1 /* 2 * Functions related to setting various queue properties from drivers 3 */ 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <linux/init.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ 10 #include <linux/gcd.h> 11 12 #include "blk.h" 13 14 unsigned long blk_max_low_pfn; 15 EXPORT_SYMBOL(blk_max_low_pfn); 16 17 unsigned long blk_max_pfn; 18 19 /** 20 * blk_queue_prep_rq - set a prepare_request function for queue 21 * @q: queue 22 * @pfn: prepare_request function 23 * 24 * It's possible for a queue to register a prepare_request callback which 25 * is invoked before the request is handed to the request_fn. The goal of 26 * the function is to prepare a request for I/O, it can be used to build a 27 * cdb from the request data for instance. 28 * 29 */ 30 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) 31 { 32 q->prep_rq_fn = pfn; 33 } 34 EXPORT_SYMBOL(blk_queue_prep_rq); 35 36 /** 37 * blk_queue_merge_bvec - set a merge_bvec function for queue 38 * @q: queue 39 * @mbfn: merge_bvec_fn 40 * 41 * Usually queues have static limitations on the max sectors or segments that 42 * we can put in a request. Stacking drivers may have some settings that 43 * are dynamic, and thus we have to query the queue whether it is ok to 44 * add a new bio_vec to a bio at a given offset or not. If the block device 45 * has such limitations, it needs to register a merge_bvec_fn to control 46 * the size of bio's sent to it. Note that a block device *must* allow a 47 * single page to be added to an empty bio. The block device driver may want 48 * to use the bio_split() function to deal with these bio's. By default 49 * no merge_bvec_fn is defined for a queue, and only the fixed limits are 50 * honored. 51 */ 52 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn) 53 { 54 q->merge_bvec_fn = mbfn; 55 } 56 EXPORT_SYMBOL(blk_queue_merge_bvec); 57 58 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) 59 { 60 q->softirq_done_fn = fn; 61 } 62 EXPORT_SYMBOL(blk_queue_softirq_done); 63 64 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 65 { 66 q->rq_timeout = timeout; 67 } 68 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 69 70 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn) 71 { 72 q->rq_timed_out_fn = fn; 73 } 74 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out); 75 76 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn) 77 { 78 q->lld_busy_fn = fn; 79 } 80 EXPORT_SYMBOL_GPL(blk_queue_lld_busy); 81 82 /** 83 * blk_set_default_limits - reset limits to default values 84 * @lim: the queue_limits structure to reset 85 * 86 * Description: 87 * Returns a queue_limit struct to its default state. Can be used by 88 * stacking drivers like DM that stage table swaps and reuse an 89 * existing device queue. 90 */ 91 void blk_set_default_limits(struct queue_limits *lim) 92 { 93 lim->max_phys_segments = MAX_PHYS_SEGMENTS; 94 lim->max_hw_segments = MAX_HW_SEGMENTS; 95 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 96 lim->max_segment_size = MAX_SEGMENT_SIZE; 97 lim->max_sectors = BLK_DEF_MAX_SECTORS; 98 lim->max_hw_sectors = INT_MAX; 99 lim->max_discard_sectors = SAFE_MAX_SECTORS; 100 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512; 101 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT); 102 lim->alignment_offset = 0; 103 lim->io_opt = 0; 104 lim->misaligned = 0; 105 lim->no_cluster = 0; 106 } 107 EXPORT_SYMBOL(blk_set_default_limits); 108 109 /** 110 * blk_queue_make_request - define an alternate make_request function for a device 111 * @q: the request queue for the device to be affected 112 * @mfn: the alternate make_request function 113 * 114 * Description: 115 * The normal way for &struct bios to be passed to a device 116 * driver is for them to be collected into requests on a request 117 * queue, and then to allow the device driver to select requests 118 * off that queue when it is ready. This works well for many block 119 * devices. However some block devices (typically virtual devices 120 * such as md or lvm) do not benefit from the processing on the 121 * request queue, and are served best by having the requests passed 122 * directly to them. This can be achieved by providing a function 123 * to blk_queue_make_request(). 