xref: /openbmc/linux/block/blk-throttle.c (revision 1c2dd16a)
1 /*
2  * Interface for controlling IO bandwidth on a request queue
3  *
4  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5  */
6 
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include <linux/blk-cgroup.h>
13 #include "blk.h"
14 
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17 
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20 
21 /* Throttling is performed over a slice and after that slice is renewed */
22 #define DFL_THROTL_SLICE_HD (HZ / 10)
23 #define DFL_THROTL_SLICE_SSD (HZ / 50)
24 #define MAX_THROTL_SLICE (HZ)
25 #define DFL_IDLE_THRESHOLD_SSD (1000L) /* 1 ms */
26 #define DFL_IDLE_THRESHOLD_HD (100L * 1000) /* 100 ms */
27 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
28 /* default latency target is 0, eg, guarantee IO latency by default */
29 #define DFL_LATENCY_TARGET (0)
30 
31 #define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)
32 
33 static struct blkcg_policy blkcg_policy_throtl;
34 
35 /* A workqueue to queue throttle related work */
36 static struct workqueue_struct *kthrotld_workqueue;
37 
38 /*
39  * To implement hierarchical throttling, throtl_grps form a tree and bios
40  * are dispatched upwards level by level until they reach the top and get
41  * issued.  When dispatching bios from the children and local group at each
42  * level, if the bios are dispatched into a single bio_list, there's a risk
43  * of a local or child group which can queue many bios at once filling up
44  * the list starving others.
45  *
46  * To avoid such starvation, dispatched bios are queued separately
47  * according to where they came from.  When they are again dispatched to
48  * the parent, they're popped in round-robin order so that no single source
49  * hogs the dispatch window.
50  *
51  * throtl_qnode is used to keep the queued bios separated by their sources.
52  * Bios are queued to throtl_qnode which in turn is queued to
53  * throtl_service_queue and then dispatched in round-robin order.
54  *
55  * It's also used to track the reference counts on blkg's.  A qnode always
56  * belongs to a throtl_grp and gets queued on itself or the parent, so
57  * incrementing the reference of the associated throtl_grp when a qnode is
58  * queued and decrementing when dequeued is enough to keep the whole blkg
59  * tree pinned while bios are in flight.
60  */
61 struct throtl_qnode {
62 	struct list_head	node;		/* service_queue->queued[] */
63 	struct bio_list		bios;		/* queued bios */
64 	struct throtl_grp	*tg;		/* tg this qnode belongs to */
65 };
66 
67 struct throtl_service_queue {
68 	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
69 
70 	/*
71 	 * Bios queued directly to this service_queue or dispatched from
72 	 * children throtl_grp's.
73 	 */
74 	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
75 	unsigned int		nr_queued[2];	/* number of queued bios */
76 
77 	/*
78 	 * RB tree of active children throtl_grp's, which are sorted by
79 	 * their ->disptime.
80 	 */
81 	struct rb_root		pending_tree;	/* RB tree of active tgs */
82 	struct rb_node		*first_pending;	/* first node in the tree */
83 	unsigned int		nr_pending;	/* # queued in the tree */
84 	unsigned long		first_pending_disptime;	/* disptime of the first tg */
85 	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
86 };
87 
88 enum tg_state_flags {
89 	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
90 	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
91 };
92 
93 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
94 
95 enum {
96 	LIMIT_LOW,
97 	LIMIT_MAX,
98 	LIMIT_CNT,
99 };
100 
101 struct throtl_grp {
102 	/* must be the first member */
103 	struct blkg_policy_data pd;
104 
105 	/* active throtl group service_queue member */
106 	struct rb_node rb_node;
107 
108 	/* throtl_data this group belongs to */
109 	struct throtl_data *td;
110 
111 	/* this group's service queue */
112 	struct throtl_service_queue service_queue;
113 
114 	/*
115 	 * qnode_on_self is used when bios are directly queued to this
116 	 * throtl_grp so that local bios compete fairly with bios
117 	 * dispatched from children.  qnode_on_parent is used when bios are
118 	 * dispatched from this throtl_grp into its parent and will compete
119 	 * with the sibling qnode_on_parents and the parent's
120 	 * qnode_on_self.
121 	 */
122 	struct throtl_qnode qnode_on_self[2];
123 	struct throtl_qnode qnode_on_parent[2];
124 
125 	/*
126 	 * Dispatch time in jiffies. This is the estimated time when group
127 	 * will unthrottle and is ready to dispatch more bio. It is used as
128 	 * key to sort active groups in service tree.
129 	 */
130 	unsigned long disptime;
131 
132 	unsigned int flags;
133 
134 	/* are there any throtl rules between this group and td? */
135 	bool has_rules[2];
136 
137 	/* internally used bytes per second rate limits */
138 	uint64_t bps[2][LIMIT_CNT];
139 	/* user configured bps limits */
140 	uint64_t bps_conf[2][LIMIT_CNT];
141 
142 	/* internally used IOPS limits */
143 	unsigned int iops[2][LIMIT_CNT];
144 	/* user configured IOPS limits */
145 	unsigned int iops_conf[2][LIMIT_CNT];
146 
147 	/* Number of bytes disptached in current slice */
148 	uint64_t bytes_disp[2];
149 	/* Number of bio's dispatched in current slice */
150 	unsigned int io_disp[2];
151 
152 	unsigned long last_low_overflow_time[2];
153 
154 	uint64_t last_bytes_disp[2];
155 	unsigned int last_io_disp[2];
156 
157 	unsigned long last_check_time;
158 
159 	unsigned long latency_target; /* us */
160 	/* When did we start a new slice */
161 	unsigned long slice_start[2];
162 	unsigned long slice_end[2];
163 
164 	unsigned long last_finish_time; /* ns / 1024 */
165 	unsigned long checked_last_finish_time; /* ns / 1024 */
166 	unsigned long avg_idletime; /* ns / 1024 */
167 	unsigned long idletime_threshold; /* us */
168 
169 	unsigned int bio_cnt; /* total bios */
170 	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
171 	unsigned long bio_cnt_reset_time;
172 };
173 
174 /* We measure latency for request size from <= 4k to >= 1M */
175 #define LATENCY_BUCKET_SIZE 9
176 
177 struct latency_bucket {
178 	unsigned long total_latency; /* ns / 1024 */
179 	int samples;
180 };
181 
182 struct avg_latency_bucket {
183 	unsigned long latency; /* ns / 1024 */
184 	bool valid;
185 };
186 
187 struct throtl_data
188 {
189 	/* service tree for active throtl groups */
190 	struct throtl_service_queue service_queue;
191 
192 	struct request_queue *queue;
193 
194 	/* Total Number of queued bios on READ and WRITE lists */
195 	unsigned int nr_queued[2];
196 
197 	unsigned int throtl_slice;
198 
199 	/* Work for dispatching throttled bios */
200 	struct work_struct dispatch_work;
201 	unsigned int limit_index;
202 	bool limit_valid[LIMIT_CNT];
203 
204 	unsigned long dft_idletime_threshold; /* us */
205 
206 	unsigned long low_upgrade_time;
207 	unsigned long low_downgrade_time;
208 
209 	unsigned int scale;
210 
211 	struct latency_bucket tmp_buckets[LATENCY_BUCKET_SIZE];
212 	struct avg_latency_bucket avg_buckets[LATENCY_BUCKET_SIZE];
213 	struct latency_bucket __percpu *latency_buckets;
214 	unsigned long last_calculate_time;
215 
216 	bool track_bio_latency;
217 };
218 
219 static void throtl_pending_timer_fn(unsigned long arg);
220 
221 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
222 {
223 	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
224 }
225 
226 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
227 {
228 	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
229 }
230 
231 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
232 {
233 	return pd_to_blkg(&tg->pd);
234 }
235 
236 /**
237  * sq_to_tg - return the throl_grp the specified service queue belongs to
238  * @sq: the throtl_service_queue of interest
239  *
240  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
241  * embedded in throtl_data, %NULL is returned.
242  */
243 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
244 {
245 	if (sq && sq->parent_sq)
246 		return container_of(sq, struct throtl_grp, service_queue);
247 	else
248 		return NULL;
249 }
250 
251 /**
252  * sq_to_td - return throtl_data the specified service queue belongs to
253  * @sq: the throtl_service_queue of interest
254  *
255  * A service_queue can be embedded in either a throtl_grp or throtl_data.
256  * Determine the associated throtl_data accordingly and return it.
257  */
258 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
259 {
260 	struct throtl_grp *tg = sq_to_tg(sq);
261 
262 	if (tg)
263 		return tg->td;
264 	else
265 		return container_of(sq, struct throtl_data, service_queue);
266 }
267 
268 /*
269  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
270  * make the IO dispatch more smooth.
271  * Scale up: linearly scale up according to lapsed time since upgrade. For
272  *           every throtl_slice, the limit scales up 1/2 .low limit till the
273  *           limit hits .max limit
274  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
275  */
276 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
277 {
278 	/* arbitrary value to avoid too big scale */
279 	if (td->scale < 4096 && time_after_eq(jiffies,
280 	    td->low_upgrade_time + td->scale * td->throtl_slice))
281 		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
282 
283 	return low + (low >> 1) * td->scale;
284 }
285 
286 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
287 {
288 	struct blkcg_gq *blkg = tg_to_blkg(tg);
289 	struct throtl_data *td;
290 	uint64_t ret;
291 
292 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
293 		return U64_MAX;
294 
295 	td = tg->td;
296 	ret = tg->bps[rw][td->limit_index];
297 	if (ret == 0 && td->limit_index == LIMIT_LOW)
298 		return tg->bps[rw][LIMIT_MAX];
299 
300 	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
301 	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
302 		uint64_t adjusted;
303 
304 		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
305 		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
306 	}
307 	return ret;
308 }
309 
310 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
311 {
312 	struct blkcg_gq *blkg = tg_to_blkg(tg);
313 	struct throtl_data *td;
314 	unsigned int ret;
315 
316 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
317 		return UINT_MAX;
318 	td = tg->td;
319 	ret = tg->iops[rw][td->limit_index];
320 	if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
321 		return tg->iops[rw][LIMIT_MAX];
322 
323 	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
324 	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
325 		uint64_t adjusted;
326 
327 		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
328 		if (adjusted > UINT_MAX)
329 			adjusted = UINT_MAX;
330 		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
331 	}
332 	return ret;
333 }
334 
335 #define request_bucket_index(sectors) \
336 	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
337 
338 /**
339  * throtl_log - log debug message via blktrace
340  * @sq: the service_queue being reported
341  * @fmt: printf format string
342  * @args: printf args
343  *
344  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
345  * throtl_grp; otherwise, just "throtl".
