xref: /openbmc/linux/block/blk-throttle.c (revision 261a9af6)
1 /*
2  * Interface for controlling IO bandwidth on a request queue
3  *
4  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5  */
6 
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
13 
14 /* Max dispatch from a group in 1 round */
15 static int throtl_grp_quantum = 8;
16 
17 /* Total max dispatch from all groups in one round */
18 static int throtl_quantum = 32;
19 
20 /* Throttling is performed over 100ms slice and after that slice is renewed */
21 static unsigned long throtl_slice = HZ/10;	/* 100 ms */
22 
23 /* A workqueue to queue throttle related work */
24 static struct workqueue_struct *kthrotld_workqueue;
25 static void throtl_schedule_delayed_work(struct throtl_data *td,
26 				unsigned long delay);
27 
28 struct throtl_rb_root {
29 	struct rb_root rb;
30 	struct rb_node *left;
31 	unsigned int count;
32 	unsigned long min_disptime;
33 };
34 
35 #define THROTL_RB_ROOT	(struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
36 			.count = 0, .min_disptime = 0}
37 
38 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
39 
40 struct throtl_grp {
41 	/* List of throtl groups on the request queue*/
42 	struct hlist_node tg_node;
43 
44 	/* active throtl group service_tree member */
45 	struct rb_node rb_node;
46 
47 	/*
48 	 * Dispatch time in jiffies. This is the estimated time when group
49 	 * will unthrottle and is ready to dispatch more bio. It is used as
50 	 * key to sort active groups in service tree.
51 	 */
52 	unsigned long disptime;
53 
54 	struct blkio_group blkg;
55 	atomic_t ref;
56 	unsigned int flags;
57 
58 	/* Two lists for READ and WRITE */
59 	struct bio_list bio_lists[2];
60 
61 	/* Number of queued bios on READ and WRITE lists */
62 	unsigned int nr_queued[2];
63 
64 	/* bytes per second rate limits */
65 	uint64_t bps[2];
66 
67 	/* IOPS limits */
68 	unsigned int iops[2];
69 
70 	/* Number of bytes disptached in current slice */
71 	uint64_t bytes_disp[2];
72 	/* Number of bio's dispatched in current slice */
73 	unsigned int io_disp[2];
74 
75 	/* When did we start a new slice */
76 	unsigned long slice_start[2];
77 	unsigned long slice_end[2];
78 
79 	/* Some throttle limits got updated for the group */
80 	int limits_changed;
81 
82 	struct rcu_head rcu_head;
83 };
84 
85 struct throtl_data
86 {
87 	/* List of throtl groups */
88 	struct hlist_head tg_list;
89 
90 	/* service tree for active throtl groups */
91 	struct throtl_rb_root tg_service_tree;
92 
93 	struct throtl_grp *root_tg;
94 	struct request_queue *queue;
95 
96 	/* Total Number of queued bios on READ and WRITE lists */
97 	unsigned int nr_queued[2];
98 
99 	/*
100 	 * number of total undestroyed groups
101 	 */
102 	unsigned int nr_undestroyed_grps;
103 
104 	/* Work for dispatching throttled bios */
105 	struct delayed_work throtl_work;
106 
107 	int limits_changed;
108 };
109 
110 enum tg_state_flags {
111 	THROTL_TG_FLAG_on_rr = 0,	/* on round-robin busy list */
112 };
113 
114 #define THROTL_TG_FNS(name)						\
115 static inline void throtl_mark_tg_##name(struct throtl_grp *tg)		\
116 {									\
117 	(tg)->flags |= (1 << THROTL_TG_FLAG_##name);			\
118 }									\
119 static inline void throtl_clear_tg_##name(struct throtl_grp *tg)	\
120 {									\
121 	(tg)->flags &= ~(1 << THROTL_TG_FLAG_##name);			\
122 }									\
123 static inline int throtl_tg_##name(const struct throtl_grp *tg)		\
124 {									\
125 	return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0;	\
126 }
127 
128 THROTL_TG_FNS(on_rr);
129 
130 #define throtl_log_tg(td, tg, fmt, args...)				\
131 	blk_add_trace_msg((td)->queue, "throtl %s " fmt,		\
132 				blkg_path(&(tg)->blkg), ##args);      	\
133 
134 #define throtl_log(td, fmt, args...)	\
135 	blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
136 
137 static inline struct throtl_grp *tg_of_blkg(struct blkio_group *blkg)
138 {
139 	if (blkg)
140 		return container_of(blkg, struct throtl_grp, blkg);
141 
142 	return NULL;
143 }
144 
145 static inline int total_nr_queued(struct throtl_data *td)
146 {
147 	return (td->nr_queued[0] + td->nr_queued[1]);
148 }
149 
150 static inline struct throtl_grp *throtl_ref_get_tg(struct throtl_grp *tg)
151 {
152 	atomic_inc(&tg->ref);
153 	return tg;
154 }
155 
156 static void throtl_free_tg(struct rcu_head *head)
157 {
158 	struct throtl_grp *tg;
159 
160 	tg = container_of(head, struct throtl_grp, rcu_head);
161 	free_percpu(tg->blkg.stats_cpu);
162 	kfree(tg);
163 }
164 
165 static void throtl_put_tg(struct throtl_grp *tg)
166 {
167 	BUG_ON(atomic_read(&tg->ref) <= 0);
168 	if (!atomic_dec_and_test(&tg->ref))
169 		return;
170 
171 	/*
172 	 * A group is freed in rcu manner. But having an rcu lock does not
173 	 * mean that one can access all the fields of blkg and assume these
174 	 * are valid. For example, don't try to follow throtl_data and
175 	 * request queue links.
