1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Interface for controlling IO bandwidth on a request queue 4 * 5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/bio.h> 12 #include <linux/blktrace_api.h> 13 #include <linux/blk-cgroup.h> 14 #include "blk.h" 15 #include "blk-cgroup-rwstat.h" 16 17 /* Max dispatch from a group in 1 round */ 18 #define THROTL_GRP_QUANTUM 8 19 20 /* Total max dispatch from all groups in one round */ 21 #define THROTL_QUANTUM 32 22 23 /* Throttling is performed over a slice and after that slice is renewed */ 24 #define DFL_THROTL_SLICE_HD (HZ / 10) 25 #define DFL_THROTL_SLICE_SSD (HZ / 50) 26 #define MAX_THROTL_SLICE (HZ) 27 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */ 28 #define MIN_THROTL_BPS (320 * 1024) 29 #define MIN_THROTL_IOPS (10) 30 #define DFL_LATENCY_TARGET (-1L) 31 #define DFL_IDLE_THRESHOLD (0) 32 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */ 33 #define LATENCY_FILTERED_SSD (0) 34 /* 35 * For HD, very small latency comes from sequential IO. Such IO is helpless to 36 * help determine if its IO is impacted by others, hence we ignore the IO 37 */ 38 #define LATENCY_FILTERED_HD (1000L) /* 1ms */ 39 40 static struct blkcg_policy blkcg_policy_throtl; 41 42 /* A workqueue to queue throttle related work */ 43 static struct workqueue_struct *kthrotld_workqueue; 44 45 /* 46 * To implement hierarchical throttling, throtl_grps form a tree and bios 47 * are dispatched upwards level by level until they reach the top and get 48 * issued. When dispatching bios from the children and local group at each 49 * level, if the bios are dispatched into a single bio_list, there's a risk 50 * of a local or child group which can queue many bios at once filling up 51 * the list starving others. 52 * 53 * To avoid such starvation, dispatched bios are queued separately 54 * according to where they came from. When they are again dispatched to 55 * the parent, they're popped in round-robin order so that no single source 56 * hogs the dispatch window. 57 * 58 * throtl_qnode is used to keep the queued bios separated by their sources. 59 * Bios are queued to throtl_qnode which in turn is queued to 60 * throtl_service_queue and then dispatched in round-robin order. 61 * 62 * It's also used to track the reference counts on blkg's. A qnode always 63 * belongs to a throtl_grp and gets queued on itself or the parent, so 64 * incrementing the reference of the associated throtl_grp when a qnode is 65 * queued and decrementing when dequeued is enough to keep the whole blkg 66 * tree pinned while bios are in flight. 67 */ 68 struct throtl_qnode { 69 struct list_head node; /* service_queue->queued[] */ 70 struct bio_list bios; /* queued bios */ 71 struct throtl_grp *tg; /* tg this qnode belongs to */ 72 }; 73 74 struct throtl_service_queue { 75 struct throtl_service_queue *parent_sq; /* the parent service_queue */ 76 77 /* 78 * Bios queued directly to this service_queue or dispatched from 79 * children throtl_grp's. 80 */ 81 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */ 82 unsigned int nr_queued[2]; /* number of queued bios */ 83 84 /* 85 * RB tree of active children throtl_grp's, which are sorted by 86 * their ->disptime. 87 */ 88 struct rb_root_cached pending_tree; /* RB tree of active tgs */ 89 unsigned int nr_pending; /* # queued in the tree */ 90 unsigned long first_pending_disptime; /* disptime of the first tg */ 91 struct timer_list pending_timer; /* fires on first_pending_disptime */ 92 }; 93 94 enum tg_state_flags { 95 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */ 96 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */ 97 }; 98 99 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 100 101 enum { 102 LIMIT_LOW, 103 LIMIT_MAX, 104 LIMIT_CNT, 105 }; 106 107 struct throtl_grp { 108 /* must be the first member */ 109 struct blkg_policy_data pd; 110 111 /* active throtl group service_queue member */ 112 struct rb_node rb_node; 113 114 /* throtl_data this group belongs to */ 115 struct throtl_data *td; 116 117 /* this group's service queue */ 118 struct throtl_service_queue service_queue; 119 120 /* 121 * qnode_on_self is used when bios are directly queued to this 122 * throtl_grp so that local bios compete fairly with bios 123 * dispatched from children. qnode_on_parent is used when bios are 124 * dispatched from this throtl_grp into its parent and will compete 125 * with the sibling qnode_on_parents and the parent's 126 * qnode_on_self. 127 */ 128 struct throtl_qnode qnode_on_self[2]; 129 struct throtl_qnode qnode_on_parent[2]; 130 131 /* 132 * Dispatch time in jiffies. This is the estimated time when group 133 * will unthrottle and is ready to dispatch more bio. It is used as 134 * key to sort active groups in service tree. 135 */ 136 unsigned long disptime; 137 138 unsigned int flags; 139 140 /* are there any throtl rules between this group and td? */ 141 bool has_rules[2]; 142 143 /* internally used bytes per second rate limits */ 144 uint64_t bps[2][LIMIT_CNT]; 145 /* user configured bps limits */ 146 uint64_t bps_conf[2][LIMIT_CNT]; 147 148 /* internally used IOPS limits */ 149 unsigned int iops[2][LIMIT_CNT]; 150 /* user configured IOPS limits */ 151 unsigned int iops_conf[2][LIMIT_CNT]; 152 153 /* Number of bytes dispatched in current slice */ 154 uint64_t bytes_disp[2]; 155 /* Number of bio's dispatched in current slice */ 156 unsigned int io_disp[2]; 157 158 unsigned long last_low_overflow_time[2]; 159 160 uint64_t last_bytes_disp[2]; 161 unsigned int last_io_disp[2]; 162 163 unsigned long last_check_time; 164 165 unsigned long latency_target; /* us */ 166 unsigned long latency_target_conf; /* us */ 167 /* When did we start a new slice */ 168 unsigned long slice_start[2]; 169 unsigned long slice_end[2]; 170 171 unsigned long last_finish_time; /* ns / 1024 */ 172 unsigned long checked_last_finish_time; /* ns / 1024 */ 173 unsigned long avg_idletime; /* ns / 1024 */ 174 unsigned long idletime_threshold; /* us */ 175 unsigned long idletime_threshold_conf; /* us */ 176 177 unsigned int bio_cnt; /* total bios */ 178 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */ 179 unsigned long bio_cnt_reset_time; 180 181 struct blkg_rwstat stat_bytes; 182 struct blkg_rwstat stat_ios; 183 }; 184 185 /* We measure latency for request size from <= 4k to >= 1M */ 186 #define LATENCY_BUCKET_SIZE 9 187 188 struct latency_bucket { 189 unsigned long total_latency; /* ns / 1024 */ 190 int samples; 191 }; 192 193 struct avg_latency_bucket { 194 unsigned long latency; /* ns / 1024 */ 195 bool valid; 196 }; 197 198 struct throtl_data 199 { 200 /* service tree for active throtl groups */ 201 struct throtl_service_queue service_queue; 202 203 struct request_queue *queue; 204 205 /* Total Number of queued bios on READ and WRITE lists */ 206 unsigned int nr_queued[2]; 207 208 unsigned int throtl_slice; 209 210 /* Work for dispatching throttled bios */ 211 struct work_struct dispatch_work; 212 unsigned int limit_index; 213 bool limit_valid[LIMIT_CNT]; 214 215 unsigned long low_upgrade_time; 216 unsigned long low_downgrade_time; 217 218 unsigned int scale; 219 220 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE]; 221 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE]; 222 struct latency_bucket __percpu *latency_buckets[2]; 223 unsigned long last_calculate_time; 224 unsigned long filtered_latency; 225 226 bool track_bio_latency; 227 }; 228 229 static void throtl_pending_timer_fn(struct timer_list *t); 230 231 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd) 232 { 233 return pd ? container_of(pd, struct throtl_grp, pd) : NULL; 234 } 235 236 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg) 237 { 238 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl)); 239 } 240 241 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) 242 { 243 return pd_to_blkg(&tg->pd); 244 } 245 246 /** 247 * sq_to_tg - return the throl_grp the specified service queue belongs to 248 * @sq: the throtl_service_queue of interest 249 * 250 * Return the throtl_grp @sq belongs to. If @sq is the top-level one 251 * embedded in throtl_data, %NULL is returned. 252 */ 253 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) 254 { 255 if (sq && sq->parent_sq) 256 return container_of(sq, struct throtl_grp, service_queue); 257 else 258 return NULL; 259 } 260 261 /** 262 * sq_to_td - return throtl_data the specified service queue belongs to 263 * @sq: the throtl_service_queue of interest 264 * 265 * A service_queue can be embedded in either a throtl_grp or throtl_data. 266 * Determine the associated throtl_data accordingly and return it. 267 */ 268 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) 269 { 270 struct throtl_grp *tg = sq_to_tg(sq); 271 272 if (tg) 273 return tg->td; 274 else 275 return container_of(sq, struct throtl_data, service_queue); 276 } 277 278 /* 279 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to 280 * make the IO dispatch more smooth. 