346  */
347 #define throtl_log(sq, fmt, args...)	do {				\
348 	struct throtl_grp *__tg = sq_to_tg((sq));			\
349 	struct throtl_data *__td = sq_to_td((sq));			\
350 									\
351 	(void)__td;							\
352 	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
353 		break;							\
354 	if ((__tg)) {							\
355 		char __pbuf[128];					\
356 									\
357 		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
358 		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
359 	} else {							\
360 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
361 	}								\
362 } while (0)
363 
364 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
365 {
366 	INIT_LIST_HEAD(&qn->node);
367 	bio_list_init(&qn->bios);
368 	qn->tg = tg;
369 }
370 
371 /**
372  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
373  * @bio: bio being added
374  * @qn: qnode to add bio to
375  * @queued: the service_queue->queued[] list @qn belongs to
376  *
377  * Add @bio to @qn and put @qn on @queued if it's not already on.
378  * @qn->tg's reference count is bumped when @qn is activated.  See the
379  * comment on top of throtl_qnode definition for details.
380  */
381 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
382 				 struct list_head *queued)
383 {
384 	bio_list_add(&qn->bios, bio);
385 	if (list_empty(&qn->node)) {
386 		list_add_tail(&qn->node, queued);
387 		blkg_get(tg_to_blkg(qn->tg));
388 	}
389 }
390 
391 /**
392  * throtl_peek_queued - peek the first bio on a qnode list
393  * @queued: the qnode list to peek
394  */
395 static struct bio *throtl_peek_queued(struct list_head *queued)
396 {
397 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
398 	struct bio *bio;
399 
400 	if (list_empty(queued))
401 		return NULL;
402 
403 	bio = bio_list_peek(&qn->bios);
404 	WARN_ON_ONCE(!bio);
405 	return bio;
406 }
407 
408 /**
409  * throtl_pop_queued - pop the first bio form a qnode list
410  * @queued: the qnode list to pop a bio from
411  * @tg_to_put: optional out argument for throtl_grp to put
412  *
413  * Pop the first bio from the qnode list @queued.  After popping, the first
414  * qnode is removed from @queued if empty or moved to the end of @queued so
415  * that the popping order is round-robin.
416  *
417  * When the first qnode is removed, its associated throtl_grp should be put
418  * too.  If @tg_to_put is NULL, this function automatically puts it;
419  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
420  * responsible for putting it.
421  */
422 static struct bio *throtl_pop_queued(struct list_head *queued,
423 				     struct throtl_grp **tg_to_put)
424 {
425 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
426 	struct bio *bio;
427 
428 	if (list_empty(queued))
429 		return NULL;
430 
431 	bio = bio_list_pop(&qn->bios);
432 	WARN_ON_ONCE(!bio);
433 
434 	if (bio_list_empty(&qn->bios)) {
435 		list_del_init(&qn->node);
436 		if (tg_to_put)
437 			*tg_to_put = qn->tg;
438 		else
439 			blkg_put(tg_to_blkg(qn->tg));
440 	} else {
441 		list_move_tail(&qn->node, queued);
442 	}
443 
444 	return bio;
445 }
446 
447 /* init a service_queue, assumes the caller zeroed it */
448 static void throtl_service_queue_init(struct throtl_service_queue *sq)
449 {
450 	INIT_LIST_HEAD(&sq->queued[0]);
451 	INIT_LIST_HEAD(&sq->queued[1]);
452 	sq->pending_tree = RB_ROOT;
453 	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
454 		    (unsigned long)sq);
455 }
456 
457 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
458 {
459 	struct throtl_grp *tg;
460 	int rw;
461 
462 	tg = kzalloc_node(sizeof(*tg), gfp, node);
463 	if (!tg)
464 		return NULL;
465 
466 	throtl_service_queue_init(&tg->service_queue);
467 
468 	for (rw = READ; rw <= WRITE; rw++) {
469 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
470 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
471 	}
472 
473 	RB_CLEAR_NODE(&tg->rb_node);
474 	tg->bps[READ][LIMIT_MAX] = U64_MAX;
475 	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
476 	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
477 	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
478 	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
479 	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
480 	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
481 	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
482 	/* LIMIT_LOW will have default value 0 */
483 
484 	tg->latency_target = DFL_LATENCY_TARGET;
485 
486 	return &tg->pd;
487 }
488 
489 static void throtl_pd_init(struct blkg_policy_data *pd)
490 {
491 	struct throtl_grp *tg = pd_to_tg(pd);
492 	struct blkcg_gq *blkg = tg_to_blkg(tg);
493 	struct throtl_data *td = blkg->q->td;
494 	struct throtl_service_queue *sq = &tg->service_queue;
495 
496 	/*
497 	 * If on the default hierarchy, we switch to properly hierarchical
498 	 * behavior where limits on a given throtl_grp are applied to the
499 	 * whole subtree rather than just the group itself.  e.g. If 16M
500 	 * read_bps limit is set on the root group, the whole system can't
501 	 * exceed 16M for the device.
502 	 *
503 	 * If not on the default hierarchy, the broken flat hierarchy
504 	 * behavior is retained where all throtl_grps are treated as if
505 	 * they're all separate root groups right below throtl_data.
506 	 * Limits of a group don't interact with limits of other groups
507 	 * regardless of the position of the group in the hierarchy.
508 	 */
509 	sq->parent_sq = &td->service_queue;
510 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
511 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
512 	tg->td = td;
513 
514 	tg->idletime_threshold = td->dft_idletime_threshold;
515 }
516 
517 /*
518  * Set has_rules[] if @tg or any of its parents have limits configured.
519  * This doesn't require walking up to the top of the hierarchy as the
520  * parent's has_rules[] is guaranteed to be correct.
521  */
522 static void tg_update_has_rules(struct throtl_grp *tg)
523 {
524 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
525 	struct throtl_data *td = tg->td;
526 	int rw;
527 
528 	for (rw = READ; rw <= WRITE; rw++)
529 		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
530 			(td->limit_valid[td->limit_index] &&
531 			 (tg_bps_limit(tg, rw) != U64_MAX ||
532 			  tg_iops_limit(tg, rw) != UINT_MAX));
533 }
534 
535 static void throtl_pd_online(struct blkg_policy_data *pd)
536 {
537 	struct throtl_grp *tg = pd_to_tg(pd);
538 	/*
539 	 * We don't want new groups to escape the limits of its ancestors.
540 	 * Update has_rules[] after a new group is brought online.
