1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to setting various queue properties from drivers 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/init.h> 8 #include <linux/bio.h> 9 #include <linux/blkdev.h> 10 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */ 11 #include <linux/gcd.h> 12 #include <linux/lcm.h> 13 #include <linux/jiffies.h> 14 #include <linux/gfp.h> 15 #include <linux/dma-mapping.h> 16 17 #include "blk.h" 18 #include "blk-wbt.h" 19 20 unsigned long blk_max_low_pfn; 21 EXPORT_SYMBOL(blk_max_low_pfn); 22 23 unsigned long blk_max_pfn; 24 25 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 26 { 27 q->rq_timeout = timeout; 28 } 29 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 30 31 /** 32 * blk_set_default_limits - reset limits to default values 33 * @lim: the queue_limits structure to reset 34 * 35 * Description: 36 * Returns a queue_limit struct to its default state. 37 */ 38 void blk_set_default_limits(struct queue_limits *lim) 39 { 40 lim->max_segments = BLK_MAX_SEGMENTS; 41 lim->max_discard_segments = 1; 42 lim->max_integrity_segments = 0; 43 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 44 lim->virt_boundary_mask = 0; 45 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 46 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; 47 lim->max_dev_sectors = 0; 48 lim->chunk_sectors = 0; 49 lim->max_write_same_sectors = 0; 50 lim->max_write_zeroes_sectors = 0; 51 lim->max_zone_append_sectors = 0; 52 lim->max_discard_sectors = 0; 53 lim->max_hw_discard_sectors = 0; 54 lim->discard_granularity = 0; 55 lim->discard_alignment = 0; 56 lim->discard_misaligned = 0; 57 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512; 58 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT); 59 lim->alignment_offset = 0; 60 lim->io_opt = 0; 61 lim->misaligned = 0; 62 lim->zoned = BLK_ZONED_NONE; 63 } 64 EXPORT_SYMBOL(blk_set_default_limits); 65 66 /** 67 * blk_set_stacking_limits - set default limits for stacking devices 68 * @lim: the queue_limits structure to reset 69 * 70 * Description: 71 * Returns a queue_limit struct to its default state. Should be used 72 * by stacking drivers like DM that have no internal limits. 73 */ 74 void blk_set_stacking_limits(struct queue_limits *lim) 75 { 76 blk_set_default_limits(lim); 77 78 /* Inherit limits from component devices */ 79 lim->max_segments = USHRT_MAX; 80 lim->max_discard_segments = USHRT_MAX; 81 lim->max_hw_sectors = UINT_MAX; 82 lim->max_segment_size = UINT_MAX; 83 lim->max_sectors = UINT_MAX; 84 lim->max_dev_sectors = UINT_MAX; 85 lim->max_write_same_sectors = UINT_MAX; 86 lim->max_write_zeroes_sectors = UINT_MAX; 87 lim->max_zone_append_sectors = UINT_MAX; 88 } 89 EXPORT_SYMBOL(blk_set_stacking_limits); 90 91 /** 92 * blk_queue_bounce_limit - set bounce buffer limit for queue 93 * @q: the request queue for the device 94 * @max_addr: the maximum address the device can handle 95 * 96 * Description: 97 * Different hardware can have different requirements as to what pages 98 * it can do I/O directly to. A low level driver can call 99 * blk_queue_bounce_limit to have lower memory pages allocated as bounce 100 * buffers for doing I/O to pages residing above @max_addr. 101 **/ 102 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr) 103 { 104 unsigned long b_pfn = max_addr >> PAGE_SHIFT; 105 int dma = 0; 106 107 q->bounce_gfp = GFP_NOIO; 108 #if BITS_PER_LONG == 64 109 /* 110 * Assume anything <= 4GB can be handled by IOMMU. Actually 111 * some IOMMUs can handle everything, but I don't know of a 112 * way to test this here. 113 */ 114 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) 115 dma = 1; 116 q->limits.bounce_pfn = max(max_low_pfn, b_pfn); 117 #else 118 if (b_pfn < blk_max_low_pfn) 119 dma = 1; 120 q->limits.bounce_pfn = b_pfn; 121 #endif 122 if (dma) { 123 init_emergency_isa_pool(); 124 q->bounce_gfp = GFP_NOIO | GFP_DMA; 125 q->limits.bounce_pfn = b_pfn; 126 } 127 } 128 EXPORT_SYMBOL(blk_queue_bounce_limit); 129 130 /** 131 * blk_queue_max_hw_sectors - set max sectors for a request for this queue 132 * @q: the request queue for the device 133 * @max_hw_sectors: max hardware sectors in the usual 512b unit 134 * 135 * Description: 136 * Enables a low level driver to set a hard upper limit, 137 * max_hw_sectors, on the size of requests. max_hw_sectors is set by 138 * the device driver based upon the capabilities of the I/O 139 * controller. 