176 	 *
177 	 * Having a reference to blkg under an rcu allows acess to only
178 	 * values local to groups like group stats and group rate limits
179 	 */
180 	call_rcu(&tg->rcu_head, throtl_free_tg);
181 }
182 
183 static void throtl_init_group(struct throtl_grp *tg)
184 {
185 	INIT_HLIST_NODE(&tg->tg_node);
186 	RB_CLEAR_NODE(&tg->rb_node);
187 	bio_list_init(&tg->bio_lists[0]);
188 	bio_list_init(&tg->bio_lists[1]);
189 	tg->limits_changed = false;
190 
191 	/* Practically unlimited BW */
192 	tg->bps[0] = tg->bps[1] = -1;
193 	tg->iops[0] = tg->iops[1] = -1;
194 
195 	/*
196 	 * Take the initial reference that will be released on destroy
197 	 * This can be thought of a joint reference by cgroup and
198 	 * request queue which will be dropped by either request queue
199 	 * exit or cgroup deletion path depending on who is exiting first.
200 	 */
201 	atomic_set(&tg->ref, 1);
202 }
203 
204 /* Should be called with rcu read lock held (needed for blkcg) */
205 static void
206 throtl_add_group_to_td_list(struct throtl_data *td, struct throtl_grp *tg)
207 {
208 	hlist_add_head(&tg->tg_node, &td->tg_list);
209 	td->nr_undestroyed_grps++;
210 }
211 
212 static void
213 __throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg)
214 {
215 	struct backing_dev_info *bdi = &td->queue->backing_dev_info;
216 	unsigned int major, minor;
217 
218 	if (!tg || tg->blkg.dev)
219 		return;
220 
221 	/*
222 	 * Fill in device details for a group which might not have been
223 	 * filled at group creation time as queue was being instantiated
224 	 * and driver had not attached a device yet
225 	 */
226 	if (bdi->dev && dev_name(bdi->dev)) {
227 		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
228 		tg->blkg.dev = MKDEV(major, minor);
229 	}
230 }
231 
232 /*
233  * Should be called with without queue lock held. Here queue lock will be
234  * taken rarely. It will be taken only once during life time of a group
235  * if need be
236  */
237 static void
238 throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg)
239 {
240 	if (!tg || tg->blkg.dev)
241 		return;
242 
243 	spin_lock_irq(td->queue->queue_lock);
244 	__throtl_tg_fill_dev_details(td, tg);
245 	spin_unlock_irq(td->queue->queue_lock);
246 }
247 
248 static void throtl_init_add_tg_lists(struct throtl_data *td,
249 			struct throtl_grp *tg, struct blkio_cgroup *blkcg)
250 {
251 	__throtl_tg_fill_dev_details(td, tg);
252 
253 	/* Add group onto cgroup list */
254 	blkiocg_add_blkio_group(blkcg, &tg->blkg, (void *)td,
255 				tg->blkg.dev, BLKIO_POLICY_THROTL);
256 
257 	tg->bps[READ] = blkcg_get_read_bps(blkcg, tg->blkg.dev);
258 	tg->bps[WRITE] = blkcg_get_write_bps(blkcg, tg->blkg.dev);
259 	tg->iops[READ] = blkcg_get_read_iops(blkcg, tg->blkg.dev);
260 	tg->iops[WRITE] = blkcg_get_write_iops(blkcg, tg->blkg.dev);
261 
262 	throtl_add_group_to_td_list(td, tg);
263 }
264 
265 /* Should be called without queue lock and outside of rcu period */
266 static struct throtl_grp *throtl_alloc_tg(struct throtl_data *td)
267 {
268 	struct throtl_grp *tg = NULL;
269 	int ret;
270 
271 	tg = kzalloc_node(sizeof(*tg), GFP_ATOMIC, td->queue->node);
272 	if (!tg)
273 		return NULL;
274 
275 	ret = blkio_alloc_blkg_stats(&tg->blkg);
276 
277 	if (ret) {
278 		kfree(tg);
279 		return NULL;
280 	}
281 
282 	throtl_init_group(tg);
283 	return tg;
284 }
285 
286 static struct
287 throtl_grp *throtl_find_tg(struct throtl_data *td, struct blkio_cgroup *blkcg)
288 {
289 	struct throtl_grp *tg = NULL;
290 	void *key = td;
291 
292 	/*
293 	 * This is the common case when there are no blkio cgroups.