541 	 */
542 	tg_update_has_rules(tg);
543 }
544 
545 static void blk_throtl_update_limit_valid(struct throtl_data *td)
546 {
547 	struct cgroup_subsys_state *pos_css;
548 	struct blkcg_gq *blkg;
549 	bool low_valid = false;
550 
551 	rcu_read_lock();
552 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
553 		struct throtl_grp *tg = blkg_to_tg(blkg);
554 
555 		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
556 		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
557 			low_valid = true;
558 	}
559 	rcu_read_unlock();
560 
561 	td->limit_valid[LIMIT_LOW] = low_valid;
562 }
563 
564 static void throtl_upgrade_state(struct throtl_data *td);
565 static void throtl_pd_offline(struct blkg_policy_data *pd)
566 {
567 	struct throtl_grp *tg = pd_to_tg(pd);
568 
569 	tg->bps[READ][LIMIT_LOW] = 0;
570 	tg->bps[WRITE][LIMIT_LOW] = 0;
571 	tg->iops[READ][LIMIT_LOW] = 0;
572 	tg->iops[WRITE][LIMIT_LOW] = 0;
573 
574 	blk_throtl_update_limit_valid(tg->td);
575 
576 	if (!tg->td->limit_valid[tg->td->limit_index])
577 		throtl_upgrade_state(tg->td);
578 }
579 
580 static void throtl_pd_free(struct blkg_policy_data *pd)
581 {
582 	struct throtl_grp *tg = pd_to_tg(pd);
583 
584 	del_timer_sync(&tg->service_queue.pending_timer);
585 	kfree(tg);
586 }
587 
588 static struct throtl_grp *
589 throtl_rb_first(struct throtl_service_queue *parent_sq)
590 {
591 	/* Service tree is empty */
592 	if (!parent_sq->nr_pending)
593 		return NULL;
594 
595 	if (!parent_sq->first_pending)
596 		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
597 
598 	if (parent_sq->first_pending)
599 		return rb_entry_tg(parent_sq->first_pending);
600 
601 	return NULL;
602 }
603 
604 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
605 {
606 	rb_erase(n, root);
607 	RB_CLEAR_NODE(n);
608 }
609 
610 static void throtl_rb_erase(struct rb_node *n,
611 			    struct throtl_service_queue *parent_sq)
612 {
613 	if (parent_sq->first_pending == n)
614 		parent_sq->first_pending = NULL;
615 	rb_erase_init(n, &parent_sq->pending_tree);
616 	--parent_sq->nr_pending;
617 }
618 
619 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
620 {
621 	struct throtl_grp *tg;
622 
623 	tg = throtl_rb_first(parent_sq);
624 	if (!tg)
625 		return;
626 
627 	parent_sq->first_pending_disptime = tg->disptime;
628 }
629 
630 static void tg_service_queue_add(struct throtl_grp *tg)
631 {
632 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
633 	struct rb_node **node = &parent_sq->pending_tree.rb_node;
634 	struct rb_node *parent = NULL;
635 	struct throtl_grp *__tg;
636 	unsigned long key = tg->disptime;
637 	int left = 1;
638 
639 	while (*node != NULL) {
640 		parent = *node;
641 		__tg = rb_entry_tg(parent);
642 
643 		if (time_before(key, __tg->disptime))
644 			node = &parent->rb_left;
645 		else {
646 			node = &parent->rb_right;
647 			left = 0;
648 		}
649 	}
650 
651 	if (left)
652 		parent_sq->first_pending = &tg->rb_node;
653 
654 	rb_link_node(&tg->rb_node, parent, node);
655 	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
656 }
657 
658 static void __throtl_enqueue_tg(struct throtl_grp *tg)
659 {
660 	tg_service_queue_add(tg);
661 	tg->flags |= THROTL_TG_PENDING;
662 	tg->service_queue.parent_sq->nr_pending++;
663 }
664 
665 static void throtl_enqueue_tg(struct throtl_grp *tg)
666 {
667 	if (!(tg->flags & THROTL_TG_PENDING))
668 		__throtl_enqueue_tg(tg);
669 }
670 
671 static void __throtl_dequeue_tg(struct throtl_grp *tg)
672 {
673 	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
674 	tg->flags &= ~THROTL_TG_PENDING;
675 }
676 
677 static void throtl_dequeue_tg(struct throtl_grp *tg)
678 {
679 	if (tg->flags & THROTL_TG_PENDING)
680 		__throtl_dequeue_tg(tg);
681 }
682 
683 /* Call with queue lock held */
684 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
685 					  unsigned long expires)
686 {
687 	unsigned long max_expire = jiffies + 8 * sq_to_tg(sq)->td->throtl_slice;
688 
689 	/*
690 	 * Since we are adjusting the throttle limit dynamically, the sleep
691 	 * time calculated according to previous limit might be invalid. It's
692 	 * possible the cgroup sleep time is very long and no other cgroups
693 	 * have IO running so notify the limit changes. Make sure the cgroup
694 	 * doesn't sleep too long to avoid the missed notification.
695 	 */
696 	if (time_after(expires, max_expire))
697 		expires = max_expire;
698 	mod_timer(&sq->pending_timer, expires);
699 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
700 		   expires - jiffies, jiffies);
701 }
702 
703 /**
704  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
705  * @sq: the service_queue to schedule dispatch for
706  * @force: force scheduling
707  *
708  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
709  * dispatch time of the first pending child.  Returns %true if either timer
710  * is armed or there's no pending child left.  %false if the current
711  * dispatch window is still open and the caller should continue
712  * dispatching.
713  *
714  * If @force is %true, the dispatch timer is always scheduled and this
715  * function is guaranteed to return %true.  This is to be used when the
716  * caller can't dispatch itself and needs to invoke pending_timer
717  * unconditionally.  Note that forced scheduling is likely to induce short
718  * delay before dispatch starts even if @sq->first_pending_disptime is not
719  * in the future and thus shouldn't be used in hot paths.
720  */
721 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
722 					  bool force)
723 {
724 	/* any pending children left? */
725 	if (!sq->nr_pending)
726 		return true;
727 
728 	update_min_dispatch_time(sq);
729 
730 	/* is the next dispatch time in the future? */
731 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
732 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
733 		return true;
734 	}
735 
736 	/* tell the caller to continue dispatching */
737 	return false;
738 }
739 
740 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
741 		bool rw, unsigned long start)
742 {
743 	tg->bytes_disp[rw] = 0;
744 	tg->io_disp[rw] = 0;
745 
746 	/*
747 	 * Previous slice has expired. We must have trimmed it after last
748 	 * bio dispatch. That means since start of last slice, we never used
749 	 * that bandwidth. Do try to make use of that bandwidth while giving
750 	 * credit.
751 	 */
752 	if (time_after_eq(start, tg->slice_start[rw]))
753 		tg->slice_start[rw] = start;
754 
755 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
756 	throtl_log(&tg->service_queue,
757 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
758 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
759 		   tg->slice_end[rw], jiffies);
760 }
761 
762 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
763 {
764 	tg->bytes_disp[rw] = 0;
765 	tg->io_disp[rw] = 0;
766 	tg->slice_start[rw] = jiffies;
767 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
768 	throtl_log(&tg->service_queue,
769 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
770 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
771 		   tg->slice_end[rw], jiffies);
772 }
773 
774 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
775 					unsigned long jiffy_end)
776 {
777 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
778 }
779 
780 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
781 				       unsigned long jiffy_end)
782 {
783 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
784 	throtl_log(&tg->service_queue,
785 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
786 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
787 		   tg->slice_end[rw], jiffies);
788 }
789 
790 /* Determine if previously allocated or extended slice is complete or not */
791 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
792 {
793 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
794 		return false;
795 
796 	return 1;
797 }
798 
799 /* Trim the used slices and adjust slice start accordingly */
800 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
801 {
802 	unsigned long nr_slices, time_elapsed, io_trim;
803 	u64 bytes_trim, tmp;
804 
805 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
806 
807 	/*
808 	 * If bps are unlimited (-1), then time slice don't get
809 	 * renewed. Don't try to trim the slice if slice is used. A new
810 	 * slice will start when appropriate.
811 	 */
812 	if (throtl_slice_used(tg, rw))
813 		return;
814 
815 	/*
816 	 * A bio has been dispatched. Also adjust slice_end. It might happen
817 	 * that initially cgroup limit was very low resulting in high
818 	 * slice_end, but later limit was bumped up and bio was dispached
819 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
820 	 * is bad because it does not allow new slice to start.
821 	 */
822 
823 	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
824 
825 	time_elapsed = jiffies - tg->slice_start[rw];
826 
827 	nr_slices = time_elapsed / tg->td->throtl_slice;
828 
829 	if (!nr_slices)
830 		return;
831 	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
832 	do_div(tmp, HZ);
833 	bytes_trim = tmp;
834 
835 	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
836 		HZ;
837 
838 	if (!bytes_trim && !io_trim)
839 		return;
840 
841 	if (tg->bytes_disp[rw] >= bytes_trim)
842 		tg->bytes_disp[rw] -= bytes_trim;
843 	else
844 		tg->bytes_disp[rw] = 0;
845 
846 	if (tg->io_disp[rw] >= io_trim)
847 		tg->io_disp[rw] -= io_trim;
848 	else
849 		tg->io_disp[rw] = 0;
850 
851 	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
852 
853 	throtl_log(&tg->service_queue,
854 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
855 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
856 		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
857 }
858 
859 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
860 				  unsigned long *wait)
861 {
862 	bool rw = bio_data_dir(bio);
863 	unsigned int io_allowed;
864 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
865 	u64 tmp;
866 
867 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
868 
869 	/* Slice has just started. Consider one slice interval */
870 	if (!jiffy_elapsed)
871 		jiffy_elapsed_rnd = tg->td->throtl_slice;
872 
873 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
874 
875 	/*
876 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
877 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
878 	 * will allow dispatch after 1 second and after that slice should
879 	 * have been trimmed.
880 	 */
881 
882 	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
883 	do_div(tmp, HZ);
884 
885 	if (tmp > UINT_MAX)
886 		io_allowed = UINT_MAX;
887 	else
888 		io_allowed = tmp;
889 
890 	if (tg->io_disp[rw] + 1 <= io_allowed) {
891 		if (wait)
892 			*wait = 0;
893 		return true;
894 	}
895 
896 	/* Calc approx time to dispatch */
897 	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
898 
899 	if (jiffy_wait > jiffy_elapsed)
900 		jiffy_wait = jiffy_wait - jiffy_elapsed;
901 	else
902 		jiffy_wait = 1;
903 
904 	if (wait)
905 		*wait = jiffy_wait;
906 	return 0;
907 }
908 
909 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
910 				 unsigned long *wait)
911 {
912 	bool rw = bio_data_dir(bio);
913 	u64 bytes_allowed, extra_bytes, tmp;
914 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
915 
916 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
917 
918 	/* Slice has just started. Consider one slice interval */
919 	if (!jiffy_elapsed)
920 		jiffy_elapsed_rnd = tg->td->throtl_slice;
921 
922 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
923 
924 	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
925 	do_div(tmp, HZ);
926 	bytes_allowed = tmp;
927 
928 	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
929 		if (wait)
930 			*wait = 0;
931 		return true;
932 	}
933 
934 	/* Calc approx time to dispatch */
935 	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
936 	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
937 
938 	if (!jiffy_wait)
939 		jiffy_wait = 1;
940 
941 	/*
942 	 * This wait time is without taking into consideration the rounding
943 	 * up we did. Add that time also.
944 	 */
945 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
946 	if (wait)
947 		*wait = jiffy_wait;
948 	return 0;
949 }
950 
951 /*
952  * Returns whether one can dispatch a bio or not. Also returns approx number
953  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
954  */
955 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
956 			    unsigned long *wait)
957 {
958 	bool rw = bio_data_dir(bio);
959 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
960 
961 	/*
962  	 * Currently whole state machine of group depends on first bio
963 	 * queued in the group bio list. So one should not be calling
964 	 * this function with a different bio if there are other bios
965 	 * queued.
