xref: /openbmc/linux/block/blk-throttle.c (revision 11976fe2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include "blk.h"
14 #include "blk-cgroup-rwstat.h"
15 #include "blk-stat.h"
16 #include "blk-throttle.h"
17 
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
20 
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
23 
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
29 #define MIN_THROTL_BPS (320 * 1024)
30 #define MIN_THROTL_IOPS (10)
31 #define DFL_LATENCY_TARGET (-1L)
32 #define DFL_IDLE_THRESHOLD (0)
33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34 #define LATENCY_FILTERED_SSD (0)
35 /*
36  * For HD, very small latency comes from sequential IO. Such IO is helpless to
37  * help determine if its IO is impacted by others, hence we ignore the IO
38  */
39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
40 
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct *kthrotld_workqueue;
43 
44 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
45 
46 /* We measure latency for request size from <= 4k to >= 1M */
47 #define LATENCY_BUCKET_SIZE 9
48 
49 struct latency_bucket {
50 	unsigned long total_latency; /* ns / 1024 */
51 	int samples;
52 };
53 
54 struct avg_latency_bucket {
55 	unsigned long latency; /* ns / 1024 */
56 	bool valid;
57 };
58 
59 struct throtl_data
60 {
61 	/* service tree for active throtl groups */
62 	struct throtl_service_queue service_queue;
63 
64 	struct request_queue *queue;
65 
66 	/* Total Number of queued bios on READ and WRITE lists */
67 	unsigned int nr_queued[2];
68 
69 	unsigned int throtl_slice;
70 
71 	/* Work for dispatching throttled bios */
72 	struct work_struct dispatch_work;
73 	unsigned int limit_index;
74 	bool limit_valid[LIMIT_CNT];
75 
76 	unsigned long low_upgrade_time;
77 	unsigned long low_downgrade_time;
78 
79 	unsigned int scale;
80 
81 	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82 	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83 	struct latency_bucket __percpu *latency_buckets[2];
84 	unsigned long last_calculate_time;
85 	unsigned long filtered_latency;
86 
87 	bool track_bio_latency;
88 };
89 
90 static void throtl_pending_timer_fn(struct timer_list *t);
91 
92 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
93 {
94 	return pd_to_blkg(&tg->pd);
95 }
96 
97 /**
98  * sq_to_tg - return the throl_grp the specified service queue belongs to
99  * @sq: the throtl_service_queue of interest
100  *
101  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
102  * embedded in throtl_data, %NULL is returned.
103  */
104 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
105 {
106 	if (sq && sq->parent_sq)
107 		return container_of(sq, struct throtl_grp, service_queue);
108 	else
109 		return NULL;
110 }
111 
112 /**
113  * sq_to_td - return throtl_data the specified service queue belongs to
114  * @sq: the throtl_service_queue of interest
115  *
116  * A service_queue can be embedded in either a throtl_grp or throtl_data.
117  * Determine the associated throtl_data accordingly and return it.
118  */
119 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
120 {
121 	struct throtl_grp *tg = sq_to_tg(sq);
122 
123 	if (tg)
124 		return tg->td;
125 	else
126 		return container_of(sq, struct throtl_data, service_queue);
127 }
128 
129 /*
130  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131  * make the IO dispatch more smooth.
132  * Scale up: linearly scale up according to elapsed time since upgrade. For
133  *           every throtl_slice, the limit scales up 1/2 .low limit till the
134  *           limit hits .max limit
135  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
136  */
137 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
138 {
139 	/* arbitrary value to avoid too big scale */
140 	if (td->scale < 4096 && time_after_eq(jiffies,
141 	    td->low_upgrade_time + td->scale * td->throtl_slice))
142 		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
143 
144 	return low + (low >> 1) * td->scale;
145 }
146 
147 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
148 {
149 	struct blkcg_gq *blkg = tg_to_blkg(tg);
150 	struct throtl_data *td;
151 	uint64_t ret;
152 
153 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
154 		return U64_MAX;
155 
156 	td = tg->td;
157 	ret = tg->bps[rw][td->limit_index];
158 	if (ret == 0 && td->limit_index == LIMIT_LOW) {
159 		/* intermediate node or iops isn't 0 */
160 		if (!list_empty(&blkg->blkcg->css.children) ||
161 		    tg->iops[rw][td->limit_index])
162 			return U64_MAX;
163 		else
164 			return MIN_THROTL_BPS;
165 	}
166 
167 	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168 	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
169 		uint64_t adjusted;
170 
171 		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172 		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
173 	}
174 	return ret;
175 }
176 
177 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
178 {
179 	struct blkcg_gq *blkg = tg_to_blkg(tg);
180 	struct throtl_data *td;
181 	unsigned int ret;
182 
183 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
184 		return UINT_MAX;
185 
186 	td = tg->td;
187 	ret = tg->iops[rw][td->limit_index];
188 	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189 		/* intermediate node or bps isn't 0 */
190 		if (!list_empty(&blkg->blkcg->css.children) ||
191 		    tg->bps[rw][td->limit_index])
192 			return UINT_MAX;
193 		else
194 			return MIN_THROTL_IOPS;
195 	}
196 
197 	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198 	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
199 		uint64_t adjusted;
200 
201 		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202 		if (adjusted > UINT_MAX)
203 			adjusted = UINT_MAX;
204 		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
205 	}
206 	return ret;
207 }
208 
209 #define request_bucket_index(sectors) \
210 	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
211 
212 /**
213  * throtl_log - log debug message via blktrace
214  * @sq: the service_queue being reported
215  * @fmt: printf format string
216  * @args: printf args
217  *
218  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219  * throtl_grp; otherwise, just "throtl".
220  */
221 #define throtl_log(sq, fmt, args...)	do {				\
222 	struct throtl_grp *__tg = sq_to_tg((sq));			\
223 	struct throtl_data *__td = sq_to_td((sq));			\
224 									\
225 	(void)__td;							\
226 	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
227 		break;							\
228 	if ((__tg)) {							\
229 		blk_add_cgroup_trace_msg(__td->queue,			\
230 			&tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
231 	} else {							\
232 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
233 	}								\
234 } while (0)
235 
236 static inline unsigned int throtl_bio_data_size(struct bio *bio)
237 {
238 	/* assume it's one sector */
239 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
240 		return 512;
241 	return bio->bi_iter.bi_size;
242 }
243 
244 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
245 {
246 	INIT_LIST_HEAD(&qn->node);
247 	bio_list_init(&qn->bios);
248 	qn->tg = tg;
249 }
250 
251 /**
252  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253  * @bio: bio being added
254  * @qn: qnode to add bio to
255  * @queued: the service_queue->queued[] list @qn belongs to
256  *
257  * Add @bio to @qn and put @qn on @queued if it's not already on.
258  * @qn->tg's reference count is bumped when @qn is activated.  See the
259  * comment on top of throtl_qnode definition for details.
260  */
261 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262 				 struct list_head *queued)
263 {
264 	bio_list_add(&qn->bios, bio);
265 	if (list_empty(&qn->node)) {
266 		list_add_tail(&qn->node, queued);
267 		blkg_get(tg_to_blkg(qn->tg));
268 	}
269 }
270 
271 /**
272  * throtl_peek_queued - peek the first bio on a qnode list
273  * @queued: the qnode list to peek
274  */
275 static struct bio *throtl_peek_queued(struct list_head *queued)
276 {
277 	struct throtl_qnode *qn;
278 	struct bio *bio;
279 
280 	if (list_empty(queued))
281 		return NULL;
282 
283 	qn = list_first_entry(queued, struct throtl_qnode, node);
284 	bio = bio_list_peek(&qn->bios);
285 	WARN_ON_ONCE(!bio);
286 	return bio;
287 }
288 
289 /**
290  * throtl_pop_queued - pop the first bio form a qnode list
291  * @queued: the qnode list to pop a bio from
292  * @tg_to_put: optional out argument for throtl_grp to put
293  *
294  * Pop the first bio from the qnode list @queued.  After popping, the first
295  * qnode is removed from @queued if empty or moved to the end of @queued so
296  * that the popping order is round-robin.
297  *
298  * When the first qnode is removed, its associated throtl_grp should be put
299  * too.  If @tg_to_put is NULL, this function automatically puts it;
300  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301  * responsible for putting it.
302  */
303 static struct bio *throtl_pop_queued(struct list_head *queued,
304 				     struct throtl_grp **tg_to_put)
305 {
306 	struct throtl_qnode *qn;
307 	struct bio *bio;
308 
309 	if (list_empty(queued))
310 		return NULL;
311 
312 	qn = list_first_entry(queued, struct throtl_qnode, node);
313 	bio = bio_list_pop(&qn->bios);
314 	WARN_ON_ONCE(!bio);
315 
316 	if (bio_list_empty(&qn->bios)) {
317 		list_del_init(&qn->node);
318 		if (tg_to_put)
319 			*tg_to_put = qn->tg;
320 		else
321 			blkg_put(tg_to_blkg(qn->tg));
322 	} else {
323 		list_move_tail(&qn->node, queued);
324 	}
325 
326 	return bio;
327 }
328 
329 /* init a service_queue, assumes the caller zeroed it */
330 static void throtl_service_queue_init(struct throtl_service_queue *sq)
331 {
332 	INIT_LIST_HEAD(&sq->queued[READ]);
333 	INIT_LIST_HEAD(&sq->queued[WRITE]);
334 	sq->pending_tree = RB_ROOT_CACHED;
335 	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
336 }
337 
338 static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk,
339 		struct blkcg *blkcg, gfp_t gfp)
340 {
341 	struct throtl_grp *tg;
342 	int rw;
343 
344 	tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id);
345 	if (!tg)
346 		return NULL;
347 
348 	if (blkg_rwstat_init(&tg->stat_bytes, gfp))
349 		goto err_free_tg;
350 
351 	if (blkg_rwstat_init(&tg->stat_ios, gfp))
352 		goto err_exit_stat_bytes;
353 
354 	throtl_service_queue_init(&tg->service_queue);
355 
356 	for (rw = READ; rw <= WRITE; rw++) {
357 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
358 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
359 	}
360 
361 	RB_CLEAR_NODE(&tg->rb_node);
362 	tg->bps[READ][LIMIT_MAX] = U64_MAX;
363 	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
364 	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
365 	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
366 	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
367 	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
368 	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
369 	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
370 	/* LIMIT_LOW will have default value 0 */
371 
372 	tg->latency_target = DFL_LATENCY_TARGET;
373 	tg->latency_target_conf = DFL_LATENCY_TARGET;
374 	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
375 	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
376 
377 	return &tg->pd;
378 
379 err_exit_stat_bytes:
380 	blkg_rwstat_exit(&tg->stat_bytes);
381 err_free_tg:
382 	kfree(tg);
383 	return NULL;
384 }
385 
386 static void throtl_pd_init(struct blkg_policy_data *pd)
387 {
388 	struct throtl_grp *tg = pd_to_tg(pd);
389 	struct blkcg_gq *blkg = tg_to_blkg(tg);
390 	struct throtl_data *td = blkg->q->td;
391 	struct throtl_service_queue *sq = &tg->service_queue;
392 
393 	/*
394 	 * If on the default hierarchy, we switch to properly hierarchical
395 	 * behavior where limits on a given throtl_grp are applied to the
396 	 * whole subtree rather than just the group itself.  e.g. If 16M
397 	 * read_bps limit is set on a parent group, summary bps of
398 	 * parent group and its subtree groups can't exceed 16M for the
399 	 * device.
