1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Interface for controlling IO bandwidth on a request queue 4 * 5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/bio.h> 12 #include <linux/blktrace_api.h> 13 #include <linux/blk-cgroup.h> 14 #include "blk.h" 15 16 /* Max dispatch from a group in 1 round */ 17 static int throtl_grp_quantum = 8; 18 19 /* Total max dispatch from all groups in one round */ 20 static int throtl_quantum = 32; 21 22 /* Throttling is performed over a slice and after that slice is renewed */ 23 #define DFL_THROTL_SLICE_HD (HZ / 10) 24 #define DFL_THROTL_SLICE_SSD (HZ / 50) 25 #define MAX_THROTL_SLICE (HZ) 26 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */ 27 #define MIN_THROTL_BPS (320 * 1024) 28 #define MIN_THROTL_IOPS (10) 29 #define DFL_LATENCY_TARGET (-1L) 30 #define DFL_IDLE_THRESHOLD (0) 31 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */ 32 #define LATENCY_FILTERED_SSD (0) 33 /* 34 * For HD, very small latency comes from sequential IO. Such IO is helpless to 35 * help determine if its IO is impacted by others, hence we ignore the IO 36 */ 37 #define LATENCY_FILTERED_HD (1000L) /* 1ms */ 38 39 static struct blkcg_policy blkcg_policy_throtl; 40 41 /* A workqueue to queue throttle related work */ 42 static struct workqueue_struct *kthrotld_workqueue; 43 44 /* 45 * To implement hierarchical throttling, throtl_grps form a tree and bios 46 * are dispatched upwards level by level until they reach the top and get 47 * issued. When dispatching bios from the children and local group at each 48 * level, if the bios are dispatched into a single bio_list, there's a risk 49 * of a local or child group which can queue many bios at once filling up 50 * the list starving others. 51 * 52 * To avoid such starvation, dispatched bios are queued separately 53 * according to where they came from. When they are again dispatched to 54 * the parent, they're popped in round-robin order so that no single source 55 * hogs the dispatch window. 56 * 57 * throtl_qnode is used to keep the queued bios separated by their sources. 58 * Bios are queued to throtl_qnode which in turn is queued to 59 * throtl_service_queue and then dispatched in round-robin order. 60 * 61 * It's also used to track the reference counts on blkg's. A qnode always 62 * belongs to a throtl_grp and gets queued on itself or the parent, so 63 * incrementing the reference of the associated throtl_grp when a qnode is 64 * queued and decrementing when dequeued is enough to keep the whole blkg 65 * tree pinned while bios are in flight. 66 */ 67 struct throtl_qnode { 68 struct list_head node; /* service_queue->queued[] */ 69 struct bio_list bios; /* queued bios */ 70 struct throtl_grp *tg; /* tg this qnode belongs to */ 71 }; 72 73 struct throtl_service_queue { 74 struct throtl_service_queue *parent_sq; /* the parent service_queue */ 75 76 /* 77 * Bios queued directly to this service_queue or dispatched from 78 * children throtl_grp's. 79 */ 80 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */ 81 unsigned int nr_queued[2]; /* number of queued bios */ 82 83 /* 84 * RB tree of active children throtl_grp's, which are sorted by 85 * their ->disptime. 86 */ 87 struct rb_root_cached pending_tree; /* RB tree of active tgs */ 88 unsigned int nr_pending; /* # queued in the tree */ 89 unsigned long first_pending_disptime; /* disptime of the first tg */ 90 struct timer_list pending_timer; /* fires on first_pending_disptime */ 91 }; 92 93 enum tg_state_flags { 94 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */ 95 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */ 96 }; 97 98 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 99 100 enum { 101 LIMIT_LOW, 102 LIMIT_MAX, 103 LIMIT_CNT, 104 }; 105 106 struct throtl_grp { 107 /* must be the first member */ 108 struct blkg_policy_data pd; 109 110 /* active throtl group service_queue member */ 111 struct rb_node rb_node; 112 113 /* throtl_data this group belongs to */ 114 struct throtl_data *td; 115 116 /* this group's service queue */ 117 struct throtl_service_queue service_queue; 118 119 /* 120 * qnode_on_self is used when bios are directly queued to this 121 * throtl_grp so that local bios compete fairly with bios 122 * dispatched from children. qnode_on_parent is used when bios are 123 * dispatched from this throtl_grp into its parent and will compete 124 * with the sibling qnode_on_parents and the parent's 125 * qnode_on_self. 126 */ 127 struct throtl_qnode qnode_on_self[2]; 128 struct throtl_qnode qnode_on_parent[2]; 129 130 /* 131 * Dispatch time in jiffies. This is the estimated time when group 132 * will unthrottle and is ready to dispatch more bio. It is used as 133 * key to sort active groups in service tree. 134 */ 135 unsigned long disptime; 136 137 unsigned int flags; 138 139 /* are there any throtl rules between this group and td? */ 140 bool has_rules[2]; 141 142 /* internally used bytes per second rate limits */ 143 uint64_t bps[2][LIMIT_CNT]; 144 /* user configured bps limits */ 145 uint64_t bps_conf[2][LIMIT_CNT]; 146 147 /* internally used IOPS limits */ 148 unsigned int iops[2][LIMIT_CNT]; 149 /* user configured IOPS limits */ 150 unsigned int iops_conf[2][LIMIT_CNT]; 151 152 /* Number of bytes disptached in current slice */ 153 uint64_t bytes_disp[2]; 154 /* Number of bio's dispatched in current slice */ 155 unsigned int io_disp[2]; 156 157 unsigned long last_low_overflow_time[2]; 158 159 uint64_t last_bytes_disp[2]; 160 unsigned int last_io_disp[2]; 161 162 unsigned long last_check_time; 163 164 unsigned long latency_target; /* us */ 165 unsigned long latency_target_conf; /* us */ 166 /* When did we start a new slice */ 167 unsigned long slice_start[2]; 168 unsigned long slice_end[2]; 169 170 unsigned long last_finish_time; /* ns / 1024 */ 171 unsigned long checked_last_finish_time; /* ns / 1024 */ 172 unsigned long avg_idletime; /* ns / 1024 */ 173 unsigned long idletime_threshold; /* us */ 174 unsigned long idletime_threshold_conf; /* us */ 175 176 unsigned int bio_cnt; /* total bios */ 177 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */ 178 unsigned long bio_cnt_reset_time; 179 }; 180 181 /* We measure latency for request size from <= 4k to >= 1M */ 182 #define LATENCY_BUCKET_SIZE 9 183 184 struct latency_bucket { 185 unsigned long total_latency; /* ns / 1024 */ 186 int samples; 187 }; 188 189 struct avg_latency_bucket { 190 unsigned long latency; /* ns / 1024 */ 191 bool valid; 192 }; 193 194 struct throtl_data 195 { 196 /* service tree for active throtl groups */ 197 struct throtl_service_queue service_queue; 198 199 struct request_queue *queue; 200 201 /* Total Number of queued bios on READ and WRITE lists */ 202 unsigned int nr_queued[2]; 203 204 unsigned int throtl_slice; 205 206 /* Work for dispatching throttled bios */ 207 struct work_struct dispatch_work; 208 unsigned int limit_index; 209 bool limit_valid[LIMIT_CNT]; 210 211 unsigned long low_upgrade_time; 212 unsigned long low_downgrade_time; 213 214 unsigned int scale; 215 216 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE]; 217 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE]; 218 struct latency_bucket __percpu *latency_buckets[2]; 219 unsigned long last_calculate_time; 220 unsigned long filtered_latency; 221 222 bool track_bio_latency; 223 }; 224 225 static void throtl_pending_timer_fn(struct timer_list *t); 226 227 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd) 228 { 229 return pd ? container_of(pd, struct throtl_grp, pd) : NULL; 230 } 231 232 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg) 233 { 234 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl)); 235 } 236 237 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) 238 { 239 return pd_to_blkg(&tg->pd); 240 } 241 242 /** 243 * sq_to_tg - return the throl_grp the specified service queue belongs to 244 * @sq: the throtl_service_queue of interest 245 * 246 * Return the throtl_grp @sq belongs to. If @sq is the top-level one 247 * embedded in throtl_data, %NULL is returned. 248 */ 249 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) 250 { 251 if (sq && sq->parent_sq) 252 return container_of(sq, struct throtl_grp, service_queue); 253 else 254 return NULL; 255 } 256 257 /** 258 * sq_to_td - return throtl_data the specified service queue belongs to 259 * @sq: the throtl_service_queue of interest 260 * 261 * A service_queue can be embedded in either a throtl_grp or throtl_data. 262 * Determine the associated throtl_data accordingly and return it. 263 */ 264 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) 265 { 266 struct throtl_grp *tg = sq_to_tg(sq); 267 268 if (tg) 269 return tg->td; 270 else 271 return container_of(sq, struct throtl_data, service_queue); 272 } 273 274 /* 275 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to 276 * make the IO dispatch more smooth. 