1356 	tg_conf_updated(tg);
1357 	ret = 0;
1358 out_finish:
1359 	blkg_conf_finish(&ctx);
1360 	return ret ?: nbytes;
1361 }
1362 
1363 static struct cftype throtl_files[] = {
1364 	{
1365 		.name = "max",
1366 		.flags = CFTYPE_NOT_ON_ROOT,
1367 		.seq_show = tg_print_max,
1368 		.write = tg_set_max,
1369 	},
1370 	{ }	/* terminate */
1371 };
1372 
1373 static void throtl_shutdown_wq(struct request_queue *q)
1374 {
1375 	struct throtl_data *td = q->td;
1376 
1377 	cancel_work_sync(&td->dispatch_work);
1378 }
1379 
1380 static struct blkcg_policy blkcg_policy_throtl = {
1381 	.dfl_cftypes		= throtl_files,
1382 	.legacy_cftypes		= throtl_legacy_files,
1383 
1384 	.pd_alloc_fn		= throtl_pd_alloc,
1385 	.pd_init_fn		= throtl_pd_init,
1386 	.pd_online_fn		= throtl_pd_online,
1387 	.pd_free_fn		= throtl_pd_free,
1388 };
1389 
1390 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
1391 		    struct bio *bio)
1392 {
1393 	struct throtl_qnode *qn = NULL;
1394 	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
1395 	struct throtl_service_queue *sq;
1396 	bool rw = bio_data_dir(bio);
1397 	bool throttled = false;
1398 
1399 	WARN_ON_ONCE(!rcu_read_lock_held());
1400 
1401 	/* see throtl_charge_bio() */
1402 	if ((bio->bi_opf & REQ_THROTTLED) || !tg->has_rules[rw])
1403 		goto out;
1404 
1405 	spin_lock_irq(q->queue_lock);
1406 
1407 	if (unlikely(blk_queue_bypass(q)))
1408 		goto out_unlock;
1409 
1410 	sq = &tg->service_queue;
1411 
1412 	while (true) {
1413 		/* throtl is FIFO - if bios are already queued, should queue */
1414 		if (sq->nr_queued[rw])
1415 			break;
1416 
1417 		/* if above limits, break to queue */
1418 		if (!tg_may_dispatch(tg, bio, NULL))
1419 			break;
1420 
1421 		/* within limits, let's charge and dispatch directly */
1422 		throtl_charge_bio(tg, bio);
1423 
1424 		/*
1425 		 * We need to trim slice even when bios are not being queued
1426 		 * otherwise it might happen that a bio is not queued for
1427 		 * a long time and slice keeps on extending and trim is not
1428 		 * called for a long time. Now if limits are reduced suddenly
1429 		 * we take into account all the IO dispatched so far at new
1430 		 * low rate and * newly queued IO gets a really long dispatch
1431 		 * time.
1432 		 *
1433 		 * So keep on trimming slice even if bio is not queued.
1434 		 */
1435 		throtl_trim_slice(tg, rw);
1436 
1437 		/*
1438 		 * @bio passed through this layer without being throttled.
1439 		 * Climb up the ladder.  If we''re already at the top, it
1440 		 * can be executed directly.
1441 		 */
1442 		qn = &tg->qnode_on_parent[rw];
1443 		sq = sq->parent_sq;
1444 		tg = sq_to_tg(sq);
1445 		if (!tg)
1446 			goto out_unlock;
1447 	}
1448 
1449 	/* out-of-limit, queue to @tg */
1450 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1451 		   rw == READ ? 'R' : 'W',
1452 		   tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
1453 		   tg->io_disp[rw], tg->iops[rw],
1454 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1455 
1456 	bio_associate_current(bio);
1457 	tg->td->nr_queued[rw]++;
1458 	throtl_add_bio_tg(bio, qn, tg);
1459 	throttled = true;
1460 
1461 	/*
1462 	 * Update @tg's dispatch time and force schedule dispatch if @tg
1463 	 * was empty before @bio.  The forced scheduling isn't likely to
1464 	 * cause undue delay as @bio is likely to be dispatched directly if
1465 	 * its @tg's disptime is not in the future.