281 * Scale up: linearly scale up according to lapsed time since upgrade. For 282 * every throtl_slice, the limit scales up 1/2 .low limit till the 283 * limit hits .max limit 284 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit 285 */ 286 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td) 287 { 288 /* arbitrary value to avoid too big scale */ 289 if (td->scale < 4096 && time_after_eq(jiffies, 290 td->low_upgrade_time + td->scale * td->throtl_slice)) 291 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice; 292 293 return low + (low >> 1) * td->scale; 294 } 295 296 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) 297 { 298 struct blkcg_gq *blkg = tg_to_blkg(tg); 299 struct throtl_data *td; 300 uint64_t ret; 301 302 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 303 return U64_MAX; 304 305 td = tg->td; 306 ret = tg->bps[rw][td->limit_index]; 307 if (ret == 0 && td->limit_index == LIMIT_LOW) { 308 /* intermediate node or iops isn't 0 */ 309 if (!list_empty(&blkg->blkcg->css.children) || 310 tg->iops[rw][td->limit_index]) 311 return U64_MAX; 312 else 313 return MIN_THROTL_BPS; 314 } 315 316 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] && 317 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) { 318 uint64_t adjusted; 319 320 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td); 321 ret = min(tg->bps[rw][LIMIT_MAX], adjusted); 322 } 323 return ret; 324 } 325 326 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) 327 { 328 struct blkcg_gq *blkg = tg_to_blkg(tg); 329 struct throtl_data *td; 330 unsigned int ret; 331 332 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 333 return UINT_MAX; 334 335 td = tg->td; 336 ret = tg->iops[rw][td->limit_index]; 337 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) { 338 /* intermediate node or bps isn't 0 */ 339 if (!list_empty(&blkg->blkcg->css.children) || 340 tg->bps[rw][td->limit_index]) 341 return UINT_MAX; 342 else 343 return MIN_THROTL_IOPS; 344 } 345 346 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] && 347 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) { 348 uint64_t adjusted; 349 350 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td); 351 if (adjusted > UINT_MAX) 352 adjusted = UINT_MAX; 353 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted); 354 } 355 return ret; 356 } 357 358 #define request_bucket_index(sectors) \ 359 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1) 360 361 /** 362 * throtl_log - log debug message via blktrace 363 * @sq: the service_queue being reported 364 * @fmt: printf format string 365 * @args: printf args 366 * 367 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a 368 * throtl_grp; otherwise, just "throtl". 369 */ 370 #define throtl_log(sq, fmt, args...) do { \ 371 struct throtl_grp *__tg = sq_to_tg((sq)); \ 372 struct throtl_data *__td = sq_to_td((sq)); \ 373 \ 374 (void)__td; \ 375 if (likely(!blk_trace_note_message_enabled(__td->queue))) \ 376 break; \ 377 if ((__tg)) { \ 378 blk_add_cgroup_trace_msg(__td->queue, \ 379 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\ 380 } else { \ 381 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ 382 } \ 383 } while (0) 384 385 static inline unsigned int throtl_bio_data_size(struct bio *bio) 386 { 387 /* assume it's one sector */ 388 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 389 return 512; 390 return bio->bi_iter.bi_size; 391 } 392 393 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) 394 { 395 INIT_LIST_HEAD(&qn->node); 396 bio_list_init(&qn->bios); 397 qn->tg = tg; 398 } 399 400 /** 401 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it 402 * @bio: bio being added 403 * @qn: qnode to add bio to 404 * @queued: the service_queue->queued[] list @qn belongs to 405 * 406 * Add @bio to @qn and put @qn on @queued if it's not already on. 407 * @qn->tg's reference count is bumped when @qn is activated. See the 408 * comment on top of throtl_qnode definition for details. 409 */ 410 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, 411 struct list_head *queued) 412 { 413 bio_list_add(&qn->bios, bio); 414 if (list_empty(&qn->node)) { 415 list_add_tail(&qn->node, queued); 416 blkg_get(tg_to_blkg(qn->tg)); 417 } 418 } 419 420 /** 421 * throtl_peek_queued - peek the first bio on a qnode list 422 * @queued: the qnode list to peek 423 */ 424 static struct bio *throtl_peek_queued(struct list_head *queued) 425 { 426 struct throtl_qnode *qn; 427 struct bio *bio; 428 429 if (list_empty(queued)) 430 return NULL; 431 432 qn = list_first_entry(queued, struct throtl_qnode, node); 433 bio = bio_list_peek(&qn->bios); 434 WARN_ON_ONCE(!bio); 435 return bio; 436 } 437 438 /** 439 * throtl_pop_queued - pop the first bio form a qnode list 440 * @queued: the qnode list to pop a bio from 441 * @tg_to_put: optional out argument for throtl_grp to put 442 * 443 * Pop the first bio from the qnode list @queued. After popping, the first 444 * qnode is removed from @queued if empty or moved to the end of @queued so 445 * that the popping order is round-robin. 446 * 447 * When the first qnode is removed, its associated throtl_grp should be put 448 * too. If @tg_to_put is NULL, this function automatically puts it; 449 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is 450 * responsible for putting it. 451 */ 452 static struct bio *throtl_pop_queued(struct list_head *queued, 453 struct throtl_grp **tg_to_put) 454 { 455 struct throtl_qnode *qn; 456 struct bio *bio; 457 458 if (list_empty(queued)) 459 return NULL; 460 461 qn = list_first_entry(queued, struct throtl_qnode, node); 462 bio = bio_list_pop(&qn->bios); 463 WARN_ON_ONCE(!bio); 464 465 if (bio_list_empty(&qn->bios)) { 466 list_del_init(&qn->node); 467 if (tg_to_put) 468 *tg_to_put = qn->tg; 469 else 470 blkg_put(tg_to_blkg(qn->tg)); 471 } else { 472 list_move_tail(&qn->node, queued); 473 } 474 475 return bio; 476 } 477 478 /* init a service_queue, assumes the caller zeroed it */ 479 static void throtl_service_queue_init(struct throtl_service_queue *sq) 480 { 481 INIT_LIST_HEAD(&sq->queued[0]); 482 INIT_LIST_HEAD(&sq->queued[1]); 483 sq->pending_tree = RB_ROOT_CACHED; 484 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0); 485 } 486 487 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, 488 struct request_queue *q, 489 struct blkcg *blkcg) 490 { 491 struct throtl_grp *tg; 492 int rw; 493 494 tg = kzalloc_node(sizeof(*tg), gfp, q->node); 495 if (!tg) 496 return NULL; 497 498 if (blkg_rwstat_init(&tg->stat_bytes, gfp)) 499 goto err_free_tg; 500 501 if (blkg_rwstat_init(&tg->stat_ios, gfp)) 502 goto err_exit_stat_bytes; 503 504 throtl_service_queue_init(&tg->service_queue); 505 506 for (rw = READ; rw <= WRITE; rw++) { 507 throtl_qnode_init(&tg->qnode_on_self[rw], tg); 508 throtl_qnode_init(&tg->qnode_on_parent[rw], tg); 509 } 510 511 RB_CLEAR_NODE(&tg->rb_node); 512 tg->bps[READ][LIMIT_MAX] = U64_MAX; 513 tg->bps[WRITE][LIMIT_MAX] = U64_MAX; 514 tg->iops[READ][LIMIT_MAX] = UINT_MAX; 515 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX; 516 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX; 517 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX; 518 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX; 519 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX; 520 /* LIMIT_LOW will have default value 0 */ 521 522 tg->latency_target = DFL_LATENCY_TARGET; 523 tg->latency_target_conf = DFL_LATENCY_TARGET; 524 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 525 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD; 526 527 return &tg->pd; 528 529 err_exit_stat_bytes: 530 blkg_rwstat_exit(&tg->stat_bytes); 531 err_free_tg: 532 kfree(tg); 533 return NULL; 534 } 535 536 static void throtl_pd_init(struct blkg_policy_data *pd) 537 { 538 struct throtl_grp *tg = pd_to_tg(pd); 539 struct blkcg_gq *blkg = tg_to_blkg(tg); 540 struct throtl_data *td = blkg->q->td; 541 struct throtl_service_queue *sq = &tg->service_queue; 542 543 /* 544 * If on the default hierarchy, we switch to properly hierarchical 545 * behavior where limits on a given throtl_grp are applied to the 546 * whole subtree rather than just the group itself. e.g. If 16M 547 * read_bps limit is set on the root group, the whole system can't 548 * exceed 16M for the device. 549 * 550 * If not on the default hierarchy, the broken flat hierarchy 551 * behavior is retained where all throtl_grps are treated as if 552 * they're all separate root groups right below throtl_data. 553 * Limits of a group don't interact with limits of other groups 554 * regardless of the position of the group in the hierarchy. 555 */ 556 sq->parent_sq = &td->service_queue; 557 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) 558 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; 559 tg->td = td; 560 } 561 562 /* 563 * Set has_rules[] if @tg or any of its parents have limits configured. 564 * This doesn't require walking up to the top of the hierarchy as the 565 * parent's has_rules[] is guaranteed to be correct. 566 */ 567 static void tg_update_has_rules(struct throtl_grp *tg) 568 { 569 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); 570 struct throtl_data *td = tg->td; 571 int rw; 572 573 for (rw = READ; rw <= WRITE; rw++) 574 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) || 575 (td->limit_valid[td->limit_index] && 576 (tg_bps_limit(tg, rw) != U64_MAX || 577 tg_iops_limit(tg, rw) != UINT_MAX)); 578 } 579 580 static void throtl_pd_online(struct blkg_policy_data *pd) 581 { 582 struct throtl_grp *tg = pd_to_tg(pd); 583 /* 584 * We don't want new groups to escape the limits of its ancestors. 585 * Update has_rules[] after a new group is brought online. 