277 * Scale up: linearly scale up according to lapsed time since upgrade. For 278 * every throtl_slice, the limit scales up 1/2 .low limit till the 279 * limit hits .max limit 280 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit 281 */ 282 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td) 283 { 284 /* arbitrary value to avoid too big scale */ 285 if (td->scale < 4096 && time_after_eq(jiffies, 286 td->low_upgrade_time + td->scale * td->throtl_slice)) 287 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice; 288 289 return low + (low >> 1) * td->scale; 290 } 291 292 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) 293 { 294 struct blkcg_gq *blkg = tg_to_blkg(tg); 295 struct throtl_data *td; 296 uint64_t ret; 297 298 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 299 return U64_MAX; 300 301 td = tg->td; 302 ret = tg->bps[rw][td->limit_index]; 303 if (ret == 0 && td->limit_index == LIMIT_LOW) { 304 /* intermediate node or iops isn't 0 */ 305 if (!list_empty(&blkg->blkcg->css.children) || 306 tg->iops[rw][td->limit_index]) 307 return U64_MAX; 308 else 309 return MIN_THROTL_BPS; 310 } 311 312 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] && 313 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) { 314 uint64_t adjusted; 315 316 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td); 317 ret = min(tg->bps[rw][LIMIT_MAX], adjusted); 318 } 319 return ret; 320 } 321 322 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) 323 { 324 struct blkcg_gq *blkg = tg_to_blkg(tg); 325 struct throtl_data *td; 326 unsigned int ret; 327 328 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 329 return UINT_MAX; 330 331 td = tg->td; 332 ret = tg->iops[rw][td->limit_index]; 333 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) { 334 /* intermediate node or bps isn't 0 */ 335 if (!list_empty(&blkg->blkcg->css.children) || 336 tg->bps[rw][td->limit_index]) 337 return UINT_MAX; 338 else 339 return MIN_THROTL_IOPS; 340 } 341 342 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] && 343 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) { 344 uint64_t adjusted; 345 346 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td); 347 if (adjusted > UINT_MAX) 348 adjusted = UINT_MAX; 349 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted); 350 } 351 return ret; 352 } 353 354 #define request_bucket_index(sectors) \ 355 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1) 356 357 /** 358 * throtl_log - log debug message via blktrace 359 * @sq: the service_queue being reported 360 * @fmt: printf format string 361 * @args: printf args 362 * 363 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a 364 * throtl_grp; otherwise, just "throtl". 365 */ 366 #define throtl_log(sq, fmt, args...) do { \ 367 struct throtl_grp *__tg = sq_to_tg((sq)); \ 368 struct throtl_data *__td = sq_to_td((sq)); \ 369 \ 370 (void)__td; \ 371 if (likely(!blk_trace_note_message_enabled(__td->queue))) \ 372 break; \ 373 if ((__tg)) { \ 374 blk_add_cgroup_trace_msg(__td->queue, \ 375 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\ 376 } else { \ 377 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ 378 } \ 379 } while (0) 380 381 static inline unsigned int throtl_bio_data_size(struct bio *bio) 382 { 383 /* assume it's one sector */ 384 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 385 return 512; 386 return bio->bi_iter.bi_size; 387 } 388 389 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) 390 { 391 INIT_LIST_HEAD(&qn->node); 392 bio_list_init(&qn->bios); 393 qn->tg = tg; 394 } 395 396 /** 397 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it 398 * @bio: bio being added 399 * @qn: qnode to add bio to 400 * @queued: the service_queue->queued[] list @qn belongs to 401 * 402 * Add @bio to @qn and put @qn on @queued if it's not already on. 403 * @qn->tg's reference count is bumped when @qn is activated. See the 404 * comment on top of throtl_qnode definition for details. 405 */ 406 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, 407 struct list_head *queued) 408 { 409 bio_list_add(&qn->bios, bio); 410 if (list_empty(&qn->node)) { 411 list_add_tail(&qn->node, queued); 412 blkg_get(tg_to_blkg(qn->tg)); 413 } 414 } 415 416 /** 417 * throtl_peek_queued - peek the first bio on a qnode list 418 * @queued: the qnode list to peek 419 */ 420 static struct bio *throtl_peek_queued(struct list_head *queued) 421 { 422 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); 423 struct bio *bio; 424 425 if (list_empty(queued)) 426 return NULL; 427 428 bio = bio_list_peek(&qn->bios); 429 WARN_ON_ONCE(!bio); 430 return bio; 431 } 432 433 /** 434 * throtl_pop_queued - pop the first bio form a qnode list 435 * @queued: the qnode list to pop a bio from 436 * @tg_to_put: optional out argument for throtl_grp to put 437 * 438 * Pop the first bio from the qnode list @queued. After popping, the first 439 * qnode is removed from @queued if empty or moved to the end of @queued so 440 * that the popping order is round-robin. 441 * 442 * When the first qnode is removed, its associated throtl_grp should be put 443 * too. If @tg_to_put is NULL, this function automatically puts it; 444 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is 445 * responsible for putting it. 446 */ 447 static struct bio *throtl_pop_queued(struct list_head *queued, 448 struct throtl_grp **tg_to_put) 449 { 450 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); 451 struct bio *bio; 452 453 if (list_empty(queued)) 454 return NULL; 455 456 bio = bio_list_pop(&qn->bios); 457 WARN_ON_ONCE(!bio); 458 459 if (bio_list_empty(&qn->bios)) { 460 list_del_init(&qn->node); 461 if (tg_to_put) 462 *tg_to_put = qn->tg; 463 else 464 blkg_put(tg_to_blkg(qn->tg)); 465 } else { 466 list_move_tail(&qn->node, queued); 467 } 468 469 return bio; 470 } 471 472 /* init a service_queue, assumes the caller zeroed it */ 473 static void throtl_service_queue_init(struct throtl_service_queue *sq) 474 { 475 INIT_LIST_HEAD(&sq->queued[0]); 476 INIT_LIST_HEAD(&sq->queued[1]); 477 sq->pending_tree = RB_ROOT_CACHED; 478 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0); 479 } 480 481 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node) 482 { 483 struct throtl_grp *tg; 484 int rw; 485 486 tg = kzalloc_node(sizeof(*tg), gfp, node); 487 if (!tg) 488 return NULL; 489 490 throtl_service_queue_init(&tg->service_queue); 491 492 for (rw = READ; rw <= WRITE; rw++) { 493 throtl_qnode_init(&tg->qnode_on_self[rw], tg); 494 throtl_qnode_init(&tg->qnode_on_parent[rw], tg); 495 } 496 497 RB_CLEAR_NODE(&tg->rb_node); 498 tg->bps[READ][LIMIT_MAX] = U64_MAX; 499 tg->bps[WRITE][LIMIT_MAX] = U64_MAX; 500 tg->iops[READ][LIMIT_MAX] = UINT_MAX; 501 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX; 502 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX; 503 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX; 504 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX; 505 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX; 506 /* LIMIT_LOW will have default value 0 */ 507 508 tg->latency_target = DFL_LATENCY_TARGET; 509 tg->latency_target_conf = DFL_LATENCY_TARGET; 510 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 511 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD; 512 513 return &tg->pd; 514 } 515 516 static void throtl_pd_init(struct blkg_policy_data *pd) 517 { 518 struct throtl_grp *tg = pd_to_tg(pd); 519 struct blkcg_gq *blkg = tg_to_blkg(tg); 520 struct throtl_data *td = blkg->q->td; 521 struct throtl_service_queue *sq = &tg->service_queue; 522 523 /* 524 * If on the default hierarchy, we switch to properly hierarchical 525 * behavior where limits on a given throtl_grp are applied to the 526 * whole subtree rather than just the group itself. e.g. If 16M 527 * read_bps limit is set on the root group, the whole system can't 528 * exceed 16M for the device. 529 * 530 * If not on the default hierarchy, the broken flat hierarchy 531 * behavior is retained where all throtl_grps are treated as if 532 * they're all separate root groups right below throtl_data. 533 * Limits of a group don't interact with limits of other groups 534 * regardless of the position of the group in the hierarchy. 535 */ 536 sq->parent_sq = &td->service_queue; 537 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) 538 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; 539 tg->td = td; 540 } 541 542 /* 543 * Set has_rules[] if @tg or any of its parents have limits configured. 544 * This doesn't require walking up to the top of the hierarchy as the 545 * parent's has_rules[] is guaranteed to be correct. 546 */ 547 static void tg_update_has_rules(struct throtl_grp *tg) 548 { 549 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); 550 struct throtl_data *td = tg->td; 551 int rw; 552 553 for (rw = READ; rw <= WRITE; rw++) 554 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) || 555 (td->limit_valid[td->limit_index] && 556 (tg_bps_limit(tg, rw) != U64_MAX || 557 tg_iops_limit(tg, rw) != UINT_MAX)); 558 } 559 560 static void throtl_pd_online(struct blkg_policy_data *pd) 561 { 562 struct throtl_grp *tg = pd_to_tg(pd); 563 /* 564 * We don't want new groups to escape the limits of its ancestors. 565 * Update has_rules[] after a new group is brought online. 