966 	 */
967 	BUG_ON(tg->service_queue.nr_queued[rw] &&
968 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
969 
970 	/* If tg->bps = -1, then BW is unlimited */
971 	if (tg_bps_limit(tg, rw) == U64_MAX &&
972 	    tg_iops_limit(tg, rw) == UINT_MAX) {
973 		if (wait)
974 			*wait = 0;
975 		return true;
976 	}
977 
978 	/*
979 	 * If previous slice expired, start a new one otherwise renew/extend
980 	 * existing slice to make sure it is at least throtl_slice interval
981 	 * long since now. New slice is started only for empty throttle group.
982 	 * If there is queued bio, that means there should be an active
983 	 * slice and it should be extended instead.
984 	 */
985 	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
986 		throtl_start_new_slice(tg, rw);
987 	else {
988 		if (time_before(tg->slice_end[rw],
989 		    jiffies + tg->td->throtl_slice))
990 			throtl_extend_slice(tg, rw,
991 				jiffies + tg->td->throtl_slice);
992 	}
993 
994 	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
995 	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
996 		if (wait)
997 			*wait = 0;
998 		return 1;
999 	}
1000 
1001 	max_wait = max(bps_wait, iops_wait);
1002 
1003 	if (wait)
1004 		*wait = max_wait;
1005 
1006 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1007 		throtl_extend_slice(tg, rw, jiffies + max_wait);
1008 
1009 	return 0;
1010 }
1011 
1012 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1013 {
1014 	bool rw = bio_data_dir(bio);
1015 
1016 	/* Charge the bio to the group */
1017 	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
1018 	tg->io_disp[rw]++;
1019 	tg->last_bytes_disp[rw] += bio->bi_iter.bi_size;
1020 	tg->last_io_disp[rw]++;
1021 
1022 	/*
1023 	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1024 	 * more than once as a throttled bio will go through blk-throtl the
1025 	 * second time when it eventually gets issued.  Set it when a bio
1026 	 * is being charged to a tg.
1027 	 */
1028 	if (!bio_flagged(bio, BIO_THROTTLED))
1029 		bio_set_flag(bio, BIO_THROTTLED);
1030 }
1031 
1032 /**
1033  * throtl_add_bio_tg - add a bio to the specified throtl_grp
1034  * @bio: bio to add
1035  * @qn: qnode to use
1036  * @tg: the target throtl_grp
1037  *
1038  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1039  * tg->qnode_on_self[] is used.
1040  */
1041 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1042 			      struct throtl_grp *tg)
1043 {
1044 	struct throtl_service_queue *sq = &tg->service_queue;
1045 	bool rw = bio_data_dir(bio);
1046 
1047 	if (!qn)
1048 		qn = &tg->qnode_on_self[rw];
1049 
1050 	/*
1051 	 * If @tg doesn't currently have any bios queued in the same
1052 	 * direction, queueing @bio can change when @tg should be
1053 	 * dispatched.  Mark that @tg was empty.  This is automatically
1054 	 * cleaered on the next tg_update_disptime().
1055 	 */
1056 	if (!sq->nr_queued[rw])
1057 		tg->flags |= THROTL_TG_WAS_EMPTY;
1058 
1059 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1060 
1061 	sq->nr_queued[rw]++;
1062 	throtl_enqueue_tg(tg);
1063 }
1064 
1065 static void tg_update_disptime(struct throtl_grp *tg)
1066 {
1067 	struct throtl_service_queue *sq = &tg->service_queue;
1068 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1069 	struct bio *bio;
1070 
1071 	bio = throtl_peek_queued(&sq->queued[READ]);
1072 	if (bio)
1073 		tg_may_dispatch(tg, bio, &read_wait);
1074 
1075 	bio = throtl_peek_queued(&sq->queued[WRITE]);
1076 	if (bio)
1077 		tg_may_dispatch(tg, bio, &write_wait);
1078 
1079 	min_wait = min(read_wait, write_wait);
1080 	disptime = jiffies + min_wait;
1081 
1082 	/* Update dispatch time */
1083 	throtl_dequeue_tg(tg);
1084 	tg->disptime = disptime;
1085 	throtl_enqueue_tg(tg);
1086 
1087 	/* see throtl_add_bio_tg() */
1088 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1089 }
1090 
1091 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1092 					struct throtl_grp *parent_tg, bool rw)
1093 {
1094 	if (throtl_slice_used(parent_tg, rw)) {
1095 		throtl_start_new_slice_with_credit(parent_tg, rw,
1096 				child_tg->slice_start[rw]);
1097 	}
1098 
1099 }
1100 
1101 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1102 {
1103 	struct throtl_service_queue *sq = &tg->service_queue;
1104 	struct throtl_service_queue *parent_sq = sq->parent_sq;
1105 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1106 	struct throtl_grp *tg_to_put = NULL;
1107 	struct bio *bio;
1108 
1109 	/*
1110 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1111 	 * from @tg may put its reference and @parent_sq might end up
1112 	 * getting released prematurely.  Remember the tg to put and put it
1113 	 * after @bio is transferred to @parent_sq.
1114 	 */
1115 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1116 	sq->nr_queued[rw]--;
1117 
1118 	throtl_charge_bio(tg, bio);
1119 
1120 	/*
1121 	 * If our parent is another tg, we just need to transfer @bio to
1122 	 * the parent using throtl_add_bio_tg().  If our parent is
1123 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1124 	 * bio_lists[] and decrease total number queued.  The caller is
1125 	 * responsible for issuing these bios.
1126 	 */
1127 	if (parent_tg) {
1128 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1129 		start_parent_slice_with_credit(tg, parent_tg, rw);
1130 	} else {
1131 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1132 				     &parent_sq->queued[rw]);
1133 		BUG_ON(tg->td->nr_queued[rw] <= 0);
1134 		tg->td->nr_queued[rw]--;
1135 	}
1136 
1137 	throtl_trim_slice(tg, rw);
1138 
1139 	if (tg_to_put)
1140 		blkg_put(tg_to_blkg(tg_to_put));
1141 }
1142 
1143 static int throtl_dispatch_tg(struct throtl_grp *tg)
1144 {
1145 	struct throtl_service_queue *sq = &tg->service_queue;
1146 	unsigned int nr_reads = 0, nr_writes = 0;
1147 	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1148 	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1149 	struct bio *bio;
1150 
1151 	/* Try to dispatch 75% READS and 25% WRITES */
1152 
1153 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1154 	       tg_may_dispatch(tg, bio, NULL)) {
1155 
1156 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1157 		nr_reads++;
1158 
1159 		if (nr_reads >= max_nr_reads)
1160 			break;
1161 	}
1162 
1163 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1164 	       tg_may_dispatch(tg, bio, NULL)) {
1165 
1166 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1167 		nr_writes++;
1168 
1169 		if (nr_writes >= max_nr_writes)
1170 			break;
1171 	}
1172 
1173 	return nr_reads + nr_writes;
1174 }
1175 
1176 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1177 {
1178 	unsigned int nr_disp = 0;
1179 
1180 	while (1) {
1181 		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1182 		struct throtl_service_queue *sq = &tg->service_queue;
1183 
1184 		if (!tg)
1185 			break;
1186 
1187 		if (time_before(jiffies, tg->disptime))
1188 			break;
1189 
1190 		throtl_dequeue_tg(tg);
1191 
1192 		nr_disp += throtl_dispatch_tg(tg);
1193 
1194 		if (sq->nr_queued[0] || sq->nr_queued[1])
1195 			tg_update_disptime(tg);
1196 
1197 		if (nr_disp >= throtl_quantum)
1198 			break;
1199 	}
1200 
1201 	return nr_disp;
1202 }
1203 
1204 static bool throtl_can_upgrade(struct throtl_data *td,
1205 	struct throtl_grp *this_tg);
1206 /**
1207  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1208  * @arg: the throtl_service_queue being serviced
1209  *
1210  * This timer is armed when a child throtl_grp with active bio's become
1211  * pending and queued on the service_queue's pending_tree and expires when
1212  * the first child throtl_grp should be dispatched.  This function
1213  * dispatches bio's from the children throtl_grps to the parent
1214  * service_queue.
1215  *
1216  * If the parent's parent is another throtl_grp, dispatching is propagated
1217  * by either arming its pending_timer or repeating dispatch directly.  If
1218  * the top-level service_tree is reached, throtl_data->dispatch_work is
1219  * kicked so that the ready bio's are issued.
1220  */
1221 static void throtl_pending_timer_fn(unsigned long arg)
1222 {
1223 	struct throtl_service_queue *sq = (void *)arg;
1224 	struct throtl_grp *tg = sq_to_tg(sq);
1225 	struct throtl_data *td = sq_to_td(sq);
1226 	struct request_queue *q = td->queue;
1227 	struct throtl_service_queue *parent_sq;
1228 	bool dispatched;
1229 	int ret;
1230 
1231 	spin_lock_irq(q->queue_lock);
1232 	if (throtl_can_upgrade(td, NULL))
1233 		throtl_upgrade_state(td);
1234 
1235 again:
1236 	parent_sq = sq->parent_sq;
1237 	dispatched = false;
1238 
1239 	while (true) {
1240 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1241 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1242 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1243 
1244 		ret = throtl_select_dispatch(sq);
1245 		if (ret) {
1246 			throtl_log(sq, "bios disp=%u", ret);
1247 			dispatched = true;
1248 		}
1249 
1250 		if (throtl_schedule_next_dispatch(sq, false))
1251 			break;
1252 
1253 		/* this dispatch windows is still open, relax and repeat */
1254 		spin_unlock_irq(q->queue_lock);
1255 		cpu_relax();
1256 		spin_lock_irq(q->queue_lock);
1257 	}
1258 
1259 	if (!dispatched)
1260 		goto out_unlock;
1261 
1262 	if (parent_sq) {
1263 		/* @parent_sq is another throl_grp, propagate dispatch */
1264 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1265 			tg_update_disptime(tg);
1266 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1267 				/* window is already open, repeat dispatching */
1268 				sq = parent_sq;
1269 				tg = sq_to_tg(sq);
1270 				goto again;
1271 			}
1272 		}
1273 	} else {
1274 		/* reached the top-level, queue issueing */
1275 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1276 	}
1277 out_unlock:
1278 	spin_unlock_irq(q->queue_lock);
1279 }
1280 
1281 /**
1282  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1283  * @work: work item being executed
1284  *
1285  * This function is queued for execution when bio's reach the bio_lists[]
1286  * of throtl_data->service_queue.  Those bio's are ready and issued by this
1287  * function.