586 */ 587 tg_update_has_rules(tg); 588 } 589 590 static void blk_throtl_update_limit_valid(struct throtl_data *td) 591 { 592 struct cgroup_subsys_state *pos_css; 593 struct blkcg_gq *blkg; 594 bool low_valid = false; 595 596 rcu_read_lock(); 597 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 598 struct throtl_grp *tg = blkg_to_tg(blkg); 599 600 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] || 601 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) { 602 low_valid = true; 603 break; 604 } 605 } 606 rcu_read_unlock(); 607 608 td->limit_valid[LIMIT_LOW] = low_valid; 609 } 610 611 static void throtl_upgrade_state(struct throtl_data *td); 612 static void throtl_pd_offline(struct blkg_policy_data *pd) 613 { 614 struct throtl_grp *tg = pd_to_tg(pd); 615 616 tg->bps[READ][LIMIT_LOW] = 0; 617 tg->bps[WRITE][LIMIT_LOW] = 0; 618 tg->iops[READ][LIMIT_LOW] = 0; 619 tg->iops[WRITE][LIMIT_LOW] = 0; 620 621 blk_throtl_update_limit_valid(tg->td); 622 623 if (!tg->td->limit_valid[tg->td->limit_index]) 624 throtl_upgrade_state(tg->td); 625 } 626 627 static void throtl_pd_free(struct blkg_policy_data *pd) 628 { 629 struct throtl_grp *tg = pd_to_tg(pd); 630 631 del_timer_sync(&tg->service_queue.pending_timer); 632 blkg_rwstat_exit(&tg->stat_bytes); 633 blkg_rwstat_exit(&tg->stat_ios); 634 kfree(tg); 635 } 636 637 static struct throtl_grp * 638 throtl_rb_first(struct throtl_service_queue *parent_sq) 639 { 640 struct rb_node *n; 641 642 n = rb_first_cached(&parent_sq->pending_tree); 643 WARN_ON_ONCE(!n); 644 if (!n) 645 return NULL; 646 return rb_entry_tg(n); 647 } 648 649 static void throtl_rb_erase(struct rb_node *n, 650 struct throtl_service_queue *parent_sq) 651 { 652 rb_erase_cached(n, &parent_sq->pending_tree); 653 RB_CLEAR_NODE(n); 654 --parent_sq->nr_pending; 655 } 656 657 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) 658 { 659 struct throtl_grp *tg; 660 661 tg = throtl_rb_first(parent_sq); 662 if (!tg) 663 return; 664 665 parent_sq->first_pending_disptime = tg->disptime; 666 } 667 668 static void tg_service_queue_add(struct throtl_grp *tg) 669 { 670 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; 671 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node; 672 struct rb_node *parent = NULL; 673 struct throtl_grp *__tg; 674 unsigned long key = tg->disptime; 675 bool leftmost = true; 676 677 while (*node != NULL) { 678 parent = *node; 679 __tg = rb_entry_tg(parent); 680 681 if (time_before(key, __tg->disptime)) 682 node = &parent->rb_left; 683 else { 684 node = &parent->rb_right; 685 leftmost = false; 686 } 687 } 688 689 rb_link_node(&tg->rb_node, parent, node); 690 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree, 691 leftmost); 692 } 693 694 static void throtl_enqueue_tg(struct throtl_grp *tg) 695 { 696 if (!(tg->flags & THROTL_TG_PENDING)) { 697 tg_service_queue_add(tg); 698 tg->flags |= THROTL_TG_PENDING; 699 tg->service_queue.parent_sq->nr_pending++; 700 } 701 } 702 703 static void throtl_dequeue_tg(struct throtl_grp *tg) 704 { 705 if (tg->flags & THROTL_TG_PENDING) { 706 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); 707 tg->flags &= ~THROTL_TG_PENDING; 708 } 709 } 710 711 /* Call with queue lock held */ 712 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, 713 unsigned long expires) 714 { 715 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice; 716 717 /* 718 * Since we are adjusting the throttle limit dynamically, the sleep 719 * time calculated according to previous limit might be invalid. It's 720 * possible the cgroup sleep time is very long and no other cgroups 721 * have IO running so notify the limit changes. Make sure the cgroup 722 * doesn't sleep too long to avoid the missed notification. 723 */ 724 if (time_after(expires, max_expire)) 725 expires = max_expire; 726 mod_timer(&sq->pending_timer, expires); 727 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", 728 expires - jiffies, jiffies); 729 } 730 731 /** 732 * throtl_schedule_next_dispatch - schedule the next dispatch cycle 733 * @sq: the service_queue to schedule dispatch for 734 * @force: force scheduling 735 * 736 * Arm @sq->pending_timer so that the next dispatch cycle starts on the 737 * dispatch time of the first pending child. Returns %true if either timer 738 * is armed or there's no pending child left. %false if the current 739 * dispatch window is still open and the caller should continue 740 * dispatching. 741 * 742 * If @force is %true, the dispatch timer is always scheduled and this 743 * function is guaranteed to return %true. This is to be used when the 744 * caller can't dispatch itself and needs to invoke pending_timer 745 * unconditionally. Note that forced scheduling is likely to induce short 746 * delay before dispatch starts even if @sq->first_pending_disptime is not 747 * in the future and thus shouldn't be used in hot paths. 748 */ 749 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, 750 bool force) 751 { 752 /* any pending children left? */ 753 if (!sq->nr_pending) 754 return true; 755 756 update_min_dispatch_time(sq); 757 758 /* is the next dispatch time in the future? */ 759 if (force || time_after(sq->first_pending_disptime, jiffies)) { 760 throtl_schedule_pending_timer(sq, sq->first_pending_disptime); 761 return true; 762 } 763 764 /* tell the caller to continue dispatching */ 765 return false; 766 } 767 768 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, 769 bool rw, unsigned long start) 770 { 771 tg->bytes_disp[rw] = 0; 772 tg->io_disp[rw] = 0; 773 774 /* 775 * Previous slice has expired. We must have trimmed it after last 776 * bio dispatch. That means since start of last slice, we never used 777 * that bandwidth. Do try to make use of that bandwidth while giving 778 * credit. 779 */ 780 if (time_after_eq(start, tg->slice_start[rw])) 781 tg->slice_start[rw] = start; 782 783 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 784 throtl_log(&tg->service_queue, 785 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", 786 rw == READ ? 'R' : 'W', tg->slice_start[rw], 787 tg->slice_end[rw], jiffies); 788 } 789 790 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw) 791 { 792 tg->bytes_disp[rw] = 0; 793 tg->io_disp[rw] = 0; 794 tg->slice_start[rw] = jiffies; 795 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 796 throtl_log(&tg->service_queue, 797 "[%c] new slice start=%lu end=%lu jiffies=%lu", 798 rw == READ ? 'R' : 'W', tg->slice_start[rw], 799 tg->slice_end[rw], jiffies); 800 } 801 802 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, 803 unsigned long jiffy_end) 804 { 805 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 806 } 807 808 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, 809 unsigned long jiffy_end) 810 { 811 throtl_set_slice_end(tg, rw, jiffy_end); 812 throtl_log(&tg->service_queue, 813 "[%c] extend slice start=%lu end=%lu jiffies=%lu", 814 rw == READ ? 'R' : 'W', tg->slice_start[rw], 815 tg->slice_end[rw], jiffies); 816 } 817 818 /* Determine if previously allocated or extended slice is complete or not */ 819 static bool throtl_slice_used(struct throtl_grp *tg, bool rw) 820 { 821 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 822 return false; 823 824 return true; 825 } 826 827 /* Trim the used slices and adjust slice start accordingly */ 828 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) 829 { 830 unsigned long nr_slices, time_elapsed, io_trim; 831 u64 bytes_trim, tmp; 832 833 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 834 835 /* 836 * If bps are unlimited (-1), then time slice don't get 837 * renewed. Don't try to trim the slice if slice is used. A new 838 * slice will start when appropriate. 839 */ 840 if (throtl_slice_used(tg, rw)) 841 return; 842 843 /* 844 * A bio has been dispatched. Also adjust slice_end. It might happen 845 * that initially cgroup limit was very low resulting in high 846 * slice_end, but later limit was bumped up and bio was dispatched 847 * sooner, then we need to reduce slice_end. A high bogus slice_end 848 * is bad because it does not allow new slice to start. 849 */ 850 851 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); 852 853 time_elapsed = jiffies - tg->slice_start[rw]; 854 855 nr_slices = time_elapsed / tg->td->throtl_slice; 856 857 if (!nr_slices) 858 return; 859 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices; 860 do_div(tmp, HZ); 861 bytes_trim = tmp; 862 863 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) / 864 HZ; 865 866 if (!bytes_trim && !io_trim) 867 return; 868 869 if (tg->bytes_disp[rw] >= bytes_trim) 870 tg->bytes_disp[rw] -= bytes_trim; 871 else 872 tg->bytes_disp[rw] = 0; 873 874 if (tg->io_disp[rw] >= io_trim) 875 tg->io_disp[rw] -= io_trim; 876 else 877 tg->io_disp[rw] = 0; 878 879 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice; 880 881 throtl_log(&tg->service_queue, 882 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu", 883 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, 884 tg->slice_start[rw], tg->slice_end[rw], jiffies); 885 } 886 887 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, 888 u32 iops_limit, unsigned long *wait) 889 { 890 bool rw = bio_data_dir(bio); 891 unsigned int io_allowed; 892 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 893 u64 tmp; 894 895 if (iops_limit == UINT_MAX) { 896 if (wait) 897 *wait = 0; 898 return true; 899 } 900 901 jiffy_elapsed = jiffies - tg->slice_start[rw]; 902 903 /* Round up to the next throttle slice, wait time must be nonzero */ 904 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice); 905 906 /* 907 * jiffy_elapsed_rnd should not be a big value as minimum iops can be 908 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 909 * will allow dispatch after 1 second and after that slice should 910 * have been trimmed. 