400 	 *
401 	 * If not on the default hierarchy, the broken flat hierarchy
402 	 * behavior is retained where all throtl_grps are treated as if
403 	 * they're all separate root groups right below throtl_data.
404 	 * Limits of a group don't interact with limits of other groups
405 	 * regardless of the position of the group in the hierarchy.
406 	 */
407 	sq->parent_sq = &td->service_queue;
408 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
409 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
410 	tg->td = td;
411 }
412 
413 /*
414  * Set has_rules[] if @tg or any of its parents have limits configured.
415  * This doesn't require walking up to the top of the hierarchy as the
416  * parent's has_rules[] is guaranteed to be correct.
417  */
418 static void tg_update_has_rules(struct throtl_grp *tg)
419 {
420 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
421 	struct throtl_data *td = tg->td;
422 	int rw;
423 
424 	for (rw = READ; rw <= WRITE; rw++) {
425 		tg->has_rules_iops[rw] =
426 			(parent_tg && parent_tg->has_rules_iops[rw]) ||
427 			(td->limit_valid[td->limit_index] &&
428 			  tg_iops_limit(tg, rw) != UINT_MAX);
429 		tg->has_rules_bps[rw] =
430 			(parent_tg && parent_tg->has_rules_bps[rw]) ||
431 			(td->limit_valid[td->limit_index] &&
432 			 (tg_bps_limit(tg, rw) != U64_MAX));
433 	}
434 }
435 
436 static void throtl_pd_online(struct blkg_policy_data *pd)
437 {
438 	struct throtl_grp *tg = pd_to_tg(pd);
439 	/*
440 	 * We don't want new groups to escape the limits of its ancestors.
441 	 * Update has_rules[] after a new group is brought online.
442 	 */
443 	tg_update_has_rules(tg);
444 }
445 
446 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
447 static void blk_throtl_update_limit_valid(struct throtl_data *td)
448 {
449 	struct cgroup_subsys_state *pos_css;
450 	struct blkcg_gq *blkg;
451 	bool low_valid = false;
452 
453 	rcu_read_lock();
454 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
455 		struct throtl_grp *tg = blkg_to_tg(blkg);
456 
457 		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
458 		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
459 			low_valid = true;
460 			break;
461 		}
462 	}
463 	rcu_read_unlock();
464 
465 	td->limit_valid[LIMIT_LOW] = low_valid;
466 }
467 #else
468 static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
469 {
470 }
471 #endif
472 
473 static void throtl_upgrade_state(struct throtl_data *td);
474 static void throtl_pd_offline(struct blkg_policy_data *pd)
475 {
476 	struct throtl_grp *tg = pd_to_tg(pd);
477 
478 	tg->bps[READ][LIMIT_LOW] = 0;
479 	tg->bps[WRITE][LIMIT_LOW] = 0;
480 	tg->iops[READ][LIMIT_LOW] = 0;
481 	tg->iops[WRITE][LIMIT_LOW] = 0;
482 
483 	blk_throtl_update_limit_valid(tg->td);
484 
485 	if (!tg->td->limit_valid[tg->td->limit_index])
486 		throtl_upgrade_state(tg->td);
487 }
488 
489 static void throtl_pd_free(struct blkg_policy_data *pd)
490 {
491 	struct throtl_grp *tg = pd_to_tg(pd);
492 
493 	del_timer_sync(&tg->service_queue.pending_timer);
494 	blkg_rwstat_exit(&tg->stat_bytes);
495 	blkg_rwstat_exit(&tg->stat_ios);
496 	kfree(tg);
497 }
498 
499 static struct throtl_grp *
500 throtl_rb_first(struct throtl_service_queue *parent_sq)
501 {
502 	struct rb_node *n;
503 
504 	n = rb_first_cached(&parent_sq->pending_tree);
505 	WARN_ON_ONCE(!n);
506 	if (!n)
507 		return NULL;
508 	return rb_entry_tg(n);
509 }
510 
511 static void throtl_rb_erase(struct rb_node *n,
512 			    struct throtl_service_queue *parent_sq)
513 {
514 	rb_erase_cached(n, &parent_sq->pending_tree);
515 	RB_CLEAR_NODE(n);
516 }
517 
518 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
519 {
520 	struct throtl_grp *tg;
521 
522 	tg = throtl_rb_first(parent_sq);
523 	if (!tg)
524 		return;
525 
526 	parent_sq->first_pending_disptime = tg->disptime;
527 }
528 
529 static void tg_service_queue_add(struct throtl_grp *tg)
530 {
531 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
532 	struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
533 	struct rb_node *parent = NULL;
534 	struct throtl_grp *__tg;
535 	unsigned long key = tg->disptime;
536 	bool leftmost = true;
537 
538 	while (*node != NULL) {
539 		parent = *node;
540 		__tg = rb_entry_tg(parent);
541 
542 		if (time_before(key, __tg->disptime))
543 			node = &parent->rb_left;
544 		else {
545 			node = &parent->rb_right;
546 			leftmost = false;
547 		}
548 	}
549 
550 	rb_link_node(&tg->rb_node, parent, node);
551 	rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
552 			       leftmost);
553 }
554 
555 static void throtl_enqueue_tg(struct throtl_grp *tg)
556 {
557 	if (!(tg->flags & THROTL_TG_PENDING)) {
558 		tg_service_queue_add(tg);
559 		tg->flags |= THROTL_TG_PENDING;
560 		tg->service_queue.parent_sq->nr_pending++;
561 	}
562 }
563 
564 static void throtl_dequeue_tg(struct throtl_grp *tg)
565 {
566 	if (tg->flags & THROTL_TG_PENDING) {
567 		struct throtl_service_queue *parent_sq =
568 			tg->service_queue.parent_sq;
569 
570 		throtl_rb_erase(&tg->rb_node, parent_sq);
571 		--parent_sq->nr_pending;
572 		tg->flags &= ~THROTL_TG_PENDING;
573 	}
574 }
575 
576 /* Call with queue lock held */
577 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
578 					  unsigned long expires)
579 {
580 	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
581 
582 	/*
583 	 * Since we are adjusting the throttle limit dynamically, the sleep
584 	 * time calculated according to previous limit might be invalid. It's
585 	 * possible the cgroup sleep time is very long and no other cgroups
586 	 * have IO running so notify the limit changes. Make sure the cgroup
587 	 * doesn't sleep too long to avoid the missed notification.
588 	 */
589 	if (time_after(expires, max_expire))
590 		expires = max_expire;
591 	mod_timer(&sq->pending_timer, expires);
592 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
593 		   expires - jiffies, jiffies);
594 }
595 
596 /**
597  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
598  * @sq: the service_queue to schedule dispatch for
599  * @force: force scheduling
600  *
601  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
602  * dispatch time of the first pending child.  Returns %true if either timer
603  * is armed or there's no pending child left.  %false if the current
604  * dispatch window is still open and the caller should continue
605  * dispatching.
606  *
607  * If @force is %true, the dispatch timer is always scheduled and this
608  * function is guaranteed to return %true.  This is to be used when the
609  * caller can't dispatch itself and needs to invoke pending_timer
610  * unconditionally.  Note that forced scheduling is likely to induce short
611  * delay before dispatch starts even if @sq->first_pending_disptime is not
612  * in the future and thus shouldn't be used in hot paths.
613  */
614 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
615 					  bool force)
616 {
617 	/* any pending children left? */
618 	if (!sq->nr_pending)
619 		return true;
620 
621 	update_min_dispatch_time(sq);
622 
623 	/* is the next dispatch time in the future? */
624 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
625 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
626 		return true;
627 	}
628 
629 	/* tell the caller to continue dispatching */
630 	return false;
631 }
632 
633 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
634 		bool rw, unsigned long start)
635 {
636 	tg->bytes_disp[rw] = 0;
637 	tg->io_disp[rw] = 0;
638 	tg->carryover_bytes[rw] = 0;
639 	tg->carryover_ios[rw] = 0;
640 
641 	/*
642 	 * Previous slice has expired. We must have trimmed it after last
643 	 * bio dispatch. That means since start of last slice, we never used
644 	 * that bandwidth. Do try to make use of that bandwidth while giving
645 	 * credit.