140 * 141 * max_dev_sectors is a hard limit imposed by the storage device for 142 * READ/WRITE requests. It is set by the disk driver. 143 * 144 * max_sectors is a soft limit imposed by the block layer for 145 * filesystem type requests. This value can be overridden on a 146 * per-device basis in /sys/block/<device>/queue/max_sectors_kb. 147 * The soft limit can not exceed max_hw_sectors. 148 **/ 149 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors) 150 { 151 struct queue_limits *limits = &q->limits; 152 unsigned int max_sectors; 153 154 if ((max_hw_sectors << 9) < PAGE_SIZE) { 155 max_hw_sectors = 1 << (PAGE_SHIFT - 9); 156 printk(KERN_INFO "%s: set to minimum %d\n", 157 __func__, max_hw_sectors); 158 } 159 160 limits->max_hw_sectors = max_hw_sectors; 161 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors); 162 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS); 163 limits->max_sectors = max_sectors; 164 q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9); 165 } 166 EXPORT_SYMBOL(blk_queue_max_hw_sectors); 167 168 /** 169 * blk_queue_chunk_sectors - set size of the chunk for this queue 170 * @q: the request queue for the device 171 * @chunk_sectors: chunk sectors in the usual 512b unit 172 * 173 * Description: 174 * If a driver doesn't want IOs to cross a given chunk size, it can set 175 * this limit and prevent merging across chunks. Note that the chunk size 176 * must currently be a power-of-2 in sectors. Also note that the block 177 * layer must accept a page worth of data at any offset. So if the 178 * crossing of chunks is a hard limitation in the driver, it must still be 179 * prepared to split single page bios. 180 **/ 181 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors) 182 { 183 BUG_ON(!is_power_of_2(chunk_sectors)); 184 q->limits.chunk_sectors = chunk_sectors; 185 } 186 EXPORT_SYMBOL(blk_queue_chunk_sectors); 187 188 /** 189 * blk_queue_max_discard_sectors - set max sectors for a single discard 190 * @q: the request queue for the device 191 * @max_discard_sectors: maximum number of sectors to discard 192 **/ 193 void blk_queue_max_discard_sectors(struct request_queue *q, 194 unsigned int max_discard_sectors) 195 { 196 q->limits.max_hw_discard_sectors = max_discard_sectors; 197 q->limits.max_discard_sectors = max_discard_sectors; 198 } 199 EXPORT_SYMBOL(blk_queue_max_discard_sectors); 200 201 /** 202 * blk_queue_max_write_same_sectors - set max sectors for a single write same 203 * @q: the request queue for the device 204 * @max_write_same_sectors: maximum number of sectors to write per command 205 **/ 206 void blk_queue_max_write_same_sectors(struct request_queue *q, 207 unsigned int max_write_same_sectors) 208 { 209 q->limits.max_write_same_sectors = max_write_same_sectors; 210 } 211 EXPORT_SYMBOL(blk_queue_max_write_same_sectors); 212 213 /** 214 * blk_queue_max_write_zeroes_sectors - set max sectors for a single 215 * write zeroes 216 * @q: the request queue for the device 217 * @max_write_zeroes_sectors: maximum number of sectors to write per command 218 **/ 219 void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 220 unsigned int max_write_zeroes_sectors) 221 { 222 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors; 223 } 224 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors); 225 226 /** 227 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append 228 * @q: the request queue for the device 229 * @max_zone_append_sectors: maximum number of sectors to write per command 230 **/ 231 void blk_queue_max_zone_append_sectors(struct request_queue *q, 232 unsigned int max_zone_append_sectors) 233 { 234 unsigned int max_sectors; 235 236 if (WARN_ON(!blk_queue_is_zoned(q))) 237 return; 238 239 max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors); 240 max_sectors = min(q->limits.chunk_sectors, max_sectors); 241 242 /* 