294  	 * Avoid lookup in this case
295  	 */
296 	if (blkcg == &blkio_root_cgroup)
297 		tg = td->root_tg;
298 	else
299 		tg = tg_of_blkg(blkiocg_lookup_group(blkcg, key));
300 
301 	__throtl_tg_fill_dev_details(td, tg);
302 	return tg;
303 }
304 
305 /*
306  * This function returns with queue lock unlocked in case of error, like
307  * request queue is no more
308  */
309 static struct throtl_grp * throtl_get_tg(struct throtl_data *td)
310 {
311 	struct throtl_grp *tg = NULL, *__tg = NULL;
312 	struct blkio_cgroup *blkcg;
313 	struct request_queue *q = td->queue;
314 
315 	rcu_read_lock();
316 	blkcg = task_blkio_cgroup(current);
317 	tg = throtl_find_tg(td, blkcg);
318 	if (tg) {
319 		rcu_read_unlock();
320 		return tg;
321 	}
322 
323 	/*
324 	 * Need to allocate a group. Allocation of group also needs allocation
325 	 * of per cpu stats which in-turn takes a mutex() and can block. Hence
326 	 * we need to drop rcu lock and queue_lock before we call alloc
327 	 *
328 	 * Take the request queue reference to make sure queue does not
329 	 * go away once we return from allocation.
330 	 */
331 	blk_get_queue(q);
332 	rcu_read_unlock();
333 	spin_unlock_irq(q->queue_lock);
334 
335 	tg = throtl_alloc_tg(td);
336 	/*
337 	 * We might have slept in group allocation. Make sure queue is not
338 	 * dead
339 	 */
340 	if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
341 		blk_put_queue(q);
342 		if (tg)
343 			kfree(tg);
344 
345 		return ERR_PTR(-ENODEV);
346 	}
347 	blk_put_queue(q);
348 
349 	/* Group allocated and queue is still alive. take the lock */
350 	spin_lock_irq(q->queue_lock);
351 
352 	/*
353 	 * Initialize the new group. After sleeping, read the blkcg again.
354 	 */
355 	rcu_read_lock();
356 	blkcg = task_blkio_cgroup(current);
357 
358 	/*
359 	 * If some other thread already allocated the group while we were
360 	 * not holding queue lock, free up the group
361 	 */
362 	__tg = throtl_find_tg(td, blkcg);
363 
364 	if (__tg) {
365 		kfree(tg);
366 		rcu_read_unlock();
367 		return __tg;
368 	}
369 
370 	/* Group allocation failed. Account the IO to root group */
371 	if (!tg) {
372 		tg = td->root_tg;
373 		return tg;
374 	}
375 
376 	throtl_init_add_tg_lists(td, tg, blkcg);
377 	rcu_read_unlock();
378 	return tg;
379 }
380 
381 static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
382 {
383 	/* Service tree is empty */
384 	if (!root->count)
385 		return NULL;
386 
387 	if (!root->left)
388 		root->left = rb_first(&root->rb);
389 
390 	if (root->left)
391 		return rb_entry_tg(root->left);
392 
393 	return NULL;
394 }
395 
396 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
397 {
398 	rb_erase(n, root);
399 	RB_CLEAR_NODE(n);
400 }
401 
402 static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
403 {
404 	if (root->left == n)
405 		root->left = NULL;
406 	rb_erase_init(n, &root->rb);
407 	--root->count;
408 }
409 
410 static void update_min_dispatch_time(struct throtl_rb_root *st)
411 {
412 	struct throtl_grp *tg;
413 
414 	tg = throtl_rb_first(st);
415 	if (!tg)
416 		return;
417 
418 	st->min_disptime = tg->disptime;
419 }
420 
421 static void
422 tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
423 {
424 	struct rb_node **node = &st->rb.rb_node;
425 	struct rb_node *parent = NULL;
426 	struct throtl_grp *__tg;
427 	unsigned long key = tg->disptime;
428 	int left = 1;
429 
430 	while (*node != NULL) {
431 		parent = *node;
432 		__tg = rb_entry_tg(parent);
433 
434 		if (time_before(key, __tg->disptime))
435 			node = &parent->rb_left;
436 		else {
437 			node = &parent->rb_right;
438 			left = 0;
439 		}
440 	}
441 
442 	if (left)
443 		st->left = &tg->rb_node;
444 
445 	rb_link_node(&tg->rb_node, parent, node);
446 	rb_insert_color(&tg->rb_node, &st->rb);
447 }
448 
449 static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
450 {
451 	struct throtl_rb_root *st = &td->tg_service_tree;
452 
453 	tg_service_tree_add(st, tg);
454 	throtl_mark_tg_on_rr(tg);
455 	st->count++;
456 }
457 
458 static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
459 {
460 	if (!throtl_tg_on_rr(tg))
461 		__throtl_enqueue_tg(td, tg);
462 }
463 
464 static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
465 {
466 	throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
467 	throtl_clear_tg_on_rr(tg);
468 }
469 
470 static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
471 {
472 	if (throtl_tg_on_rr(tg))
473 		__throtl_dequeue_tg(td, tg);
474 }
475 
476 static void throtl_schedule_next_dispatch(struct throtl_data *td)
477 {
478 	struct throtl_rb_root *st = &td->tg_service_tree;
479 
480 	/*
481 	 * If there are more bios pending, schedule more work.