911 */ 912 913 tmp = (u64)iops_limit * jiffy_elapsed_rnd; 914 do_div(tmp, HZ); 915 916 if (tmp > UINT_MAX) 917 io_allowed = UINT_MAX; 918 else 919 io_allowed = tmp; 920 921 if (tg->io_disp[rw] + 1 <= io_allowed) { 922 if (wait) 923 *wait = 0; 924 return true; 925 } 926 927 /* Calc approx time to dispatch */ 928 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed; 929 930 if (wait) 931 *wait = jiffy_wait; 932 return false; 933 } 934 935 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, 936 u64 bps_limit, unsigned long *wait) 937 { 938 bool rw = bio_data_dir(bio); 939 u64 bytes_allowed, extra_bytes, tmp; 940 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 941 unsigned int bio_size = throtl_bio_data_size(bio); 942 943 if (bps_limit == U64_MAX) { 944 if (wait) 945 *wait = 0; 946 return true; 947 } 948 949 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 950 951 /* Slice has just started. Consider one slice interval */ 952 if (!jiffy_elapsed) 953 jiffy_elapsed_rnd = tg->td->throtl_slice; 954 955 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 956 957 tmp = bps_limit * jiffy_elapsed_rnd; 958 do_div(tmp, HZ); 959 bytes_allowed = tmp; 960 961 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) { 962 if (wait) 963 *wait = 0; 964 return true; 965 } 966 967 /* Calc approx time to dispatch */ 968 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed; 969 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit); 970 971 if (!jiffy_wait) 972 jiffy_wait = 1; 973 974 /* 975 * This wait time is without taking into consideration the rounding 976 * up we did. Add that time also. 977 */ 978 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 979 if (wait) 980 *wait = jiffy_wait; 981 return false; 982 } 983 984 /* 985 * Returns whether one can dispatch a bio or not. Also returns approx number 986 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 987 */ 988 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, 989 unsigned long *wait) 990 { 991 bool rw = bio_data_dir(bio); 992 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 993 u64 bps_limit = tg_bps_limit(tg, rw); 994 u32 iops_limit = tg_iops_limit(tg, rw); 995 996 /* 997 * Currently whole state machine of group depends on first bio 998 * queued in the group bio list. So one should not be calling 999 * this function with a different bio if there are other bios 1000 * queued. 1001 */ 1002 BUG_ON(tg->service_queue.nr_queued[rw] && 1003 bio != throtl_peek_queued(&tg->service_queue.queued[rw])); 1004 1005 /* If tg->bps = -1, then BW is unlimited */ 1006 if (bps_limit == U64_MAX && iops_limit == UINT_MAX) { 1007 if (wait) 1008 *wait = 0; 1009 return true; 1010 } 1011 1012 /* 1013 * If previous slice expired, start a new one otherwise renew/extend 1014 * existing slice to make sure it is at least throtl_slice interval 1015 * long since now. New slice is started only for empty throttle group. 1016 * If there is queued bio, that means there should be an active 1017 * slice and it should be extended instead. 1018 */ 1019 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw])) 1020 throtl_start_new_slice(tg, rw); 1021 else { 1022 if (time_before(tg->slice_end[rw], 1023 jiffies + tg->td->throtl_slice)) 1024 throtl_extend_slice(tg, rw, 1025 jiffies + tg->td->throtl_slice); 1026 } 1027 1028 if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) && 1029 tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) { 1030 if (wait) 1031 *wait = 0; 1032 return true; 1033 } 1034 1035 max_wait = max(bps_wait, iops_wait); 1036 1037 if (wait) 1038 *wait = max_wait; 1039 1040 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 1041 throtl_extend_slice(tg, rw, jiffies + max_wait); 1042 1043 return false; 1044 } 1045 1046 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 1047 { 1048 bool rw = bio_data_dir(bio); 1049 unsigned int bio_size = throtl_bio_data_size(bio); 1050 1051 /* Charge the bio to the group */ 1052 tg->bytes_disp[rw] += bio_size; 1053 tg->io_disp[rw]++; 1054 tg->last_bytes_disp[rw] += bio_size; 1055 tg->last_io_disp[rw]++; 1056 1057 /* 1058 * BIO_THROTTLED is used to prevent the same bio to be throttled 1059 * more than once as a throttled bio will go through blk-throtl the 1060 * second time when it eventually gets issued. Set it when a bio 1061 * is being charged to a tg. 1062 */ 1063 if (!bio_flagged(bio, BIO_THROTTLED)) 1064 bio_set_flag(bio, BIO_THROTTLED); 1065 } 1066 1067 /** 1068 * throtl_add_bio_tg - add a bio to the specified throtl_grp 1069 * @bio: bio to add 1070 * @qn: qnode to use 1071 * @tg: the target throtl_grp 1072 * 1073 * Add @bio to @tg's service_queue using @qn. If @qn is not specified, 1074 * tg->qnode_on_self[] is used. 1075 */ 1076 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, 1077 struct throtl_grp *tg) 1078 { 1079 struct throtl_service_queue *sq = &tg->service_queue; 1080 bool rw = bio_data_dir(bio); 1081 1082 if (!qn) 1083 qn = &tg->qnode_on_self[rw]; 1084 1085 /* 1086 * If @tg doesn't currently have any bios queued in the same 1087 * direction, queueing @bio can change when @tg should be 1088 * dispatched. Mark that @tg was empty. This is automatically 1089 * cleared on the next tg_update_disptime(). 1090 */ 1091 if (!sq->nr_queued[rw]) 1092 tg->flags |= THROTL_TG_WAS_EMPTY; 1093 1094 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); 1095 1096 sq->nr_queued[rw]++; 1097 throtl_enqueue_tg(tg); 1098 } 1099 1100 static void tg_update_disptime(struct throtl_grp *tg) 1101 { 1102 struct throtl_service_queue *sq = &tg->service_queue; 1103 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 1104 struct bio *bio; 1105 1106 bio = throtl_peek_queued(&sq->queued[READ]); 1107 if (bio) 1108 tg_may_dispatch(tg, bio, &read_wait); 1109 1110 bio = throtl_peek_queued(&sq->queued[WRITE]); 1111 if (bio) 1112 tg_may_dispatch(tg, bio, &write_wait); 1113 1114 min_wait = min(read_wait, write_wait); 1115 disptime = jiffies + min_wait; 1116 1117 /* Update dispatch time */ 1118 throtl_dequeue_tg(tg); 1119 tg->disptime = disptime; 1120 throtl_enqueue_tg(tg); 1121 1122 /* see throtl_add_bio_tg() */ 1123 tg->flags &= ~THROTL_TG_WAS_EMPTY; 1124 } 1125 1126 static void start_parent_slice_with_credit(struct throtl_grp *child_tg, 1127 struct throtl_grp *parent_tg, bool rw) 1128 { 1129 if (throtl_slice_used(parent_tg, rw)) { 1130 throtl_start_new_slice_with_credit(parent_tg, rw, 1131 child_tg->slice_start[rw]); 1132 } 1133 1134 } 1135 1136 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) 1137 { 1138 struct throtl_service_queue *sq = &tg->service_queue; 1139 struct throtl_service_queue *parent_sq = sq->parent_sq; 1140 struct throtl_grp *parent_tg = sq_to_tg(parent_sq); 1141 struct throtl_grp *tg_to_put = NULL; 1142 struct bio *bio; 1143 1144 /* 1145 * @bio is being transferred from @tg to @parent_sq. Popping a bio 1146 * from @tg may put its reference and @parent_sq might end up 1147 * getting released prematurely. Remember the tg to put and put it 1148 * after @bio is transferred to @parent_sq. 1149 */ 1150 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); 1151 sq->nr_queued[rw]--; 1152 1153 throtl_charge_bio(tg, bio); 1154 1155 /* 1156 * If our parent is another tg, we just need to transfer @bio to 1157 * the parent using throtl_add_bio_tg(). If our parent is 1158 * @td->service_queue, @bio is ready to be issued. Put it on its 1159 * bio_lists[] and decrease total number queued. The caller is 1160 * responsible for issuing these bios. 1161 */ 1162 if (parent_tg) { 1163 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); 1164 start_parent_slice_with_credit(tg, parent_tg, rw); 1165 } else { 1166 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], 1167 &parent_sq->queued[rw]); 1168 BUG_ON(tg->td->nr_queued[rw] <= 0); 1169 tg->td->nr_queued[rw]--; 1170 } 1171 1172 throtl_trim_slice(tg, rw); 1173 1174 if (tg_to_put) 1175 blkg_put(tg_to_blkg(tg_to_put)); 1176 } 1177 1178 static int throtl_dispatch_tg(struct throtl_grp *tg) 1179 { 1180 struct throtl_service_queue *sq = &tg->service_queue; 1181 unsigned int nr_reads = 0, nr_writes = 0; 1182 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4; 1183 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads; 1184 struct bio *bio; 1185 1186 /* Try to dispatch 75% READS and 25% WRITES */ 1187 1188 while ((bio = throtl_peek_queued(&sq->queued[READ])) && 1189 tg_may_dispatch(tg, bio, NULL)) { 1190 1191 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1192 nr_reads++; 1193 1194 if (nr_reads >= max_nr_reads) 1195 break; 1196 } 1197 1198 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && 1199 tg_may_dispatch(tg, bio, NULL)) { 1200 1201 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1202 nr_writes++; 1203 1204 if (nr_writes >= max_nr_writes) 1205 break; 1206 } 1207 1208 return nr_reads + nr_writes; 1209 } 1210 1211 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) 1212 { 1213 unsigned int nr_disp = 0; 1214 1215 while (1) { 1216 struct throtl_grp *tg; 1217 struct throtl_service_queue *sq; 1218 1219 if (!parent_sq->nr_pending) 1220 break; 1221 1222 tg = throtl_rb_first(parent_sq); 1223 if (!tg) 1224 break; 1225 1226 if (time_before(jiffies, tg->disptime)) 1227 break; 1228 1229 throtl_dequeue_tg(tg); 1230 1231 nr_disp += throtl_dispatch_tg(tg); 1232 1233 sq = &tg->service_queue; 1234 if (sq->nr_queued[0] || sq->nr_queued[1]) 1235 tg_update_disptime(tg); 1236 1237 if (nr_disp >= THROTL_QUANTUM) 1238 break; 1239 } 1240 1241 return nr_disp; 1242 } 1243 1244 static bool throtl_can_upgrade(struct throtl_data *td, 1245 struct throtl_grp *this_tg); 1246 /** 1247 * throtl_pending_timer_fn - timer function for service_queue->pending_timer 1248 * @t: the pending_timer member of the throtl_service_queue being serviced 1249 * 1250 * This timer is armed when a child throtl_grp with active bio's become 1251 * pending and queued on the service_queue's pending_tree and expires when 1252 * the first child throtl_grp should be dispatched. This function 1253 * dispatches bio's from the children throtl_grps to the parent 1254 * service_queue. 