646 	 */
647 	if (time_after(start, tg->slice_start[rw]))
648 		tg->slice_start[rw] = start;
649 
650 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
651 	throtl_log(&tg->service_queue,
652 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
653 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
654 		   tg->slice_end[rw], jiffies);
655 }
656 
657 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
658 					  bool clear_carryover)
659 {
660 	tg->bytes_disp[rw] = 0;
661 	tg->io_disp[rw] = 0;
662 	tg->slice_start[rw] = jiffies;
663 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
664 	if (clear_carryover) {
665 		tg->carryover_bytes[rw] = 0;
666 		tg->carryover_ios[rw] = 0;
667 	}
668 
669 	throtl_log(&tg->service_queue,
670 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
671 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
672 		   tg->slice_end[rw], jiffies);
673 }
674 
675 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
676 					unsigned long jiffy_end)
677 {
678 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
679 }
680 
681 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
682 				       unsigned long jiffy_end)
683 {
684 	throtl_set_slice_end(tg, rw, jiffy_end);
685 	throtl_log(&tg->service_queue,
686 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
687 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
688 		   tg->slice_end[rw], jiffies);
689 }
690 
691 /* Determine if previously allocated or extended slice is complete or not */
692 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
693 {
694 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
695 		return false;
696 
697 	return true;
698 }
699 
700 /* Trim the used slices and adjust slice start accordingly */
701 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
702 {
703 	unsigned long nr_slices, time_elapsed, io_trim;
704 	u64 bytes_trim, tmp;
705 
706 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
707 
708 	/*
709 	 * If bps are unlimited (-1), then time slice don't get
710 	 * renewed. Don't try to trim the slice if slice is used. A new
711 	 * slice will start when appropriate.
712 	 */
713 	if (throtl_slice_used(tg, rw))
714 		return;
715 
716 	/*
717 	 * A bio has been dispatched. Also adjust slice_end. It might happen
718 	 * that initially cgroup limit was very low resulting in high
719 	 * slice_end, but later limit was bumped up and bio was dispatched
720 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
721 	 * is bad because it does not allow new slice to start.
722 	 */
723 
724 	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
725 
726 	time_elapsed = jiffies - tg->slice_start[rw];
727 
728 	nr_slices = time_elapsed / tg->td->throtl_slice;
729 
730 	if (!nr_slices)
731 		return;
732 	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
733 	do_div(tmp, HZ);
734 	bytes_trim = tmp;
735 
736 	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
737 		HZ;
738 
739 	if (!bytes_trim && !io_trim)
740 		return;
741 
742 	if (tg->bytes_disp[rw] >= bytes_trim)
743 		tg->bytes_disp[rw] -= bytes_trim;
744 	else
745 		tg->bytes_disp[rw] = 0;
746 
747 	if (tg->io_disp[rw] >= io_trim)
748 		tg->io_disp[rw] -= io_trim;
749 	else
750 		tg->io_disp[rw] = 0;
751 
752 	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
753 
754 	throtl_log(&tg->service_queue,
755 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
756 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
757 		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
758 }
759 
760 static unsigned int calculate_io_allowed(u32 iops_limit,
761 					 unsigned long jiffy_elapsed)
762 {
763 	unsigned int io_allowed;
764 	u64 tmp;
765 
766 	/*
767 	 * jiffy_elapsed should not be a big value as minimum iops can be
768 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
769 	 * will allow dispatch after 1 second and after that slice should
770 	 * have been trimmed.
771 	 */
772 
773 	tmp = (u64)iops_limit * jiffy_elapsed;
774 	do_div(tmp, HZ);
775 
776 	if (tmp > UINT_MAX)
777 		io_allowed = UINT_MAX;
778 	else
779 		io_allowed = tmp;
780 
781 	return io_allowed;
782 }
783 
784 static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
785 {
786 	return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
787 }
788 
789 static void __tg_update_carryover(struct throtl_grp *tg, bool rw)
790 {
791 	unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
792 	u64 bps_limit = tg_bps_limit(tg, rw);
793 	u32 iops_limit = tg_iops_limit(tg, rw);
794 
795 	/*
796 	 * If config is updated while bios are still throttled, calculate and
797 	 * accumulate how many bytes/ios are waited across changes. And
798 	 * carryover_bytes/ios will be used to calculate new wait time under new
799 	 * configuration.
800 	 */
801 	if (bps_limit != U64_MAX)
802 		tg->carryover_bytes[rw] +=
803 			calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
804 			tg->bytes_disp[rw];
805 	if (iops_limit != UINT_MAX)
806 		tg->carryover_ios[rw] +=
807 			calculate_io_allowed(iops_limit, jiffy_elapsed) -
808 			tg->io_disp[rw];
809 }
810 
811 static void tg_update_carryover(struct throtl_grp *tg)
812 {
813 	if (tg->service_queue.nr_queued[READ])
814 		__tg_update_carryover(tg, READ);
815 	if (tg->service_queue.nr_queued[WRITE])
816 		__tg_update_carryover(tg, WRITE);
817 
818 	/* see comments in struct throtl_grp for meaning of these fields. */
819 	throtl_log(&tg->service_queue, "%s: %llu %llu %u %u\n", __func__,
820 		   tg->carryover_bytes[READ], tg->carryover_bytes[WRITE],
821 		   tg->carryover_ios[READ], tg->carryover_ios[WRITE]);
822 }
823 
824 static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
825 				 u32 iops_limit)
826 {
827 	bool rw = bio_data_dir(bio);
828 	unsigned int io_allowed;
829 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
830 
831 	if (iops_limit == UINT_MAX) {
832 		return 0;
833 	}
834 
835 	jiffy_elapsed = jiffies - tg->slice_start[rw];
836 
837 	/* Round up to the next throttle slice, wait time must be nonzero */
838 	jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
839 	io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) +
840 		     tg->carryover_ios[rw];
841 	if (tg->io_disp[rw] + 1 <= io_allowed) {
842 		return 0;
843 	}
844 
845 	/* Calc approx time to dispatch */
846 	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
847 	return jiffy_wait;
848 }
849 
850 static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
851 				u64 bps_limit)
852 {
853 	bool rw = bio_data_dir(bio);
854 	u64 bytes_allowed, extra_bytes;
855 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
856 	unsigned int bio_size = throtl_bio_data_size(bio);
857 
858 	/* no need to throttle if this bio's bytes have been accounted */
859 	if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
860 		return 0;
861 	}
862 
863 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
864 
865 	/* Slice has just started. Consider one slice interval */
866 	if (!jiffy_elapsed)
867 		jiffy_elapsed_rnd = tg->td->throtl_slice;
868 
869 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
870 	bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) +
871 			tg->carryover_bytes[rw];
872 	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
873 		return 0;
874 	}
875 
876 	/* Calc approx time to dispatch */
877 	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
878 	jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
879 
880 	if (!jiffy_wait)
881 		jiffy_wait = 1;
882 
883 	/*
884 	 * This wait time is without taking into consideration the rounding
885 	 * up we did. Add that time also.
886 	 */
887 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
888 	return jiffy_wait;
889 }
890 
891 /*
892  * Returns whether one can dispatch a bio or not. Also returns approx number
893  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
894  */
895 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
896 			    unsigned long *wait)
897 {
898 	bool rw = bio_data_dir(bio);
899 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
900 	u64 bps_limit = tg_bps_limit(tg, rw);
901 	u32 iops_limit = tg_iops_limit(tg, rw);
902 
903 	/*
904  	 * Currently whole state machine of group depends on first bio
905 	 * queued in the group bio list. So one should not be calling
906 	 * this function with a different bio if there are other bios
907 	 * queued.
908 	 */
909 	BUG_ON(tg->service_queue.nr_queued[rw] &&
910 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
911 
912 	/* If tg->bps = -1, then BW is unlimited */
913 	if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
914 	    tg->flags & THROTL_TG_CANCELING) {
915 		if (wait)
916 			*wait = 0;
917 		return true;
918 	}
919 
920 	/*
921 	 * If previous slice expired, start a new one otherwise renew/extend
922 	 * existing slice to make sure it is at least throtl_slice interval
923 	 * long since now. New slice is started only for empty throttle group.
924 	 * If there is queued bio, that means there should be an active
925 	 * slice and it should be extended instead.
926 	 */
927 	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
928 		throtl_start_new_slice(tg, rw, true);
929 	else {
930 		if (time_before(tg->slice_end[rw],
931 		    jiffies + tg->td->throtl_slice))
932 			throtl_extend_slice(tg, rw,
933 				jiffies + tg->td->throtl_slice);
934 	}
935 
936 	bps_wait = tg_within_bps_limit(tg, bio, bps_limit);
937 	iops_wait = tg_within_iops_limit(tg, bio, iops_limit);
938 	if (bps_wait + iops_wait == 0) {
939 		if (wait)
940 			*wait = 0;
941 		return true;
942 	}
943 
944 	max_wait = max(bps_wait, iops_wait);
945 
946 	if (wait)
947 		*wait = max_wait;
948 
949 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
950 		throtl_extend_slice(tg, rw, jiffies + max_wait);
951 
952 	return false;
953 }
954 
955 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
956 {
957 	bool rw = bio_data_dir(bio);
958 	unsigned int bio_size = throtl_bio_data_size(bio);
959 
960 	/* Charge the bio to the group */
961 	if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
962 		tg->bytes_disp[rw] += bio_size;
963 		tg->last_bytes_disp[rw] += bio_size;
964 	}
965 
966 	tg->io_disp[rw]++;
967 	tg->last_io_disp[rw]++;
968 }
969 
970 /**
971  * throtl_add_bio_tg - add a bio to the specified throtl_grp
972  * @bio: bio to add
973  * @qn: qnode to use
974  * @tg: the target throtl_grp
975  *
976  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
977  * tg->qnode_on_self[] is used.
978  */
979 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
980 			      struct throtl_grp *tg)
981 {
982 	struct throtl_service_queue *sq = &tg->service_queue;
983 	bool rw = bio_data_dir(bio);
984 
985 	if (!qn)
986 		qn = &tg->qnode_on_self[rw];
987 
988 	/*
989 	 * If @tg doesn't currently have any bios queued in the same
990 	 * direction, queueing @bio can change when @tg should be
991 	 * dispatched.  Mark that @tg was empty.  This is automatically
992 	 * cleared on the next tg_update_disptime().