482 	 */
483 	if (!total_nr_queued(td))
484 		return;
485 
486 	BUG_ON(!st->count);
487 
488 	update_min_dispatch_time(st);
489 
490 	if (time_before_eq(st->min_disptime, jiffies))
491 		throtl_schedule_delayed_work(td, 0);
492 	else
493 		throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
494 }
495 
496 static inline void
497 throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
498 {
499 	tg->bytes_disp[rw] = 0;
500 	tg->io_disp[rw] = 0;
501 	tg->slice_start[rw] = jiffies;
502 	tg->slice_end[rw] = jiffies + throtl_slice;
503 	throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
504 			rw == READ ? 'R' : 'W', tg->slice_start[rw],
505 			tg->slice_end[rw], jiffies);
506 }
507 
508 static inline void throtl_set_slice_end(struct throtl_data *td,
509 		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
510 {
511 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
512 }
513 
514 static inline void throtl_extend_slice(struct throtl_data *td,
515 		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
516 {
517 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
518 	throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
519 			rw == READ ? 'R' : 'W', tg->slice_start[rw],
520 			tg->slice_end[rw], jiffies);
521 }
522 
523 /* Determine if previously allocated or extended slice is complete or not */
524 static bool
525 throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
526 {
527 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
528 		return 0;
529 
530 	return 1;
531 }
532 
533 /* Trim the used slices and adjust slice start accordingly */
534 static inline void
535 throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
536 {
537 	unsigned long nr_slices, time_elapsed, io_trim;
538 	u64 bytes_trim, tmp;
539 
540 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
541 
542 	/*
543 	 * If bps are unlimited (-1), then time slice don't get
544 	 * renewed. Don't try to trim the slice if slice is used. A new
545 	 * slice will start when appropriate.
546 	 */
547 	if (throtl_slice_used(td, tg, rw))
548 		return;
549 
550 	/*
551 	 * A bio has been dispatched. Also adjust slice_end. It might happen
552 	 * that initially cgroup limit was very low resulting in high
553 	 * slice_end, but later limit was bumped up and bio was dispached
554 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
555 	 * is bad because it does not allow new slice to start.
556 	 */
557 
558 	throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);
559 
560 	time_elapsed = jiffies - tg->slice_start[rw];
561 
562 	nr_slices = time_elapsed / throtl_slice;
563 
564 	if (!nr_slices)
565 		return;
566 	tmp = tg->bps[rw] * throtl_slice * nr_slices;
567 	do_div(tmp, HZ);
568 	bytes_trim = tmp;
569 
570 	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
571 
572 	if (!bytes_trim && !io_trim)
573 		return;
574 
575 	if (tg->bytes_disp[rw] >= bytes_trim)
576 		tg->bytes_disp[rw] -= bytes_trim;
577 	else
578 		tg->bytes_disp[rw] = 0;
579 
580 	if (tg->io_disp[rw] >= io_trim)
581 		tg->io_disp[rw] -= io_trim;
582 	else
583 		tg->io_disp[rw] = 0;
584 
585 	tg->slice_start[rw] += nr_slices * throtl_slice;
586 
587 	throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
588 			" start=%lu end=%lu jiffies=%lu",
589 			rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
590 			tg->slice_start[rw], tg->slice_end[rw], jiffies);
591 }
592 
593 static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
594 		struct bio *bio, unsigned long *wait)
595 {
596 	bool rw = bio_data_dir(bio);
597 	unsigned int io_allowed;
598 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
599 	u64 tmp;
600 
601 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
602 
603 	/* Slice has just started. Consider one slice interval */
604 	if (!jiffy_elapsed)
605 		jiffy_elapsed_rnd = throtl_slice;
606 
607 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
608 
609 	/*
610 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
611 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
612 	 * will allow dispatch after 1 second and after that slice should
613 	 * have been trimmed.
614 	 */
615 
616 	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
617 	do_div(tmp, HZ);
618 
619 	if (tmp > UINT_MAX)
620 		io_allowed = UINT_MAX;
621 	else
622 		io_allowed = tmp;
623 
624 	if (tg->io_disp[rw] + 1 <= io_allowed) {
625 		if (wait)
626 			*wait = 0;
627 		return 1;
628 	}
629 
630 	/* Calc approx time to dispatch */
631 	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
632 
633 	if (jiffy_wait > jiffy_elapsed)
634 		jiffy_wait = jiffy_wait - jiffy_elapsed;
635 	else
636 		jiffy_wait = 1;
637 
638 	if (wait)
639 		*wait = jiffy_wait;
640 	return 0;
641 }
642 
643 static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
644 		struct bio *bio, unsigned long *wait)
645 {
646 	bool rw = bio_data_dir(bio);
647 	u64 bytes_allowed, extra_bytes, tmp;
648 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
649 
650 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
651 
652 	/* Slice has just started. Consider one slice interval */
653 	if (!jiffy_elapsed)
654 		jiffy_elapsed_rnd = throtl_slice;
655 
656 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
657 
658 	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
659 	do_div(tmp, HZ);
660 	bytes_allowed = tmp;
661 
662 	if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
663 		if (wait)
664 			*wait = 0;
665 		return 1;
666 	}
667 
668 	/* Calc approx time to dispatch */
669 	extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
670 	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
671 
672 	if (!jiffy_wait)
673 		jiffy_wait = 1;
674 
675 	/*
676 	 * This wait time is without taking into consideration the rounding
677 	 * up we did. Add that time also.