1255 * 1256 * If the parent's parent is another throtl_grp, dispatching is propagated 1257 * by either arming its pending_timer or repeating dispatch directly. If 1258 * the top-level service_tree is reached, throtl_data->dispatch_work is 1259 * kicked so that the ready bio's are issued. 1260 */ 1261 static void throtl_pending_timer_fn(struct timer_list *t) 1262 { 1263 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer); 1264 struct throtl_grp *tg = sq_to_tg(sq); 1265 struct throtl_data *td = sq_to_td(sq); 1266 struct request_queue *q = td->queue; 1267 struct throtl_service_queue *parent_sq; 1268 bool dispatched; 1269 int ret; 1270 1271 spin_lock_irq(&q->queue_lock); 1272 if (throtl_can_upgrade(td, NULL)) 1273 throtl_upgrade_state(td); 1274 1275 again: 1276 parent_sq = sq->parent_sq; 1277 dispatched = false; 1278 1279 while (true) { 1280 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", 1281 sq->nr_queued[READ] + sq->nr_queued[WRITE], 1282 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1283 1284 ret = throtl_select_dispatch(sq); 1285 if (ret) { 1286 throtl_log(sq, "bios disp=%u", ret); 1287 dispatched = true; 1288 } 1289 1290 if (throtl_schedule_next_dispatch(sq, false)) 1291 break; 1292 1293 /* this dispatch windows is still open, relax and repeat */ 1294 spin_unlock_irq(&q->queue_lock); 1295 cpu_relax(); 1296 spin_lock_irq(&q->queue_lock); 1297 } 1298 1299 if (!dispatched) 1300 goto out_unlock; 1301 1302 if (parent_sq) { 1303 /* @parent_sq is another throl_grp, propagate dispatch */ 1304 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1305 tg_update_disptime(tg); 1306 if (!throtl_schedule_next_dispatch(parent_sq, false)) { 1307 /* window is already open, repeat dispatching */ 1308 sq = parent_sq; 1309 tg = sq_to_tg(sq); 1310 goto again; 1311 } 1312 } 1313 } else { 1314 /* reached the top-level, queue issuing */ 1315 queue_work(kthrotld_workqueue, &td->dispatch_work); 1316 } 1317 out_unlock: 1318 spin_unlock_irq(&q->queue_lock); 1319 } 1320 1321 /** 1322 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work 1323 * @work: work item being executed 1324 * 1325 * This function is queued for execution when bios reach the bio_lists[] 1326 * of throtl_data->service_queue. Those bios are ready and issued by this 1327 * function. 1328 */ 1329 static void blk_throtl_dispatch_work_fn(struct work_struct *work) 1330 { 1331 struct throtl_data *td = container_of(work, struct throtl_data, 1332 dispatch_work); 1333 struct throtl_service_queue *td_sq = &td->service_queue; 1334 struct request_queue *q = td->queue; 1335 struct bio_list bio_list_on_stack; 1336 struct bio *bio; 1337 struct blk_plug plug; 1338 int rw; 1339 1340 bio_list_init(&bio_list_on_stack); 1341 1342 spin_lock_irq(&q->queue_lock); 1343 for (rw = READ; rw <= WRITE; rw++) 1344 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) 1345 bio_list_add(&bio_list_on_stack, bio); 1346 spin_unlock_irq(&q->queue_lock); 1347 1348 if (!bio_list_empty(&bio_list_on_stack)) { 1349 blk_start_plug(&plug); 1350 while ((bio = bio_list_pop(&bio_list_on_stack))) 1351 submit_bio_noacct(bio); 1352 blk_finish_plug(&plug); 1353 } 1354 } 1355 1356 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, 1357 int off) 1358 { 1359 struct throtl_grp *tg = pd_to_tg(pd); 1360 u64 v = *(u64 *)((void *)tg + off); 1361 1362 if (v == U64_MAX) 1363 return 0; 1364 return __blkg_prfill_u64(sf, pd, v); 1365 } 1366 1367 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, 1368 int off) 1369 { 1370 struct throtl_grp *tg = pd_to_tg(pd); 1371 unsigned int v = *(unsigned int *)((void *)tg + off); 1372 1373 if (v == UINT_MAX) 1374 return 0; 1375 return __blkg_prfill_u64(sf, pd, v); 1376 } 1377 1378 static int tg_print_conf_u64(struct seq_file *sf, void *v) 1379 { 1380 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, 1381 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1382 return 0; 1383 } 1384 1385 static int tg_print_conf_uint(struct seq_file *sf, void *v) 1386 { 1387 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, 1388 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1389 return 0; 1390 } 1391 1392 static void tg_conf_updated(struct throtl_grp *tg, bool global) 1393 { 1394 struct throtl_service_queue *sq = &tg->service_queue; 1395 struct cgroup_subsys_state *pos_css; 1396 struct blkcg_gq *blkg; 1397 1398 throtl_log(&tg->service_queue, 1399 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", 1400 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), 1401 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); 1402 1403 /* 1404 * Update has_rules[] flags for the updated tg's subtree. A tg is 1405 * considered to have rules if either the tg itself or any of its 1406 * ancestors has rules. This identifies groups without any 1407 * restrictions in the whole hierarchy and allows them to bypass 1408 * blk-throttle. 1409 */ 1410 blkg_for_each_descendant_pre(blkg, pos_css, 1411 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { 1412 struct throtl_grp *this_tg = blkg_to_tg(blkg); 1413 struct throtl_grp *parent_tg; 1414 1415 tg_update_has_rules(this_tg); 1416 /* ignore root/second level */ 1417 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || 1418 !blkg->parent->parent) 1419 continue; 1420 parent_tg = blkg_to_tg(blkg->parent); 1421 /* 1422 * make sure all children has lower idle time threshold and 1423 * higher latency target 1424 */ 1425 this_tg->idletime_threshold = min(this_tg->idletime_threshold, 1426 parent_tg->idletime_threshold); 1427 this_tg->latency_target = max(this_tg->latency_target, 1428 parent_tg->latency_target); 1429 } 1430 1431 /* 1432 * We're already holding queue_lock and know @tg is valid. Let's 1433 * apply the new config directly. 1434 * 1435 * Restart the slices for both READ and WRITES. It might happen 1436 * that a group's limit are dropped suddenly and we don't want to 1437 * account recently dispatched IO with new low rate. 1438 */ 1439 throtl_start_new_slice(tg, READ); 1440 throtl_start_new_slice(tg, WRITE); 1441 1442 if (tg->flags & THROTL_TG_PENDING) { 1443 tg_update_disptime(tg); 1444 throtl_schedule_next_dispatch(sq->parent_sq, true); 1445 } 1446 } 1447 1448 static ssize_t tg_set_conf(struct kernfs_open_file *of, 1449 char *buf, size_t nbytes, loff_t off, bool is_u64) 1450 { 1451 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1452 struct blkg_conf_ctx ctx; 1453 struct throtl_grp *tg; 1454 int ret; 1455 u64 v; 1456 1457 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1458 if (ret) 1459 return ret; 1460 1461 ret = -EINVAL; 1462 if (sscanf(ctx.body, "%llu", &v) != 1) 1463 goto out_finish; 1464 if (!v) 1465 v = U64_MAX; 1466 1467 tg = blkg_to_tg(ctx.blkg); 1468 1469 if (is_u64) 1470 *(u64 *)((void *)tg + of_cft(of)->private) = v; 1471 else 1472 *(unsigned int *)((void *)tg + of_cft(of)->private) = v; 1473 1474 tg_conf_updated(tg, false); 1475 ret = 0; 1476 out_finish: 1477 blkg_conf_finish(&ctx); 1478 return ret ?: nbytes; 1479 } 1480 1481 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, 1482 char *buf, size_t nbytes, loff_t off) 1483 { 1484 return tg_set_conf(of, buf, nbytes, off, true); 1485 } 1486 1487 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, 1488 char *buf, size_t nbytes, loff_t off) 1489 { 1490 return tg_set_conf(of, buf, nbytes, off, false); 1491 } 1492 1493 static int tg_print_rwstat(struct seq_file *sf, void *v) 1494 { 1495 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1496 blkg_prfill_rwstat, &blkcg_policy_throtl, 1497 seq_cft(sf)->private, true); 1498 return 0; 1499 } 1500 1501 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf, 1502 struct blkg_policy_data *pd, int off) 1503 { 1504 struct blkg_rwstat_sample sum; 1505 1506 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off, 1507 &sum); 1508 return __blkg_prfill_rwstat(sf, pd, &sum); 1509 } 1510 1511 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v) 1512 { 1513 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1514 tg_prfill_rwstat_recursive, &blkcg_policy_throtl, 1515 seq_cft(sf)->private, true); 1516 return 0; 1517 } 1518 1519 static struct cftype throtl_legacy_files[] = { 1520 { 1521 .name = "throttle.read_bps_device", 1522 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]), 1523 .seq_show = tg_print_conf_u64, 1524 .write = tg_set_conf_u64, 1525 }, 1526 { 1527 .name = "throttle.write_bps_device", 1528 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]), 1529 .seq_show = tg_print_conf_u64, 1530 .write = tg_set_conf_u64, 1531 }, 1532 { 1533 .name = "throttle.read_iops_device", 1534 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]), 1535 .seq_show = tg_print_conf_uint, 1536 .write = tg_set_conf_uint, 1537 }, 1538 { 1539 .name = "throttle.write_iops_device", 1540 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]), 