1288  */
1289 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1290 {
1291 	struct throtl_data *td = container_of(work, struct throtl_data,
1292 					      dispatch_work);
1293 	struct throtl_service_queue *td_sq = &td->service_queue;
1294 	struct request_queue *q = td->queue;
1295 	struct bio_list bio_list_on_stack;
1296 	struct bio *bio;
1297 	struct blk_plug plug;
1298 	int rw;
1299 
1300 	bio_list_init(&bio_list_on_stack);
1301 
1302 	spin_lock_irq(q->queue_lock);
1303 	for (rw = READ; rw <= WRITE; rw++)
1304 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1305 			bio_list_add(&bio_list_on_stack, bio);
1306 	spin_unlock_irq(q->queue_lock);
1307 
1308 	if (!bio_list_empty(&bio_list_on_stack)) {
1309 		blk_start_plug(&plug);
1310 		while((bio = bio_list_pop(&bio_list_on_stack)))
1311 			generic_make_request(bio);
1312 		blk_finish_plug(&plug);
1313 	}
1314 }
1315 
1316 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1317 			      int off)
1318 {
1319 	struct throtl_grp *tg = pd_to_tg(pd);
1320 	u64 v = *(u64 *)((void *)tg + off);
1321 
1322 	if (v == U64_MAX)
1323 		return 0;
1324 	return __blkg_prfill_u64(sf, pd, v);
1325 }
1326 
1327 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1328 			       int off)
1329 {
1330 	struct throtl_grp *tg = pd_to_tg(pd);
1331 	unsigned int v = *(unsigned int *)((void *)tg + off);
1332 
1333 	if (v == UINT_MAX)
1334 		return 0;
1335 	return __blkg_prfill_u64(sf, pd, v);
1336 }
1337 
1338 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1339 {
1340 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1341 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1342 	return 0;
1343 }
1344 
1345 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1346 {
1347 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1348 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1349 	return 0;
1350 }
1351 
1352 static void tg_conf_updated(struct throtl_grp *tg)
1353 {
1354 	struct throtl_service_queue *sq = &tg->service_queue;
1355 	struct cgroup_subsys_state *pos_css;
1356 	struct blkcg_gq *blkg;
1357 
1358 	throtl_log(&tg->service_queue,
1359 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1360 		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1361 		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1362 
1363 	/*
1364 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1365 	 * considered to have rules if either the tg itself or any of its
1366 	 * ancestors has rules.  This identifies groups without any
1367 	 * restrictions in the whole hierarchy and allows them to bypass
1368 	 * blk-throttle.
1369 	 */
1370 	blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1371 		tg_update_has_rules(blkg_to_tg(blkg));
1372 
1373 	/*
1374 	 * We're already holding queue_lock and know @tg is valid.  Let's
1375 	 * apply the new config directly.
1376 	 *
1377 	 * Restart the slices for both READ and WRITES. It might happen
1378 	 * that a group's limit are dropped suddenly and we don't want to
1379 	 * account recently dispatched IO with new low rate.
1380 	 */
1381 	throtl_start_new_slice(tg, 0);
1382 	throtl_start_new_slice(tg, 1);
1383 
1384 	if (tg->flags & THROTL_TG_PENDING) {
1385 		tg_update_disptime(tg);
1386 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1387 	}
1388 }
1389 
1390 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1391 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1392 {
1393 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1394 	struct blkg_conf_ctx ctx;
1395 	struct throtl_grp *tg;
1396 	int ret;
1397 	u64 v;
1398 
1399 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1400 	if (ret)
1401 		return ret;
1402 
1403 	ret = -EINVAL;
1404 	if (sscanf(ctx.body, "%llu", &v) != 1)
1405 		goto out_finish;
1406 	if (!v)
1407 		v = U64_MAX;
1408 
1409 	tg = blkg_to_tg(ctx.blkg);
1410 
1411 	if (is_u64)
1412 		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1413 	else
1414 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1415 
1416 	tg_conf_updated(tg);
1417 	ret = 0;
1418 out_finish:
1419 	blkg_conf_finish(&ctx);
1420 	return ret ?: nbytes;
1421 }
1422 
1423 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1424 			       char *buf, size_t nbytes, loff_t off)
1425 {
1426 	return tg_set_conf(of, buf, nbytes, off, true);
1427 }
1428 
1429 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1430 				char *buf, size_t nbytes, loff_t off)
1431 {
1432 	return tg_set_conf(of, buf, nbytes, off, false);
1433 }
1434 
1435 static struct cftype throtl_legacy_files[] = {
1436 	{
1437 		.name = "throttle.read_bps_device",
1438 		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1439 		.seq_show = tg_print_conf_u64,
1440 		.write = tg_set_conf_u64,
1441 	},
1442 	{
1443 		.name = "throttle.write_bps_device",
1444 		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1445 		.seq_show = tg_print_conf_u64,
1446 		.write = tg_set_conf_u64,
1447 	},
1448 	{
1449 		.name = "throttle.read_iops_device",
1450 		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1451 		.seq_show = tg_print_conf_uint,
1452 		.write = tg_set_conf_uint,
1453 	},
1454 	{
1455 		.name = "throttle.write_iops_device",
1456 		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1457 		.seq_show = tg_print_conf_uint,
1458 		.write = tg_set_conf_uint,
1459 	},
1460 	{
1461 		.name = "throttle.io_service_bytes",
1462 		.private = (unsigned long)&blkcg_policy_throtl,
1463 		.seq_show = blkg_print_stat_bytes,
1464 	},
1465 	{
1466 		.name = "throttle.io_serviced",
1467 		.private = (unsigned long)&blkcg_policy_throtl,
1468 		.seq_show = blkg_print_stat_ios,
1469 	},
1470 	{ }	/* terminate */
1471 };
1472 
1473 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1474 			 int off)
1475 {
1476 	struct throtl_grp *tg = pd_to_tg(pd);
1477 	const char *dname = blkg_dev_name(pd->blkg);
1478 	char bufs[4][21] = { "max", "max", "max", "max" };
1479 	u64 bps_dft;
1480 	unsigned int iops_dft;
1481 	char idle_time[26] = "";
1482 	char latency_time[26] = "";
1483 
1484 	if (!dname)
1485 		return 0;
1486 
1487 	if (off == LIMIT_LOW) {
1488 		bps_dft = 0;
1489 		iops_dft = 0;
1490 	} else {
1491 		bps_dft = U64_MAX;
1492 		iops_dft = UINT_MAX;
1493 	}
1494 
1495 	if (tg->bps_conf[READ][off] == bps_dft &&
1496 	    tg->bps_conf[WRITE][off] == bps_dft &&
1497 	    tg->iops_conf[READ][off] == iops_dft &&
1498 	    tg->iops_conf[WRITE][off] == iops_dft &&
1499 	    (off != LIMIT_LOW ||
1500 	     (tg->idletime_threshold == tg->td->dft_idletime_threshold &&
1501 	      tg->latency_target == DFL_LATENCY_TARGET)))
1502 		return 0;
1503 
1504 	if (tg->bps_conf[READ][off] != bps_dft)
1505 		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1506 			tg->bps_conf[READ][off]);
1507 	if (tg->bps_conf[WRITE][off] != bps_dft)
1508 		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1509 			tg->bps_conf[WRITE][off]);
1510 	if (tg->iops_conf[READ][off] != iops_dft)
1511 		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1512 			tg->iops_conf[READ][off]);
1513 	if (tg->iops_conf[WRITE][off] != iops_dft)
1514 		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1515 			tg->iops_conf[WRITE][off]);
1516 	if (off == LIMIT_LOW) {
1517 		if (tg->idletime_threshold == ULONG_MAX)
1518 			strcpy(idle_time, " idle=max");
1519 		else
1520 			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1521 				tg->idletime_threshold);
1522 
1523 		if (tg->latency_target == ULONG_MAX)
1524 			strcpy(latency_time, " latency=max");
1525 		else
1526 			snprintf(latency_time, sizeof(latency_time),
1527 				" latency=%lu", tg->latency_target);
1528 	}
1529 
1530 	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1531 		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1532 		   latency_time);
1533 	return 0;
1534 }
1535 
1536 static int tg_print_limit(struct seq_file *sf, void *v)
1537 {
1538 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1539 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1540 	return 0;
1541 }
1542 
1543 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1544 			  char *buf, size_t nbytes, loff_t off)
1545 {
1546 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1547 	struct blkg_conf_ctx ctx;
1548 	struct throtl_grp *tg;
1549 	u64 v[4];
1550 	unsigned long idle_time;
1551 	unsigned long latency_time;
1552 	int ret;
1553 	int index = of_cft(of)->private;
1554 
1555 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1556 	if (ret)
1557 		return ret;
1558 
1559 	tg = blkg_to_tg(ctx.blkg);
1560 
1561 	v[0] = tg->bps_conf[READ][index];
1562 	v[1] = tg->bps_conf[WRITE][index];
1563 	v[2] = tg->iops_conf[READ][index];
1564 	v[3] = tg->iops_conf[WRITE][index];
1565 
1566 	idle_time = tg->idletime_threshold;
1567 	latency_time = tg->latency_target;
1568 	while (true) {
1569 		char tok[27];	/* wiops=18446744073709551616 */
1570 		char *p;
1571 		u64 val = U64_MAX;
1572 		int len;
1573 
1574 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1575 			break;
1576 		if (tok[0] == '\0')
1577 			break;
1578 		ctx.body += len;
1579 
1580 		ret = -EINVAL;
1581 		p = tok;
1582 		strsep(&p, "=");
1583 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1584 			goto out_finish;
1585 
1586 		ret = -ERANGE;
1587 		if (!val)
1588 			goto out_finish;
1589 
1590 		ret = -EINVAL;
1591 		if (!strcmp(tok, "rbps"))
1592 			v[0] = val;
1593 		else if (!strcmp(tok, "wbps"))
1594 			v[1] = val;
1595 		else if (!strcmp(tok, "riops"))
1596 			v[2] = min_t(u64, val, UINT_MAX);
1597 		else if (!strcmp(tok, "wiops"))
1598 			v[3] = min_t(u64, val, UINT_MAX);
1599 		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1600 			idle_time = val;
1601 		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1602 			latency_time = val;
1603 		else
1604 			goto out_finish;
1605 	}
1606 
1607 	tg->bps_conf[READ][index] = v[0];
1608 	tg->bps_conf[WRITE][index] = v[1];
1609 	tg->iops_conf[READ][index] = v[2];
1610 	tg->iops_conf[WRITE][index] = v[3];
1611 
1612 	if (index == LIMIT_MAX) {
1613 		tg->bps[READ][index] = v[0];
1614 		tg->bps[WRITE][index] = v[1];
1615 		tg->iops[READ][index] = v[2];
1616 		tg->iops[WRITE][index] = v[3];
1617 	}
1618 	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1619 		tg->bps_conf[READ][LIMIT_MAX]);
1620 	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1621 		tg->bps_conf[WRITE][LIMIT_MAX]);
1622 	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1623 		tg->iops_conf[READ][LIMIT_MAX]);
1624 	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1625 		tg->iops_conf[WRITE][LIMIT_MAX]);
1626 
1627 	if (index == LIMIT_LOW) {
1628 		blk_throtl_update_limit_valid(tg->td);
1629 		if (tg->td->limit_valid[LIMIT_LOW])
1630 			tg->td->limit_index = LIMIT_LOW;
1631 		tg->idletime_threshold = (idle_time == ULONG_MAX) ?