678 	 */
679 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
680 	if (wait)
681 		*wait = jiffy_wait;
682 	return 0;
683 }
684 
685 static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
686 	if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
687 		return 1;
688 	return 0;
689 }
690 
691 /*
692  * Returns whether one can dispatch a bio or not. Also returns approx number
693  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
694  */
695 static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
696 				struct bio *bio, unsigned long *wait)
697 {
698 	bool rw = bio_data_dir(bio);
699 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
700 
701 	/*
702  	 * Currently whole state machine of group depends on first bio
703 	 * queued in the group bio list. So one should not be calling
704 	 * this function with a different bio if there are other bios
705 	 * queued.
706 	 */
707 	BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
708 
709 	/* If tg->bps = -1, then BW is unlimited */
710 	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
711 		if (wait)
712 			*wait = 0;
713 		return 1;
714 	}
715 
716 	/*
717 	 * If previous slice expired, start a new one otherwise renew/extend
718 	 * existing slice to make sure it is at least throtl_slice interval
719 	 * long since now.
720 	 */
721 	if (throtl_slice_used(td, tg, rw))
722 		throtl_start_new_slice(td, tg, rw);
723 	else {
724 		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
725 			throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
726 	}
727 
728 	if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
729 	    && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
730 		if (wait)
731 			*wait = 0;
732 		return 1;
733 	}
734 
735 	max_wait = max(bps_wait, iops_wait);
736 
737 	if (wait)
738 		*wait = max_wait;
739 
740 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
741 		throtl_extend_slice(td, tg, rw, jiffies + max_wait);
742 
743 	return 0;
744 }
745 
746 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
747 {
748 	bool rw = bio_data_dir(bio);
749 	bool sync = bio->bi_rw & REQ_SYNC;
750 
751 	/* Charge the bio to the group */
752 	tg->bytes_disp[rw] += bio->bi_size;
753 	tg->io_disp[rw]++;
754 
755 	blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, rw, sync);
756 }
757 
758 static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
759 			struct bio *bio)
760 {
761 	bool rw = bio_data_dir(bio);
762 
763 	bio_list_add(&tg->bio_lists[rw], bio);
764 	/* Take a bio reference on tg */
765 	throtl_ref_get_tg(tg);
766 	tg->nr_queued[rw]++;
767 	td->nr_queued[rw]++;
768 	throtl_enqueue_tg(td, tg);
769 }
770 
771 static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
772 {
773 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
774 	struct bio *bio;
775 
776 	if ((bio = bio_list_peek(&tg->bio_lists[READ])))
777 		tg_may_dispatch(td, tg, bio, &read_wait);
778 
779 	if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
780 		tg_may_dispatch(td, tg, bio, &write_wait);
781 
782 	min_wait = min(read_wait, write_wait);
783 	disptime = jiffies + min_wait;
784 
785 	/* Update dispatch time */
786 	throtl_dequeue_tg(td, tg);
787 	tg->disptime = disptime;
788 	throtl_enqueue_tg(td, tg);
789 }
790 
791 static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
792 				bool rw, struct bio_list *bl)
793 {
794 	struct bio *bio;
795 
796 	bio = bio_list_pop(&tg->bio_lists[rw]);
797 	tg->nr_queued[rw]--;
798 	/* Drop bio reference on tg */
799 	throtl_put_tg(tg);
800 
801 	BUG_ON(td->nr_queued[rw] <= 0);
802 	td->nr_queued[rw]--;
803 
804 	throtl_charge_bio(tg, bio);
805 	bio_list_add(bl, bio);
806 	bio->bi_rw |= REQ_THROTTLED;
807 
808 	throtl_trim_slice(td, tg, rw);
809 }
810 
811 static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
812 				struct bio_list *bl)
813 {
814 	unsigned int nr_reads = 0, nr_writes = 0;
815 	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
816 	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
817 	struct bio *bio;
818 
819 	/* Try to dispatch 75% READS and 25% WRITES */
820 
821 	while ((bio = bio_list_peek(&tg->bio_lists[READ]))
822 		&& tg_may_dispatch(td, tg, bio, NULL)) {
823 
824 		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
825 		nr_reads++;
826 
827 		if (nr_reads >= max_nr_reads)
828 			break;
829 	}
830 
831 	while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
832 		&& tg_may_dispatch(td, tg, bio, NULL)) {
833 
834 		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
835 		nr_writes++;
836 
837 		if (nr_writes >= max_nr_writes)
838 			break;
839 	}
840 
841 	return nr_reads + nr_writes;
842 }
843 
844 static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
845 {
846 	unsigned int nr_disp = 0;
847 	struct throtl_grp *tg;
848 	struct throtl_rb_root *st = &td->tg_service_tree;
849 
850 	while (1) {
851 		tg = throtl_rb_first(st);
852 
853 		if (!tg)
854 			break;
855 
856 		if (time_before(jiffies, tg->disptime))
857 			break;
858 
859 		throtl_dequeue_tg(td, tg);
860 