993 	 */
994 	if (!sq->nr_queued[rw])
995 		tg->flags |= THROTL_TG_WAS_EMPTY;
996 
997 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
998 
999 	sq->nr_queued[rw]++;
1000 	throtl_enqueue_tg(tg);
1001 }
1002 
1003 static void tg_update_disptime(struct throtl_grp *tg)
1004 {
1005 	struct throtl_service_queue *sq = &tg->service_queue;
1006 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1007 	struct bio *bio;
1008 
1009 	bio = throtl_peek_queued(&sq->queued[READ]);
1010 	if (bio)
1011 		tg_may_dispatch(tg, bio, &read_wait);
1012 
1013 	bio = throtl_peek_queued(&sq->queued[WRITE]);
1014 	if (bio)
1015 		tg_may_dispatch(tg, bio, &write_wait);
1016 
1017 	min_wait = min(read_wait, write_wait);
1018 	disptime = jiffies + min_wait;
1019 
1020 	/* Update dispatch time */
1021 	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
1022 	tg->disptime = disptime;
1023 	tg_service_queue_add(tg);
1024 
1025 	/* see throtl_add_bio_tg() */
1026 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1027 }
1028 
1029 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1030 					struct throtl_grp *parent_tg, bool rw)
1031 {
1032 	if (throtl_slice_used(parent_tg, rw)) {
1033 		throtl_start_new_slice_with_credit(parent_tg, rw,
1034 				child_tg->slice_start[rw]);
1035 	}
1036 
1037 }
1038 
1039 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1040 {
1041 	struct throtl_service_queue *sq = &tg->service_queue;
1042 	struct throtl_service_queue *parent_sq = sq->parent_sq;
1043 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1044 	struct throtl_grp *tg_to_put = NULL;
1045 	struct bio *bio;
1046 
1047 	/*
1048 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1049 	 * from @tg may put its reference and @parent_sq might end up
1050 	 * getting released prematurely.  Remember the tg to put and put it
1051 	 * after @bio is transferred to @parent_sq.
1052 	 */
1053 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1054 	sq->nr_queued[rw]--;
1055 
1056 	throtl_charge_bio(tg, bio);
1057 
1058 	/*
1059 	 * If our parent is another tg, we just need to transfer @bio to
1060 	 * the parent using throtl_add_bio_tg().  If our parent is
1061 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1062 	 * bio_lists[] and decrease total number queued.  The caller is
1063 	 * responsible for issuing these bios.
1064 	 */
1065 	if (parent_tg) {
1066 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1067 		start_parent_slice_with_credit(tg, parent_tg, rw);
1068 	} else {
1069 		bio_set_flag(bio, BIO_BPS_THROTTLED);
1070 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1071 				     &parent_sq->queued[rw]);
1072 		BUG_ON(tg->td->nr_queued[rw] <= 0);
1073 		tg->td->nr_queued[rw]--;
1074 	}
1075 
1076 	throtl_trim_slice(tg, rw);
1077 
1078 	if (tg_to_put)
1079 		blkg_put(tg_to_blkg(tg_to_put));
1080 }
1081 
1082 static int throtl_dispatch_tg(struct throtl_grp *tg)
1083 {
1084 	struct throtl_service_queue *sq = &tg->service_queue;
1085 	unsigned int nr_reads = 0, nr_writes = 0;
1086 	unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1087 	unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1088 	struct bio *bio;
1089 
1090 	/* Try to dispatch 75% READS and 25% WRITES */
1091 
1092 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1093 	       tg_may_dispatch(tg, bio, NULL)) {
1094 
1095 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1096 		nr_reads++;
1097 
1098 		if (nr_reads >= max_nr_reads)
1099 			break;
1100 	}
1101 
1102 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1103 	       tg_may_dispatch(tg, bio, NULL)) {
1104 
1105 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1106 		nr_writes++;
1107 
1108 		if (nr_writes >= max_nr_writes)
1109 			break;
1110 	}
1111 
1112 	return nr_reads + nr_writes;
1113 }
1114 
1115 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1116 {
1117 	unsigned int nr_disp = 0;
1118 
1119 	while (1) {
1120 		struct throtl_grp *tg;
1121 		struct throtl_service_queue *sq;
1122 
1123 		if (!parent_sq->nr_pending)
1124 			break;
1125 
1126 		tg = throtl_rb_first(parent_sq);
1127 		if (!tg)
1128 			break;
1129 
1130 		if (time_before(jiffies, tg->disptime))
1131 			break;
1132 
1133 		nr_disp += throtl_dispatch_tg(tg);
1134 
1135 		sq = &tg->service_queue;
1136 		if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
1137 			tg_update_disptime(tg);
1138 		else
1139 			throtl_dequeue_tg(tg);
1140 
1141 		if (nr_disp >= THROTL_QUANTUM)
1142 			break;
1143 	}
1144 
1145 	return nr_disp;
1146 }
1147 
1148 static bool throtl_can_upgrade(struct throtl_data *td,
1149 	struct throtl_grp *this_tg);
1150 /**
1151  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1152  * @t: the pending_timer member of the throtl_service_queue being serviced
1153  *
1154  * This timer is armed when a child throtl_grp with active bio's become
1155  * pending and queued on the service_queue's pending_tree and expires when
1156  * the first child throtl_grp should be dispatched.  This function
1157  * dispatches bio's from the children throtl_grps to the parent
1158  * service_queue.
1159  *
1160  * If the parent's parent is another throtl_grp, dispatching is propagated
1161  * by either arming its pending_timer or repeating dispatch directly.  If
1162  * the top-level service_tree is reached, throtl_data->dispatch_work is
1163  * kicked so that the ready bio's are issued.
1164  */
1165 static void throtl_pending_timer_fn(struct timer_list *t)
1166 {
1167 	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1168 	struct throtl_grp *tg = sq_to_tg(sq);
1169 	struct throtl_data *td = sq_to_td(sq);
1170 	struct throtl_service_queue *parent_sq;
1171 	struct request_queue *q;
1172 	bool dispatched;
1173 	int ret;
1174 
1175 	/* throtl_data may be gone, so figure out request queue by blkg */
1176 	if (tg)
1177 		q = tg->pd.blkg->q;
1178 	else
1179 		q = td->queue;
1180 
1181 	spin_lock_irq(&q->queue_lock);
1182 
1183 	if (!q->root_blkg)
1184 		goto out_unlock;
1185 
1186 	if (throtl_can_upgrade(td, NULL))
1187 		throtl_upgrade_state(td);
1188 
1189 again:
1190 	parent_sq = sq->parent_sq;
1191 	dispatched = false;
1192 
1193 	while (true) {
1194 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1195 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1196 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1197 
1198 		ret = throtl_select_dispatch(sq);
1199 		if (ret) {
1200 			throtl_log(sq, "bios disp=%u", ret);
1201 			dispatched = true;
1202 		}
1203 
1204 		if (throtl_schedule_next_dispatch(sq, false))
1205 			break;
1206 
1207 		/* this dispatch windows is still open, relax and repeat */
1208 		spin_unlock_irq(&q->queue_lock);
1209 		cpu_relax();
1210 		spin_lock_irq(&q->queue_lock);
1211 	}
1212 
1213 	if (!dispatched)
1214 		goto out_unlock;
1215 
1216 	if (parent_sq) {
1217 		/* @parent_sq is another throl_grp, propagate dispatch */
1218 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1219 			tg_update_disptime(tg);
1220 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1221 				/* window is already open, repeat dispatching */
1222 				sq = parent_sq;
1223 				tg = sq_to_tg(sq);
1224 				goto again;
1225 			}
1226 		}
1227 	} else {
1228 		/* reached the top-level, queue issuing */
1229 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1230 	}
1231 out_unlock:
1232 	spin_unlock_irq(&q->queue_lock);
1233 }
1234 
1235 /**
1236  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1237  * @work: work item being executed
1238  *
1239  * This function is queued for execution when bios reach the bio_lists[]
1240  * of throtl_data->service_queue.  Those bios are ready and issued by this
1241  * function.
1242  */
1243 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1244 {
1245 	struct throtl_data *td = container_of(work, struct throtl_data,
1246 					      dispatch_work);
1247 	struct throtl_service_queue *td_sq = &td->service_queue;
1248 	struct request_queue *q = td->queue;
1249 	struct bio_list bio_list_on_stack;
1250 	struct bio *bio;
1251 	struct blk_plug plug;
1252 	int rw;
1253 
1254 	bio_list_init(&bio_list_on_stack);
1255 
1256 	spin_lock_irq(&q->queue_lock);
1257 	for (rw = READ; rw <= WRITE; rw++)
1258 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1259 			bio_list_add(&bio_list_on_stack, bio);
1260 	spin_unlock_irq(&q->queue_lock);
1261 
1262 	if (!bio_list_empty(&bio_list_on_stack)) {
1263 		blk_start_plug(&plug);
1264 		while ((bio = bio_list_pop(&bio_list_on_stack)))
1265 			submit_bio_noacct_nocheck(bio);
1266 		blk_finish_plug(&plug);
1267 	}
1268 }
1269 
1270 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1271 			      int off)
1272 {
1273 	struct throtl_grp *tg = pd_to_tg(pd);
1274 	u64 v = *(u64 *)((void *)tg + off);
1275 
1276 	if (v == U64_MAX)
1277 		return 0;
1278 	return __blkg_prfill_u64(sf, pd, v);
1279 }
1280 
1281 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1282 			       int off)
1283 {
1284 	struct throtl_grp *tg = pd_to_tg(pd);
1285 	unsigned int v = *(unsigned int *)((void *)tg + off);
1286 
1287 	if (v == UINT_MAX)
1288 		return 0;
1289 	return __blkg_prfill_u64(sf, pd, v);
1290 }
1291 
1292 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1293 {
1294 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1295 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1296 	return 0;
1297 }
1298 
1299 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1300 {
1301 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1302 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1303 	return 0;
1304 }
1305 
1306 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1307 {
1308 	struct throtl_service_queue *sq = &tg->service_queue;
1309 	struct cgroup_subsys_state *pos_css;
1310 	struct blkcg_gq *blkg;
1311 
1312 	throtl_log(&tg->service_queue,
1313 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1314 		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1315 		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1316 
1317 	/*
1318 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1319 	 * considered to have rules if either the tg itself or any of its
1320 	 * ancestors has rules.  This identifies groups without any
1321 	 * restrictions in the whole hierarchy and allows them to bypass
1322 	 * blk-throttle.