1466 	 */
1467 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1468 		tg_update_disptime(tg);
1469 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1470 	}
1471 
1472 out_unlock:
1473 	spin_unlock_irq(q->queue_lock);
1474 out:
1475 	/*
1476 	 * As multiple blk-throtls may stack in the same issue path, we
1477 	 * don't want bios to leave with the flag set.  Clear the flag if
1478 	 * being issued.
1479 	 */
1480 	if (!throttled)
1481 		bio->bi_opf &= ~REQ_THROTTLED;
1482 	return throttled;
1483 }
1484 
1485 /*
1486  * Dispatch all bios from all children tg's queued on @parent_sq.  On
1487  * return, @parent_sq is guaranteed to not have any active children tg's
1488  * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1489  */
1490 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1491 {
1492 	struct throtl_grp *tg;
1493 
1494 	while ((tg = throtl_rb_first(parent_sq))) {
1495 		struct throtl_service_queue *sq = &tg->service_queue;
1496 		struct bio *bio;
1497 
1498 		throtl_dequeue_tg(tg);
1499 
1500 		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1501 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1502 		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1503 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1504 	}
1505 }
1506 
1507 /**
1508  * blk_throtl_drain - drain throttled bios
1509  * @q: request_queue to drain throttled bios for
1510  *
1511  * Dispatch all currently throttled bios on @q through ->make_request_fn().
1512  */
1513 void blk_throtl_drain(struct request_queue *q)
1514 	__releases(q->queue_lock) __acquires(q->queue_lock)
1515 {
1516 	struct throtl_data *td = q->td;
1517 	struct blkcg_gq *blkg;
1518 	struct cgroup_subsys_state *pos_css;
1519 	struct bio *bio;
1520 	int rw;
1521 
1522 	queue_lockdep_assert_held(q);
1523 	rcu_read_lock();
1524 
1525 	/*
1526 	 * Drain each tg while doing post-order walk on the blkg tree, so
1527 	 * that all bios are propagated to td->service_queue.  It'd be
1528 	 * better to walk service_queue tree directly but blkg walk is
1529 	 * easier.
1530 	 */
1531 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1532 		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1533 
1534 	/* finally, transfer bios from top-level tg's into the td */
1535 	tg_drain_bios(&td->service_queue);
1536 
1537 	rcu_read_unlock();
1538 	spin_unlock_irq(q->queue_lock);
1539 
1540 	/* all bios now should be in td->service_queue, issue them */
1541 	for (rw = READ; rw <= WRITE; rw++)
1542 		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1543 						NULL)))
1544 			generic_make_request(bio);
1545 
1546 	spin_lock_irq(q->queue_lock);
1547 }
1548 
1549 int blk_throtl_init(struct request_queue *q)
1550 {
1551 	struct throtl_data *td;
1552 	int ret;
1553 
1554 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1555 	if (!td)
1556 		return -ENOMEM;
1557 
1558 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1559 	throtl_service_queue_init(&td->service_queue);
1560 
1561 	q->td = td;
1562 	td->queue = q;
1563 
1564 	/* activate policy */
1565 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1566 	if (ret)
1567 		kfree(td);
1568 	return ret;
1569 }
1570 
1571 void blk_throtl_exit(struct request_queue *q)
1572 {
1573 	BUG_ON(!q->td);
1574 	throtl_shutdown_wq(q);
1575 	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1576 	kfree(q->td);
1577 }
1578 
1579 static int __init throtl_init(void)
1580 {
1581 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1582 	if (!kthrotld_workqueue)
1583 		panic("Failed to create kthrotld\n");
1584 
1585 	return blkcg_policy_register(&blkcg_policy_throtl);
1586 }
1587 
1588 module_init(throtl_init);
1589