861 		nr_disp += throtl_dispatch_tg(td, tg, bl);
862 
863 		if (tg->nr_queued[0] || tg->nr_queued[1]) {
864 			tg_update_disptime(td, tg);
865 			throtl_enqueue_tg(td, tg);
866 		}
867 
868 		if (nr_disp >= throtl_quantum)
869 			break;
870 	}
871 
872 	return nr_disp;
873 }
874 
875 static void throtl_process_limit_change(struct throtl_data *td)
876 {
877 	struct throtl_grp *tg;
878 	struct hlist_node *pos, *n;
879 
880 	if (!td->limits_changed)
881 		return;
882 
883 	xchg(&td->limits_changed, false);
884 
885 	throtl_log(td, "limits changed");
886 
887 	hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
888 		if (!tg->limits_changed)
889 			continue;
890 
891 		if (!xchg(&tg->limits_changed, false))
892 			continue;
893 
894 		throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
895 			" riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
896 			tg->iops[READ], tg->iops[WRITE]);
897 
898 		/*
899 		 * Restart the slices for both READ and WRITES. It
900 		 * might happen that a group's limit are dropped
901 		 * suddenly and we don't want to account recently
902 		 * dispatched IO with new low rate
903 		 */
904 		throtl_start_new_slice(td, tg, 0);
905 		throtl_start_new_slice(td, tg, 1);
906 
907 		if (throtl_tg_on_rr(tg))
908 			tg_update_disptime(td, tg);
909 	}
910 }
911 
912 /* Dispatch throttled bios. Should be called without queue lock held. */
913 static int throtl_dispatch(struct request_queue *q)
914 {
915 	struct throtl_data *td = q->td;
916 	unsigned int nr_disp = 0;
917 	struct bio_list bio_list_on_stack;
918 	struct bio *bio;
919 	struct blk_plug plug;
920 
921 	spin_lock_irq(q->queue_lock);
922 
923 	throtl_process_limit_change(td);
924 
925 	if (!total_nr_queued(td))
926 		goto out;
927 
928 	bio_list_init(&bio_list_on_stack);
929 
930 	throtl_log(td, "dispatch nr_queued=%lu read=%u write=%u",
931 			total_nr_queued(td), td->nr_queued[READ],
932 			td->nr_queued[WRITE]);
933 
934 	nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
935 
936 	if (nr_disp)
937 		throtl_log(td, "bios disp=%u", nr_disp);
938 
939 	throtl_schedule_next_dispatch(td);
940 out:
941 	spin_unlock_irq(q->queue_lock);
942 
943 	/*
944 	 * If we dispatched some requests, unplug the queue to make sure
945 	 * immediate dispatch
946 	 */
947 	if (nr_disp) {
948 		blk_start_plug(&plug);
949 		while((bio = bio_list_pop(&bio_list_on_stack)))
950 			generic_make_request(bio);
951 		blk_finish_plug(&plug);
952 	}
953 	return nr_disp;
954 }
955 
956 void blk_throtl_work(struct work_struct *work)
957 {
958 	struct throtl_data *td = container_of(work, struct throtl_data,
959 					throtl_work.work);
960 	struct request_queue *q = td->queue;
961 
962 	throtl_dispatch(q);
963 }
964 
965 /* Call with queue lock held */
966 static void
967 throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
968 {
969 
970 	struct delayed_work *dwork = &td->throtl_work;
971 
972 	/* schedule work if limits changed even if no bio is queued */
973 	if (total_nr_queued(td) > 0 || td->limits_changed) {
974 		/*
975 		 * We might have a work scheduled to be executed in future.
976 		 * Cancel that and schedule a new one.
977 		 */
978 		__cancel_delayed_work(dwork);
979 		queue_delayed_work(kthrotld_workqueue, dwork, delay);
980 		throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
981 				delay, jiffies);
982 	}
983 }
984 
985 static void
986 throtl_destroy_tg(struct throtl_data *td, struct throtl_grp *tg)
987 {
988 	/* Something wrong if we are trying to remove same group twice */
989 	BUG_ON(hlist_unhashed(&tg->tg_node));
990 
991 	hlist_del_init(&tg->tg_node);
992 
993 	/*
994 	 * Put the reference taken at the time of creation so that when all
995 	 * queues are gone, group can be destroyed.
996 	 */
997 	throtl_put_tg(tg);
998 	td->nr_undestroyed_grps--;
999 }
1000 
1001 static void throtl_release_tgs(struct throtl_data *td)
1002 {
1003 	struct hlist_node *pos, *n;
1004 	struct throtl_grp *tg;
1005 
1006 	hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
1007 		/*
1008 		 * If cgroup removal path got to blk_group first and removed
1009 		 * it from cgroup list, then it will take care of destroying
1010 		 * cfqg also.
1011 		 */
1012 		if (!blkiocg_del_blkio_group(&tg->blkg))
1013 			throtl_destroy_tg(td, tg);
1014 	}
1015 }
1016 
1017 static void throtl_td_free(struct throtl_data *td)
1018 {
1019 	kfree(td);
1020 }
1021 
1022 /*
1023  * Blk cgroup controller notification saying that blkio_group object is being
1024  * delinked as associated cgroup object is going away. That also means that
1025  * no new IO will come in this group. So get rid of this group as soon as
1026  * any pending IO in the group is finished.
1027  *
1028  * This function is called under rcu_read_lock(). key is the rcu protected
1029  * pointer. That means "key" is a valid throtl_data pointer as long as we are
1030  * rcu read lock.
1031  *
1032  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1033  * it should not be NULL as even if queue was going away, cgroup deltion
1034  * path got to it first.