566 */ 567 tg_update_has_rules(tg); 568 } 569 570 static void blk_throtl_update_limit_valid(struct throtl_data *td) 571 { 572 struct cgroup_subsys_state *pos_css; 573 struct blkcg_gq *blkg; 574 bool low_valid = false; 575 576 rcu_read_lock(); 577 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 578 struct throtl_grp *tg = blkg_to_tg(blkg); 579 580 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] || 581 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) { 582 low_valid = true; 583 break; 584 } 585 } 586 rcu_read_unlock(); 587 588 td->limit_valid[LIMIT_LOW] = low_valid; 589 } 590 591 static void throtl_upgrade_state(struct throtl_data *td); 592 static void throtl_pd_offline(struct blkg_policy_data *pd) 593 { 594 struct throtl_grp *tg = pd_to_tg(pd); 595 596 tg->bps[READ][LIMIT_LOW] = 0; 597 tg->bps[WRITE][LIMIT_LOW] = 0; 598 tg->iops[READ][LIMIT_LOW] = 0; 599 tg->iops[WRITE][LIMIT_LOW] = 0; 600 601 blk_throtl_update_limit_valid(tg->td); 602 603 if (!tg->td->limit_valid[tg->td->limit_index]) 604 throtl_upgrade_state(tg->td); 605 } 606 607 static void throtl_pd_free(struct blkg_policy_data *pd) 608 { 609 struct throtl_grp *tg = pd_to_tg(pd); 610 611 del_timer_sync(&tg->service_queue.pending_timer); 612 kfree(tg); 613 } 614 615 static struct throtl_grp * 616 throtl_rb_first(struct throtl_service_queue *parent_sq) 617 { 618 struct rb_node *n; 619 /* Service tree is empty */ 620 if (!parent_sq->nr_pending) 621 return NULL; 622 623 n = rb_first_cached(&parent_sq->pending_tree); 624 WARN_ON_ONCE(!n); 625 if (!n) 626 return NULL; 627 return rb_entry_tg(n); 628 } 629 630 static void throtl_rb_erase(struct rb_node *n, 631 struct throtl_service_queue *parent_sq) 632 { 633 rb_erase_cached(n, &parent_sq->pending_tree); 634 RB_CLEAR_NODE(n); 635 --parent_sq->nr_pending; 636 } 637 638 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) 639 { 640 struct throtl_grp *tg; 641 642 tg = throtl_rb_first(parent_sq); 643 if (!tg) 644 return; 645 646 parent_sq->first_pending_disptime = tg->disptime; 647 } 648 649 static void tg_service_queue_add(struct throtl_grp *tg) 650 { 651 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; 652 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node; 653 struct rb_node *parent = NULL; 654 struct throtl_grp *__tg; 655 unsigned long key = tg->disptime; 656 bool leftmost = true; 657 658 while (*node != NULL) { 659 parent = *node; 660 __tg = rb_entry_tg(parent); 661 662 if (time_before(key, __tg->disptime)) 663 node = &parent->rb_left; 664 else { 665 node = &parent->rb_right; 666 leftmost = false; 667 } 668 } 669 670 rb_link_node(&tg->rb_node, parent, node); 671 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree, 672 leftmost); 673 } 674 675 static void __throtl_enqueue_tg(struct throtl_grp *tg) 676 { 677 tg_service_queue_add(tg); 678 tg->flags |= THROTL_TG_PENDING; 679 tg->service_queue.parent_sq->nr_pending++; 680 } 681 682 static void throtl_enqueue_tg(struct throtl_grp *tg) 683 { 684 if (!(tg->flags & THROTL_TG_PENDING)) 685 __throtl_enqueue_tg(tg); 686 } 687 688 static void __throtl_dequeue_tg(struct throtl_grp *tg) 689 { 690 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); 691 tg->flags &= ~THROTL_TG_PENDING; 692 } 693 694 static void throtl_dequeue_tg(struct throtl_grp *tg) 695 { 696 if (tg->flags & THROTL_TG_PENDING) 697 __throtl_dequeue_tg(tg); 698 } 699 700 /* Call with queue lock held */ 701 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, 702 unsigned long expires) 703 { 704 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice; 705 706 /* 707 * Since we are adjusting the throttle limit dynamically, the sleep 708 * time calculated according to previous limit might be invalid. It's 709 * possible the cgroup sleep time is very long and no other cgroups 710 * have IO running so notify the limit changes. Make sure the cgroup 711 * doesn't sleep too long to avoid the missed notification. 712 */ 713 if (time_after(expires, max_expire)) 714 expires = max_expire; 715 mod_timer(&sq->pending_timer, expires); 716 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", 717 expires - jiffies, jiffies); 718 } 719 720 /** 721 * throtl_schedule_next_dispatch - schedule the next dispatch cycle 722 * @sq: the service_queue to schedule dispatch for 723 * @force: force scheduling 724 * 725 * Arm @sq->pending_timer so that the next dispatch cycle starts on the 726 * dispatch time of the first pending child. Returns %true if either timer 727 * is armed or there's no pending child left. %false if the current 728 * dispatch window is still open and the caller should continue 729 * dispatching. 730 * 731 * If @force is %true, the dispatch timer is always scheduled and this 732 * function is guaranteed to return %true. This is to be used when the 733 * caller can't dispatch itself and needs to invoke pending_timer 734 * unconditionally. Note that forced scheduling is likely to induce short 735 * delay before dispatch starts even if @sq->first_pending_disptime is not 736 * in the future and thus shouldn't be used in hot paths. 737 */ 738 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, 739 bool force) 740 { 741 /* any pending children left? */ 742 if (!sq->nr_pending) 743 return true; 744 745 update_min_dispatch_time(sq); 746 747 /* is the next dispatch time in the future? */ 748 if (force || time_after(sq->first_pending_disptime, jiffies)) { 749 throtl_schedule_pending_timer(sq, sq->first_pending_disptime); 750 return true; 751 } 752 753 /* tell the caller to continue dispatching */ 754 return false; 755 } 756 757 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, 758 bool rw, unsigned long start) 759 { 760 tg->bytes_disp[rw] = 0; 761 tg->io_disp[rw] = 0; 762 763 /* 764 * Previous slice has expired. We must have trimmed it after last 765 * bio dispatch. That means since start of last slice, we never used 766 * that bandwidth. Do try to make use of that bandwidth while giving 767 * credit. 768 */ 769 if (time_after_eq(start, tg->slice_start[rw])) 770 tg->slice_start[rw] = start; 771 772 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 773 throtl_log(&tg->service_queue, 774 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", 775 rw == READ ? 'R' : 'W', tg->slice_start[rw], 776 tg->slice_end[rw], jiffies); 777 } 778 779 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw) 780 { 781 tg->bytes_disp[rw] = 0; 782 tg->io_disp[rw] = 0; 783 tg->slice_start[rw] = jiffies; 784 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 785 throtl_log(&tg->service_queue, 786 "[%c] new slice start=%lu end=%lu jiffies=%lu", 787 rw == READ ? 'R' : 'W', tg->slice_start[rw], 788 tg->slice_end[rw], jiffies); 789 } 790 791 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, 792 unsigned long jiffy_end) 793 { 794 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 795 } 796 797 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, 798 unsigned long jiffy_end) 799 { 800 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 801 throtl_log(&tg->service_queue, 802 "[%c] extend slice start=%lu end=%lu jiffies=%lu", 803 rw == READ ? 'R' : 'W', tg->slice_start[rw], 804 tg->slice_end[rw], jiffies); 805 } 806 807 /* Determine if previously allocated or extended slice is complete or not */ 808 static bool throtl_slice_used(struct throtl_grp *tg, bool rw) 809 { 810 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 811 return false; 812 813 return true; 814 } 815 816 /* Trim the used slices and adjust slice start accordingly */ 817 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) 818 { 819 unsigned long nr_slices, time_elapsed, io_trim; 820 u64 bytes_trim, tmp; 821 822 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 823 824 /* 825 * If bps are unlimited (-1), then time slice don't get 826 * renewed. Don't try to trim the slice if slice is used. A new 827 * slice will start when appropriate. 828 */ 829 if (throtl_slice_used(tg, rw)) 830 return; 831 832 /* 833 * A bio has been dispatched. Also adjust slice_end. It might happen 834 * that initially cgroup limit was very low resulting in high 835 * slice_end, but later limit was bumped up and bio was dispached 836 * sooner, then we need to reduce slice_end. A high bogus slice_end 837 * is bad because it does not allow new slice to start. 838 */ 839 840 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); 841 842 time_elapsed = jiffies - tg->slice_start[rw]; 843 844 nr_slices = time_elapsed / tg->td->throtl_slice; 845 846 if (!nr_slices) 847 return; 848 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices; 849 do_div(tmp, HZ); 850 bytes_trim = tmp; 851 852 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) / 853 HZ; 854 855 if (!bytes_trim && !io_trim) 856 return; 857 858 if (tg->bytes_disp[rw] >= bytes_trim) 859 tg->bytes_disp[rw] -= bytes_trim; 860 else 861 tg->bytes_disp[rw] = 0; 862 863 if (tg->io_disp[rw] >= io_trim) 864 tg->io_disp[rw] -= io_trim; 865 else 866 tg->io_disp[rw] = 0; 867 868 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice; 869 870 throtl_log(&tg->service_queue, 871 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu", 872 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, 873 tg->slice_start[rw], tg->slice_end[rw], jiffies); 874 } 875 876 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, 877 unsigned long *wait) 878 { 879 bool rw = bio_data_dir(bio); 880 unsigned int io_allowed; 881 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 882 u64 tmp; 883 884 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 885 886 /* Slice has just started. Consider one slice interval */ 887 if (!jiffy_elapsed) 888 jiffy_elapsed_rnd = tg->td->throtl_slice; 889 890 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 891 892 /* 893 * jiffy_elapsed_rnd should not be a big value as minimum iops can be 894 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 895 * will allow dispatch after 1 second and after that slice should 896 * have been trimmed. 