124 * 125 * Caveat: 126 * The driver that does this *must* be able to deal appropriately 127 * with buffers in "highmemory". This can be accomplished by either calling 128 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling 129 * blk_queue_bounce() to create a buffer in normal memory. 130 **/ 131 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) 132 { 133 /* 134 * set defaults 135 */ 136 q->nr_requests = BLKDEV_MAX_RQ; 137 138 q->make_request_fn = mfn; 139 blk_queue_dma_alignment(q, 511); 140 blk_queue_congestion_threshold(q); 141 q->nr_batching = BLK_BATCH_REQ; 142 143 q->unplug_thresh = 4; /* hmm */ 144 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */ 145 if (q->unplug_delay == 0) 146 q->unplug_delay = 1; 147 148 q->unplug_timer.function = blk_unplug_timeout; 149 q->unplug_timer.data = (unsigned long)q; 150 151 blk_set_default_limits(&q->limits); 152 blk_queue_max_sectors(q, SAFE_MAX_SECTORS); 153 154 /* 155 * If the caller didn't supply a lock, fall back to our embedded 156 * per-queue locks 157 */ 158 if (!q->queue_lock) 159 q->queue_lock = &q->__queue_lock; 160 161 /* 162 * by default assume old behaviour and bounce for any highmem page 163 */ 164 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); 165 } 166 EXPORT_SYMBOL(blk_queue_make_request); 167 168 /** 169 * blk_queue_bounce_limit - set bounce buffer limit for queue 170 * @q: the request queue for the device 171 * @dma_mask: the maximum address the device can handle 172 * 173 * Description: 174 * Different hardware can have different requirements as to what pages 175 * it can do I/O directly to. A low level driver can call 176 * blk_queue_bounce_limit to have lower memory pages allocated as bounce 177 * buffers for doing I/O to pages residing above @dma_mask. 178 **/ 179 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask) 180 { 181 unsigned long b_pfn = dma_mask >> PAGE_SHIFT; 182 int dma = 0; 183 184 q->bounce_gfp = GFP_NOIO; 185 #if BITS_PER_LONG == 64 186 /* 187 * Assume anything <= 4GB can be handled by IOMMU. Actually 188 * some IOMMUs can handle everything, but I don't know of a 189 * way to test this here. 190 */ 191 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) 192 dma = 1; 193 q->limits.bounce_pfn = max_low_pfn; 194 #else 195 if (b_pfn < blk_max_low_pfn) 196 dma = 1; 197 q->limits.bounce_pfn = b_pfn; 198 #endif 199 if (dma) { 200 init_emergency_isa_pool(); 201 q->bounce_gfp = GFP_NOIO | GFP_DMA; 202 q->limits.bounce_pfn = b_pfn; 203 } 204 } 205 EXPORT_SYMBOL(blk_queue_bounce_limit); 206 207 /** 208 * blk_queue_max_sectors - set max sectors for a request for this queue 209 * @q: the request queue for the device 210 * @max_sectors: max sectors in the usual 512b unit 211 * 212 * Description: 213 * Enables a low level driver to set an upper limit on the size of 214 * received requests. 215 **/ 216 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors) 217 { 218 if ((max_sectors << 9) < PAGE_CACHE_SIZE) { 219 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9); 220 printk(KERN_INFO "%s: set to minimum %d\n", 221 __func__, max_sectors); 222 } 223 224 if (BLK_DEF_MAX_SECTORS > max_sectors) 225 q->limits.max_hw_sectors = q->limits.max_sectors = max_sectors; 226 else { 227 q->limits.max_sectors = BLK_DEF_MAX_SECTORS; 228 q->limits.max_hw_sectors = max_sectors; 229 } 230 } 231 EXPORT_SYMBOL(blk_queue_max_sectors); 232 233 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_sectors) 234 { 235 if (BLK_DEF_MAX_SECTORS > max_sectors) 236 q->limits.max_hw_sectors = BLK_DEF_MAX_SECTORS; 237 else 238 q->limits.max_hw_sectors = max_sectors; 239 } 240 EXPORT_SYMBOL(blk_queue_max_hw_sectors); 241 242 /** 243 * blk_queue_max_discard_sectors - set max sectors for a single discard 244 * @q: the request queue for the device 245 * @max_discard: maximum number of sectors to discard 246 **/ 247 void blk_queue_max_discard_sectors(struct request_queue *q, 248 unsigned int max_discard_sectors) 249 { 250 q->limits.max_discard_sectors = max_discard_sectors; 251 } 252 EXPORT_SYMBOL(blk_queue_max_discard_sectors); 253 254 /** 255 * blk_queue_max_phys_segments - set max phys segments for a request for this queue 256 * @q: the request queue for the device 257 * @max_segments: max number of segments 258 * 259 * Description: 260 * Enables a low level driver to set an upper limit on the number of 261 * physical data segments in a request. This would be the largest sized 262 * scatter list the driver could handle. 