1035  */
1036 void throtl_unlink_blkio_group(void *key, struct blkio_group *blkg)
1037 {
1038 	unsigned long flags;
1039 	struct throtl_data *td = key;
1040 
1041 	spin_lock_irqsave(td->queue->queue_lock, flags);
1042 	throtl_destroy_tg(td, tg_of_blkg(blkg));
1043 	spin_unlock_irqrestore(td->queue->queue_lock, flags);
1044 }
1045 
1046 static void throtl_update_blkio_group_common(struct throtl_data *td,
1047 				struct throtl_grp *tg)
1048 {
1049 	xchg(&tg->limits_changed, true);
1050 	xchg(&td->limits_changed, true);
1051 	/* Schedule a work now to process the limit change */
1052 	throtl_schedule_delayed_work(td, 0);
1053 }
1054 
1055 /*
1056  * For all update functions, key should be a valid pointer because these
1057  * update functions are called under blkcg_lock, that means, blkg is
1058  * valid and in turn key is valid. queue exit path can not race because
1059  * of blkcg_lock
1060  *
1061  * Can not take queue lock in update functions as queue lock under blkcg_lock
1062  * is not allowed. Under other paths we take blkcg_lock under queue_lock.
1063  */
1064 static void throtl_update_blkio_group_read_bps(void *key,
1065 				struct blkio_group *blkg, u64 read_bps)
1066 {
1067 	struct throtl_data *td = key;
1068 	struct throtl_grp *tg = tg_of_blkg(blkg);
1069 
1070 	tg->bps[READ] = read_bps;
1071 	throtl_update_blkio_group_common(td, tg);
1072 }
1073 
1074 static void throtl_update_blkio_group_write_bps(void *key,
1075 				struct blkio_group *blkg, u64 write_bps)
1076 {
1077 	struct throtl_data *td = key;
1078 	struct throtl_grp *tg = tg_of_blkg(blkg);
1079 
1080 	tg->bps[WRITE] = write_bps;
1081 	throtl_update_blkio_group_common(td, tg);
1082 }
1083 
1084 static void throtl_update_blkio_group_read_iops(void *key,
1085 			struct blkio_group *blkg, unsigned int read_iops)
1086 {
1087 	struct throtl_data *td = key;
1088 	struct throtl_grp *tg = tg_of_blkg(blkg);
1089 
1090 	tg->iops[READ] = read_iops;
1091 	throtl_update_blkio_group_common(td, tg);
1092 }
1093 
1094 static void throtl_update_blkio_group_write_iops(void *key,
1095 			struct blkio_group *blkg, unsigned int write_iops)
1096 {
1097 	struct throtl_data *td = key;
1098 	struct throtl_grp *tg = tg_of_blkg(blkg);
1099 
1100 	tg->iops[WRITE] = write_iops;
1101 	throtl_update_blkio_group_common(td, tg);
1102 }
1103 
1104 static void throtl_shutdown_wq(struct request_queue *q)
1105 {
1106 	struct throtl_data *td = q->td;
1107 
1108 	cancel_delayed_work_sync(&td->throtl_work);
1109 }
1110 
1111 static struct blkio_policy_type blkio_policy_throtl = {
1112 	.ops = {
1113 		.blkio_unlink_group_fn = throtl_unlink_blkio_group,
1114 		.blkio_update_group_read_bps_fn =
1115 					throtl_update_blkio_group_read_bps,
1116 		.blkio_update_group_write_bps_fn =
1117 					throtl_update_blkio_group_write_bps,
1118 		.blkio_update_group_read_iops_fn =
1119 					throtl_update_blkio_group_read_iops,
1120 		.blkio_update_group_write_iops_fn =
1121 					throtl_update_blkio_group_write_iops,
1122 	},
1123 	.plid = BLKIO_POLICY_THROTL,
1124 };
1125 
1126 int blk_throtl_bio(struct request_queue *q, struct bio **biop)
1127 {
1128 	struct throtl_data *td = q->td;
1129 	struct throtl_grp *tg;
1130 	struct bio *bio = *biop;
1131 	bool rw = bio_data_dir(bio), update_disptime = true;
1132 	struct blkio_cgroup *blkcg;
1133 
1134 	if (bio->bi_rw & REQ_THROTTLED) {
1135 		bio->bi_rw &= ~REQ_THROTTLED;
1136 		return 0;
1137 	}
1138 
1139 	/*
1140 	 * A throtl_grp pointer retrieved under rcu can be used to access
1141 	 * basic fields like stats and io rates. If a group has no rules,
1142 	 * just update the dispatch stats in lockless manner and return.
1143 	 */
1144 
1145 	rcu_read_lock();
1146 	blkcg = task_blkio_cgroup(current);
1147 	tg = throtl_find_tg(td, blkcg);
1148 	if (tg) {
1149 		throtl_tg_fill_dev_details(td, tg);
1150 
1151 		if (tg_no_rule_group(tg, rw)) {
1152 			blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size,
1153 					rw, bio->bi_rw & REQ_SYNC);
1154 			rcu_read_unlock();
1155 			return 0;
1156 		}
1157 	}
1158 	rcu_read_unlock();
1159 
1160 	/*
1161 	 * Either group has not been allocated yet or it is not an unlimited
1162 	 * IO group
1163 	 */
1164 
1165 	spin_lock_irq(q->queue_lock);
1166 	tg = throtl_get_tg(td);
1167 
1168 	if (IS_ERR(tg)) {
1169 		if (PTR_ERR(tg)	== -ENODEV) {
1170 			/*
1171 			 * Queue is gone. No queue lock held here.