897 */ 898 899 tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd; 900 do_div(tmp, HZ); 901 902 if (tmp > UINT_MAX) 903 io_allowed = UINT_MAX; 904 else 905 io_allowed = tmp; 906 907 if (tg->io_disp[rw] + 1 <= io_allowed) { 908 if (wait) 909 *wait = 0; 910 return true; 911 } 912 913 /* Calc approx time to dispatch */ 914 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed; 915 916 if (wait) 917 *wait = jiffy_wait; 918 return false; 919 } 920 921 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, 922 unsigned long *wait) 923 { 924 bool rw = bio_data_dir(bio); 925 u64 bytes_allowed, extra_bytes, tmp; 926 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 927 unsigned int bio_size = throtl_bio_data_size(bio); 928 929 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 930 931 /* Slice has just started. Consider one slice interval */ 932 if (!jiffy_elapsed) 933 jiffy_elapsed_rnd = tg->td->throtl_slice; 934 935 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 936 937 tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd; 938 do_div(tmp, HZ); 939 bytes_allowed = tmp; 940 941 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) { 942 if (wait) 943 *wait = 0; 944 return true; 945 } 946 947 /* Calc approx time to dispatch */ 948 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed; 949 jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw)); 950 951 if (!jiffy_wait) 952 jiffy_wait = 1; 953 954 /* 955 * This wait time is without taking into consideration the rounding 956 * up we did. Add that time also. 957 */ 958 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 959 if (wait) 960 *wait = jiffy_wait; 961 return false; 962 } 963 964 /* 965 * Returns whether one can dispatch a bio or not. Also returns approx number 966 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 967 */ 968 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, 969 unsigned long *wait) 970 { 971 bool rw = bio_data_dir(bio); 972 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 973 974 /* 975 * Currently whole state machine of group depends on first bio 976 * queued in the group bio list. So one should not be calling 977 * this function with a different bio if there are other bios 978 * queued. 979 */ 980 BUG_ON(tg->service_queue.nr_queued[rw] && 981 bio != throtl_peek_queued(&tg->service_queue.queued[rw])); 982 983 /* If tg->bps = -1, then BW is unlimited */ 984 if (tg_bps_limit(tg, rw) == U64_MAX && 985 tg_iops_limit(tg, rw) == UINT_MAX) { 986 if (wait) 987 *wait = 0; 988 return true; 989 } 990 991 /* 992 * If previous slice expired, start a new one otherwise renew/extend 993 * existing slice to make sure it is at least throtl_slice interval 994 * long since now. New slice is started only for empty throttle group. 995 * If there is queued bio, that means there should be an active 996 * slice and it should be extended instead. 997 */ 998 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw])) 999 throtl_start_new_slice(tg, rw); 1000 else { 1001 if (time_before(tg->slice_end[rw], 1002 jiffies + tg->td->throtl_slice)) 1003 throtl_extend_slice(tg, rw, 1004 jiffies + tg->td->throtl_slice); 1005 } 1006 1007 if (tg_with_in_bps_limit(tg, bio, &bps_wait) && 1008 tg_with_in_iops_limit(tg, bio, &iops_wait)) { 1009 if (wait) 1010 *wait = 0; 1011 return true; 1012 } 1013 1014 max_wait = max(bps_wait, iops_wait); 1015 1016 if (wait) 1017 *wait = max_wait; 1018 1019 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 1020 throtl_extend_slice(tg, rw, jiffies + max_wait); 1021 1022 return false; 1023 } 1024 1025 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 1026 { 1027 bool rw = bio_data_dir(bio); 1028 unsigned int bio_size = throtl_bio_data_size(bio); 1029 1030 /* Charge the bio to the group */ 1031 tg->bytes_disp[rw] += bio_size; 1032 tg->io_disp[rw]++; 1033 tg->last_bytes_disp[rw] += bio_size; 1034 tg->last_io_disp[rw]++; 1035 1036 /* 1037 * BIO_THROTTLED is used to prevent the same bio to be throttled 1038 * more than once as a throttled bio will go through blk-throtl the 1039 * second time when it eventually gets issued. Set it when a bio 1040 * is being charged to a tg. 1041 */ 1042 if (!bio_flagged(bio, BIO_THROTTLED)) 1043 bio_set_flag(bio, BIO_THROTTLED); 1044 } 1045 1046 /** 1047 * throtl_add_bio_tg - add a bio to the specified throtl_grp 1048 * @bio: bio to add 1049 * @qn: qnode to use 1050 * @tg: the target throtl_grp 1051 * 1052 * Add @bio to @tg's service_queue using @qn. If @qn is not specified, 1053 * tg->qnode_on_self[] is used. 1054 */ 1055 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, 1056 struct throtl_grp *tg) 1057 { 1058 struct throtl_service_queue *sq = &tg->service_queue; 1059 bool rw = bio_data_dir(bio); 1060 1061 if (!qn) 1062 qn = &tg->qnode_on_self[rw]; 1063 1064 /* 1065 * If @tg doesn't currently have any bios queued in the same 1066 * direction, queueing @bio can change when @tg should be 1067 * dispatched. Mark that @tg was empty. This is automatically 1068 * cleaered on the next tg_update_disptime(). 1069 */ 1070 if (!sq->nr_queued[rw]) 1071 tg->flags |= THROTL_TG_WAS_EMPTY; 1072 1073 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); 1074 1075 sq->nr_queued[rw]++; 1076 throtl_enqueue_tg(tg); 1077 } 1078 1079 static void tg_update_disptime(struct throtl_grp *tg) 1080 { 1081 struct throtl_service_queue *sq = &tg->service_queue; 1082 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 1083 struct bio *bio; 1084 1085 bio = throtl_peek_queued(&sq->queued[READ]); 1086 if (bio) 1087 tg_may_dispatch(tg, bio, &read_wait); 1088 1089 bio = throtl_peek_queued(&sq->queued[WRITE]); 1090 if (bio) 1091 tg_may_dispatch(tg, bio, &write_wait); 1092 1093 min_wait = min(read_wait, write_wait); 1094 disptime = jiffies + min_wait; 1095 1096 /* Update dispatch time */ 1097 throtl_dequeue_tg(tg); 1098 tg->disptime = disptime; 1099 throtl_enqueue_tg(tg); 1100 1101 /* see throtl_add_bio_tg() */ 1102 tg->flags &= ~THROTL_TG_WAS_EMPTY; 1103 } 1104 1105 static void start_parent_slice_with_credit(struct throtl_grp *child_tg, 1106 struct throtl_grp *parent_tg, bool rw) 1107 { 1108 if (throtl_slice_used(parent_tg, rw)) { 1109 throtl_start_new_slice_with_credit(parent_tg, rw, 1110 child_tg->slice_start[rw]); 1111 } 1112 1113 } 1114 1115 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) 1116 { 1117 struct throtl_service_queue *sq = &tg->service_queue; 1118 struct throtl_service_queue *parent_sq = sq->parent_sq; 1119 struct throtl_grp *parent_tg = sq_to_tg(parent_sq); 1120 struct throtl_grp *tg_to_put = NULL; 1121 struct bio *bio; 1122 1123 /* 1124 * @bio is being transferred from @tg to @parent_sq. Popping a bio 1125 * from @tg may put its reference and @parent_sq might end up 1126 * getting released prematurely. Remember the tg to put and put it 1127 * after @bio is transferred to @parent_sq. 1128 */ 1129 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); 1130 sq->nr_queued[rw]--; 1131 1132 throtl_charge_bio(tg, bio); 1133 1134 /* 1135 * If our parent is another tg, we just need to transfer @bio to 1136 * the parent using throtl_add_bio_tg(). If our parent is 1137 * @td->service_queue, @bio is ready to be issued. Put it on its 1138 * bio_lists[] and decrease total number queued. The caller is 1139 * responsible for issuing these bios. 1140 */ 1141 if (parent_tg) { 1142 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); 1143 start_parent_slice_with_credit(tg, parent_tg, rw); 1144 } else { 1145 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], 1146 &parent_sq->queued[rw]); 1147 BUG_ON(tg->td->nr_queued[rw] <= 0); 1148 tg->td->nr_queued[rw]--; 1149 } 1150 1151 throtl_trim_slice(tg, rw); 1152 1153 if (tg_to_put) 1154 blkg_put(tg_to_blkg(tg_to_put)); 1155 } 1156 1157 static int throtl_dispatch_tg(struct throtl_grp *tg) 1158 { 1159 struct throtl_service_queue *sq = &tg->service_queue; 1160 unsigned int nr_reads = 0, nr_writes = 0; 1161 unsigned int max_nr_reads = throtl_grp_quantum*3/4; 1162 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; 1163 struct bio *bio; 1164 1165 /* Try to dispatch 75% READS and 25% WRITES */ 1166 1167 while ((bio = throtl_peek_queued(&sq->queued[READ])) && 1168 tg_may_dispatch(tg, bio, NULL)) { 1169 1170 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1171 nr_reads++; 1172 1173 if (nr_reads >= max_nr_reads) 1174 break; 1175 } 1176 1177 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && 1178 tg_may_dispatch(tg, bio, NULL)) { 1179 1180 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1181 nr_writes++; 1182 1183 if (nr_writes >= max_nr_writes) 1184 break; 1185 } 1186 1187 return nr_reads + nr_writes; 1188 } 1189 1190 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) 1191 { 1192 unsigned int nr_disp = 0; 1193 1194 while (1) { 1195 struct throtl_grp *tg = throtl_rb_first(parent_sq); 1196 struct throtl_service_queue *sq; 1197 1198 if (!tg) 1199 break; 1200 1201 if (time_before(jiffies, tg->disptime)) 1202 break; 1203 1204 throtl_dequeue_tg(tg); 1205 1206 nr_disp += throtl_dispatch_tg(tg); 1207 1208 sq = &tg->service_queue; 1209 if (sq->nr_queued[0] || sq->nr_queued[1]) 1210 tg_update_disptime(tg); 1211 1212 if (nr_disp >= throtl_quantum) 1213 break; 1214 } 1215 1216 return nr_disp; 1217 } 1218 1219 static bool throtl_can_upgrade(struct throtl_data *td, 1220 struct throtl_grp *this_tg); 1221 /** 1222 * throtl_pending_timer_fn - timer function for service_queue->pending_timer 1223 * @t: the pending_timer member of the throtl_service_queue being serviced 1224 * 1225 * This timer is armed when a child throtl_grp with active bio's become 1226 * pending and queued on the service_queue's pending_tree and expires when 1227 * the first child throtl_grp should be dispatched. This function 1228 * dispatches bio's from the children throtl_grps to the parent 1229 * service_queue. 