243 * Signal eventual driver bugs resulting in the max_zone_append sectors limit 244 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set, 245 * or the max_hw_sectors limit not set. 246 */ 247 WARN_ON(!max_sectors); 248 249 q->limits.max_zone_append_sectors = max_sectors; 250 } 251 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors); 252 253 /** 254 * blk_queue_max_segments - set max hw segments for a request for this queue 255 * @q: the request queue for the device 256 * @max_segments: max number of segments 257 * 258 * Description: 259 * Enables a low level driver to set an upper limit on the number of 260 * hw data segments in a request. 261 **/ 262 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments) 263 { 264 if (!max_segments) { 265 max_segments = 1; 266 printk(KERN_INFO "%s: set to minimum %d\n", 267 __func__, max_segments); 268 } 269 270 q->limits.max_segments = max_segments; 271 } 272 EXPORT_SYMBOL(blk_queue_max_segments); 273 274 /** 275 * blk_queue_max_discard_segments - set max segments for discard requests 276 * @q: the request queue for the device 277 * @max_segments: max number of segments 278 * 279 * Description: 280 * Enables a low level driver to set an upper limit on the number of 281 * segments in a discard request. 282 **/ 283 void blk_queue_max_discard_segments(struct request_queue *q, 284 unsigned short max_segments) 285 { 286 q->limits.max_discard_segments = max_segments; 287 } 288 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments); 289 290 /** 291 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 292 * @q: the request queue for the device 293 * @max_size: max size of segment in bytes 294 * 295 * Description: 296 * Enables a low level driver to set an upper limit on the size of a 297 * coalesced segment 298 **/ 299 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 300 { 301 if (max_size < PAGE_SIZE) { 302 max_size = PAGE_SIZE; 303 printk(KERN_INFO "%s: set to minimum %d\n", 304 __func__, max_size); 305 } 306 307 /* see blk_queue_virt_boundary() for the explanation */ 308 WARN_ON_ONCE(q->limits.virt_boundary_mask); 309 310 q->limits.max_segment_size = max_size; 311 } 312 EXPORT_SYMBOL(blk_queue_max_segment_size); 313 314 /** 315 * blk_queue_logical_block_size - set logical block size for the queue 316 * @q: the request queue for the device 317 * @size: the logical block size, in bytes 318 * 319 * Description: 320 * This should be set to the lowest possible block size that the 321 * storage device can address. The default of 512 covers most 322 * hardware. 323 **/ 324 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size) 325 { 326 q->limits.logical_block_size = size; 327 328 if (q->limits.physical_block_size < size) 329 q->limits.physical_block_size = size; 330 331 if (q->limits.io_min < q->limits.physical_block_size) 332 q->limits.io_min = q->limits.physical_block_size; 333 } 334 EXPORT_SYMBOL(blk_queue_logical_block_size); 335 336 /** 337 * blk_queue_physical_block_size - set physical block size for the queue 338 * @q: the request queue for the device 339 * @size: the physical block size, in bytes 340 * 341 * Description: 342 * This should be set to the lowest possible sector size that the 343 * hardware can operate on without reverting to read-modify-write 344 * operations. 345 */ 346 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size) 347 { 348 q->limits.physical_block_size = size; 349 350 if (q->limits.physical_block_size < q->limits.logical_block_size) 351 q->limits.physical_block_size = q->limits.logical_block_size; 352 353 if (q->limits.io_min < q->limits.physical_block_size) 354 q->limits.io_min = q->limits.physical_block_size; 355 } 356 EXPORT_SYMBOL(blk_queue_physical_block_size); 357 358 /** 359 * blk_queue_alignment_offset - set physical block alignment offset 360 * @q: the request queue for the device 361 * @offset: alignment offset in bytes 362 * 363 * Description: 364 * Some devices are naturally misaligned to compensate for things like 365 * the legacy DOS partition table 63-sector offset. Low-level drivers 366 * should call this function for devices whose first sector is not 367 * naturally aligned. 