1541 .seq_show = tg_print_conf_uint, 1542 .write = tg_set_conf_uint, 1543 }, 1544 { 1545 .name = "throttle.io_service_bytes", 1546 .private = offsetof(struct throtl_grp, stat_bytes), 1547 .seq_show = tg_print_rwstat, 1548 }, 1549 { 1550 .name = "throttle.io_service_bytes_recursive", 1551 .private = offsetof(struct throtl_grp, stat_bytes), 1552 .seq_show = tg_print_rwstat_recursive, 1553 }, 1554 { 1555 .name = "throttle.io_serviced", 1556 .private = offsetof(struct throtl_grp, stat_ios), 1557 .seq_show = tg_print_rwstat, 1558 }, 1559 { 1560 .name = "throttle.io_serviced_recursive", 1561 .private = offsetof(struct throtl_grp, stat_ios), 1562 .seq_show = tg_print_rwstat_recursive, 1563 }, 1564 { } /* terminate */ 1565 }; 1566 1567 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, 1568 int off) 1569 { 1570 struct throtl_grp *tg = pd_to_tg(pd); 1571 const char *dname = blkg_dev_name(pd->blkg); 1572 char bufs[4][21] = { "max", "max", "max", "max" }; 1573 u64 bps_dft; 1574 unsigned int iops_dft; 1575 char idle_time[26] = ""; 1576 char latency_time[26] = ""; 1577 1578 if (!dname) 1579 return 0; 1580 1581 if (off == LIMIT_LOW) { 1582 bps_dft = 0; 1583 iops_dft = 0; 1584 } else { 1585 bps_dft = U64_MAX; 1586 iops_dft = UINT_MAX; 1587 } 1588 1589 if (tg->bps_conf[READ][off] == bps_dft && 1590 tg->bps_conf[WRITE][off] == bps_dft && 1591 tg->iops_conf[READ][off] == iops_dft && 1592 tg->iops_conf[WRITE][off] == iops_dft && 1593 (off != LIMIT_LOW || 1594 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD && 1595 tg->latency_target_conf == DFL_LATENCY_TARGET))) 1596 return 0; 1597 1598 if (tg->bps_conf[READ][off] != U64_MAX) 1599 snprintf(bufs[0], sizeof(bufs[0]), "%llu", 1600 tg->bps_conf[READ][off]); 1601 if (tg->bps_conf[WRITE][off] != U64_MAX) 1602 snprintf(bufs[1], sizeof(bufs[1]), "%llu", 1603 tg->bps_conf[WRITE][off]); 1604 if (tg->iops_conf[READ][off] != UINT_MAX) 1605 snprintf(bufs[2], sizeof(bufs[2]), "%u", 1606 tg->iops_conf[READ][off]); 1607 if (tg->iops_conf[WRITE][off] != UINT_MAX) 1608 snprintf(bufs[3], sizeof(bufs[3]), "%u", 1609 tg->iops_conf[WRITE][off]); 1610 if (off == LIMIT_LOW) { 1611 if (tg->idletime_threshold_conf == ULONG_MAX) 1612 strcpy(idle_time, " idle=max"); 1613 else 1614 snprintf(idle_time, sizeof(idle_time), " idle=%lu", 1615 tg->idletime_threshold_conf); 1616 1617 if (tg->latency_target_conf == ULONG_MAX) 1618 strcpy(latency_time, " latency=max"); 1619 else 1620 snprintf(latency_time, sizeof(latency_time), 1621 " latency=%lu", tg->latency_target_conf); 1622 } 1623 1624 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n", 1625 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time, 1626 latency_time); 1627 return 0; 1628 } 1629 1630 static int tg_print_limit(struct seq_file *sf, void *v) 1631 { 1632 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, 1633 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1634 return 0; 1635 } 1636 1637 static ssize_t tg_set_limit(struct kernfs_open_file *of, 1638 char *buf, size_t nbytes, loff_t off) 1639 { 1640 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1641 struct blkg_conf_ctx ctx; 1642 struct throtl_grp *tg; 1643 u64 v[4]; 1644 unsigned long idle_time; 1645 unsigned long latency_time; 1646 int ret; 1647 int index = of_cft(of)->private; 1648 1649 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1650 if (ret) 1651 return ret; 1652 1653 tg = blkg_to_tg(ctx.blkg); 1654 1655 v[0] = tg->bps_conf[READ][index]; 1656 v[1] = tg->bps_conf[WRITE][index]; 1657 v[2] = tg->iops_conf[READ][index]; 1658 v[3] = tg->iops_conf[WRITE][index]; 1659 1660 idle_time = tg->idletime_threshold_conf; 1661 latency_time = tg->latency_target_conf; 1662 while (true) { 1663 char tok[27]; /* wiops=18446744073709551616 */ 1664 char *p; 1665 u64 val = U64_MAX; 1666 int len; 1667 1668 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) 1669 break; 1670 if (tok[0] == '\0') 1671 break; 1672 ctx.body += len; 1673 1674 ret = -EINVAL; 1675 p = tok; 1676 strsep(&p, "="); 1677 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) 1678 goto out_finish; 1679 1680 ret = -ERANGE; 1681 if (!val) 1682 goto out_finish; 1683 1684 ret = -EINVAL; 1685 if (!strcmp(tok, "rbps") && val > 1) 1686 v[0] = val; 1687 else if (!strcmp(tok, "wbps") && val > 1) 1688 v[1] = val; 1689 else if (!strcmp(tok, "riops") && val > 1) 1690 v[2] = min_t(u64, val, UINT_MAX); 1691 else if (!strcmp(tok, "wiops") && val > 1) 1692 v[3] = min_t(u64, val, UINT_MAX); 1693 else if (off == LIMIT_LOW && !strcmp(tok, "idle")) 1694 idle_time = val; 1695 else if (off == LIMIT_LOW && !strcmp(tok, "latency")) 1696 latency_time = val; 1697 else 1698 goto out_finish; 1699 } 1700 1701 tg->bps_conf[READ][index] = v[0]; 1702 tg->bps_conf[WRITE][index] = v[1]; 1703 tg->iops_conf[READ][index] = v[2]; 1704 tg->iops_conf[WRITE][index] = v[3]; 1705 1706 if (index == LIMIT_MAX) { 1707 tg->bps[READ][index] = v[0]; 1708 tg->bps[WRITE][index] = v[1]; 1709 tg->iops[READ][index] = v[2]; 1710 tg->iops[WRITE][index] = v[3]; 1711 } 1712 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW], 1713 tg->bps_conf[READ][LIMIT_MAX]); 1714 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW], 1715 tg->bps_conf[WRITE][LIMIT_MAX]); 1716 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW], 1717 tg->iops_conf[READ][LIMIT_MAX]); 1718 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW], 1719 tg->iops_conf[WRITE][LIMIT_MAX]); 1720 tg->idletime_threshold_conf = idle_time; 1721 tg->latency_target_conf = latency_time; 1722 1723 /* force user to configure all settings for low limit */ 1724 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] || 1725 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) || 1726 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD || 1727 tg->latency_target_conf == DFL_LATENCY_TARGET) { 1728 tg->bps[READ][LIMIT_LOW] = 0; 1729 tg->bps[WRITE][LIMIT_LOW] = 0; 1730 tg->iops[READ][LIMIT_LOW] = 0; 1731 tg->iops[WRITE][LIMIT_LOW] = 0; 1732 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 1733 tg->latency_target = DFL_LATENCY_TARGET; 1734 } else if (index == LIMIT_LOW) { 1735 tg->idletime_threshold = tg->idletime_threshold_conf; 1736 tg->latency_target = tg->latency_target_conf; 1737 } 1738 1739 blk_throtl_update_limit_valid(tg->td); 1740 if (tg->td->limit_valid[LIMIT_LOW]) { 1741 if (index == LIMIT_LOW) 1742 tg->td->limit_index = LIMIT_LOW; 1743 } else 1744 tg->td->limit_index = LIMIT_MAX; 1745 tg_conf_updated(tg, index == LIMIT_LOW && 1746 tg->td->limit_valid[LIMIT_LOW]); 1747 ret = 0; 1748 out_finish: 1749 blkg_conf_finish(&ctx); 1750 return ret ?: nbytes; 1751 } 1752 1753 static struct cftype throtl_files[] = { 1754 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 1755 { 1756 .name = "low", 1757 .flags = CFTYPE_NOT_ON_ROOT, 1758 .seq_show = tg_print_limit, 1759 .write = tg_set_limit, 1760 .private = LIMIT_LOW, 1761 }, 1762 #endif 1763 { 1764 .name = "max", 1765 .flags = CFTYPE_NOT_ON_ROOT, 1766 .seq_show = tg_print_limit, 1767 .write = tg_set_limit, 1768 .private = LIMIT_MAX, 1769 }, 1770 { } /* terminate */ 1771 }; 1772 1773 static void throtl_shutdown_wq(struct request_queue *q) 1774 { 1775 struct throtl_data *td = q->td; 1776 1777 cancel_work_sync(&td->dispatch_work); 1778 } 1779 1780 static struct blkcg_policy blkcg_policy_throtl = { 1781 .dfl_cftypes = throtl_files, 1782 .legacy_cftypes = throtl_legacy_files, 1783 1784 .pd_alloc_fn = throtl_pd_alloc, 1785 .pd_init_fn = throtl_pd_init, 1786 .pd_online_fn = throtl_pd_online, 1787 .pd_offline_fn = throtl_pd_offline, 1788 .pd_free_fn = throtl_pd_free, 1789 }; 1790 1791 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg) 1792 { 1793 unsigned long rtime = jiffies, wtime = jiffies; 1794 1795 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]) 1796 rtime = tg->last_low_overflow_time[READ]; 1797 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) 1798 wtime = tg->last_low_overflow_time[WRITE]; 1799 return min(rtime, wtime); 1800 } 1801 1802 /* tg should not be an intermediate node */ 1803 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg) 1804 { 1805 struct throtl_service_queue *parent_sq; 1806 struct throtl_grp *parent = tg; 1807 unsigned long ret = __tg_last_low_overflow_time(tg); 1808 1809 while (true) { 1810 parent_sq = parent->service_queue.parent_sq; 1811 parent = sq_to_tg(parent_sq); 1812 if (!parent) 1813 break; 1814 1815 /* 1816 * The parent doesn't have low limit, it always reaches low 1817 * limit. Its overflow time is useless for children 1818 */ 1819 if (!parent->bps[READ][LIMIT_LOW] && 1820 !parent->iops[READ][LIMIT_LOW] && 1821 !parent->bps[WRITE][LIMIT_LOW] && 1822 !parent->iops[WRITE][LIMIT_LOW]) 1823 continue; 1824 if (time_after(__tg_last_low_overflow_time(parent), ret)) 1825 ret = __tg_last_low_overflow_time(parent); 1826 } 1827 return ret; 1828 } 1829 1830 static bool throtl_tg_is_idle(struct throtl_grp *tg) 1831 { 1832 /* 1833 * cgroup is idle if: 1834 * - single idle is too long, longer than a fixed value (in case user 1835 * configure a too big threshold) or 4 times of idletime threshold 1836 * - average think time is more than threshold 1837 * - IO latency is largely below threshold 1838 */ 1839 unsigned long time; 1840 bool ret; 1841 1842 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold); 1843 ret = tg->latency_target == DFL_LATENCY_TARGET || 1844 tg->idletime_threshold == DFL_IDLE_THRESHOLD || 1845 (ktime_get_ns() >> 10) - tg->last_finish_time > time || 