1230 * 1231 * If the parent's parent is another throtl_grp, dispatching is propagated 1232 * by either arming its pending_timer or repeating dispatch directly. If 1233 * the top-level service_tree is reached, throtl_data->dispatch_work is 1234 * kicked so that the ready bio's are issued. 1235 */ 1236 static void throtl_pending_timer_fn(struct timer_list *t) 1237 { 1238 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer); 1239 struct throtl_grp *tg = sq_to_tg(sq); 1240 struct throtl_data *td = sq_to_td(sq); 1241 struct request_queue *q = td->queue; 1242 struct throtl_service_queue *parent_sq; 1243 bool dispatched; 1244 int ret; 1245 1246 spin_lock_irq(&q->queue_lock); 1247 if (throtl_can_upgrade(td, NULL)) 1248 throtl_upgrade_state(td); 1249 1250 again: 1251 parent_sq = sq->parent_sq; 1252 dispatched = false; 1253 1254 while (true) { 1255 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", 1256 sq->nr_queued[READ] + sq->nr_queued[WRITE], 1257 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1258 1259 ret = throtl_select_dispatch(sq); 1260 if (ret) { 1261 throtl_log(sq, "bios disp=%u", ret); 1262 dispatched = true; 1263 } 1264 1265 if (throtl_schedule_next_dispatch(sq, false)) 1266 break; 1267 1268 /* this dispatch windows is still open, relax and repeat */ 1269 spin_unlock_irq(&q->queue_lock); 1270 cpu_relax(); 1271 spin_lock_irq(&q->queue_lock); 1272 } 1273 1274 if (!dispatched) 1275 goto out_unlock; 1276 1277 if (parent_sq) { 1278 /* @parent_sq is another throl_grp, propagate dispatch */ 1279 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1280 tg_update_disptime(tg); 1281 if (!throtl_schedule_next_dispatch(parent_sq, false)) { 1282 /* window is already open, repeat dispatching */ 1283 sq = parent_sq; 1284 tg = sq_to_tg(sq); 1285 goto again; 1286 } 1287 } 1288 } else { 1289 /* reached the top-level, queue issueing */ 1290 queue_work(kthrotld_workqueue, &td->dispatch_work); 1291 } 1292 out_unlock: 1293 spin_unlock_irq(&q->queue_lock); 1294 } 1295 1296 /** 1297 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work 1298 * @work: work item being executed 1299 * 1300 * This function is queued for execution when bio's reach the bio_lists[] 1301 * of throtl_data->service_queue. Those bio's are ready and issued by this 1302 * function. 1303 */ 1304 static void blk_throtl_dispatch_work_fn(struct work_struct *work) 1305 { 1306 struct throtl_data *td = container_of(work, struct throtl_data, 1307 dispatch_work); 1308 struct throtl_service_queue *td_sq = &td->service_queue; 1309 struct request_queue *q = td->queue; 1310 struct bio_list bio_list_on_stack; 1311 struct bio *bio; 1312 struct blk_plug plug; 1313 int rw; 1314 1315 bio_list_init(&bio_list_on_stack); 1316 1317 spin_lock_irq(&q->queue_lock); 1318 for (rw = READ; rw <= WRITE; rw++) 1319 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) 1320 bio_list_add(&bio_list_on_stack, bio); 1321 spin_unlock_irq(&q->queue_lock); 1322 1323 if (!bio_list_empty(&bio_list_on_stack)) { 1324 blk_start_plug(&plug); 1325 while((bio = bio_list_pop(&bio_list_on_stack))) 1326 generic_make_request(bio); 1327 blk_finish_plug(&plug); 1328 } 1329 } 1330 1331 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, 1332 int off) 1333 { 1334 struct throtl_grp *tg = pd_to_tg(pd); 1335 u64 v = *(u64 *)((void *)tg + off); 1336 1337 if (v == U64_MAX) 1338 return 0; 1339 return __blkg_prfill_u64(sf, pd, v); 1340 } 1341 1342 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, 1343 int off) 1344 { 1345 struct throtl_grp *tg = pd_to_tg(pd); 1346 unsigned int v = *(unsigned int *)((void *)tg + off); 1347 1348 if (v == UINT_MAX) 1349 return 0; 1350 return __blkg_prfill_u64(sf, pd, v); 1351 } 1352 1353 static int tg_print_conf_u64(struct seq_file *sf, void *v) 1354 { 1355 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, 1356 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1357 return 0; 1358 } 1359 1360 static int tg_print_conf_uint(struct seq_file *sf, void *v) 1361 { 1362 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, 1363 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1364 return 0; 1365 } 1366 1367 static void tg_conf_updated(struct throtl_grp *tg, bool global) 1368 { 1369 struct throtl_service_queue *sq = &tg->service_queue; 1370 struct cgroup_subsys_state *pos_css; 1371 struct blkcg_gq *blkg; 1372 1373 throtl_log(&tg->service_queue, 1374 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", 1375 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), 1376 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); 1377 1378 /* 1379 * Update has_rules[] flags for the updated tg's subtree. A tg is 1380 * considered to have rules if either the tg itself or any of its 1381 * ancestors has rules. This identifies groups without any 1382 * restrictions in the whole hierarchy and allows them to bypass 1383 * blk-throttle. 1384 */ 1385 blkg_for_each_descendant_pre(blkg, pos_css, 1386 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { 1387 struct throtl_grp *this_tg = blkg_to_tg(blkg); 1388 struct throtl_grp *parent_tg; 1389 1390 tg_update_has_rules(this_tg); 1391 /* ignore root/second level */ 1392 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || 1393 !blkg->parent->parent) 1394 continue; 1395 parent_tg = blkg_to_tg(blkg->parent); 1396 /* 1397 * make sure all children has lower idle time threshold and 1398 * higher latency target 1399 */ 1400 this_tg->idletime_threshold = min(this_tg->idletime_threshold, 1401 parent_tg->idletime_threshold); 1402 this_tg->latency_target = max(this_tg->latency_target, 1403 parent_tg->latency_target); 1404 } 1405 1406 /* 1407 * We're already holding queue_lock and know @tg is valid. Let's 1408 * apply the new config directly. 1409 * 1410 * Restart the slices for both READ and WRITES. It might happen 1411 * that a group's limit are dropped suddenly and we don't want to 1412 * account recently dispatched IO with new low rate. 1413 */ 1414 throtl_start_new_slice(tg, 0); 1415 throtl_start_new_slice(tg, 1); 1416 1417 if (tg->flags & THROTL_TG_PENDING) { 1418 tg_update_disptime(tg); 1419 throtl_schedule_next_dispatch(sq->parent_sq, true); 1420 } 1421 } 1422 1423 static ssize_t tg_set_conf(struct kernfs_open_file *of, 1424 char *buf, size_t nbytes, loff_t off, bool is_u64) 1425 { 1426 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1427 struct blkg_conf_ctx ctx; 1428 struct throtl_grp *tg; 1429 int ret; 1430 u64 v; 1431 1432 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1433 if (ret) 1434 return ret; 1435 1436 ret = -EINVAL; 1437 if (sscanf(ctx.body, "%llu", &v) != 1) 1438 goto out_finish; 1439 if (!v) 1440 v = U64_MAX; 1441 1442 tg = blkg_to_tg(ctx.blkg); 1443 1444 if (is_u64) 1445 *(u64 *)((void *)tg + of_cft(of)->private) = v; 1446 else 1447 *(unsigned int *)((void *)tg + of_cft(of)->private) = v; 1448 1449 tg_conf_updated(tg, false); 1450 ret = 0; 1451 out_finish: 1452 blkg_conf_finish(&ctx); 1453 return ret ?: nbytes; 1454 } 1455 1456 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, 1457 char *buf, size_t nbytes, loff_t off) 1458 { 1459 return tg_set_conf(of, buf, nbytes, off, true); 1460 } 1461 1462 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, 1463 char *buf, size_t nbytes, loff_t off) 1464 { 1465 return tg_set_conf(of, buf, nbytes, off, false); 1466 } 1467 1468 static struct cftype throtl_legacy_files[] = { 1469 { 1470 .name = "throttle.read_bps_device", 1471 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]), 1472 .seq_show = tg_print_conf_u64, 1473 .write = tg_set_conf_u64, 1474 }, 1475 { 1476 .name = "throttle.write_bps_device", 1477 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]), 1478 .seq_show = tg_print_conf_u64, 1479 .write = tg_set_conf_u64, 1480 }, 1481 { 1482 .name = "throttle.read_iops_device", 1483 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]), 1484 .seq_show = tg_print_conf_uint, 1485 .write = tg_set_conf_uint, 1486 }, 1487 { 1488 .name = "throttle.write_iops_device", 1489 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]), 1490 .seq_show = tg_print_conf_uint, 1491 .write = tg_set_conf_uint, 1492 }, 1493 { 1494 .name = "throttle.io_service_bytes", 1495 .private = (unsigned long)&blkcg_policy_throtl, 1496 .seq_show = blkg_print_stat_bytes, 1497 }, 1498 { 1499 .name = "throttle.io_service_bytes_recursive", 1500 .private = (unsigned long)&blkcg_policy_throtl, 1501 .seq_show = blkg_print_stat_bytes_recursive, 1502 }, 1503 { 1504 .name = "throttle.io_serviced", 1505 .private = (unsigned long)&blkcg_policy_throtl, 1506 .seq_show = blkg_print_stat_ios, 1507 }, 1508 { 1509 .name = "throttle.io_serviced_recursive", 1510 .private = (unsigned long)&blkcg_policy_throtl, 1511 .seq_show = blkg_print_stat_ios_recursive, 1512 }, 1513 { } /* terminate */ 1514 }; 1515 1516 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, 1517 int off) 1518 { 1519 struct throtl_grp *tg = pd_to_tg(pd); 1520 const char *dname = blkg_dev_name(pd->blkg); 1521 char bufs[4][21] = { "max", "max", "max", "max" }; 1522 u64 bps_dft; 1523 unsigned int iops_dft; 1524 char idle_time[26] = ""; 1525 char latency_time[26] = ""; 1526 1527 if (!dname) 1528 return 0; 1529 1530 if (off == LIMIT_LOW) { 1531 bps_dft = 0; 1532 iops_dft = 0; 1533 } else { 1534 bps_dft = U64_MAX; 1535 iops_dft = UINT_MAX; 1536 } 1537 1538 if (tg->bps_conf[READ][off] == bps_dft && 1539 tg->bps_conf[WRITE][off] == bps_dft && 1540 tg->iops_conf[READ][off] == iops_dft && 1541 tg->iops_conf[WRITE][off] == iops_dft && 1542 (off != LIMIT_LOW || 1543 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD && 1544 tg->latency_target_conf == DFL_LATENCY_TARGET))) 1545 return 0; 1546 1547 if (tg->bps_conf[READ][off] != U64_MAX) 1548 snprintf(bufs[0], sizeof(bufs[0]), "%llu", 1549 tg->bps_conf[READ][off]); 1550 if (tg->bps_conf[WRITE][off] != U64_MAX) 1551 snprintf(bufs[1], sizeof(bufs[1]), "%llu", 1552 tg->bps_conf[WRITE][off]); 1553 if (tg->iops_conf[READ][off] != UINT_MAX) 1554 snprintf(bufs[2], sizeof(bufs[2]), "%u", 1555 tg->iops_conf[READ][off]); 1556 if (tg->iops_conf[WRITE][off] != UINT_MAX) 1557 snprintf(bufs[3], sizeof(bufs[3]), "%u", 1558 tg->iops_conf[WRITE][off]); 1559 if (off == LIMIT_LOW) { 1560 if (tg->idletime_threshold_conf == ULONG_MAX) 1561 strcpy(idle_time, " idle=max"); 1562 else 1563 snprintf(idle_time, sizeof(idle_time), " idle=%lu", 1564 tg->idletime_threshold_conf); 1565 1566 if (tg->latency_target_conf == ULONG_MAX) 1567 strcpy(latency_time, " latency=max"); 1568 else 1569 snprintf(latency_time, sizeof(latency_time), 1570 " latency=%lu", tg->latency_target_conf); 1571 } 1572 1573 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n", 1574 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time, 1575 latency_time); 1576 return 0; 1577 } 1578 1579 static int tg_print_limit(struct seq_file *sf, void *v) 1580 { 1581 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, 1582 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1583 return 0; 1584 } 1585 1586 static ssize_t tg_set_limit(struct kernfs_open_file *of, 1587 char *buf, size_t nbytes, loff_t off) 1588 { 1589 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1590 struct blkg_conf_ctx ctx; 1591 struct throtl_grp *tg; 1592 u64 v[4]; 1593 unsigned long idle_time; 1594 unsigned long latency_time; 1595 int ret; 1596 int index = of_cft(of)->private; 1597 1598 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1599 if (ret) 1600 return ret; 1601 1602 tg = blkg_to_tg(ctx.blkg); 1603 1604 v[0] = tg->bps_conf[READ][index]; 1605 v[1] = tg->bps_conf[WRITE][index]; 1606 v[2] = tg->iops_conf[READ][index]; 1607 v[3] = tg->iops_conf[WRITE][index]; 1608 1609 idle_time = tg->idletime_threshold_conf; 1610 latency_time = tg->latency_target_conf; 1611 while (true) { 1612 char tok[27]; /* wiops=18446744073709551616 */ 1613 char *p; 1614 u64 val = U64_MAX; 1615 int len; 1616 1617 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) 1618 break; 1619 if (tok[0] == '\0') 1620 break; 1621 ctx.body += len; 1622 1623 ret = -EINVAL; 1624 p = tok; 1625 strsep(&p, "="); 1626 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) 1627 goto out_finish; 1628 1629 ret = -ERANGE; 1630 if (!val) 1631 goto out_finish; 1632 1633 ret = -EINVAL; 1634 if (!strcmp(tok, "rbps")) 1635 v[0] = val; 1636 else if (!strcmp(tok, "wbps")) 1637 v[1] = val; 1638 else if (!strcmp(tok, "riops")) 1639 v[2] = min_t(u64, val, UINT_MAX); 1640 else if (!strcmp(tok, "wiops")) 1641 v[3] = min_t(u64, val, UINT_MAX); 1642 else if (off == LIMIT_LOW && !strcmp(tok, "idle")) 1643 idle_time = val; 1644 else if (off == LIMIT_LOW && !strcmp(tok, "latency")) 1645 latency_time = val; 1646 else 1647 goto out_finish; 1648 } 1649 1650 tg->bps_conf[READ][index] = v[0]; 1651 tg->bps_conf[WRITE][index] = v[1]; 1652 tg->iops_conf[READ][index] = v[2]; 1653 tg->iops_conf[WRITE][index] = v[3]; 1654 1655 if (index == LIMIT_MAX) { 1656 tg->bps[READ][index] = v[0]; 1657 tg->bps[WRITE][index] = v[1]; 1658 tg->iops[READ][index] = v[2]; 1659 tg->iops[WRITE][index] = v[3]; 1660 } 1661 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW], 1662 tg->bps_conf[READ][LIMIT_MAX]); 1663 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW], 1664 tg->bps_conf[WRITE][LIMIT_MAX]); 1665 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW], 1666 tg->iops_conf[READ][LIMIT_MAX]); 1667 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW], 1668 tg->iops_conf[WRITE][LIMIT_MAX]); 1669 tg->idletime_threshold_conf = idle_time; 1670 tg->latency_target_conf = latency_time; 1671 1672 /* force user to configure all settings for low limit */ 1673 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] || 1674 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) || 1675 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD || 1676 tg->latency_target_conf == DFL_LATENCY_TARGET) { 1677 tg->bps[READ][LIMIT_LOW] = 0; 1678 tg->bps[WRITE][LIMIT_LOW] = 0; 1679 tg->iops[READ][LIMIT_LOW] = 0; 1680 tg->iops[WRITE][LIMIT_LOW] = 0; 1681 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 1682 tg->latency_target = DFL_LATENCY_TARGET; 1683 } else if (index == LIMIT_LOW) { 1684 tg->idletime_threshold = tg->idletime_threshold_conf; 1685 tg->latency_target = tg->latency_target_conf; 1686 } 1687 1688 blk_throtl_update_limit_valid(tg->td); 1689 if (tg->td->limit_valid[LIMIT_LOW]) { 1690 if (index == LIMIT_LOW) 1691 tg->td->limit_index = LIMIT_LOW; 1692 } else 1693 tg->td->limit_index = LIMIT_MAX; 1694 tg_conf_updated(tg, index == LIMIT_LOW && 1695 tg->td->limit_valid[LIMIT_LOW]); 1696 ret = 0; 1697 out_finish: 1698 blkg_conf_finish(&ctx); 1699 return ret ?: nbytes; 1700 } 1701 1702 static struct cftype throtl_files[] = { 1703 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 1704 { 1705 .name = "low", 1706 .flags = CFTYPE_NOT_ON_ROOT, 1707 .seq_show = tg_print_limit, 1708 .write = tg_set_limit, 1709 .private = LIMIT_LOW, 1710 }, 1711 #endif 1712 { 1713 .name = "max", 1714 .flags = CFTYPE_NOT_ON_ROOT, 1715 .seq_show = tg_print_limit, 1716 .write = tg_set_limit, 1717 .private = LIMIT_MAX, 1718 }, 1719 { } /* terminate */ 1720 }; 1721 1722 static void throtl_shutdown_wq(struct request_queue *q) 1723 { 1724 struct throtl_data *td = q->td; 1725 1726 cancel_work_sync(&td->dispatch_work); 1727 } 1728 1729 static struct blkcg_policy blkcg_policy_throtl = { 1730 .dfl_cftypes = throtl_files, 1731 .legacy_cftypes = throtl_legacy_files, 1732 1733 .pd_alloc_fn = throtl_pd_alloc, 1734 .pd_init_fn = throtl_pd_init, 1735 .pd_online_fn = throtl_pd_online, 1736 .pd_offline_fn = throtl_pd_offline, 1737 .pd_free_fn = throtl_pd_free, 1738 }; 1739 1740 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg) 1741 { 1742 unsigned long rtime = jiffies, wtime = jiffies; 1743 1744 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]) 1745 rtime = tg->last_low_overflow_time[READ]; 1746 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) 1747 wtime = tg->last_low_overflow_time[WRITE]; 1748 return min(rtime, wtime); 1749 } 1750 1751 /* tg should not be an intermediate node */ 1752 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg) 1753 { 1754 struct throtl_service_queue *parent_sq; 1755 struct throtl_grp *parent = tg; 1756 unsigned long ret = __tg_last_low_overflow_time(tg); 1757 1758 while (true) { 1759 parent_sq = parent->service_queue.parent_sq; 1760 parent = sq_to_tg(parent_sq); 1761 if (!parent) 1762 break; 1763 1764 /* 1765 * The parent doesn't have low limit, it always reaches low 1766 * limit. Its overflow time is useless for children 1767 */ 1768 if (!parent->bps[READ][LIMIT_LOW] && 1769 !parent->iops[READ][LIMIT_LOW] && 1770 !parent->bps[WRITE][LIMIT_LOW] && 1771 !parent->iops[WRITE][LIMIT_LOW]) 1772 continue; 1773 if (time_after(__tg_last_low_overflow_time(parent), ret)) 1774 ret = __tg_last_low_overflow_time(parent); 1775 } 1776 return ret; 1777 } 1778 1779 static bool throtl_tg_is_idle(struct throtl_grp *tg) 1780 { 1781 /* 1782 * cgroup is idle if: 1783 * - single idle is too long, longer than a fixed value (in case user 1784 * configure a too big threshold) or 4 times of idletime threshold 1785 * - average think time is more than threshold 1786 * - IO latency is largely below threshold 1787 */ 1788 unsigned long time; 1789 bool ret; 1790 1791 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold); 1792 ret = tg->latency_target == DFL_LATENCY_TARGET || 1793 tg->idletime_threshold == DFL_IDLE_THRESHOLD || 1794 (ktime_get_ns() >> 10) - tg->last_finish_time > time || 1795 tg->avg_idletime > tg->idletime_threshold || 1796 (tg->latency_target && tg->bio_cnt && 1797 tg->bad_bio_cnt * 5 < tg->bio_cnt); 1798 throtl_log(&tg->service_queue, 1799 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d", 1800 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt, 1801 tg->bio_cnt, ret, tg->td->scale); 1802 return ret; 1803 } 1804 1805 static bool throtl_tg_can_upgrade(struct throtl_grp *tg) 1806 { 1807 struct throtl_service_queue *sq = &tg->service_queue; 1808 bool read_limit, write_limit; 1809 1810 /* 1811 * if cgroup reaches low limit (if low limit is 0, the cgroup always 1812 * reaches), it's ok to upgrade to next limit 1813 */ 1814 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]; 1815 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]; 1816 if (!read_limit && !write_limit) 1817 return true; 1818 if (read_limit && sq->nr_queued[READ] && 1819 (!write_limit || sq->nr_queued[WRITE])) 1820 return true; 1821 if (write_limit && sq->nr_queued[WRITE] && 1822 (!read_limit || sq->nr_queued[READ])) 1823 return true; 1824 1825 if (time_after_eq(jiffies, 1826 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) && 1827 throtl_tg_is_idle(tg)) 1828 return true; 1829 return false; 1830 } 1831 1832 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg) 1833 { 1834 while (true) { 1835 if (throtl_tg_can_upgrade(tg)) 1836 return true; 1837 tg = sq_to_tg(tg->service_queue.parent_sq); 1838 if (!tg || !tg_to_blkg(tg)->parent) 1839 return false; 1840 } 1841 return false; 1842 } 1843 1844 static bool throtl_can_upgrade(struct throtl_data *td, 