1632 			ULONG_MAX : idle_time;
1633 		tg->latency_target = (latency_time == ULONG_MAX) ?
1634 			ULONG_MAX : latency_time;
1635 	}
1636 	tg_conf_updated(tg);
1637 	ret = 0;
1638 out_finish:
1639 	blkg_conf_finish(&ctx);
1640 	return ret ?: nbytes;
1641 }
1642 
1643 static struct cftype throtl_files[] = {
1644 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1645 	{
1646 		.name = "low",
1647 		.flags = CFTYPE_NOT_ON_ROOT,
1648 		.seq_show = tg_print_limit,
1649 		.write = tg_set_limit,
1650 		.private = LIMIT_LOW,
1651 	},
1652 #endif
1653 	{
1654 		.name = "max",
1655 		.flags = CFTYPE_NOT_ON_ROOT,
1656 		.seq_show = tg_print_limit,
1657 		.write = tg_set_limit,
1658 		.private = LIMIT_MAX,
1659 	},
1660 	{ }	/* terminate */
1661 };
1662 
1663 static void throtl_shutdown_wq(struct request_queue *q)
1664 {
1665 	struct throtl_data *td = q->td;
1666 
1667 	cancel_work_sync(&td->dispatch_work);
1668 }
1669 
1670 static struct blkcg_policy blkcg_policy_throtl = {
1671 	.dfl_cftypes		= throtl_files,
1672 	.legacy_cftypes		= throtl_legacy_files,
1673 
1674 	.pd_alloc_fn		= throtl_pd_alloc,
1675 	.pd_init_fn		= throtl_pd_init,
1676 	.pd_online_fn		= throtl_pd_online,
1677 	.pd_offline_fn		= throtl_pd_offline,
1678 	.pd_free_fn		= throtl_pd_free,
1679 };
1680 
1681 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1682 {
1683 	unsigned long rtime = jiffies, wtime = jiffies;
1684 
1685 	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1686 		rtime = tg->last_low_overflow_time[READ];
1687 	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1688 		wtime = tg->last_low_overflow_time[WRITE];
1689 	return min(rtime, wtime);
1690 }
1691 
1692 /* tg should not be an intermediate node */
1693 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1694 {
1695 	struct throtl_service_queue *parent_sq;
1696 	struct throtl_grp *parent = tg;
1697 	unsigned long ret = __tg_last_low_overflow_time(tg);
1698 
1699 	while (true) {
1700 		parent_sq = parent->service_queue.parent_sq;
1701 		parent = sq_to_tg(parent_sq);
1702 		if (!parent)
1703 			break;
1704 
1705 		/*
1706 		 * The parent doesn't have low limit, it always reaches low
1707 		 * limit. Its overflow time is useless for children
1708 		 */
1709 		if (!parent->bps[READ][LIMIT_LOW] &&
1710 		    !parent->iops[READ][LIMIT_LOW] &&
1711 		    !parent->bps[WRITE][LIMIT_LOW] &&
1712 		    !parent->iops[WRITE][LIMIT_LOW])
1713 			continue;
1714 		if (time_after(__tg_last_low_overflow_time(parent), ret))
1715 			ret = __tg_last_low_overflow_time(parent);
1716 	}
1717 	return ret;
1718 }
1719 
1720 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1721 {
1722 	/*
1723 	 * cgroup is idle if:
1724 	 * - single idle is too long, longer than a fixed value (in case user
1725 	 *   configure a too big threshold) or 4 times of slice
1726 	 * - average think time is more than threshold
1727 	 * - IO latency is largely below threshold
1728 	 */
1729 	unsigned long time = jiffies_to_usecs(4 * tg->td->throtl_slice);
1730 
1731 	time = min_t(unsigned long, MAX_IDLE_TIME, time);
1732 	return (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1733 	       tg->avg_idletime > tg->idletime_threshold ||
1734 	       (tg->latency_target && tg->bio_cnt &&
1735 		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1736 }
1737 
1738 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1739 {
1740 	struct throtl_service_queue *sq = &tg->service_queue;
1741 	bool read_limit, write_limit;
1742 
1743 	/*
1744 	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1745 	 * reaches), it's ok to upgrade to next limit
1746 	 */
1747 	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1748 	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1749 	if (!read_limit && !write_limit)
1750 		return true;
1751 	if (read_limit && sq->nr_queued[READ] &&
1752 	    (!write_limit || sq->nr_queued[WRITE]))
1753 		return true;
1754 	if (write_limit && sq->nr_queued[WRITE] &&
1755 	    (!read_limit || sq->nr_queued[READ]))
1756 		return true;
1757 
1758 	if (time_after_eq(jiffies,
1759 		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1760 	    throtl_tg_is_idle(tg))
1761 		return true;
1762 	return false;
1763 }
1764 
1765 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1766 {
1767 	while (true) {
1768 		if (throtl_tg_can_upgrade(tg))
1769 			return true;
1770 		tg = sq_to_tg(tg->service_queue.parent_sq);
1771 		if (!tg || !tg_to_blkg(tg)->parent)
1772 			return false;
1773 	}
1774 	return false;
1775 }
1776 
1777 static bool throtl_can_upgrade(struct throtl_data *td,
1778 	struct throtl_grp *this_tg)
1779 {
1780 	struct cgroup_subsys_state *pos_css;
1781 	struct blkcg_gq *blkg;
1782 
1783 	if (td->limit_index != LIMIT_LOW)
1784 		return false;
1785 
1786 	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1787 		return false;
1788 
1789 	rcu_read_lock();
1790 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1791 		struct throtl_grp *tg = blkg_to_tg(blkg);
1792 
1793 		if (tg == this_tg)
1794 			continue;
1795 		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1796 			continue;
1797 		if (!throtl_hierarchy_can_upgrade(tg)) {
1798 			rcu_read_unlock();
1799 			return false;
1800 		}
1801 	}
1802 	rcu_read_unlock();
1803 	return true;
1804 }
1805 
1806 static void throtl_upgrade_check(struct throtl_grp *tg)
1807 {
1808 	unsigned long now = jiffies;
1809 
1810 	if (tg->td->limit_index != LIMIT_LOW)
1811 		return;
1812 
1813 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1814 		return;
1815 
1816 	tg->last_check_time = now;
1817 
1818 	if (!time_after_eq(now,
1819 	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1820 		return;
1821 
1822 	if (throtl_can_upgrade(tg->td, NULL))
1823 		throtl_upgrade_state(tg->td);
1824 }
1825 
1826 static void throtl_upgrade_state(struct throtl_data *td)
1827 {
1828 	struct cgroup_subsys_state *pos_css;
1829 	struct blkcg_gq *blkg;
1830 
1831 	td->limit_index = LIMIT_MAX;
1832 	td->low_upgrade_time = jiffies;
1833 	td->scale = 0;
1834 	rcu_read_lock();
1835 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1836 		struct throtl_grp *tg = blkg_to_tg(blkg);
1837 		struct throtl_service_queue *sq = &tg->service_queue;
1838 
1839 		tg->disptime = jiffies - 1;
1840 		throtl_select_dispatch(sq);
1841 		throtl_schedule_next_dispatch(sq, false);
1842 	}
1843 	rcu_read_unlock();
1844 	throtl_select_dispatch(&td->service_queue);
1845 	throtl_schedule_next_dispatch(&td->service_queue, false);
1846 	queue_work(kthrotld_workqueue, &td->dispatch_work);
1847 }
1848 
1849 static void throtl_downgrade_state(struct throtl_data *td, int new)
1850 {
1851 	td->scale /= 2;
1852 
1853 	if (td->scale) {
1854 		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1855 		return;
1856 	}
1857 
1858 	td->limit_index = new;
1859 	td->low_downgrade_time = jiffies;
1860 }
1861 
1862 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1863 {
1864 	struct throtl_data *td = tg->td;
1865 	unsigned long now = jiffies;
1866 
1867 	/*
1868 	 * If cgroup is below low limit, consider downgrade and throttle other
1869 	 * cgroups
1870 	 */
1871 	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1872 	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1873 					td->throtl_slice) &&
1874 	    (!throtl_tg_is_idle(tg) ||
1875 	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1876 		return true;