368 */ 369 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) 370 { 371 q->limits.alignment_offset = 372 offset & (q->limits.physical_block_size - 1); 373 q->limits.misaligned = 0; 374 } 375 EXPORT_SYMBOL(blk_queue_alignment_offset); 376 377 /** 378 * blk_limits_io_min - set minimum request size for a device 379 * @limits: the queue limits 380 * @min: smallest I/O size in bytes 381 * 382 * Description: 383 * Some devices have an internal block size bigger than the reported 384 * hardware sector size. This function can be used to signal the 385 * smallest I/O the device can perform without incurring a performance 386 * penalty. 387 */ 388 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 389 { 390 limits->io_min = min; 391 392 if (limits->io_min < limits->logical_block_size) 393 limits->io_min = limits->logical_block_size; 394 395 if (limits->io_min < limits->physical_block_size) 396 limits->io_min = limits->physical_block_size; 397 } 398 EXPORT_SYMBOL(blk_limits_io_min); 399 400 /** 401 * blk_queue_io_min - set minimum request size for the queue 402 * @q: the request queue for the device 403 * @min: smallest I/O size in bytes 404 * 405 * Description: 406 * Storage devices may report a granularity or preferred minimum I/O 407 * size which is the smallest request the device can perform without 408 * incurring a performance penalty. For disk drives this is often the 409 * physical block size. For RAID arrays it is often the stripe chunk 410 * size. A properly aligned multiple of minimum_io_size is the 411 * preferred request size for workloads where a high number of I/O 412 * operations is desired. 413 */ 414 void blk_queue_io_min(struct request_queue *q, unsigned int min) 415 { 416 blk_limits_io_min(&q->limits, min); 417 } 418 EXPORT_SYMBOL(blk_queue_io_min); 419 420 /** 421 * blk_limits_io_opt - set optimal request size for a device 422 * @limits: the queue limits 423 * @opt: smallest I/O size in bytes 424 * 425 * Description: 426 * Storage devices may report an optimal I/O size, which is the 427 * device's preferred unit for sustained I/O. This is rarely reported 428 * for disk drives. For RAID arrays it is usually the stripe width or 429 * the internal track size. A properly aligned multiple of 430 * optimal_io_size is the preferred request size for workloads where 431 * sustained throughput is desired. 432 */ 433 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 434 { 435 limits->io_opt = opt; 436 } 437 EXPORT_SYMBOL(blk_limits_io_opt); 438 439 /** 440 * blk_queue_io_opt - set optimal request size for the queue 441 * @q: the request queue for the device 442 * @opt: optimal request size in bytes 443 * 444 * Description: 445 * Storage devices may report an optimal I/O size, which is the 446 * device's preferred unit for sustained I/O. This is rarely reported 447 * for disk drives. For RAID arrays it is usually the stripe width or 448 * the internal track size. A properly aligned multiple of 449 * optimal_io_size is the preferred request size for workloads where 450 * sustained throughput is desired. 451 */ 452 void blk_queue_io_opt(struct request_queue *q, unsigned int opt) 453 { 454 blk_limits_io_opt(&q->limits, opt); 455 } 456 EXPORT_SYMBOL(blk_queue_io_opt); 457 458 /** 459 * blk_stack_limits - adjust queue_limits for stacked devices 460 * @t: the stacking driver limits (top device) 461 * @b: the underlying queue limits (bottom, component device) 462 * @start: first data sector within component device 463 * 464 * Description: 465 * This function is used by stacking drivers like MD and DM to ensure 466 * that all component devices have compatible block sizes and 467 * alignments. The stacking driver must provide a queue_limits 468 * struct (top) and then iteratively call the stacking function for 469 * all component (bottom) devices. The stacking function will 470 * attempt to combine the values and ensure proper alignment. 471 * 472 * Returns 0 if the top and bottom queue_limits are compatible. The 473 * top device's block sizes and alignment offsets may be adjusted to 474 * ensure alignment with the bottom device. If no compatible sizes 475 * and alignments exist, -1 is returned and the resulting top 476 * queue_limits will have the misaligned flag set to indicate that 477 * the alignment_offset is undefined. 