1845 struct throtl_grp *this_tg) 1846 { 1847 struct cgroup_subsys_state *pos_css; 1848 struct blkcg_gq *blkg; 1849 1850 if (td->limit_index != LIMIT_LOW) 1851 return false; 1852 1853 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice)) 1854 return false; 1855 1856 rcu_read_lock(); 1857 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1858 struct throtl_grp *tg = blkg_to_tg(blkg); 1859 1860 if (tg == this_tg) 1861 continue; 1862 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1863 continue; 1864 if (!throtl_hierarchy_can_upgrade(tg)) { 1865 rcu_read_unlock(); 1866 return false; 1867 } 1868 } 1869 rcu_read_unlock(); 1870 return true; 1871 } 1872 1873 static void throtl_upgrade_check(struct throtl_grp *tg) 1874 { 1875 unsigned long now = jiffies; 1876 1877 if (tg->td->limit_index != LIMIT_LOW) 1878 return; 1879 1880 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1881 return; 1882 1883 tg->last_check_time = now; 1884 1885 if (!time_after_eq(now, 1886 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice)) 1887 return; 1888 1889 if (throtl_can_upgrade(tg->td, NULL)) 1890 throtl_upgrade_state(tg->td); 1891 } 1892 1893 static void throtl_upgrade_state(struct throtl_data *td) 1894 { 1895 struct cgroup_subsys_state *pos_css; 1896 struct blkcg_gq *blkg; 1897 1898 throtl_log(&td->service_queue, "upgrade to max"); 1899 td->limit_index = LIMIT_MAX; 1900 td->low_upgrade_time = jiffies; 1901 td->scale = 0; 1902 rcu_read_lock(); 1903 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1904 struct throtl_grp *tg = blkg_to_tg(blkg); 1905 struct throtl_service_queue *sq = &tg->service_queue; 1906 1907 tg->disptime = jiffies - 1; 1908 throtl_select_dispatch(sq); 1909 throtl_schedule_next_dispatch(sq, true); 1910 } 1911 rcu_read_unlock(); 1912 throtl_select_dispatch(&td->service_queue); 1913 throtl_schedule_next_dispatch(&td->service_queue, true); 1914 queue_work(kthrotld_workqueue, &td->dispatch_work); 1915 } 1916 1917 static void throtl_downgrade_state(struct throtl_data *td, int new) 1918 { 1919 td->scale /= 2; 1920 1921 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale); 1922 if (td->scale) { 1923 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice; 1924 return; 1925 } 1926 1927 td->limit_index = new; 1928 td->low_downgrade_time = jiffies; 1929 } 1930 1931 static bool throtl_tg_can_downgrade(struct throtl_grp *tg) 1932 { 1933 struct throtl_data *td = tg->td; 1934 unsigned long now = jiffies; 1935 1936 /* 1937 * If cgroup is below low limit, consider downgrade and throttle other 1938 * cgroups 1939 */ 1940 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) && 1941 time_after_eq(now, tg_last_low_overflow_time(tg) + 1942 td->throtl_slice) && 1943 (!throtl_tg_is_idle(tg) || 1944 !list_empty(&tg_to_blkg(tg)->blkcg->css.children))) 1945 return true; 1946 return false; 1947 } 1948 1949 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg) 1950 { 1951 while (true) { 1952 if (!throtl_tg_can_downgrade(tg)) 1953 return false; 1954 tg = sq_to_tg(tg->service_queue.parent_sq); 1955 if (!tg || !tg_to_blkg(tg)->parent) 1956 break; 1957 } 1958 return true; 1959 } 1960 1961 static void throtl_downgrade_check(struct throtl_grp *tg) 1962 { 1963 uint64_t bps; 1964 unsigned int iops; 1965 unsigned long elapsed_time; 1966 unsigned long now = jiffies; 1967 1968 if (tg->td->limit_index != LIMIT_MAX || 1969 !tg->td->limit_valid[LIMIT_LOW]) 1970 return; 1971 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1972 return; 1973 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1974 return; 1975 1976 elapsed_time = now - tg->last_check_time; 1977 tg->last_check_time = now; 1978 1979 if (time_before(now, tg_last_low_overflow_time(tg) + 1980 tg->td->throtl_slice)) 1981 return; 1982 1983 if (tg->bps[READ][LIMIT_LOW]) { 1984 bps = tg->last_bytes_disp[READ] * HZ; 1985 do_div(bps, elapsed_time); 1986 if (bps >= tg->bps[READ][LIMIT_LOW]) 1987 tg->last_low_overflow_time[READ] = now; 1988 } 1989 1990 if (tg->bps[WRITE][LIMIT_LOW]) { 1991 bps = tg->last_bytes_disp[WRITE] * HZ; 1992 do_div(bps, elapsed_time); 1993 if (bps >= tg->bps[WRITE][LIMIT_LOW]) 1994 tg->last_low_overflow_time[WRITE] = now; 1995 } 1996 1997 if (tg->iops[READ][LIMIT_LOW]) { 1998 iops = tg->last_io_disp[READ] * HZ / elapsed_time; 1999 if (iops >= tg->iops[READ][LIMIT_LOW]) 2000 tg->last_low_overflow_time[READ] = now; 2001 } 2002 2003 if (tg->iops[WRITE][LIMIT_LOW]) { 2004 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time; 2005 if (iops >= tg->iops[WRITE][LIMIT_LOW]) 2006 tg->last_low_overflow_time[WRITE] = now; 2007 } 2008 2009 /* 2010 * If cgroup is below low limit, consider downgrade and throttle other 2011 * cgroups 2012 */ 2013 if (throtl_hierarchy_can_downgrade(tg)) 2014 throtl_downgrade_state(tg->td, LIMIT_LOW); 2015 2016 tg->last_bytes_disp[READ] = 0; 2017 tg->last_bytes_disp[WRITE] = 0; 2018 tg->last_io_disp[READ] = 0; 2019 tg->last_io_disp[WRITE] = 0; 2020 } 2021 2022 static void blk_throtl_update_idletime(struct throtl_grp *tg) 2023 { 2024 unsigned long now = ktime_get_ns() >> 10; 2025 unsigned long last_finish_time = tg->last_finish_time; 2026 2027 if (now <= last_finish_time || last_finish_time == 0 || 2028 last_finish_time == tg->checked_last_finish_time) 2029 return; 2030 2031 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3; 2032 tg->checked_last_finish_time = last_finish_time; 2033 } 2034 2035 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2036 static void throtl_update_latency_buckets(struct throtl_data *td) 2037 { 2038 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE]; 2039 int i, cpu, rw; 2040 unsigned long last_latency[2] = { 0 }; 2041 unsigned long latency[2]; 2042 2043 if (!blk_queue_nonrot(td->queue)) 2044 return; 2045 if (time_before(jiffies, td->last_calculate_time + HZ)) 2046 return; 2047 td->last_calculate_time = jiffies; 2048 2049 memset(avg_latency, 0, sizeof(avg_latency)); 2050 for (rw = READ; rw <= WRITE; rw++) { 2051 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2052 struct latency_bucket *tmp = &td->tmp_buckets[rw][i]; 2053 2054 for_each_possible_cpu(cpu) { 2055 struct latency_bucket *bucket; 2056 2057 /* this isn't race free, but ok in practice */ 2058 bucket = per_cpu_ptr(td->latency_buckets[rw], 2059 cpu); 2060 tmp->total_latency += bucket[i].total_latency; 2061 tmp->samples += bucket[i].samples; 2062 bucket[i].total_latency = 0; 2063 bucket[i].samples = 0; 2064 } 2065 2066 if (tmp->samples >= 32) { 2067 int samples = tmp->samples; 2068 2069 latency[rw] = tmp->total_latency; 2070 2071 tmp->total_latency = 0; 2072 tmp->samples = 0; 2073 latency[rw] /= samples; 2074 if (latency[rw] == 0) 2075 continue; 2076 avg_latency[rw][i].latency = latency[rw]; 2077 } 2078 } 2079 } 2080 2081 for (rw = READ; rw <= WRITE; rw++) { 2082 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2083 if (!avg_latency[rw][i].latency) { 2084 if (td->avg_buckets[rw][i].latency < last_latency[rw]) 2085 td->avg_buckets[rw][i].latency = 2086 last_latency[rw]; 2087 continue; 2088 } 2089 2090 if (!td->avg_buckets[rw][i].valid) 2091 latency[rw] = avg_latency[rw][i].latency; 2092 else 2093 latency[rw] = (td->avg_buckets[rw][i].latency * 7 + 2094 avg_latency[rw][i].latency) >> 3; 2095 2096 td->avg_buckets[rw][i].latency = max(latency[rw], 2097 last_latency[rw]); 2098 td->avg_buckets[rw][i].valid = true; 2099 last_latency[rw] = td->avg_buckets[rw][i].latency; 2100 } 2101 } 2102 2103 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) 2104 throtl_log(&td->service_queue, 2105 "Latency bucket %d: read latency=%ld, read valid=%d, " 2106 "write latency=%ld, write valid=%d", i, 2107 td->avg_buckets[READ][i].latency, 2108 td->avg_buckets[READ][i].valid, 2109 td->avg_buckets[WRITE][i].latency, 2110 td->avg_buckets[WRITE][i].valid); 2111 } 2112 #else 2113 static inline void throtl_update_latency_buckets(struct throtl_data *td) 2114 { 2115 } 2116 #endif 2117 2118 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg, 2119 struct bio *bio) 2120 { 2121 struct throtl_qnode *qn = NULL; 2122 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg); 2123 struct throtl_service_queue *sq; 2124 bool rw = bio_data_dir(bio); 2125 bool throttled = false; 2126 struct throtl_data *td = tg->td; 2127 2128 WARN_ON_ONCE(!rcu_read_lock_held()); 2129 2130 /* see throtl_charge_bio() */ 2131 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw]) 2132 goto out; 2133 2134 spin_lock_irq(&q->queue_lock); 2135 2136 throtl_update_latency_buckets(td); 2137 2138 blk_throtl_update_idletime(tg); 2139 2140 sq = &tg->service_queue; 2141 2142 again: 2143 while (true) { 2144 if (tg->last_low_overflow_time[rw] == 0) 2145 tg->last_low_overflow_time[rw] = jiffies; 2146 throtl_downgrade_check(tg); 2147 throtl_upgrade_check(tg); 2148 /* throtl is FIFO - if bios are already queued, should queue */ 2149 if (sq->nr_queued[rw]) 2150 break; 2151 2152 /* if above limits, break to queue */ 2153 if (!tg_may_dispatch(tg, bio, NULL)) { 2154 tg->last_low_overflow_time[rw] = jiffies; 2155 if (throtl_can_upgrade(td, tg)) { 2156 throtl_upgrade_state(td); 2157 goto again; 2158 } 2159 break; 2160 } 2161 2162 /* within limits, let's charge and dispatch directly */ 2163 throtl_charge_bio(tg, bio); 2164 2165 /* 2166 * We need to trim slice even when bios are not being queued 2167 * otherwise it might happen that a bio is not queued for 2168 * a long time and slice keeps on extending and trim is not 2169 * called for a long time. Now if limits are reduced suddenly 2170 * we take into account all the IO dispatched so far at new 2171 * low rate and * newly queued IO gets a really long dispatch 2172 * time. 2173 * 2174 * So keep on trimming slice even if bio is not queued. 