1 /* 2 * Functions related to setting various queue properties from drivers 3 */ 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <linux/init.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ 10 11 #include "blk.h" 12 13 unsigned long blk_max_low_pfn; 14 EXPORT_SYMBOL(blk_max_low_pfn); 15 16 unsigned long blk_max_pfn; 17 EXPORT_SYMBOL(blk_max_pfn); 18 19 /** 20 * blk_queue_prep_rq - set a prepare_request function for queue 21 * @q: queue 22 * @pfn: prepare_request function 23 * 24 * It's possible for a queue to register a prepare_request callback which 25 * is invoked before the request is handed to the request_fn. The goal of 26 * the function is to prepare a request for I/O, it can be used to build a 27 * cdb from the request data for instance. 28 * 29 */ 30 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) 31 { 32 q->prep_rq_fn = pfn; 33 } 34 EXPORT_SYMBOL(blk_queue_prep_rq); 35 36 /** 37 * blk_queue_merge_bvec - set a merge_bvec function for queue 38 * @q: queue 39 * @mbfn: merge_bvec_fn 40 * 41 * Usually queues have static limitations on the max sectors or segments that 42 * we can put in a request. Stacking drivers may have some settings that 43 * are dynamic, and thus we have to query the queue whether it is ok to 44 * add a new bio_vec to a bio at a given offset or not. If the block device 45 * has such limitations, it needs to register a merge_bvec_fn to control 46 * the size of bio's sent to it. Note that a block device *must* allow a 47 * single page to be added to an empty bio. The block device driver may want 48 * to use the bio_split() function to deal with these bio's. By default 49 * no merge_bvec_fn is defined for a queue, and only the fixed limits are 50 * honored. 51 */ 52 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn) 53 { 54 q->merge_bvec_fn = mbfn; 55 } 56 EXPORT_SYMBOL(blk_queue_merge_bvec); 57 58 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) 59 { 60 q->softirq_done_fn = fn; 61 } 62 EXPORT_SYMBOL(blk_queue_softirq_done); 63 64 /** 65 * blk_queue_make_request - define an alternate make_request function for a device 66 * @q: the request queue for the device to be affected 67 * @mfn: the alternate make_request function 68 * 69 * Description: 70 * The normal way for &struct bios to be passed to a device 71 * driver is for them to be collected into requests on a request 72 * queue, and then to allow the device driver to select requests 73 * off that queue when it is ready. This works well for many block 74 * devices. However some block devices (typically virtual devices 75 * such as md or lvm) do not benefit from the processing on the 76 * request queue, and are served best by having the requests passed 77 * directly to them. This can be achieved by providing a function 78 * to blk_queue_make_request(). 79 * 80 * Caveat: 81 * The driver that does this *must* be able to deal appropriately 82 * with buffers in "highmemory". This can be accomplished by either calling 83 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling 84 * blk_queue_bounce() to create a buffer in normal memory. 85 **/ 86 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) 87 { 88 /* 89 * set defaults 90 */ 91 q->nr_requests = BLKDEV_MAX_RQ; 92 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS); 93 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS); 94 q->make_request_fn = mfn; 95 q->backing_dev_info.ra_pages = 96 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 97 q->backing_dev_info.state = 0; 98 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 99 blk_queue_max_sectors(q, SAFE_MAX_SECTORS); 100 blk_queue_hardsect_size(q, 512); 101 blk_queue_dma_alignment(q, 511); 102 blk_queue_congestion_threshold(q); 103 q->nr_batching = BLK_BATCH_REQ; 104 105 q->unplug_thresh = 4; /* hmm */ 106 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */ 107 if (q->unplug_delay == 0) 108 q->unplug_delay = 1; 109 110 INIT_WORK(&q->unplug_work, blk_unplug_work); 111 112 q->unplug_timer.function = blk_unplug_timeout; 113 q->unplug_timer.data = (unsigned long)q; 114 115 /* 116 * by default assume old behaviour and bounce for any highmem page 117 */ 118 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); 119 } 120 EXPORT_SYMBOL(blk_queue_make_request); 121 122 /** 123 * blk_queue_bounce_limit - set bounce buffer limit for queue 124 * @q: the request queue for the device 125 * @dma_addr: bus address limit 126 * 127 * Description: 128 * Different hardware can have different requirements as to what pages 129 * it can do I/O directly to. A low level driver can call 130 * blk_queue_bounce_limit to have lower memory pages allocated as bounce 131 * buffers for doing I/O to pages residing above @page. 132 **/ 133 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr) 134 { 135 unsigned long b_pfn = dma_addr >> PAGE_SHIFT; 136 int dma = 0; 137 138 q->bounce_gfp = GFP_NOIO; 139 #if BITS_PER_LONG == 64 140 /* Assume anything <= 4GB can be handled by IOMMU. 