478 */ 479 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 480 sector_t start) 481 { 482 unsigned int top, bottom, alignment, ret = 0; 483 484 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 485 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 486 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors); 487 t->max_write_same_sectors = min(t->max_write_same_sectors, 488 b->max_write_same_sectors); 489 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors, 490 b->max_write_zeroes_sectors); 491 t->max_zone_append_sectors = min(t->max_zone_append_sectors, 492 b->max_zone_append_sectors); 493 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn); 494 495 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 496 b->seg_boundary_mask); 497 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask, 498 b->virt_boundary_mask); 499 500 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 501 t->max_discard_segments = min_not_zero(t->max_discard_segments, 502 b->max_discard_segments); 503 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 504 b->max_integrity_segments); 505 506 t->max_segment_size = min_not_zero(t->max_segment_size, 507 b->max_segment_size); 508 509 t->misaligned |= b->misaligned; 510 511 alignment = queue_limit_alignment_offset(b, start); 512 513 /* Bottom device has different alignment. Check that it is 514 * compatible with the current top alignment. 515 */ 516 if (t->alignment_offset != alignment) { 517 518 top = max(t->physical_block_size, t->io_min) 519 + t->alignment_offset; 520 bottom = max(b->physical_block_size, b->io_min) + alignment; 521 522 /* Verify that top and bottom intervals line up */ 523 if (max(top, bottom) % min(top, bottom)) { 524 t->misaligned = 1; 525 ret = -1; 526 } 527 } 528 529 t->logical_block_size = max(t->logical_block_size, 530 b->logical_block_size); 531 532 t->physical_block_size = max(t->physical_block_size, 533 b->physical_block_size); 534 535 t->io_min = max(t->io_min, b->io_min); 536 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt); 537 538 /* Physical block size a multiple of the logical block size? */ 539 if (t->physical_block_size & (t->logical_block_size - 1)) { 540 t->physical_block_size = t->logical_block_size; 541 t->misaligned = 1; 542 ret = -1; 543 } 544 545 /* Minimum I/O a multiple of the physical block size? */ 546 if (t->io_min & (t->physical_block_size - 1)) { 547 t->io_min = t->physical_block_size; 548 t->misaligned = 1; 549 ret = -1; 550 } 551 552 /* Optimal I/O a multiple of the physical block size? */ 553 if (t->io_opt & (t->physical_block_size - 1)) { 554 t->io_opt = 0; 555 t->misaligned = 1; 556 ret = -1; 557 } 558 559 t->raid_partial_stripes_expensive = 560 max(t->raid_partial_stripes_expensive, 561 b->raid_partial_stripes_expensive); 562 563 /* Find lowest common alignment_offset */ 564 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment) 565 % max(t->physical_block_size, t->io_min); 566 567 /* Verify that new alignment_offset is on a logical block boundary */ 568 if (t->alignment_offset & (t->logical_block_size - 1)) { 569 t->misaligned = 1; 570 ret = -1; 571 } 572 573 /* Discard alignment and granularity */ 574 if (b->discard_granularity) { 575 alignment = queue_limit_discard_alignment(b, start); 576 577 if (t->discard_granularity != 0 && 578 t->discard_alignment != alignment) { 579 top = t->discard_granularity + t->discard_alignment; 580 bottom = b->discard_granularity + alignment; 581 582 /* Verify that top and bottom intervals line up */ 583 if ((max(top, bottom) % min(top, bottom)) != 0) 584 t->discard_misaligned = 1; 585 } 586 587 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 588 b->max_discard_sectors); 589 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors, 590 b->max_hw_discard_sectors); 591 t->discard_granularity = max(t->discard_granularity, 592 b->discard_granularity); 593 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) % 594 t->discard_granularity; 595 } 596 597 if (b->chunk_sectors) 598 t->chunk_sectors = min_not_zero(t->chunk_sectors, 599 b->chunk_sectors); 600 601 t->zoned = max(t->zoned, b->zoned); 602 return ret; 603 } 604 EXPORT_SYMBOL(blk_stack_limits); 605 606 /** 607 * disk_stack_limits - adjust queue limits for stacked drivers 608 * @disk: MD/DM gendisk (top) 609 * @bdev: the underlying block device (bottom) 610 * @offset: offset to beginning of data within component device 611 * 612 * Description: 613 * Merges the limits for a top level gendisk and a bottom level 614 * block_device. 