1846 tg->avg_idletime > tg->idletime_threshold || 1847 (tg->latency_target && tg->bio_cnt && 1848 tg->bad_bio_cnt * 5 < tg->bio_cnt); 1849 throtl_log(&tg->service_queue, 1850 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d", 1851 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt, 1852 tg->bio_cnt, ret, tg->td->scale); 1853 return ret; 1854 } 1855 1856 static bool throtl_tg_can_upgrade(struct throtl_grp *tg) 1857 { 1858 struct throtl_service_queue *sq = &tg->service_queue; 1859 bool read_limit, write_limit; 1860 1861 /* 1862 * if cgroup reaches low limit (if low limit is 0, the cgroup always 1863 * reaches), it's ok to upgrade to next limit 1864 */ 1865 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]; 1866 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]; 1867 if (!read_limit && !write_limit) 1868 return true; 1869 if (read_limit && sq->nr_queued[READ] && 1870 (!write_limit || sq->nr_queued[WRITE])) 1871 return true; 1872 if (write_limit && sq->nr_queued[WRITE] && 1873 (!read_limit || sq->nr_queued[READ])) 1874 return true; 1875 1876 if (time_after_eq(jiffies, 1877 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) && 1878 throtl_tg_is_idle(tg)) 1879 return true; 1880 return false; 1881 } 1882 1883 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg) 1884 { 1885 while (true) { 1886 if (throtl_tg_can_upgrade(tg)) 1887 return true; 1888 tg = sq_to_tg(tg->service_queue.parent_sq); 1889 if (!tg || !tg_to_blkg(tg)->parent) 1890 return false; 1891 } 1892 return false; 1893 } 1894 1895 static bool throtl_can_upgrade(struct throtl_data *td, 1896 struct throtl_grp *this_tg) 1897 { 1898 struct cgroup_subsys_state *pos_css; 1899 struct blkcg_gq *blkg; 1900 1901 if (td->limit_index != LIMIT_LOW) 1902 return false; 1903 1904 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice)) 1905 return false; 1906 1907 rcu_read_lock(); 1908 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1909 struct throtl_grp *tg = blkg_to_tg(blkg); 1910 1911 if (tg == this_tg) 1912 continue; 1913 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1914 continue; 1915 if (!throtl_hierarchy_can_upgrade(tg)) { 1916 rcu_read_unlock(); 1917 return false; 1918 } 1919 } 1920 rcu_read_unlock(); 1921 return true; 1922 } 1923 1924 static void throtl_upgrade_check(struct throtl_grp *tg) 1925 { 1926 unsigned long now = jiffies; 1927 1928 if (tg->td->limit_index != LIMIT_LOW) 1929 return; 1930 1931 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1932 return; 1933 1934 tg->last_check_time = now; 1935 1936 if (!time_after_eq(now, 1937 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice)) 1938 return; 1939 1940 if (throtl_can_upgrade(tg->td, NULL)) 1941 throtl_upgrade_state(tg->td); 1942 } 1943 1944 static void throtl_upgrade_state(struct throtl_data *td) 1945 { 1946 struct cgroup_subsys_state *pos_css; 1947 struct blkcg_gq *blkg; 1948 1949 throtl_log(&td->service_queue, "upgrade to max"); 1950 td->limit_index = LIMIT_MAX; 1951 td->low_upgrade_time = jiffies; 1952 td->scale = 0; 1953 rcu_read_lock(); 1954 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1955 struct throtl_grp *tg = blkg_to_tg(blkg); 1956 struct throtl_service_queue *sq = &tg->service_queue; 1957 1958 tg->disptime = jiffies - 1; 1959 throtl_select_dispatch(sq); 1960 throtl_schedule_next_dispatch(sq, true); 1961 } 1962 rcu_read_unlock(); 1963 throtl_select_dispatch(&td->service_queue); 1964 throtl_schedule_next_dispatch(&td->service_queue, true); 1965 queue_work(kthrotld_workqueue, &td->dispatch_work); 1966 } 1967 1968 static void throtl_downgrade_state(struct throtl_data *td) 1969 { 1970 td->scale /= 2; 1971 1972 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale); 1973 if (td->scale) { 1974 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice; 1975 return; 1976 } 1977 1978 td->limit_index = LIMIT_LOW; 1979 td->low_downgrade_time = jiffies; 1980 } 1981 1982 static bool throtl_tg_can_downgrade(struct throtl_grp *tg) 1983 { 1984 struct throtl_data *td = tg->td; 1985 unsigned long now = jiffies; 1986 1987 /* 1988 * If cgroup is below low limit, consider downgrade and throttle other 1989 * cgroups 1990 */ 1991 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) && 1992 time_after_eq(now, tg_last_low_overflow_time(tg) + 1993 td->throtl_slice) && 1994 (!throtl_tg_is_idle(tg) || 1995 !list_empty(&tg_to_blkg(tg)->blkcg->css.children))) 1996 return true; 1997 return false; 1998 } 1999 2000 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg) 2001 { 2002 while (true) { 2003 if (!throtl_tg_can_downgrade(tg)) 2004 return false; 2005 tg = sq_to_tg(tg->service_queue.parent_sq); 2006 if (!tg || !tg_to_blkg(tg)->parent) 2007 break; 2008 } 2009 return true; 2010 } 2011 2012 static void throtl_downgrade_check(struct throtl_grp *tg) 2013 { 2014 uint64_t bps; 2015 unsigned int iops; 2016 unsigned long elapsed_time; 2017 unsigned long now = jiffies; 2018 2019 if (tg->td->limit_index != LIMIT_MAX || 2020 !tg->td->limit_valid[LIMIT_LOW]) 2021 return; 2022 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 2023 return; 2024 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 2025 return; 2026 2027 elapsed_time = now - tg->last_check_time; 2028 tg->last_check_time = now; 2029 2030 if (time_before(now, tg_last_low_overflow_time(tg) + 2031 tg->td->throtl_slice)) 2032 return; 2033 2034 if (tg->bps[READ][LIMIT_LOW]) { 2035 bps = tg->last_bytes_disp[READ] * HZ; 2036 do_div(bps, elapsed_time); 2037 if (bps >= tg->bps[READ][LIMIT_LOW]) 2038 tg->last_low_overflow_time[READ] = now; 2039 } 2040 2041 if (tg->bps[WRITE][LIMIT_LOW]) { 2042 bps = tg->last_bytes_disp[WRITE] * HZ; 2043 do_div(bps, elapsed_time); 2044 if (bps >= tg->bps[WRITE][LIMIT_LOW]) 2045 tg->last_low_overflow_time[WRITE] = now; 2046 } 2047 2048 if (tg->iops[READ][LIMIT_LOW]) { 2049 iops = tg->last_io_disp[READ] * HZ / elapsed_time; 2050 if (iops >= tg->iops[READ][LIMIT_LOW]) 2051 tg->last_low_overflow_time[READ] = now; 2052 } 2053 2054 if (tg->iops[WRITE][LIMIT_LOW]) { 2055 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time; 2056 if (iops >= tg->iops[WRITE][LIMIT_LOW]) 2057 tg->last_low_overflow_time[WRITE] = now; 2058 } 2059 2060 /* 2061 * If cgroup is below low limit, consider downgrade and throttle other 2062 * cgroups 2063 */ 2064 if (throtl_hierarchy_can_downgrade(tg)) 2065 throtl_downgrade_state(tg->td); 2066 2067 tg->last_bytes_disp[READ] = 0; 2068 tg->last_bytes_disp[WRITE] = 0; 2069 tg->last_io_disp[READ] = 0; 2070 tg->last_io_disp[WRITE] = 0; 2071 } 2072 2073 static void blk_throtl_update_idletime(struct throtl_grp *tg) 2074 { 2075 unsigned long now; 2076 unsigned long last_finish_time = tg->last_finish_time; 2077 2078 if (last_finish_time == 0) 2079 return; 2080 2081 now = ktime_get_ns() >> 10; 2082 if (now <= last_finish_time || 2083 last_finish_time == tg->checked_last_finish_time) 2084 return; 2085 2086 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3; 2087 tg->checked_last_finish_time = last_finish_time; 2088 } 2089 2090 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2091 static void throtl_update_latency_buckets(struct throtl_data *td) 2092 { 2093 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE]; 2094 int i, cpu, rw; 2095 unsigned long last_latency[2] = { 0 }; 2096 unsigned long latency[2]; 2097 2098 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW]) 2099 return; 2100 if (time_before(jiffies, td->last_calculate_time + HZ)) 2101 return; 2102 td->last_calculate_time = jiffies; 2103 2104 memset(avg_latency, 0, sizeof(avg_latency)); 2105 for (rw = READ; rw <= WRITE; rw++) { 2106 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2107 struct latency_bucket *tmp = &td->tmp_buckets[rw][i]; 2108 2109 for_each_possible_cpu(cpu) { 2110 struct latency_bucket *bucket; 2111 2112 /* this isn't race free, but ok in practice */ 2113 bucket = per_cpu_ptr(td->latency_buckets[rw], 2114 cpu); 2115 tmp->total_latency += bucket[i].total_latency; 2116 tmp->samples += bucket[i].samples; 2117 bucket[i].total_latency = 0; 2118 bucket[i].samples = 0; 2119 } 2120 2121 if (tmp->samples >= 32) { 2122 int samples = tmp->samples; 2123 2124 latency[rw] = tmp->total_latency; 2125 2126 tmp->total_latency = 0; 2127 tmp->samples = 0; 2128 latency[rw] /= samples; 2129 if (latency[rw] == 0) 2130 continue; 2131 avg_latency[rw][i].latency = latency[rw]; 2132 } 2133 } 2134 } 2135 2136 for (rw = READ; rw <= WRITE; rw++) { 2137 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2138 if (!avg_latency[rw][i].latency) { 2139 if (td->avg_buckets[rw][i].latency < last_latency[rw]) 2140 td->avg_buckets[rw][i].latency = 2141 last_latency[rw]; 2142 continue; 2143 } 2144 2145 if (!td->avg_buckets[rw][i].valid) 2146 latency[rw] = avg_latency[rw][i].latency; 2147 else 2148 latency[rw] = (td->avg_buckets[rw][i].latency * 7 + 2149 avg_latency[rw][i].latency) >> 3; 2150 2151 td->avg_buckets[rw][i].latency = max(latency[rw], 2152 last_latency[rw]); 2153 td->avg_buckets[rw][i].valid = true; 2154 last_latency[rw] = td->avg_buckets[rw][i].latency; 2155 } 2156 } 2157 2158 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) 2159 throtl_log(&td->service_queue, 2160 "Latency bucket %d: read latency=%ld, read valid=%d, " 2161 "write latency=%ld, write valid=%d", i, 2162 td->avg_buckets[READ][i].latency, 2163 td->avg_buckets[READ][i].valid, 2164 td->avg_buckets[WRITE][i].latency, 2165 td->avg_buckets[WRITE][i].valid); 2166 } 2167 #else 2168 static inline void