141 Actually some IOMMUs can handle everything, but I don't 142 know of a way to test this here. */ 143 if (b_pfn < (min_t(u64, 0x100000000UL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) 144 dma = 1; 145 q->bounce_pfn = max_low_pfn; 146 #else 147 if (b_pfn < blk_max_low_pfn) 148 dma = 1; 149 q->bounce_pfn = b_pfn; 150 #endif 151 if (dma) { 152 init_emergency_isa_pool(); 153 q->bounce_gfp = GFP_NOIO | GFP_DMA; 154 q->bounce_pfn = b_pfn; 155 } 156 } 157 EXPORT_SYMBOL(blk_queue_bounce_limit); 158 159 /** 160 * blk_queue_max_sectors - set max sectors for a request for this queue 161 * @q: the request queue for the device 162 * @max_sectors: max sectors in the usual 512b unit 163 * 164 * Description: 165 * Enables a low level driver to set an upper limit on the size of 166 * received requests. 167 **/ 168 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors) 169 { 170 if ((max_sectors << 9) < PAGE_CACHE_SIZE) { 171 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9); 172 printk(KERN_INFO "%s: set to minimum %d\n", __FUNCTION__, 173 max_sectors); 174 } 175 176 if (BLK_DEF_MAX_SECTORS > max_sectors) 177 q->max_hw_sectors = q->max_sectors = max_sectors; 178 else { 179 q->max_sectors = BLK_DEF_MAX_SECTORS; 180 q->max_hw_sectors = max_sectors; 181 } 182 } 183 EXPORT_SYMBOL(blk_queue_max_sectors); 184 185 /** 186 * blk_queue_max_phys_segments - set max phys segments for a request for this queue 187 * @q: the request queue for the device 188 * @max_segments: max number of segments 189 * 190 * Description: 191 * Enables a low level driver to set an upper limit on the number of 192 * physical data segments in a request. This would be the largest sized 193 * scatter list the driver could handle. 194 **/ 195 void blk_queue_max_phys_segments(struct request_queue *q, 196 unsigned short max_segments) 197 { 198 if (!max_segments) { 199 max_segments = 1; 200 printk(KERN_INFO "%s: set to minimum %d\n", __FUNCTION__, 201 max_segments); 202 } 203 204 q->max_phys_segments = max_segments; 205 } 206 EXPORT_SYMBOL(blk_queue_max_phys_segments); 207 208 /** 209 * blk_queue_max_hw_segments - set max hw segments for a request for this queue 210 * @q: the request queue for the device 211 * @max_segments: max number of segments 212 * 213 * Description: 214 * Enables a low level driver to set an upper limit on the number of 215 * hw data segments in a request. This would be the largest number of 216 * address/length pairs the host adapter can actually give as once 217 * to the device. 218 **/ 219 void blk_queue_max_hw_segments(struct request_queue *q, 220 unsigned short max_segments) 221 { 222 if (!max_segments) { 223 max_segments = 1; 224 printk(KERN_INFO "%s: set to minimum %d\n", __FUNCTION__, 225 max_segments); 226 } 227 228 q->max_hw_segments = max_segments; 229 } 230 EXPORT_SYMBOL(blk_queue_max_hw_segments); 231 232 /** 233 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 234 * @q: the request queue for the device 235 * @max_size: max size of segment in bytes 236 * 237 * Description: 238 * Enables a low level driver to set an upper limit on the size of a 239 * coalesced segment 240 **/ 241 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 242 { 243 if (max_size < PAGE_CACHE_SIZE) { 244 max_size = PAGE_CACHE_SIZE; 245 printk(KERN_INFO "%s: set to minimum %d\n", __FUNCTION__, 246 max_size); 247 } 248 249 q->max_segment_size = max_size; 250 } 251 EXPORT_SYMBOL(blk_queue_max_segment_size); 252 253 /** 254 * blk_queue_hardsect_size - set hardware sector size for the queue 255 * @q: the request queue for the device 256 * @size: the hardware sector size, in bytes 257 * 258 * Description: 259 * This should typically be set to the lowest possible sector size 260 * that the hardware can operate on (possible without reverting to 261 * even internal read-modify-write operations). Usually the default 262 * of 512 covers most hardware. 