615 */ 616 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 617 sector_t offset) 618 { 619 struct request_queue *t = disk->queue; 620 621 if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits, 622 get_start_sect(bdev) + (offset >> 9)) < 0) { 623 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE]; 624 625 disk_name(disk, 0, top); 626 bdevname(bdev, bottom); 627 628 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n", 629 top, bottom); 630 } 631 632 t->backing_dev_info->io_pages = 633 t->limits.max_sectors >> (PAGE_SHIFT - 9); 634 } 635 EXPORT_SYMBOL(disk_stack_limits); 636 637 /** 638 * blk_queue_update_dma_pad - update pad mask 639 * @q: the request queue for the device 640 * @mask: pad mask 641 * 642 * Update dma pad mask. 643 * 644 * Appending pad buffer to a request modifies the last entry of a 645 * scatter list such that it includes the pad buffer. 646 **/ 647 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 648 { 649 if (mask > q->dma_pad_mask) 650 q->dma_pad_mask = mask; 651 } 652 EXPORT_SYMBOL(blk_queue_update_dma_pad); 653 654 /** 655 * blk_queue_segment_boundary - set boundary rules for segment merging 656 * @q: the request queue for the device 657 * @mask: the memory boundary mask 658 **/ 659 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 660 { 661 if (mask < PAGE_SIZE - 1) { 662 mask = PAGE_SIZE - 1; 663 printk(KERN_INFO "%s: set to minimum %lx\n", 664 __func__, mask); 665 } 666 667 q->limits.seg_boundary_mask = mask; 668 } 669 EXPORT_SYMBOL(blk_queue_segment_boundary); 670 671 /** 672 * blk_queue_virt_boundary - set boundary rules for bio merging 673 * @q: the request queue for the device 674 * @mask: the memory boundary mask 675 **/ 676 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask) 677 { 678 q->limits.virt_boundary_mask = mask; 679 680 /* 681 * Devices that require a virtual boundary do not support scatter/gather 682 * I/O natively, but instead require a descriptor list entry for each 683 * page (which might not be idential to the Linux PAGE_SIZE). Because 684 * of that they are not limited by our notion of "segment size". 685 */ 686 if (mask) 687 q->limits.max_segment_size = UINT_MAX; 688 } 689 EXPORT_SYMBOL(blk_queue_virt_boundary); 690 691 /** 692 * blk_queue_dma_alignment - set dma length and memory alignment 693 * @q: the request queue for the device 694 * @mask: alignment mask 695 * 696 * description: 697 * set required memory and length alignment for direct dma transactions. 698 * this is used when building direct io requests for the queue. 699 * 700 **/ 701 void blk_queue_dma_alignment(struct request_queue *q, int mask) 702 { 703 q->dma_alignment = mask; 704 } 705 EXPORT_SYMBOL(blk_queue_dma_alignment); 706 707 /** 708 * blk_queue_update_dma_alignment - update dma length and memory alignment 709 * @q: the request queue for the device 710 * @mask: alignment mask 711 * 712 * description: 713 * update required memory and length alignment for direct dma transactions. 714 * If the requested alignment is larger than the current alignment, then 715 * the current queue alignment is updated to the new value, otherwise it 716 * is left alone. The design of this is to allow multiple objects 717 * (driver, device, transport etc) to set their respective 718 * alignments without having them interfere. 