1323 	 */
1324 	blkg_for_each_descendant_pre(blkg, pos_css,
1325 			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1326 		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1327 		struct throtl_grp *parent_tg;
1328 
1329 		tg_update_has_rules(this_tg);
1330 		/* ignore root/second level */
1331 		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1332 		    !blkg->parent->parent)
1333 			continue;
1334 		parent_tg = blkg_to_tg(blkg->parent);
1335 		/*
1336 		 * make sure all children has lower idle time threshold and
1337 		 * higher latency target
1338 		 */
1339 		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1340 				parent_tg->idletime_threshold);
1341 		this_tg->latency_target = max(this_tg->latency_target,
1342 				parent_tg->latency_target);
1343 	}
1344 
1345 	/*
1346 	 * We're already holding queue_lock and know @tg is valid.  Let's
1347 	 * apply the new config directly.
1348 	 *
1349 	 * Restart the slices for both READ and WRITES. It might happen
1350 	 * that a group's limit are dropped suddenly and we don't want to
1351 	 * account recently dispatched IO with new low rate.
1352 	 */
1353 	throtl_start_new_slice(tg, READ, false);
1354 	throtl_start_new_slice(tg, WRITE, false);
1355 
1356 	if (tg->flags & THROTL_TG_PENDING) {
1357 		tg_update_disptime(tg);
1358 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1359 	}
1360 }
1361 
1362 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1363 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1364 {
1365 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1366 	struct blkg_conf_ctx ctx;
1367 	struct throtl_grp *tg;
1368 	int ret;
1369 	u64 v;
1370 
1371 	blkg_conf_init(&ctx, buf);
1372 
1373 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1374 	if (ret)
1375 		goto out_finish;
1376 
1377 	ret = -EINVAL;
1378 	if (sscanf(ctx.body, "%llu", &v) != 1)
1379 		goto out_finish;
1380 	if (!v)
1381 		v = U64_MAX;
1382 
1383 	tg = blkg_to_tg(ctx.blkg);
1384 	tg_update_carryover(tg);
1385 
1386 	if (is_u64)
1387 		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1388 	else
1389 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1390 
1391 	tg_conf_updated(tg, false);
1392 	ret = 0;
1393 out_finish:
1394 	blkg_conf_exit(&ctx);
1395 	return ret ?: nbytes;
1396 }
1397 
1398 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1399 			       char *buf, size_t nbytes, loff_t off)
1400 {
1401 	return tg_set_conf(of, buf, nbytes, off, true);
1402 }
1403 
1404 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1405 				char *buf, size_t nbytes, loff_t off)
1406 {
1407 	return tg_set_conf(of, buf, nbytes, off, false);
1408 }
1409 
1410 static int tg_print_rwstat(struct seq_file *sf, void *v)
1411 {
1412 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1413 			  blkg_prfill_rwstat, &blkcg_policy_throtl,
1414 			  seq_cft(sf)->private, true);
1415 	return 0;
1416 }
1417 
1418 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1419 				      struct blkg_policy_data *pd, int off)
1420 {
1421 	struct blkg_rwstat_sample sum;
1422 
1423 	blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1424 				  &sum);
1425 	return __blkg_prfill_rwstat(sf, pd, &sum);
1426 }
1427 
1428 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1429 {
1430 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1431 			  tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1432 			  seq_cft(sf)->private, true);
1433 	return 0;
1434 }
1435 
1436 static struct cftype throtl_legacy_files[] = {
1437 	{
1438 		.name = "throttle.read_bps_device",
1439 		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1440 		.seq_show = tg_print_conf_u64,
1441 		.write = tg_set_conf_u64,
1442 	},
1443 	{
1444 		.name = "throttle.write_bps_device",
1445 		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1446 		.seq_show = tg_print_conf_u64,
1447 		.write = tg_set_conf_u64,
1448 	},
1449 	{
1450 		.name = "throttle.read_iops_device",
1451 		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1452 		.seq_show = tg_print_conf_uint,
1453 		.write = tg_set_conf_uint,
1454 	},
1455 	{
1456 		.name = "throttle.write_iops_device",
1457 		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1458 		.seq_show = tg_print_conf_uint,
1459 		.write = tg_set_conf_uint,
1460 	},
1461 	{
1462 		.name = "throttle.io_service_bytes",
1463 		.private = offsetof(struct throtl_grp, stat_bytes),
1464 		.seq_show = tg_print_rwstat,
1465 	},
1466 	{
1467 		.name = "throttle.io_service_bytes_recursive",
1468 		.private = offsetof(struct throtl_grp, stat_bytes),
1469 		.seq_show = tg_print_rwstat_recursive,
1470 	},
1471 	{
1472 		.name = "throttle.io_serviced",
1473 		.private = offsetof(struct throtl_grp, stat_ios),
1474 		.seq_show = tg_print_rwstat,
1475 	},
1476 	{
1477 		.name = "throttle.io_serviced_recursive",
1478 		.private = offsetof(struct throtl_grp, stat_ios),
1479 		.seq_show = tg_print_rwstat_recursive,
1480 	},
1481 	{ }	/* terminate */
1482 };
1483 
1484 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1485 			 int off)
1486 {
1487 	struct throtl_grp *tg = pd_to_tg(pd);
1488 	const char *dname = blkg_dev_name(pd->blkg);
1489 	char bufs[4][21] = { "max", "max", "max", "max" };
1490 	u64 bps_dft;
1491 	unsigned int iops_dft;
1492 	char idle_time[26] = "";
1493 	char latency_time[26] = "";
1494 
1495 	if (!dname)
1496 		return 0;
1497 
1498 	if (off == LIMIT_LOW) {
1499 		bps_dft = 0;
1500 		iops_dft = 0;
1501 	} else {
1502 		bps_dft = U64_MAX;
1503 		iops_dft = UINT_MAX;
1504 	}
1505 
1506 	if (tg->bps_conf[READ][off] == bps_dft &&
1507 	    tg->bps_conf[WRITE][off] == bps_dft &&
1508 	    tg->iops_conf[READ][off] == iops_dft &&
1509 	    tg->iops_conf[WRITE][off] == iops_dft &&
1510 	    (off != LIMIT_LOW ||
1511 	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1512 	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1513 		return 0;
1514 
1515 	if (tg->bps_conf[READ][off] != U64_MAX)
1516 		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1517 			tg->bps_conf[READ][off]);
1518 	if (tg->bps_conf[WRITE][off] != U64_MAX)
1519 		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1520 			tg->bps_conf[WRITE][off]);
1521 	if (tg->iops_conf[READ][off] != UINT_MAX)
1522 		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1523 			tg->iops_conf[READ][off]);
1524 	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1525 		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1526 			tg->iops_conf[WRITE][off]);
1527 	if (off == LIMIT_LOW) {
1528 		if (tg->idletime_threshold_conf == ULONG_MAX)
1529 			strcpy(idle_time, " idle=max");
1530 		else
1531 			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1532 				tg->idletime_threshold_conf);
1533 
1534 		if (tg->latency_target_conf == ULONG_MAX)
1535 			strcpy(latency_time, " latency=max");
1536 		else
1537 			snprintf(latency_time, sizeof(latency_time),
1538 				" latency=%lu", tg->latency_target_conf);
1539 	}
1540 
1541 	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1542 		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1543 		   latency_time);
1544 	return 0;
1545 }
1546 
1547 static int tg_print_limit(struct seq_file *sf, void *v)
1548 {
1549 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1550 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1551 	return 0;
1552 }
1553 
1554 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1555 			  char *buf, size_t nbytes, loff_t off)
1556 {
1557 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1558 	struct blkg_conf_ctx ctx;
1559 	struct throtl_grp *tg;
1560 	u64 v[4];
1561 	unsigned long idle_time;
1562 	unsigned long latency_time;
1563 	int ret;
1564 	int index = of_cft(of)->private;
1565 
1566 	blkg_conf_init(&ctx, buf);
1567 
1568 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1569 	if (ret)
1570 		goto out_finish;
1571 
1572 	tg = blkg_to_tg(ctx.blkg);
1573 	tg_update_carryover(tg);
1574 
1575 	v[0] = tg->bps_conf[READ][index];
1576 	v[1] = tg->bps_conf[WRITE][index];
1577 	v[2] = tg->iops_conf[READ][index];
1578 	v[3] = tg->iops_conf[WRITE][index];
1579 
1580 	idle_time = tg->idletime_threshold_conf;
1581 	latency_time = tg->latency_target_conf;
1582 	while (true) {
1583 		char tok[27];	/* wiops=18446744073709551616 */
1584 		char *p;
1585 		u64 val = U64_MAX;
1586 		int len;