263 **/ 264 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size) 265 { 266 q->hardsect_size = size; 267 } 268 EXPORT_SYMBOL(blk_queue_hardsect_size); 269 270 /* 271 * Returns the minimum that is _not_ zero, unless both are zero. 272 */ 273 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 274 275 /** 276 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers 277 * @t: the stacking driver (top) 278 * @b: the underlying device (bottom) 279 **/ 280 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) 281 { 282 /* zero is "infinity" */ 283 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 284 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 285 286 t->max_phys_segments = min(t->max_phys_segments, b->max_phys_segments); 287 t->max_hw_segments = min(t->max_hw_segments, b->max_hw_segments); 288 t->max_segment_size = min(t->max_segment_size, b->max_segment_size); 289 t->hardsect_size = max(t->hardsect_size, b->hardsect_size); 290 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) 291 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags); 292 } 293 EXPORT_SYMBOL(blk_queue_stack_limits); 294 295 /** 296 * blk_queue_dma_pad - set pad mask 297 * @q: the request queue for the device 298 * @mask: pad mask 299 * 300 * Set pad mask. Direct IO requests are padded to the mask specified. 301 * 302 * Appending pad buffer to a request modifies ->data_len such that it 303 * includes the pad buffer. The original requested data length can be 304 * obtained using blk_rq_raw_data_len(). 305 **/ 306 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask) 307 { 308 q->dma_pad_mask = mask; 309 } 310 EXPORT_SYMBOL(blk_queue_dma_pad); 311 312 /** 313 * blk_queue_dma_drain - Set up a drain buffer for excess dma. 314 * @q: the request queue for the device 315 * @dma_drain_needed: fn which returns non-zero if drain is necessary 316 * @buf: physically contiguous buffer 317 * @size: size of the buffer in bytes 318 * 319 * Some devices have excess DMA problems and can't simply discard (or 320 * zero fill) the unwanted piece of the transfer. They have to have a 321 * real area of memory to transfer it into. The use case for this is 322 * ATAPI devices in DMA mode. If the packet command causes a transfer 323 * bigger than the transfer size some HBAs will lock up if there 324 * aren't DMA elements to contain the excess transfer. What this API 325 * does is adjust the queue so that the buf is always appended 326 * silently to the scatterlist. 327 * 328 * Note: This routine adjusts max_hw_segments to make room for 329 * appending the drain buffer. If you call 330 * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after 331 * calling this routine, you must set the limit to one fewer than your 332 * device can support otherwise there won't be room for the drain 333 * buffer. 334 */ 335 int blk_queue_dma_drain(struct request_queue *q, 336 dma_drain_needed_fn *dma_drain_needed, 337 void *buf, unsigned int size) 338 { 339 if (q->max_hw_segments < 2 || q->max_phys_segments < 2) 340 return -EINVAL; 341 /* make room for appending the drain */ 342 --q->max_hw_segments; 343 --q->max_phys_segments; 344 q->dma_drain_needed = dma_drain_needed; 345 q->dma_drain_buffer = buf; 346 q->dma_drain_size = size; 347 348 return 0; 349 } 350 EXPORT_SYMBOL_GPL(blk_queue_dma_drain); 351 352 /** 353 * blk_queue_segment_boundary - set boundary rules for segment merging 354 * @q: the request queue for the device 355 * @mask: the memory boundary mask 356 **/ 357 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 358 { 359 if (mask < PAGE_CACHE_SIZE - 1) { 360 mask = PAGE_CACHE_SIZE - 1; 361 printk(KERN_INFO "%s: set to minimum %lx\n", __FUNCTION__, 362 mask); 363 } 364 365 q->seg_boundary_mask = mask; 366 } 367 EXPORT_SYMBOL(blk_queue_segment_boundary); 368 369 /** 370 * blk_queue_dma_alignment - set dma length and memory alignment 371 * @q: the request queue for the device 372 * @mask: alignment mask 373 * 374 * description: 375 * set required memory and length aligment for direct dma transactions. 376 * this is used when buiding direct io requests for the queue. 377 * 378 **/ 379 void blk_queue_dma_alignment(struct request_queue *q, int mask) 380 { 381 q->dma_alignment = mask; 382 } 383 EXPORT_SYMBOL(blk_queue_dma_alignment); 384 385 /** 386 * blk_queue_update_dma_alignment - update dma length and memory alignment 387 * @q: the request queue for the device 388 * @mask: alignment mask 389 * 390 * description: 391 * update required memory and length aligment for direct dma transactions. 392 * If the requested alignment is larger than the current alignment, then 393 * the current queue alignment is updated to the new value, otherwise it 394 * is left alone. The design of this is to allow multiple objects 395 * (driver, device, transport etc) to set their respective 396 * alignments without having them interfere. 397 * 398 **/ 399 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 400 { 401 BUG_ON(mask > PAGE_SIZE); 402 403 if (mask > q->dma_alignment) 404 q->dma_alignment = mask; 405 } 406 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 407 408 static int __init blk_settings_init(void) 409 { 410 blk_max_low_pfn = max_low_pfn - 1; 411 blk_max_pfn = max_pfn - 1; 412 return 0; 413 } 414 subsys_initcall(blk_settings_init); 415