719 * 720 **/ 721 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 722 { 723 BUG_ON(mask > PAGE_SIZE); 724 725 if (mask > q->dma_alignment) 726 q->dma_alignment = mask; 727 } 728 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 729 730 /** 731 * blk_set_queue_depth - tell the block layer about the device queue depth 732 * @q: the request queue for the device 733 * @depth: queue depth 734 * 735 */ 736 void blk_set_queue_depth(struct request_queue *q, unsigned int depth) 737 { 738 q->queue_depth = depth; 739 rq_qos_queue_depth_changed(q); 740 } 741 EXPORT_SYMBOL(blk_set_queue_depth); 742 743 /** 744 * blk_queue_write_cache - configure queue's write cache 745 * @q: the request queue for the device 746 * @wc: write back cache on or off 747 * @fua: device supports FUA writes, if true 748 * 749 * Tell the block layer about the write cache of @q. 750 */ 751 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua) 752 { 753 if (wc) 754 blk_queue_flag_set(QUEUE_FLAG_WC, q); 755 else 756 blk_queue_flag_clear(QUEUE_FLAG_WC, q); 757 if (fua) 758 blk_queue_flag_set(QUEUE_FLAG_FUA, q); 759 else 760 blk_queue_flag_clear(QUEUE_FLAG_FUA, q); 761 762 wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags)); 763 } 764 EXPORT_SYMBOL_GPL(blk_queue_write_cache); 765 766 /** 767 * blk_queue_required_elevator_features - Set a queue required elevator features 768 * @q: the request queue for the target device 769 * @features: Required elevator features OR'ed together 770 * 771 * Tell the block layer that for the device controlled through @q, only the 772 * only elevators that can be used are those that implement at least the set of 773 * features specified by @features. 774 */ 775 void blk_queue_required_elevator_features(struct request_queue *q, 776 unsigned int features) 777 { 778 q->required_elevator_features = features; 779 } 780 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features); 781 782 /** 783 * blk_queue_can_use_dma_map_merging - configure queue for merging segments. 784 * @q: the request queue for the device 785 * @dev: the device pointer for dma 786 * 787 * Tell the block layer about merging the segments by dma map of @q. 788 */ 789 bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 790 struct device *dev) 791 { 792 unsigned long boundary = dma_get_merge_boundary(dev); 793 794 if (!boundary) 795 return false; 796 797 /* No need to update max_segment_size. see blk_queue_virt_boundary() */ 798 blk_queue_virt_boundary(q, boundary); 799 800 return true; 801 } 802 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging); 803 804 /** 805 * blk_queue_set_zoned - configure a disk queue zoned model. 806 * @disk: the gendisk of the queue to configure 807 * @model: the zoned model to set 808 * 809 * Set the zoned model of the request queue of @disk according to @model. 810 * When @model is BLK_ZONED_HM (host managed), this should be called only 811 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option). 812 * If @model specifies BLK_ZONED_HA (host aware), the effective model used 813 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions 814 * on the disk. 815 */ 816 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model) 817 { 818 switch (model) { 819 case BLK_ZONED_HM: 820 /* 821 * Host managed devices are supported only if 822 * CONFIG_BLK_DEV_ZONED is enabled. 823 */ 824 WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)); 825 break; 826 case BLK_ZONED_HA: 827 /* 828 * Host aware devices can be treated either as regular block 829 * devices (similar to drive managed devices) or as zoned block 830 * devices to take advantage of the zone command set, similarly 831 * to host managed devices. We try the latter if there are no 832 * partitions and zoned block device support is enabled, else 833 * we do nothing special as far as the block layer is concerned. 834 */ 835 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) || 836 disk_has_partitions(disk)) 837 model = BLK_ZONED_NONE; 838 break; 839 case BLK_ZONED_NONE: 840 default: 841 if (WARN_ON_ONCE(model != BLK_ZONED_NONE)) 842 model = BLK_ZONED_NONE; 843 break; 844 } 845 846 disk->queue->limits.zoned = model; 847 } 848 EXPORT_SYMBOL_GPL(blk_queue_set_zoned); 849 850 static int __init blk_settings_init(void) 851 { 852 blk_max_low_pfn = max_low_pfn - 1; 853 blk_max_pfn = max_pfn - 1; 854 return 0; 855 } 856 subsys_initcall(blk_settings_init); 857