throtl_update_latency_buckets(struct throtl_data *td) 2169 { 2170 } 2171 #endif 2172 2173 bool blk_throtl_bio(struct bio *bio) 2174 { 2175 struct request_queue *q = bio->bi_disk->queue; 2176 struct blkcg_gq *blkg = bio->bi_blkg; 2177 struct throtl_qnode *qn = NULL; 2178 struct throtl_grp *tg = blkg_to_tg(blkg); 2179 struct throtl_service_queue *sq; 2180 bool rw = bio_data_dir(bio); 2181 bool throttled = false; 2182 struct throtl_data *td = tg->td; 2183 2184 rcu_read_lock(); 2185 2186 /* see throtl_charge_bio() */ 2187 if (bio_flagged(bio, BIO_THROTTLED)) 2188 goto out; 2189 2190 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) { 2191 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf, 2192 bio->bi_iter.bi_size); 2193 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1); 2194 } 2195 2196 if (!tg->has_rules[rw]) 2197 goto out; 2198 2199 spin_lock_irq(&q->queue_lock); 2200 2201 throtl_update_latency_buckets(td); 2202 2203 blk_throtl_update_idletime(tg); 2204 2205 sq = &tg->service_queue; 2206 2207 again: 2208 while (true) { 2209 if (tg->last_low_overflow_time[rw] == 0) 2210 tg->last_low_overflow_time[rw] = jiffies; 2211 throtl_downgrade_check(tg); 2212 throtl_upgrade_check(tg); 2213 /* throtl is FIFO - if bios are already queued, should queue */ 2214 if (sq->nr_queued[rw]) 2215 break; 2216 2217 /* if above limits, break to queue */ 2218 if (!tg_may_dispatch(tg, bio, NULL)) { 2219 tg->last_low_overflow_time[rw] = jiffies; 2220 if (throtl_can_upgrade(td, tg)) { 2221 throtl_upgrade_state(td); 2222 goto again; 2223 } 2224 break; 2225 } 2226 2227 /* within limits, let's charge and dispatch directly */ 2228 throtl_charge_bio(tg, bio); 2229 2230 /* 2231 * We need to trim slice even when bios are not being queued 2232 * otherwise it might happen that a bio is not queued for 2233 * a long time and slice keeps on extending and trim is not 2234 * called for a long time. Now if limits are reduced suddenly 2235 * we take into account all the IO dispatched so far at new 2236 * low rate and * newly queued IO gets a really long dispatch 2237 * time. 2238 * 2239 * So keep on trimming slice even if bio is not queued. 2240 */ 2241 throtl_trim_slice(tg, rw); 2242 2243 /* 2244 * @bio passed through this layer without being throttled. 2245 * Climb up the ladder. If we're already at the top, it 2246 * can be executed directly. 2247 */ 2248 qn = &tg->qnode_on_parent[rw]; 2249 sq = sq->parent_sq; 2250 tg = sq_to_tg(sq); 2251 if (!tg) 2252 goto out_unlock; 2253 } 2254 2255 /* out-of-limit, queue to @tg */ 2256 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", 2257 rw == READ ? 'R' : 'W', 2258 tg->bytes_disp[rw], bio->bi_iter.bi_size, 2259 tg_bps_limit(tg, rw), 2260 tg->io_disp[rw], tg_iops_limit(tg, rw), 2261 sq->nr_queued[READ], sq->nr_queued[WRITE]); 2262 2263 tg->last_low_overflow_time[rw] = jiffies; 2264 2265 td->nr_queued[rw]++; 2266 throtl_add_bio_tg(bio, qn, tg); 2267 throttled = true; 2268 2269 /* 2270 * Update @tg's dispatch time and force schedule dispatch if @tg 2271 * was empty before @bio. The forced scheduling isn't likely to 2272 * cause undue delay as @bio is likely to be dispatched directly if 2273 * its @tg's disptime is not in the future. 2274 */ 2275 if (tg->flags & THROTL_TG_WAS_EMPTY) { 2276 tg_update_disptime(tg); 2277 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); 2278 } 2279 2280 out_unlock: 2281 spin_unlock_irq(&q->queue_lock); 2282 out: 2283 bio_set_flag(bio, BIO_THROTTLED); 2284 2285 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2286 if (throttled || !td->track_bio_latency) 2287 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY; 2288 #endif 2289 rcu_read_unlock(); 2290 return throttled; 2291 } 2292 2293 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2294 static void throtl_track_latency(struct throtl_data *td, sector_t size, 2295 int op, unsigned long time) 2296 { 2297 struct latency_bucket *latency; 2298 int index; 2299 2300 if (!td || td->limit_index != LIMIT_LOW || 2301 !(op == REQ_OP_READ || op == REQ_OP_WRITE) || 2302 !blk_queue_nonrot(td->queue)) 2303 return; 2304 2305 index = request_bucket_index(size); 2306 2307 latency = get_cpu_ptr(td->latency_buckets[op]); 2308 latency[index].total_latency += time; 2309 latency[index].samples++; 2310 put_cpu_ptr(td->latency_buckets[op]); 2311 } 2312 2313 void blk_throtl_stat_add(struct request *rq, u64 time_ns) 2314 { 2315 struct request_queue *q = rq->q; 2316 struct throtl_data *td = q->td; 2317 2318 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq), 2319 time_ns >> 10); 2320 } 2321 2322 void blk_throtl_bio_endio(struct bio *bio) 2323 { 2324 struct blkcg_gq *blkg; 2325 struct throtl_grp *tg; 2326 u64 finish_time_ns; 2327 unsigned long finish_time; 2328 unsigned long start_time; 2329 unsigned long lat; 2330 int rw = bio_data_dir(bio); 2331 2332 blkg = bio->bi_blkg; 2333 if (!blkg) 2334 return; 2335 tg = blkg_to_tg(blkg); 2336 if (!tg->td->limit_valid[LIMIT_LOW]) 2337 return; 2338 2339 finish_time_ns = ktime_get_ns(); 2340 tg->last_finish_time = finish_time_ns >> 10; 2341 2342 start_time = bio_issue_time(&bio->bi_issue) >> 10; 2343 finish_time = __bio_issue_time(finish_time_ns) >> 10; 2344 if (!start_time || finish_time <= start_time) 2345 return; 2346 2347 lat = finish_time - start_time; 2348 /* this is only for bio based driver */ 2349 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY)) 2350 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue), 2351 bio_op(bio), lat); 2352 2353 if (tg->latency_target && lat >= tg->td->filtered_latency) { 2354 int bucket; 2355 unsigned int threshold; 2356 2357 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue)); 2358 threshold = tg->td->avg_buckets[rw][bucket].latency + 2359 tg->latency_target; 2360 if (lat > threshold) 2361 tg->bad_bio_cnt++; 2362 /* 2363 * Not race free, could get wrong count, which means cgroups 2364 * will be throttled 2365 */ 2366 tg->bio_cnt++; 2367 } 2368 2369 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) { 2370 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies; 2371 tg->bio_cnt /= 2; 2372 tg->bad_bio_cnt /= 2; 2373 } 2374 } 2375 #endif 2376 2377 int blk_throtl_init(struct request_queue *q) 2378 { 2379 struct throtl_data *td; 2380 int ret; 2381 2382 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 2383 if (!td) 2384 return -ENOMEM; 2385 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) * 2386 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2387 if (!td->latency_buckets[READ]) { 2388 kfree(td); 2389 return -ENOMEM; 2390 } 2391 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) * 2392 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2393 if (!td->latency_buckets[WRITE]) { 2394 free_percpu(td->latency_buckets[READ]); 2395 kfree(td); 2396 return -ENOMEM; 2397 } 2398 2399 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); 2400 throtl_service_queue_init(&td->service_queue); 2401 2402 q->td = td; 2403 td->queue = q; 2404 2405 td->limit_valid[LIMIT_MAX] = true; 2406 td->limit_index = LIMIT_MAX; 2407 td->low_upgrade_time = jiffies; 2408 td->low_downgrade_time = jiffies; 2409 2410 /* activate policy */ 2411 ret = blkcg_activate_policy(q, &blkcg_policy_throtl); 2412 if (ret) { 2413 free_percpu(td->latency_buckets[READ]); 2414 free_percpu(td->latency_buckets[WRITE]); 2415 kfree(td); 2416 } 2417 return ret; 2418 } 2419 2420 void blk_throtl_exit(struct request_queue *q) 2421 { 2422 BUG_ON(!q->td); 2423 throtl_shutdown_wq(q); 2424 blkcg_deactivate_policy(q, &blkcg_policy_throtl); 2425 free_percpu(q->td->latency_buckets[READ]); 2426 free_percpu(q->td->latency_buckets[WRITE]); 2427 kfree(q->td); 2428 } 2429 2430 void blk_throtl_register_queue(struct request_queue *q) 2431 { 2432 struct throtl_data *td; 2433 int i; 2434 2435 td = q->td; 2436 BUG_ON(!td); 2437 2438 if (blk_queue_nonrot(q)) { 2439 td->throtl_slice = DFL_THROTL_SLICE_SSD; 2440 td->filtered_latency = LATENCY_FILTERED_SSD; 2441 } else { 2442 td->throtl_slice = DFL_THROTL_SLICE_HD; 2443 td->filtered_latency = LATENCY_FILTERED_HD; 2444 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2445 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY; 2446 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY; 2447 } 2448 } 2449 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW 2450 /* if no low limit, use previous default */ 2451 td->throtl_slice = DFL_THROTL_SLICE_HD; 2452 #endif 2453 2454 td->track_bio_latency = !queue_is_mq(q); 2455 if (!td->track_bio_latency) 2456 blk_stat_enable_accounting(q); 2457 } 2458 2459 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2460 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page) 2461 { 2462 if (!q->td) 2463 return -EINVAL; 2464 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice)); 2465 } 2466 2467 ssize_t blk_throtl_sample_time_store(struct request_queue *q, 2468 const char *page, size_t count) 2469 { 2470 unsigned long v; 2471 unsigned long t; 2472 2473 if (!q->td) 2474 return -EINVAL; 2475 if (kstrtoul(page, 10, &v)) 2476 return -EINVAL; 2477 t = msecs_to_jiffies(v); 2478 if (t == 0 || t > MAX_THROTL_SLICE) 2479 return -EINVAL; 2480 q->td->throtl_slice = t; 2481 return count; 2482 } 2483 #endif 2484 2485 static int __init throtl_init(void) 2486 { 2487 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 2488 if (!kthrotld_workqueue) 2489 panic("Failed to create kthrotld\n"); 2490 2491 return blkcg_policy_register(&blkcg_policy_throtl); 2492 } 2493 2494 module_init(throtl_init); 2495