2175 */ 2176 throtl_trim_slice(tg, rw); 2177 2178 /* 2179 * @bio passed through this layer without being throttled. 2180 * Climb up the ladder. If we''re already at the top, it 2181 * can be executed directly. 2182 */ 2183 qn = &tg->qnode_on_parent[rw]; 2184 sq = sq->parent_sq; 2185 tg = sq_to_tg(sq); 2186 if (!tg) 2187 goto out_unlock; 2188 } 2189 2190 /* out-of-limit, queue to @tg */ 2191 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", 2192 rw == READ ? 'R' : 'W', 2193 tg->bytes_disp[rw], bio->bi_iter.bi_size, 2194 tg_bps_limit(tg, rw), 2195 tg->io_disp[rw], tg_iops_limit(tg, rw), 2196 sq->nr_queued[READ], sq->nr_queued[WRITE]); 2197 2198 tg->last_low_overflow_time[rw] = jiffies; 2199 2200 td->nr_queued[rw]++; 2201 throtl_add_bio_tg(bio, qn, tg); 2202 throttled = true; 2203 2204 /* 2205 * Update @tg's dispatch time and force schedule dispatch if @tg 2206 * was empty before @bio. The forced scheduling isn't likely to 2207 * cause undue delay as @bio is likely to be dispatched directly if 2208 * its @tg's disptime is not in the future. 2209 */ 2210 if (tg->flags & THROTL_TG_WAS_EMPTY) { 2211 tg_update_disptime(tg); 2212 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); 2213 } 2214 2215 out_unlock: 2216 spin_unlock_irq(&q->queue_lock); 2217 out: 2218 bio_set_flag(bio, BIO_THROTTLED); 2219 2220 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2221 if (throttled || !td->track_bio_latency) 2222 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY; 2223 #endif 2224 return throttled; 2225 } 2226 2227 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2228 static void throtl_track_latency(struct throtl_data *td, sector_t size, 2229 int op, unsigned long time) 2230 { 2231 struct latency_bucket *latency; 2232 int index; 2233 2234 if (!td || td->limit_index != LIMIT_LOW || 2235 !(op == REQ_OP_READ || op == REQ_OP_WRITE) || 2236 !blk_queue_nonrot(td->queue)) 2237 return; 2238 2239 index = request_bucket_index(size); 2240 2241 latency = get_cpu_ptr(td->latency_buckets[op]); 2242 latency[index].total_latency += time; 2243 latency[index].samples++; 2244 put_cpu_ptr(td->latency_buckets[op]); 2245 } 2246 2247 void blk_throtl_stat_add(struct request *rq, u64 time_ns) 2248 { 2249 struct request_queue *q = rq->q; 2250 struct throtl_data *td = q->td; 2251 2252 throtl_track_latency(td, rq->throtl_size, req_op(rq), time_ns >> 10); 2253 } 2254 2255 void blk_throtl_bio_endio(struct bio *bio) 2256 { 2257 struct blkcg_gq *blkg; 2258 struct throtl_grp *tg; 2259 u64 finish_time_ns; 2260 unsigned long finish_time; 2261 unsigned long start_time; 2262 unsigned long lat; 2263 int rw = bio_data_dir(bio); 2264 2265 blkg = bio->bi_blkg; 2266 if (!blkg) 2267 return; 2268 tg = blkg_to_tg(blkg); 2269 2270 finish_time_ns = ktime_get_ns(); 2271 tg->last_finish_time = finish_time_ns >> 10; 2272 2273 start_time = bio_issue_time(&bio->bi_issue) >> 10; 2274 finish_time = __bio_issue_time(finish_time_ns) >> 10; 2275 if (!start_time || finish_time <= start_time) 2276 return; 2277 2278 lat = finish_time - start_time; 2279 /* this is only for bio based driver */ 2280 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY)) 2281 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue), 2282 bio_op(bio), lat); 2283 2284 if (tg->latency_target && lat >= tg->td->filtered_latency) { 2285 int bucket; 2286 unsigned int threshold; 2287 2288 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue)); 2289 threshold = tg->td->avg_buckets[rw][bucket].latency + 2290 tg->latency_target; 2291 if (lat > threshold) 2292 tg->bad_bio_cnt++; 2293 /* 2294 * Not race free, could get wrong count, which means cgroups 2295 * will be throttled 2296 */ 2297 tg->bio_cnt++; 2298 } 2299 2300 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) { 2301 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies; 2302 tg->bio_cnt /= 2; 2303 tg->bad_bio_cnt /= 2; 2304 } 2305 } 2306 #endif 2307 2308 /* 2309 * Dispatch all bios from all children tg's queued on @parent_sq. On 2310 * return, @parent_sq is guaranteed to not have any active children tg's 2311 * and all bios from previously active tg's are on @parent_sq->bio_lists[]. 2312 */ 2313 static void tg_drain_bios(struct throtl_service_queue *parent_sq) 2314 { 2315 struct throtl_grp *tg; 2316 2317 while ((tg = throtl_rb_first(parent_sq))) { 2318 struct throtl_service_queue *sq = &tg->service_queue; 2319 struct bio *bio; 2320 2321 throtl_dequeue_tg(tg); 2322 2323 while ((bio = throtl_peek_queued(&sq->queued[READ]))) 2324 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 2325 while ((bio = throtl_peek_queued(&sq->queued[WRITE]))) 2326 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 2327 } 2328 } 2329 2330 /** 2331 * blk_throtl_drain - drain throttled bios 2332 * @q: request_queue to drain throttled bios for 2333 * 2334 * Dispatch all currently throttled bios on @q through ->make_request_fn(). 2335 */ 2336 void blk_throtl_drain(struct request_queue *q) 2337 __releases(&q->queue_lock) __acquires(&q->queue_lock) 2338 { 2339 struct throtl_data *td = q->td; 2340 struct blkcg_gq *blkg; 2341 struct cgroup_subsys_state *pos_css; 2342 struct bio *bio; 2343 int rw; 2344 2345 rcu_read_lock(); 2346 2347 /* 2348 * Drain each tg while doing post-order walk on the blkg tree, so 2349 * that all bios are propagated to td->service_queue. It'd be 2350 * better to walk service_queue tree directly but blkg walk is 2351 * easier. 2352 */ 2353 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) 2354 tg_drain_bios(&blkg_to_tg(blkg)->service_queue); 2355 2356 /* finally, transfer bios from top-level tg's into the td */ 2357 tg_drain_bios(&td->service_queue); 2358 2359 rcu_read_unlock(); 2360 spin_unlock_irq(&q->queue_lock); 2361 2362 /* all bios now should be in td->service_queue, issue them */ 2363 for (rw = READ; rw <= WRITE; rw++) 2364 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw], 2365 NULL))) 2366 generic_make_request(bio); 2367 2368 spin_lock_irq(&q->queue_lock); 2369 } 2370 2371 int blk_throtl_init(struct request_queue *q) 2372 { 2373 struct throtl_data *td; 2374 int ret; 2375 2376 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 2377 if (!td) 2378 return -ENOMEM; 2379 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) * 2380 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2381 if (!td->latency_buckets[READ]) { 2382 kfree(td); 2383 return -ENOMEM; 2384 } 2385 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) * 2386 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2387 if (!td->latency_buckets[WRITE]) { 2388 free_percpu(td->latency_buckets[READ]); 2389 kfree(td); 2390 return -ENOMEM; 2391 } 2392 2393 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); 2394 throtl_service_queue_init(&td->service_queue); 2395 2396 q->td = td; 2397 td->queue = q; 2398 2399 td->limit_valid[LIMIT_MAX] = true; 2400 td->limit_index = LIMIT_MAX; 2401 td->low_upgrade_time = jiffies; 2402 td->low_downgrade_time = jiffies; 2403 2404 /* activate policy */ 2405 ret = blkcg_activate_policy(q, &blkcg_policy_throtl); 2406 if (ret) { 2407 free_percpu(td->latency_buckets[READ]); 2408 free_percpu(td->latency_buckets[WRITE]); 2409 kfree(td); 2410 } 2411 return ret; 2412 } 2413 2414 void blk_throtl_exit(struct request_queue *q) 2415 { 2416 BUG_ON(!q->td); 2417 throtl_shutdown_wq(q); 2418 blkcg_deactivate_policy(q, &blkcg_policy_throtl); 2419 free_percpu(q->td->latency_buckets[READ]); 2420 free_percpu(q->td->latency_buckets[WRITE]); 2421 kfree(q->td); 2422 } 2423 2424 void blk_throtl_register_queue(struct request_queue *q) 2425 { 2426 struct throtl_data *td; 2427 int i; 2428 2429 td = q->td; 2430 BUG_ON(!td); 2431 2432 if (blk_queue_nonrot(q)) { 2433 td->throtl_slice = DFL_THROTL_SLICE_SSD; 2434 td->filtered_latency = LATENCY_FILTERED_SSD; 2435 } else { 2436 td->throtl_slice = DFL_THROTL_SLICE_HD; 2437 td->filtered_latency = LATENCY_FILTERED_HD; 2438 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2439 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY; 2440 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY; 2441 } 2442 } 2443 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW 2444 /* if no low limit, use previous default */ 2445 td->throtl_slice = DFL_THROTL_SLICE_HD; 2446 #endif 2447 2448 td->track_bio_latency = !queue_is_mq(q); 2449 if (!td->track_bio_latency) 2450 blk_stat_enable_accounting(q); 2451 } 2452 2453 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2454 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page) 2455 { 2456 if (!q->td) 2457 return -EINVAL; 2458 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice)); 2459 } 2460 2461 ssize_t blk_throtl_sample_time_store(struct request_queue *q, 2462 const char *page, size_t count) 2463 { 2464 unsigned long v; 2465 unsigned long t; 2466 2467 if (!q->td) 2468 return -EINVAL; 2469 if (kstrtoul(page, 10, &v)) 2470 return -EINVAL; 2471 t = msecs_to_jiffies(v); 2472 if (t == 0 || t > MAX_THROTL_SLICE) 2473 return -EINVAL; 2474 q->td->throtl_slice = t; 2475 return count; 2476 } 2477 #endif 2478 2479 static int __init throtl_init(void) 2480 { 2481 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 2482 if (!kthrotld_workqueue) 2483 panic("Failed to create kthrotld\n"); 2484 2485 return blkcg_policy_register(&blkcg_policy_throtl); 2486 } 2487 2488 module_init(throtl_init); 2489