1172 			 */
1173 			return -ENODEV;
1174 		}
1175 	}
1176 
1177 	if (tg->nr_queued[rw]) {
1178 		/*
1179 		 * There is already another bio queued in same dir. No
1180 		 * need to update dispatch time.
1181 		 */
1182 		update_disptime = false;
1183 		goto queue_bio;
1184 
1185 	}
1186 
1187 	/* Bio is with-in rate limit of group */
1188 	if (tg_may_dispatch(td, tg, bio, NULL)) {
1189 		throtl_charge_bio(tg, bio);
1190 
1191 		/*
1192 		 * We need to trim slice even when bios are not being queued
1193 		 * otherwise it might happen that a bio is not queued for
1194 		 * a long time and slice keeps on extending and trim is not
1195 		 * called for a long time. Now if limits are reduced suddenly
1196 		 * we take into account all the IO dispatched so far at new
1197 		 * low rate and * newly queued IO gets a really long dispatch
1198 		 * time.
1199 		 *
1200 		 * So keep on trimming slice even if bio is not queued.
1201 		 */
1202 		throtl_trim_slice(td, tg, rw);
1203 		goto out;
1204 	}
1205 
1206 queue_bio:
1207 	throtl_log_tg(td, tg, "[%c] bio. bdisp=%u sz=%u bps=%llu"
1208 			" iodisp=%u iops=%u queued=%d/%d",
1209 			rw == READ ? 'R' : 'W',
1210 			tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1211 			tg->io_disp[rw], tg->iops[rw],
1212 			tg->nr_queued[READ], tg->nr_queued[WRITE]);
1213 
1214 	throtl_add_bio_tg(q->td, tg, bio);
1215 	*biop = NULL;
1216 
1217 	if (update_disptime) {
1218 		tg_update_disptime(td, tg);
1219 		throtl_schedule_next_dispatch(td);
1220 	}
1221 
1222 out:
1223 	spin_unlock_irq(q->queue_lock);
1224 	return 0;
1225 }
1226 
1227 int blk_throtl_init(struct request_queue *q)
1228 {
1229 	struct throtl_data *td;
1230 	struct throtl_grp *tg;
1231 
1232 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1233 	if (!td)
1234 		return -ENOMEM;
1235 
1236 	INIT_HLIST_HEAD(&td->tg_list);
1237 	td->tg_service_tree = THROTL_RB_ROOT;
1238 	td->limits_changed = false;
1239 	INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1240 
1241 	/* alloc and Init root group. */
1242 	td->queue = q;
1243 	tg = throtl_alloc_tg(td);
1244 
1245 	if (!tg) {
1246 		kfree(td);
1247 		return -ENOMEM;
1248 	}
1249 
1250 	td->root_tg = tg;
1251 
1252 	rcu_read_lock();
1253 	throtl_init_add_tg_lists(td, tg, &blkio_root_cgroup);
1254 	rcu_read_unlock();
1255 
1256 	/* Attach throtl data to request queue */
1257 	q->td = td;
1258 	return 0;
1259 }
1260 
1261 void blk_throtl_exit(struct request_queue *q)
1262 {
1263 	struct throtl_data *td = q->td;
1264 	bool wait = false;
1265 
1266 	BUG_ON(!td);
1267 
1268 	throtl_shutdown_wq(q);
1269 
1270 	spin_lock_irq(q->queue_lock);
1271 	throtl_release_tgs(td);
1272 
1273 	/* If there are other groups */
1274 	if (td->nr_undestroyed_grps > 0)
1275 		wait = true;
1276 
1277 	spin_unlock_irq(q->queue_lock);
1278 
1279 	/*
1280 	 * Wait for tg->blkg->key accessors to exit their grace periods.
1281 	 * Do this wait only if there are other undestroyed groups out
1282 	 * there (other than root group). This can happen if cgroup deletion
1283 	 * path claimed the responsibility of cleaning up a group before
1284 	 * queue cleanup code get to the group.
1285 	 *
1286 	 * Do not call synchronize_rcu() unconditionally as there are drivers
1287 	 * which create/delete request queue hundreds of times during scan/boot
1288 	 * and synchronize_rcu() can take significant time and slow down boot.
1289 	 */
1290 	if (wait)
1291 		synchronize_rcu();
1292 
1293 	/*
1294 	 * Just being safe to make sure after previous flush if some body did
1295 	 * update limits through cgroup and another work got queued, cancel
1296 	 * it.
1297 	 */
1298 	throtl_shutdown_wq(q);
1299 	throtl_td_free(td);
1300 }
1301 
1302 static int __init throtl_init(void)
1303 {
1304 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1305 	if (!kthrotld_workqueue)
1306 		panic("Failed to create kthrotld\n");
1307 
1308 	blkio_policy_register(&blkio_policy_throtl);
1309 	return 0;
1310 }
1311 
1312 module_init(throtl_init);
1313