1587 
1588 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1589 			break;
1590 		if (tok[0] == '\0')
1591 			break;
1592 		ctx.body += len;
1593 
1594 		ret = -EINVAL;
1595 		p = tok;
1596 		strsep(&p, "=");
1597 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1598 			goto out_finish;
1599 
1600 		ret = -ERANGE;
1601 		if (!val)
1602 			goto out_finish;
1603 
1604 		ret = -EINVAL;
1605 		if (!strcmp(tok, "rbps") && val > 1)
1606 			v[0] = val;
1607 		else if (!strcmp(tok, "wbps") && val > 1)
1608 			v[1] = val;
1609 		else if (!strcmp(tok, "riops") && val > 1)
1610 			v[2] = min_t(u64, val, UINT_MAX);
1611 		else if (!strcmp(tok, "wiops") && val > 1)
1612 			v[3] = min_t(u64, val, UINT_MAX);
1613 		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1614 			idle_time = val;
1615 		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1616 			latency_time = val;
1617 		else
1618 			goto out_finish;
1619 	}
1620 
1621 	tg->bps_conf[READ][index] = v[0];
1622 	tg->bps_conf[WRITE][index] = v[1];
1623 	tg->iops_conf[READ][index] = v[2];
1624 	tg->iops_conf[WRITE][index] = v[3];
1625 
1626 	if (index == LIMIT_MAX) {
1627 		tg->bps[READ][index] = v[0];
1628 		tg->bps[WRITE][index] = v[1];
1629 		tg->iops[READ][index] = v[2];
1630 		tg->iops[WRITE][index] = v[3];
1631 	}
1632 	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1633 		tg->bps_conf[READ][LIMIT_MAX]);
1634 	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1635 		tg->bps_conf[WRITE][LIMIT_MAX]);
1636 	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1637 		tg->iops_conf[READ][LIMIT_MAX]);
1638 	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1639 		tg->iops_conf[WRITE][LIMIT_MAX]);
1640 	tg->idletime_threshold_conf = idle_time;
1641 	tg->latency_target_conf = latency_time;
1642 
1643 	/* force user to configure all settings for low limit  */
1644 	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1645 	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1646 	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1647 	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
1648 		tg->bps[READ][LIMIT_LOW] = 0;
1649 		tg->bps[WRITE][LIMIT_LOW] = 0;
1650 		tg->iops[READ][LIMIT_LOW] = 0;
1651 		tg->iops[WRITE][LIMIT_LOW] = 0;
1652 		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1653 		tg->latency_target = DFL_LATENCY_TARGET;
1654 	} else if (index == LIMIT_LOW) {
1655 		tg->idletime_threshold = tg->idletime_threshold_conf;
1656 		tg->latency_target = tg->latency_target_conf;
1657 	}
1658 
1659 	blk_throtl_update_limit_valid(tg->td);
1660 	if (tg->td->limit_valid[LIMIT_LOW]) {
1661 		if (index == LIMIT_LOW)
1662 			tg->td->limit_index = LIMIT_LOW;
1663 	} else
1664 		tg->td->limit_index = LIMIT_MAX;
1665 	tg_conf_updated(tg, index == LIMIT_LOW &&
1666 		tg->td->limit_valid[LIMIT_LOW]);
1667 	ret = 0;
1668 out_finish:
1669 	blkg_conf_exit(&ctx);
1670 	return ret ?: nbytes;
1671 }
1672 
1673 static struct cftype throtl_files[] = {
1674 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1675 	{
1676 		.name = "low",
1677 		.flags = CFTYPE_NOT_ON_ROOT,
1678 		.seq_show = tg_print_limit,
1679 		.write = tg_set_limit,
1680 		.private = LIMIT_LOW,
1681 	},
1682 #endif
1683 	{
1684 		.name = "max",
1685 		.flags = CFTYPE_NOT_ON_ROOT,
1686 		.seq_show = tg_print_limit,
1687 		.write = tg_set_limit,
1688 		.private = LIMIT_MAX,
1689 	},
1690 	{ }	/* terminate */
1691 };
1692 
1693 static void throtl_shutdown_wq(struct request_queue *q)
1694 {
1695 	struct throtl_data *td = q->td;
1696 
1697 	cancel_work_sync(&td->dispatch_work);
1698 }
1699 
1700 struct blkcg_policy blkcg_policy_throtl = {
1701 	.dfl_cftypes		= throtl_files,
1702 	.legacy_cftypes		= throtl_legacy_files,
1703 
1704 	.pd_alloc_fn		= throtl_pd_alloc,
1705 	.pd_init_fn		= throtl_pd_init,
1706 	.pd_online_fn		= throtl_pd_online,
1707 	.pd_offline_fn		= throtl_pd_offline,
1708 	.pd_free_fn		= throtl_pd_free,
1709 };
1710 
1711 void blk_throtl_cancel_bios(struct gendisk *disk)
1712 {
1713 	struct request_queue *q = disk->queue;
1714 	struct cgroup_subsys_state *pos_css;
1715 	struct blkcg_gq *blkg;
1716 
1717 	spin_lock_irq(&q->queue_lock);
1718 	/*
1719 	 * queue_lock is held, rcu lock is not needed here technically.
1720 	 * However, rcu lock is still held to emphasize that following
1721 	 * path need RCU protection and to prevent warning from lockdep.
1722 	 */
1723 	rcu_read_lock();
1724 	blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1725 		struct throtl_grp *tg = blkg_to_tg(blkg);
1726 		struct throtl_service_queue *sq = &tg->service_queue;
1727 
1728 		/*
1729 		 * Set the flag to make sure throtl_pending_timer_fn() won't
1730 		 * stop until all throttled bios are dispatched.
1731 		 */
1732 		tg->flags |= THROTL_TG_CANCELING;
1733 
1734 		/*
1735 		 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1736 		 * will be inserted to service queue without THROTL_TG_PENDING
1737 		 * set in tg_update_disptime below. Then IO dispatched from
1738 		 * child in tg_dispatch_one_bio will trigger double insertion
1739 		 * and corrupt the tree.
1740 		 */
1741 		if (!(tg->flags & THROTL_TG_PENDING))
1742 			continue;
1743 
1744 		/*
1745 		 * Update disptime after setting the above flag to make sure
1746 		 * throtl_select_dispatch() won't exit without dispatching.
1747 		 */
1748 		tg_update_disptime(tg);
1749 
1750 		throtl_schedule_pending_timer(sq, jiffies + 1);
1751 	}
1752 	rcu_read_unlock();
1753 	spin_unlock_irq(&q->queue_lock);
1754 }
1755 
1756 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1757 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1758 {
1759 	unsigned long rtime = jiffies, wtime = jiffies;
1760 
1761 	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1762 		rtime = tg->last_low_overflow_time[READ];
1763 	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1764 		wtime = tg->last_low_overflow_time[WRITE];
1765 	return min(rtime, wtime);
1766 }
1767 
1768 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1769 {
1770 	struct throtl_service_queue *parent_sq;
1771 	struct throtl_grp *parent = tg;
1772 	unsigned long ret = __tg_last_low_overflow_time(tg);
1773 
1774 	while (true) {
1775 		parent_sq = parent->service_queue.parent_sq;
1776 		parent = sq_to_tg(parent_sq);
1777 		if (!parent)
1778 			break;
1779 
1780 		/*
1781 		 * The parent doesn't have low limit, it always reaches low
1782 		 * limit. Its overflow time is useless for children
1783 		 */
1784 		if (!parent->bps[READ][LIMIT_LOW] &&
1785 		    !parent->iops[READ][LIMIT_LOW] &&
1786 		    !parent->bps[WRITE][LIMIT_LOW] &&
1787 		    !parent->iops[WRITE][LIMIT_LOW])
1788 			continue;
1789 		if (time_after(__tg_last_low_overflow_time(parent), ret))
1790 			ret = __tg_last_low_overflow_time(parent);
1791 	}
1792 	return ret;
1793 }
1794 
1795 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1796 {
1797 	/*
1798 	 * cgroup is idle if:
1799 	 * - single idle is too long, longer than a fixed value (in case user
1800 	 *   configure a too big threshold) or 4 times of idletime threshold
1801 	 * - average think time is more than threshold
1802 	 * - IO latency is largely below threshold
1803 	 */
1804 	unsigned long time;
1805 	bool ret;
1806 
1807 	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1808 	ret = tg->latency_target == DFL_LATENCY_TARGET ||
1809 	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1810 	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1811 	      tg->avg_idletime > tg->idletime_threshold ||
1812 	      (tg->latency_target && tg->bio_cnt &&
1813 		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1814 	throtl_log(&tg->service_queue,
1815 		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1816 		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1817 		tg->bio_cnt, ret, tg->td->scale);
1818 	return ret;
1819 }
1820 
1821 static bool throtl_low_limit_reached(struct throtl_grp *tg, int rw)
1822 {
1823 	struct throtl_service_queue *sq = &tg->service_queue;
1824 	bool limit = tg->bps[rw][LIMIT_LOW] || tg->iops[rw][LIMIT_LOW];
1825 
1826 	/*
1827 	 * if low limit is zero, low limit is always reached.
1828 	 * if low limit is non-zero, we can check if there is any request
1829 	 * is queued to determine if low limit is reached as we throttle
1830 	 * request according to limit.