1877 	return false;
1878 }
1879 
1880 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1881 {
1882 	while (true) {
1883 		if (!throtl_tg_can_downgrade(tg))
1884 			return false;
1885 		tg = sq_to_tg(tg->service_queue.parent_sq);
1886 		if (!tg || !tg_to_blkg(tg)->parent)
1887 			break;
1888 	}
1889 	return true;
1890 }
1891 
1892 static void throtl_downgrade_check(struct throtl_grp *tg)
1893 {
1894 	uint64_t bps;
1895 	unsigned int iops;
1896 	unsigned long elapsed_time;
1897 	unsigned long now = jiffies;
1898 
1899 	if (tg->td->limit_index != LIMIT_MAX ||
1900 	    !tg->td->limit_valid[LIMIT_LOW])
1901 		return;
1902 	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1903 		return;
1904 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1905 		return;
1906 
1907 	elapsed_time = now - tg->last_check_time;
1908 	tg->last_check_time = now;
1909 
1910 	if (time_before(now, tg_last_low_overflow_time(tg) +
1911 			tg->td->throtl_slice))
1912 		return;
1913 
1914 	if (tg->bps[READ][LIMIT_LOW]) {
1915 		bps = tg->last_bytes_disp[READ] * HZ;
1916 		do_div(bps, elapsed_time);
1917 		if (bps >= tg->bps[READ][LIMIT_LOW])
1918 			tg->last_low_overflow_time[READ] = now;
1919 	}
1920 
1921 	if (tg->bps[WRITE][LIMIT_LOW]) {
1922 		bps = tg->last_bytes_disp[WRITE] * HZ;
1923 		do_div(bps, elapsed_time);
1924 		if (bps >= tg->bps[WRITE][LIMIT_LOW])
1925 			tg->last_low_overflow_time[WRITE] = now;
1926 	}
1927 
1928 	if (tg->iops[READ][LIMIT_LOW]) {
1929 		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1930 		if (iops >= tg->iops[READ][LIMIT_LOW])
1931 			tg->last_low_overflow_time[READ] = now;
1932 	}
1933 
1934 	if (tg->iops[WRITE][LIMIT_LOW]) {
1935 		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1936 		if (iops >= tg->iops[WRITE][LIMIT_LOW])
1937 			tg->last_low_overflow_time[WRITE] = now;
1938 	}
1939 
1940 	/*
1941 	 * If cgroup is below low limit, consider downgrade and throttle other
1942 	 * cgroups
1943 	 */
1944 	if (throtl_hierarchy_can_downgrade(tg))
1945 		throtl_downgrade_state(tg->td, LIMIT_LOW);
1946 
1947 	tg->last_bytes_disp[READ] = 0;
1948 	tg->last_bytes_disp[WRITE] = 0;
1949 	tg->last_io_disp[READ] = 0;
1950 	tg->last_io_disp[WRITE] = 0;
1951 }
1952 
1953 static void blk_throtl_update_idletime(struct throtl_grp *tg)
1954 {
1955 	unsigned long now = ktime_get_ns() >> 10;
1956 	unsigned long last_finish_time = tg->last_finish_time;
1957 
1958 	if (now <= last_finish_time || last_finish_time == 0 ||
1959 	    last_finish_time == tg->checked_last_finish_time)
1960 		return;
1961 
1962 	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
1963 	tg->checked_last_finish_time = last_finish_time;
1964 }
1965 
1966 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1967 static void throtl_update_latency_buckets(struct throtl_data *td)
1968 {
1969 	struct avg_latency_bucket avg_latency[LATENCY_BUCKET_SIZE];
1970 	int i, cpu;
1971 	unsigned long last_latency = 0;
1972 	unsigned long latency;
1973 
1974 	if (!blk_queue_nonrot(td->queue))
1975 		return;
1976 	if (time_before(jiffies, td->last_calculate_time + HZ))
1977 		return;
1978 	td->last_calculate_time = jiffies;
1979 
1980 	memset(avg_latency, 0, sizeof(avg_latency));
1981 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
1982 		struct latency_bucket *tmp = &td->tmp_buckets[i];
1983 
1984 		for_each_possible_cpu(cpu) {
1985 			struct latency_bucket *bucket;
1986 
1987 			/* this isn't race free, but ok in practice */
1988 			bucket = per_cpu_ptr(td->latency_buckets, cpu);
1989 			tmp->total_latency += bucket[i].total_latency;
1990 			tmp->samples += bucket[i].samples;
1991 			bucket[i].total_latency = 0;
1992 			bucket[i].samples = 0;
1993 		}
1994 
1995 		if (tmp->samples >= 32) {
1996 			int samples = tmp->samples;
1997 
1998 			latency = tmp->total_latency;
1999 
2000 			tmp->total_latency = 0;
2001 			tmp->samples = 0;
2002 			latency /= samples;
2003 			if (latency == 0)
2004 				continue;
2005 			avg_latency[i].latency = latency;
2006 		}
2007 	}
2008 
2009 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2010 		if (!avg_latency[i].latency) {
2011 			if (td->avg_buckets[i].latency < last_latency)
2012 				td->avg_buckets[i].latency = last_latency;
2013 			continue;
2014 		}
2015 
2016 		if (!td->avg_buckets[i].valid)
2017 			latency = avg_latency[i].latency;
2018 		else
2019 			latency = (td->avg_buckets[i].latency * 7 +
2020 				avg_latency[i].latency) >> 3;
2021 
2022 		td->avg_buckets[i].latency = max(latency, last_latency);
2023 		td->avg_buckets[i].valid = true;
2024 		last_latency = td->avg_buckets[i].latency;
2025 	}
2026 }
2027 #else
2028 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2029 {
2030 }
2031 #endif
2032 
2033 static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
2034 {
2035 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2036 	int ret;
2037 
2038 	ret = bio_associate_current(bio);
2039 	if (ret == 0 || ret == -EBUSY)
2040 		bio->bi_cg_private = tg;
2041 	blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
2042 #else
2043 	bio_associate_current(bio);
2044 #endif
2045 }
2046 
2047 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2048 		    struct bio *bio)
2049 {
2050 	struct throtl_qnode *qn = NULL;
2051 	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2052 	struct throtl_service_queue *sq;
2053 	bool rw = bio_data_dir(bio);
2054 	bool throttled = false;
2055 	struct throtl_data *td = tg->td;
2056 
2057 	WARN_ON_ONCE(!rcu_read_lock_held());
2058 
2059 	/* see throtl_charge_bio() */
2060 	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2061 		goto out;
2062 
2063 	spin_lock_irq(q->queue_lock);
2064 
2065 	throtl_update_latency_buckets(td);
2066 
2067 	if (unlikely(blk_queue_bypass(q)))
2068 		goto out_unlock;
2069 
2070 	blk_throtl_assoc_bio(tg, bio);
2071 	blk_throtl_update_idletime(tg);
2072 
2073 	sq = &tg->service_queue;
2074 
2075 again:
2076 	while (true) {
2077 		if (tg->last_low_overflow_time[rw] == 0)
2078 			tg->last_low_overflow_time[rw] = jiffies;
2079 		throtl_downgrade_check(tg);
2080 		throtl_upgrade_check(tg);
2081 		/* throtl is FIFO - if bios are already queued, should queue */
2082 		if (sq->nr_queued[rw])
2083 			break;
2084 
2085 		/* if above limits, break to queue */
2086 		if (!tg_may_dispatch(tg, bio, NULL)) {
2087 			tg->last_low_overflow_time[rw] = jiffies;
2088 			if (throtl_can_upgrade(td, tg)) {
2089 				throtl_upgrade_state(td);
2090 				goto again;
2091 			}
2092 			break;
2093 		}
2094 
2095 		/* within limits, let's charge and dispatch directly */
2096 		throtl_charge_bio(tg, bio);
2097 
2098 		/*
2099 		 * We need to trim slice even when bios are not being queued
2100 		 * otherwise it might happen that a bio is not queued for
2101 		 * a long time and slice keeps on extending and trim is not
2102 		 * called for a long time. Now if limits are reduced suddenly
2103 		 * we take into account all the IO dispatched so far at new
2104 		 * low rate and * newly queued IO gets a really long dispatch
2105 		 * time.
2106 		 *
2107 		 * So keep on trimming slice even if bio is not queued.
2108 		 */
2109 		throtl_trim_slice(tg, rw);
2110 
2111 		/*
2112 		 * @bio passed through this layer without being throttled.
2113 		 * Climb up the ladder.  If we''re already at the top, it
2114 		 * can be executed directly.