1831 	 */
1832 	return !limit || sq->nr_queued[rw];
1833 }
1834 
1835 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1836 {
1837 	/*
1838 	 * cgroup reaches low limit when low limit of READ and WRITE are
1839 	 * both reached, it's ok to upgrade to next limit if cgroup reaches
1840 	 * low limit
1841 	 */
1842 	if (throtl_low_limit_reached(tg, READ) &&
1843 	    throtl_low_limit_reached(tg, WRITE))
1844 		return true;
1845 
1846 	if (time_after_eq(jiffies,
1847 		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1848 	    throtl_tg_is_idle(tg))
1849 		return true;
1850 	return false;
1851 }
1852 
1853 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1854 {
1855 	while (true) {
1856 		if (throtl_tg_can_upgrade(tg))
1857 			return true;
1858 		tg = sq_to_tg(tg->service_queue.parent_sq);
1859 		if (!tg || !tg_to_blkg(tg)->parent)
1860 			return false;
1861 	}
1862 	return false;
1863 }
1864 
1865 static bool throtl_can_upgrade(struct throtl_data *td,
1866 	struct throtl_grp *this_tg)
1867 {
1868 	struct cgroup_subsys_state *pos_css;
1869 	struct blkcg_gq *blkg;
1870 
1871 	if (td->limit_index != LIMIT_LOW)
1872 		return false;
1873 
1874 	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1875 		return false;
1876 
1877 	rcu_read_lock();
1878 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1879 		struct throtl_grp *tg = blkg_to_tg(blkg);
1880 
1881 		if (tg == this_tg)
1882 			continue;
1883 		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1884 			continue;
1885 		if (!throtl_hierarchy_can_upgrade(tg)) {
1886 			rcu_read_unlock();
1887 			return false;
1888 		}
1889 	}
1890 	rcu_read_unlock();
1891 	return true;
1892 }
1893 
1894 static void throtl_upgrade_check(struct throtl_grp *tg)
1895 {
1896 	unsigned long now = jiffies;
1897 
1898 	if (tg->td->limit_index != LIMIT_LOW)
1899 		return;
1900 
1901 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1902 		return;
1903 
1904 	tg->last_check_time = now;
1905 
1906 	if (!time_after_eq(now,
1907 	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1908 		return;
1909 
1910 	if (throtl_can_upgrade(tg->td, NULL))
1911 		throtl_upgrade_state(tg->td);
1912 }
1913 
1914 static void throtl_upgrade_state(struct throtl_data *td)
1915 {
1916 	struct cgroup_subsys_state *pos_css;
1917 	struct blkcg_gq *blkg;
1918 
1919 	throtl_log(&td->service_queue, "upgrade to max");
1920 	td->limit_index = LIMIT_MAX;
1921 	td->low_upgrade_time = jiffies;
1922 	td->scale = 0;
1923 	rcu_read_lock();
1924 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1925 		struct throtl_grp *tg = blkg_to_tg(blkg);
1926 		struct throtl_service_queue *sq = &tg->service_queue;
1927 
1928 		tg->disptime = jiffies - 1;
1929 		throtl_select_dispatch(sq);
1930 		throtl_schedule_next_dispatch(sq, true);
1931 	}
1932 	rcu_read_unlock();
1933 	throtl_select_dispatch(&td->service_queue);
1934 	throtl_schedule_next_dispatch(&td->service_queue, true);
1935 	queue_work(kthrotld_workqueue, &td->dispatch_work);
1936 }
1937 
1938 static void throtl_downgrade_state(struct throtl_data *td)
1939 {
1940 	td->scale /= 2;
1941 
1942 	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1943 	if (td->scale) {
1944 		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1945 		return;
1946 	}
1947 
1948 	td->limit_index = LIMIT_LOW;
1949 	td->low_downgrade_time = jiffies;
1950 }
1951 
1952 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1953 {
1954 	struct throtl_data *td = tg->td;
1955 	unsigned long now = jiffies;
1956 
1957 	/*
1958 	 * If cgroup is below low limit, consider downgrade and throttle other
1959 	 * cgroups
1960 	 */
1961 	if (time_after_eq(now, tg_last_low_overflow_time(tg) +
1962 					td->throtl_slice) &&
1963 	    (!throtl_tg_is_idle(tg) ||
1964 	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1965 		return true;
1966 	return false;
1967 }
1968 
1969 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1970 {
1971 	struct throtl_data *td = tg->td;
1972 
1973 	if (time_before(jiffies, td->low_upgrade_time + td->throtl_slice))
1974 		return false;
1975 
1976 	while (true) {
1977 		if (!throtl_tg_can_downgrade(tg))
1978 			return false;
1979 		tg = sq_to_tg(tg->service_queue.parent_sq);
1980 		if (!tg || !tg_to_blkg(tg)->parent)
1981 			break;
1982 	}
1983 	return true;
1984 }
1985 
1986 static void throtl_downgrade_check(struct throtl_grp *tg)
1987 {
1988 	uint64_t bps;
1989 	unsigned int iops;
1990 	unsigned long elapsed_time;
1991 	unsigned long now = jiffies;
1992 
1993 	if (tg->td->limit_index != LIMIT_MAX ||
1994 	    !tg->td->limit_valid[LIMIT_LOW])
1995 		return;
1996 	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1997 		return;
1998 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1999 		return;
2000 
2001 	elapsed_time = now - tg->last_check_time;
2002 	tg->last_check_time = now;
2003 
2004 	if (time_before(now, tg_last_low_overflow_time(tg) +
2005 			tg->td->throtl_slice))
2006 		return;
2007 
2008 	if (tg->bps[READ][LIMIT_LOW]) {
2009 		bps = tg->last_bytes_disp[READ] * HZ;
2010 		do_div(bps, elapsed_time);
2011 		if (bps >= tg->bps[READ][LIMIT_LOW])
2012 			tg->last_low_overflow_time[READ] = now;
2013 	}
2014 
2015 	if (tg->bps[WRITE][LIMIT_LOW]) {
2016 		bps = tg->last_bytes_disp[WRITE] * HZ;
2017 		do_div(bps, elapsed_time);
2018 		if (bps >= tg->bps[WRITE][LIMIT_LOW])
2019 			tg->last_low_overflow_time[WRITE] = now;
2020 	}
2021 
2022 	if (tg->iops[READ][LIMIT_LOW]) {
2023 		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2024 		if (iops >= tg->iops[READ][LIMIT_LOW])
2025 			tg->last_low_overflow_time[READ] = now;
2026 	}
2027 
2028 	if (tg->iops[WRITE][LIMIT_LOW]) {
2029 		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2030 		if (iops >= tg->iops[WRITE][LIMIT_LOW])
2031 			tg->last_low_overflow_time[WRITE] = now;
2032 	}
2033 
2034 	/*
2035 	 * If cgroup is below low limit, consider downgrade and throttle other
2036 	 * cgroups
2037 	 */
2038 	if (throtl_hierarchy_can_downgrade(tg))
2039 		throtl_downgrade_state(tg->td);
2040 
2041 	tg->last_bytes_disp[READ] = 0;
2042 	tg->last_bytes_disp[WRITE] = 0;
2043 	tg->last_io_disp[READ] = 0;
2044 	tg->last_io_disp[WRITE] = 0;
2045 }
2046 
2047 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2048 {
2049 	unsigned long now;
2050 	unsigned long last_finish_time = tg->last_finish_time;
2051 
2052 	if (last_finish_time == 0)
2053 		return;
2054 
2055 	now = ktime_get_ns() >> 10;
2056 	if (now <= last_finish_time ||
2057 	    last_finish_time == tg->checked_last_finish_time)
2058 		return;
2059 
2060 	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2061 	tg->checked_last_finish_time = last_finish_time;
2062 }
2063 
2064 static void throtl_update_latency_buckets(struct throtl_data *td)
2065 {
2066 	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2067 	int i, cpu, rw;
2068 	unsigned long last_latency[2] = { 0 };
2069 	unsigned long latency[2];
2070 
2071 	if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2072 		return;
2073 	if (time_before(jiffies, td->last_calculate_time + HZ))
2074 		return;
2075 	td->last_calculate_time = jiffies;
2076 
2077 	memset(avg_latency, 0, sizeof(avg_latency));
2078 	for (rw = READ; rw <= WRITE; rw++) {
2079 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2080 			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2081 
2082 			for_each_possible_cpu(cpu) {
2083 				struct latency_bucket *bucket;
2084 
2085 				/* this isn't race free, but ok in practice */
2086 				bucket = per_cpu_ptr(td->latency_buckets[rw],
2087 					cpu);
2088 				tmp->total_latency += bucket[i].total_latency;
2089 				tmp->samples += bucket[i].samples;
2090 				bucket[i].total_latency = 0;
2091 				bucket[i].samples = 0;
2092 			}
2093 
2094 			if (tmp->samples >= 32) {
2095 				int samples = tmp->samples;
2096 
2097 				latency[rw] = tmp->total_latency;
2098 
2099 				tmp->total_latency = 0;
2100 				tmp->samples = 0;
2101 				latency[rw] /= samples;
2102 				if (latency[rw] == 0)
2103 					continue;
2104 				avg_latency[rw][i].latency = latency[rw];
2105 			}
2106 		}
2107 	}
2108 
2109 	for (rw = READ; rw <= WRITE; rw++) {
2110 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2111 			if (!avg_latency[rw][i].latency) {
2112 				if (td->avg_buckets[rw][i].latency < last_latency[rw])
2113 					td->avg_buckets[rw][i].latency =
2114 						last_latency[rw];
2115 				continue;
2116 			}
2117 
2118 			if (!td->avg_buckets[rw][i].valid)
2119 				latency[rw] = avg_latency[rw][i].latency;
2120 			else
2121 				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2122 					avg_latency[rw][i].latency) >> 3;
2123 
2124 			td->avg_buckets[rw][i].latency = max(latency[rw],
2125 				last_latency[rw]);
2126 			td->avg_buckets[rw][i].valid = true;
2127 			last_latency[rw] = td->avg_buckets[rw][i].latency;
2128 		}
2129 	}
2130 
2131 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2132 		throtl_log(&td->service_queue,
2133 			"Latency bucket %d: read latency=%ld, read valid=%d, "
2134 			"write latency=%ld, write valid=%d", i,
2135 			td->avg_buckets[READ][i].latency,
2136 			td->avg_buckets[READ][i].valid,
2137 			td->avg_buckets[WRITE][i].latency,
2138 			td->avg_buckets[WRITE][i].valid);
2139 }
2140 #else
2141 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2142 {
2143 }
2144 
2145 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2146 {
2147 }
2148 
2149 static void throtl_downgrade_check(struct throtl_grp *tg)
2150 {
2151 }
2152 
2153 static void throtl_upgrade_check(struct throtl_grp *tg)
2154 {
2155 }
2156 
2157 static bool throtl_can_upgrade(struct throtl_data *td,
2158 	struct throtl_grp *this_tg)
2159 {
2160 	return false;
2161 }
2162 
2163 static void throtl_upgrade_state(struct throtl_data *td)
2164 {
2165 }
2166 #endif
2167 
2168 bool __blk_throtl_bio(struct bio *bio)
2169 {
2170 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2171 	struct blkcg_gq *blkg = bio->bi_blkg;
2172 	struct throtl_qnode *qn = NULL;
2173 	struct throtl_grp *tg = blkg_to_tg(blkg);
2174 	struct throtl_service_queue *sq;
2175 	bool rw = bio_data_dir(bio);
2176 	bool throttled = false;
2177 	struct throtl_data *td = tg->td;
2178 
2179 	rcu_read_lock();
2180 
2181 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2182 		blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2183 				bio->bi_iter.bi_size);
2184 		blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2185 	}
2186 
2187 	spin_lock_irq(&q->queue_lock);
2188 
2189 	throtl_update_latency_buckets(td);
2190 
2191 	blk_throtl_update_idletime(tg);
2192 
2193 	sq = &tg->service_queue;
2194 
2195 again:
2196 	while (true) {
2197 		if (tg->last_low_overflow_time[rw] == 0)
2198 			tg->last_low_overflow_time[rw] = jiffies;
2199 		throtl_downgrade_check(tg);
2200 		throtl_upgrade_check(tg);
2201 		/* throtl is FIFO - if bios are already queued, should queue */
2202 		if (sq->nr_queued[rw])
2203 			break;
2204 
2205 		/* if above limits, break to queue */
2206 		if (!tg_may_dispatch(tg, bio, NULL)) {
2207 			tg->last_low_overflow_time[rw] = jiffies;
2208 			if (throtl_can_upgrade(td, tg)) {
2209 				throtl_upgrade_state(td);
2210 				goto again;
2211 			}
2212 			break;
2213 		}
2214 
2215 		/* within limits, let's charge and dispatch directly */
2216 		throtl_charge_bio(tg, bio);
2217 
2218 		/*
2219 		 * We need to trim slice even when bios are not being queued
2220 		 * otherwise it might happen that a bio is not queued for
2221 		 * a long time and slice keeps on extending and trim is not
2222 		 * called for a long time. Now if limits are reduced suddenly
2223 		 * we take into account all the IO dispatched so far at new
2224 		 * low rate and * newly queued IO gets a really long dispatch
2225 		 * time.
2226 		 *
2227 		 * So keep on trimming slice even if bio is not queued.
2228 		 */
2229 		throtl_trim_slice(tg, rw);
2230 
2231 		/*
2232 		 * @bio passed through this layer without being throttled.
2233 		 * Climb up the ladder.  If we're already at the top, it
2234 		 * can be executed directly.
2235 		 */
2236 		qn = &tg->qnode_on_parent[rw];
2237 		sq = sq->parent_sq;
2238 		tg = sq_to_tg(sq);
2239 		if (!tg) {
2240 			bio_set_flag(bio, BIO_BPS_THROTTLED);
2241 			goto out_unlock;
2242 		}
2243 	}
2244 
2245 	/* out-of-limit, queue to @tg */
2246 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2247 		   rw == READ ? 'R' : 'W',
2248 		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2249 		   tg_bps_limit(tg, rw),
2250 		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2251 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2252 
2253 	tg->last_low_overflow_time[rw] = jiffies;
2254 
2255 	td->nr_queued[rw]++;
2256 	throtl_add_bio_tg(bio, qn, tg);
2257 	throttled = true;
2258 
2259 	/*
2260 	 * Update @tg's dispatch time and force schedule dispatch if @tg
2261 	 * was empty before @bio.  The forced scheduling isn't likely to
2262 	 * cause undue delay as @bio is likely to be dispatched directly if
2263 	 * its @tg's disptime is not in the future.
2264 	 */
2265 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2266 		tg_update_disptime(tg);
2267 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2268 	}
2269 
2270 out_unlock:
2271 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2272 	if (throttled || !td->track_bio_latency)
2273 		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2274 #endif
2275 	spin_unlock_irq(&q->queue_lock);
2276 
2277 	rcu_read_unlock();
2278 	return throttled;
2279 }
2280 
2281 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2282 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2283 				 enum req_op op, unsigned long time)
2284 {
2285 	const bool rw = op_is_write(op);
2286 	struct latency_bucket *latency;
2287 	int index;
2288 
2289 	if (!td || td->limit_index != LIMIT_LOW ||
2290 	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2291 	    !blk_queue_nonrot(td->queue))
2292 		return;
2293 
2294 	index = request_bucket_index(size);
2295 
2296 	latency = get_cpu_ptr(td->latency_buckets[rw]);
2297 	latency[index].total_latency += time;
2298 	latency[index].samples++;
2299 	put_cpu_ptr(td->latency_buckets[rw]);
2300 }
2301 
2302 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2303 {
2304 	struct request_queue *q = rq->q;
2305 	struct throtl_data *td = q->td;
2306 
2307 	throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2308 			     time_ns >> 10);
2309 }
2310 
2311 void blk_throtl_bio_endio(struct bio *bio)
2312 {
2313 	struct blkcg_gq *blkg;
2314 	struct throtl_grp *tg;
2315 	u64 finish_time_ns;
2316 	unsigned long finish_time;
2317 	unsigned long start_time;
2318 	unsigned long lat;
2319 	int rw = bio_data_dir(bio);
2320 
2321 	blkg = bio->bi_blkg;
2322 	if (!blkg)
2323 		return;
2324 	tg = blkg_to_tg(blkg);
2325 	if (!tg->td->limit_valid[LIMIT_LOW])
2326 		return;
2327 
2328 	finish_time_ns = ktime_get_ns();
2329 	tg->last_finish_time = finish_time_ns >> 10;
2330 
2331 	start_time = bio_issue_time(&bio->bi_issue) >> 10;
2332 	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2333 	if (!start_time || finish_time <= start_time)
2334 		return;
2335 
2336 	lat = finish_time - start_time;
2337 	/* this is only for bio based driver */
2338 	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2339 		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2340 				     bio_op(bio), lat);
2341 
2342 	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2343 		int bucket;
2344 		unsigned int threshold;
2345 
2346 		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2347 		threshold = tg->td->avg_buckets[rw][bucket].latency +
2348 			tg->latency_target;
2349 		if (lat > threshold)
2350 			tg->bad_bio_cnt++;
2351 		/*
2352 		 * Not race free, could get wrong count, which means cgroups
2353 		 * will be throttled
2354 		 */
2355 		tg->bio_cnt++;
2356 	}
2357 
2358 	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2359 		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2360 		tg->bio_cnt /= 2;
2361 		tg->bad_bio_cnt /= 2;
2362 	}
2363 }
2364 #endif
2365 
2366 int blk_throtl_init(struct gendisk *disk)
2367 {
2368 	struct request_queue *q = disk->queue;
2369 	struct throtl_data *td;
2370 	int ret;
2371 
2372 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2373 	if (!td)
2374 		return -ENOMEM;
2375 	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2376 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2377 	if (!td->latency_buckets[READ]) {
2378 		kfree(td);
2379 		return -ENOMEM;
2380 	}
2381 	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2382 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2383 	if (!td->latency_buckets[WRITE]) {
2384 		free_percpu(td->latency_buckets[READ]);
2385 		kfree(td);
2386 		return -ENOMEM;
2387 	}
2388 
2389 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2390 	throtl_service_queue_init(&td->service_queue);
2391 
2392 	q->td = td;
2393 	td->queue = q;
2394 
2395 	td->limit_valid[LIMIT_MAX] = true;
2396 	td->limit_index = LIMIT_MAX;
2397 	td->low_upgrade_time = jiffies;
2398 	td->low_downgrade_time = jiffies;
2399 
2400 	/* activate policy */
2401 	ret = blkcg_activate_policy(disk, &blkcg_policy_throtl);
2402 	if (ret) {
2403 		free_percpu(td->latency_buckets[READ]);
2404 		free_percpu(td->latency_buckets[WRITE]);
2405 		kfree(td);
2406 	}
2407 	return ret;
2408 }
2409 
2410 void blk_throtl_exit(struct gendisk *disk)
2411 {
2412 	struct request_queue *q = disk->queue;
2413 
2414 	BUG_ON(!q->td);
2415 	del_timer_sync(&q->td->service_queue.pending_timer);
2416 	throtl_shutdown_wq(q);
2417 	blkcg_deactivate_policy(disk, &blkcg_policy_throtl);
2418 	free_percpu(q->td->latency_buckets[READ]);
2419 	free_percpu(q->td->latency_buckets[WRITE]);
2420 	kfree(q->td);
2421 }
2422 
2423 void blk_throtl_register(struct gendisk *disk)
2424 {
2425 	struct request_queue *q = disk->queue;
2426 	struct throtl_data *td;
2427 	int i;
2428 
2429 	td = q->td;
2430 	BUG_ON(!td);
2431 
2432 	if (blk_queue_nonrot(q)) {
2433 		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2434 		td->filtered_latency = LATENCY_FILTERED_SSD;
2435 	} else {
2436 		td->throtl_slice = DFL_THROTL_SLICE_HD;
2437 		td->filtered_latency = LATENCY_FILTERED_HD;
2438 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2439 			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2440 			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2441 		}
2442 	}
2443 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2444 	/* if no low limit, use previous default */
2445 	td->throtl_slice = DFL_THROTL_SLICE_HD;
2446 
2447 #else
2448 	td->track_bio_latency = !queue_is_mq(q);
2449 	if (!td->track_bio_latency)
2450 		blk_stat_enable_accounting(q);
2451 #endif
2452 }
2453 
2454 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2455 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2456 {
2457 	if (!q->td)
2458 		return -EINVAL;
2459 	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2460 }
2461 
2462 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2463 	const char *page, size_t count)
2464 {
2465 	unsigned long v;
2466 	unsigned long t;
2467 
2468 	if (!q->td)
2469 		return -EINVAL;
2470 	if (kstrtoul(page, 10, &v))
2471 		return -EINVAL;
2472 	t = msecs_to_jiffies(v);
2473 	if (t == 0 || t > MAX_THROTL_SLICE)
2474 		return -EINVAL;
2475 	q->td->throtl_slice = t;
2476 	return count;
2477 }
2478 #endif
2479 
2480 static int __init throtl_init(void)
2481 {
2482 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2483 	if (!kthrotld_workqueue)
2484 		panic("Failed to create kthrotld\n");
2485 
2486 	return blkcg_policy_register(&blkcg_policy_throtl);
2487 }
2488 
2489 module_init(throtl_init);
2490