2115 		 */
2116 		qn = &tg->qnode_on_parent[rw];
2117 		sq = sq->parent_sq;
2118 		tg = sq_to_tg(sq);
2119 		if (!tg)
2120 			goto out_unlock;
2121 	}
2122 
2123 	/* out-of-limit, queue to @tg */
2124 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2125 		   rw == READ ? 'R' : 'W',
2126 		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2127 		   tg_bps_limit(tg, rw),
2128 		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2129 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2130 
2131 	tg->last_low_overflow_time[rw] = jiffies;
2132 
2133 	td->nr_queued[rw]++;
2134 	throtl_add_bio_tg(bio, qn, tg);
2135 	throttled = true;
2136 
2137 	/*
2138 	 * Update @tg's dispatch time and force schedule dispatch if @tg
2139 	 * was empty before @bio.  The forced scheduling isn't likely to
2140 	 * cause undue delay as @bio is likely to be dispatched directly if
2141 	 * its @tg's disptime is not in the future.
2142 	 */
2143 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2144 		tg_update_disptime(tg);
2145 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2146 	}
2147 
2148 out_unlock:
2149 	spin_unlock_irq(q->queue_lock);
2150 out:
2151 	/*
2152 	 * As multiple blk-throtls may stack in the same issue path, we
2153 	 * don't want bios to leave with the flag set.  Clear the flag if
2154 	 * being issued.
2155 	 */
2156 	if (!throttled)
2157 		bio_clear_flag(bio, BIO_THROTTLED);
2158 
2159 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2160 	if (throttled || !td->track_bio_latency)
2161 		bio->bi_issue_stat.stat |= SKIP_LATENCY;
2162 #endif
2163 	return throttled;
2164 }
2165 
2166 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2167 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2168 	int op, unsigned long time)
2169 {
2170 	struct latency_bucket *latency;
2171 	int index;
2172 
2173 	if (!td || td->limit_index != LIMIT_LOW || op != REQ_OP_READ ||
2174 	    !blk_queue_nonrot(td->queue))
2175 		return;
2176 
2177 	index = request_bucket_index(size);
2178 
2179 	latency = get_cpu_ptr(td->latency_buckets);
2180 	latency[index].total_latency += time;
2181 	latency[index].samples++;
2182 	put_cpu_ptr(td->latency_buckets);
2183 }
2184 
2185 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2186 {
2187 	struct request_queue *q = rq->q;
2188 	struct throtl_data *td = q->td;
2189 
2190 	throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
2191 		req_op(rq), time_ns >> 10);
2192 }
2193 
2194 void blk_throtl_bio_endio(struct bio *bio)
2195 {
2196 	struct throtl_grp *tg;
2197 	u64 finish_time_ns;
2198 	unsigned long finish_time;
2199 	unsigned long start_time;
2200 	unsigned long lat;
2201 
2202 	tg = bio->bi_cg_private;
2203 	if (!tg)
2204 		return;
2205 	bio->bi_cg_private = NULL;
2206 
2207 	finish_time_ns = ktime_get_ns();
2208 	tg->last_finish_time = finish_time_ns >> 10;
2209 
2210 	start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
2211 	finish_time = __blk_stat_time(finish_time_ns) >> 10;
2212 	if (!start_time || finish_time <= start_time)
2213 		return;
2214 
2215 	lat = finish_time - start_time;
2216 	/* this is only for bio based driver */
2217 	if (!(bio->bi_issue_stat.stat & SKIP_LATENCY))
2218 		throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
2219 			bio_op(bio), lat);
2220 
2221 	if (tg->latency_target) {
2222 		int bucket;
2223 		unsigned int threshold;
2224 
2225 		bucket = request_bucket_index(
2226 			blk_stat_size(&bio->bi_issue_stat));
2227 		threshold = tg->td->avg_buckets[bucket].latency +
2228 			tg->latency_target;
2229 		if (lat > threshold)
2230 			tg->bad_bio_cnt++;
2231 		/*
2232 		 * Not race free, could get wrong count, which means cgroups
2233 		 * will be throttled
2234 		 */
2235 		tg->bio_cnt++;
2236 	}
2237 
2238 	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2239 		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2240 		tg->bio_cnt /= 2;
2241 		tg->bad_bio_cnt /= 2;
2242 	}
2243 }
2244 #endif
2245 
2246 /*
2247  * Dispatch all bios from all children tg's queued on @parent_sq.  On
2248  * return, @parent_sq is guaranteed to not have any active children tg's
2249  * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2250  */
2251 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2252 {
2253 	struct throtl_grp *tg;
2254 
2255 	while ((tg = throtl_rb_first(parent_sq))) {
2256 		struct throtl_service_queue *sq = &tg->service_queue;
2257 		struct bio *bio;
2258 
2259 		throtl_dequeue_tg(tg);
2260 
2261 		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2262 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2263 		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2264 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2265 	}
2266 }
2267 
2268 /**
2269  * blk_throtl_drain - drain throttled bios
2270  * @q: request_queue to drain throttled bios for
2271  *
2272  * Dispatch all currently throttled bios on @q through ->make_request_fn().
2273  */
2274 void blk_throtl_drain(struct request_queue *q)
2275 	__releases(q->queue_lock) __acquires(q->queue_lock)
2276 {
2277 	struct throtl_data *td = q->td;
2278 	struct blkcg_gq *blkg;
2279 	struct cgroup_subsys_state *pos_css;
2280 	struct bio *bio;
2281 	int rw;
2282 
2283 	queue_lockdep_assert_held(q);
2284 	rcu_read_lock();
2285 
2286 	/*
2287 	 * Drain each tg while doing post-order walk on the blkg tree, so
2288 	 * that all bios are propagated to td->service_queue.  It'd be
2289 	 * better to walk service_queue tree directly but blkg walk is
2290 	 * easier.
2291 	 */
2292 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2293 		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2294 
2295 	/* finally, transfer bios from top-level tg's into the td */
2296 	tg_drain_bios(&td->service_queue);
2297 
2298 	rcu_read_unlock();
2299 	spin_unlock_irq(q->queue_lock);
2300 
2301 	/* all bios now should be in td->service_queue, issue them */
2302 	for (rw = READ; rw <= WRITE; rw++)
2303 		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2304 						NULL)))
2305 			generic_make_request(bio);
2306 
2307 	spin_lock_irq(q->queue_lock);
2308 }
2309 
2310 int blk_throtl_init(struct request_queue *q)
2311 {
2312 	struct throtl_data *td;
2313 	int ret;
2314 
2315 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2316 	if (!td)
2317 		return -ENOMEM;
2318 	td->latency_buckets = __alloc_percpu(sizeof(struct latency_bucket) *
2319 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2320 	if (!td->latency_buckets) {
2321 		kfree(td);
2322 		return -ENOMEM;
2323 	}
2324 
2325 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2326 	throtl_service_queue_init(&td->service_queue);
2327 
2328 	q->td = td;
2329 	td->queue = q;
2330 
2331 	td->limit_valid[LIMIT_MAX] = true;
2332 	td->limit_index = LIMIT_MAX;
2333 	td->low_upgrade_time = jiffies;
2334 	td->low_downgrade_time = jiffies;
2335 
2336 	/* activate policy */
2337 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2338 	if (ret) {
2339 		free_percpu(td->latency_buckets);
2340 		kfree(td);
2341 	}
2342 	return ret;
2343 }
2344 
2345 void blk_throtl_exit(struct request_queue *q)
2346 {
2347 	BUG_ON(!q->td);
2348 	throtl_shutdown_wq(q);
2349 	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2350 	free_percpu(q->td->latency_buckets);
2351 	kfree(q->td);
2352 }
2353 
2354 void blk_throtl_register_queue(struct request_queue *q)
2355 {
2356 	struct throtl_data *td;
2357 	struct cgroup_subsys_state *pos_css;
2358 	struct blkcg_gq *blkg;
2359 
2360 	td = q->td;
2361 	BUG_ON(!td);
2362 
2363 	if (blk_queue_nonrot(q)) {
2364 		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2365 		td->dft_idletime_threshold = DFL_IDLE_THRESHOLD_SSD;
2366 	} else {
2367 		td->throtl_slice = DFL_THROTL_SLICE_HD;
2368 		td->dft_idletime_threshold = DFL_IDLE_THRESHOLD_HD;
2369 	}
2370 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2371 	/* if no low limit, use previous default */
2372 	td->throtl_slice = DFL_THROTL_SLICE_HD;
2373 #endif
2374 
2375 	td->track_bio_latency = !q->mq_ops && !q->request_fn;
2376 	if (!td->track_bio_latency)
2377 		blk_stat_enable_accounting(q);
2378 
2379 	/*
2380 	 * some tg are created before queue is fully initialized, eg, nonrot
2381 	 * isn't initialized yet
2382 	 */
2383 	rcu_read_lock();
2384 	blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
2385 		struct throtl_grp *tg = blkg_to_tg(blkg);
2386 
2387 		tg->idletime_threshold = td->dft_idletime_threshold;
2388 	}
2389 	rcu_read_unlock();
2390 }
2391 
2392 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2393 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2394 {
2395 	if (!q->td)
2396 		return -EINVAL;
2397 	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2398 }
2399 
2400 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2401 	const char *page, size_t count)
2402 {
2403 	unsigned long v;
2404 	unsigned long t;
2405 
2406 	if (!q->td)
2407 		return -EINVAL;
2408 	if (kstrtoul(page, 10, &v))
2409 		return -EINVAL;
2410 	t = msecs_to_jiffies(v);
2411 	if (t == 0 || t > MAX_THROTL_SLICE)
2412 		return -EINVAL;
2413 	q->td->throtl_slice = t;
2414 	return count;
2415 }
2416 #endif
2417 
2418 static int __init throtl_init(void)
2419 {
2420 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2421 	if (!kthrotld_workqueue)
2422 		panic("Failed to create kthrotld\n");
2423 
2424 	return blkcg_policy_register(&blkcg_policy_throtl);
2425 }
2426 
2427 module_init(throtl_init);
2428