263 **/ 264 void blk_queue_max_phys_segments(struct request_queue *q, 265 unsigned short max_segments) 266 { 267 if (!max_segments) { 268 max_segments = 1; 269 printk(KERN_INFO "%s: set to minimum %d\n", 270 __func__, max_segments); 271 } 272 273 q->limits.max_phys_segments = max_segments; 274 } 275 EXPORT_SYMBOL(blk_queue_max_phys_segments); 276 277 /** 278 * blk_queue_max_hw_segments - set max hw segments for a request for this queue 279 * @q: the request queue for the device 280 * @max_segments: max number of segments 281 * 282 * Description: 283 * Enables a low level driver to set an upper limit on the number of 284 * hw data segments in a request. This would be the largest number of 285 * address/length pairs the host adapter can actually give at once 286 * to the device. 287 **/ 288 void blk_queue_max_hw_segments(struct request_queue *q, 289 unsigned short max_segments) 290 { 291 if (!max_segments) { 292 max_segments = 1; 293 printk(KERN_INFO "%s: set to minimum %d\n", 294 __func__, max_segments); 295 } 296 297 q->limits.max_hw_segments = max_segments; 298 } 299 EXPORT_SYMBOL(blk_queue_max_hw_segments); 300 301 /** 302 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 303 * @q: the request queue for the device 304 * @max_size: max size of segment in bytes 305 * 306 * Description: 307 * Enables a low level driver to set an upper limit on the size of a 308 * coalesced segment 309 **/ 310 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 311 { 312 if (max_size < PAGE_CACHE_SIZE) { 313 max_size = PAGE_CACHE_SIZE; 314 printk(KERN_INFO "%s: set to minimum %d\n", 315 __func__, max_size); 316 } 317 318 q->limits.max_segment_size = max_size; 319 } 320 EXPORT_SYMBOL(blk_queue_max_segment_size); 321 322 /** 323 * blk_queue_logical_block_size - set logical block size for the queue 324 * @q: the request queue for the device 325 * @size: the logical block size, in bytes 326 * 327 * Description: 328 * This should be set to the lowest possible block size that the 329 * storage device can address. The default of 512 covers most 330 * hardware. 331 **/ 332 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size) 333 { 334 q->limits.logical_block_size = size; 335 336 if (q->limits.physical_block_size < size) 337 q->limits.physical_block_size = size; 338 339 if (q->limits.io_min < q->limits.physical_block_size) 340 q->limits.io_min = q->limits.physical_block_size; 341 } 342 EXPORT_SYMBOL(blk_queue_logical_block_size); 343 344 /** 345 * blk_queue_physical_block_size - set physical block size for the queue 346 * @q: the request queue for the device 347 * @size: the physical block size, in bytes 348 * 349 * Description: 350 * This should be set to the lowest possible sector size that the 351 * hardware can operate on without reverting to read-modify-write 352 * operations. 353 */ 354 void blk_queue_physical_block_size(struct request_queue *q, unsigned short size) 355 { 356 q->limits.physical_block_size = size; 357 358 if (q->limits.physical_block_size < q->limits.logical_block_size) 359 q->limits.physical_block_size = q->limits.logical_block_size; 360 361 if (q->limits.io_min < q->limits.physical_block_size) 362 q->limits.io_min = q->limits.physical_block_size; 363 } 364 EXPORT_SYMBOL(blk_queue_physical_block_size); 365 366 /** 367 * blk_queue_alignment_offset - set physical block alignment offset 368 * @q: the request queue for the device 369 * @offset: alignment offset in bytes 370 * 371 * Description: 372 * Some devices are naturally misaligned to compensate for things like 373 * the legacy DOS partition table 63-sector offset. Low-level drivers 374 * should call this function for devices whose first sector is not 375 * naturally aligned. 376 */ 377 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) 378 { 379 q->limits.alignment_offset = 380 offset & (q->limits.physical_block_size - 1); 381 q->limits.misaligned = 0; 382 } 383 EXPORT_SYMBOL(blk_queue_alignment_offset); 384 385 /** 386 * blk_limits_io_min - set minimum request size for a device 387 * @limits: the queue limits 388 * @min: smallest I/O size in bytes 389 * 390 * Description: 391 * Some devices have an internal block size bigger than the reported 392 * hardware sector size. This function can be used to signal the 393 * smallest I/O the device can perform without incurring a performance 394 * penalty. 395 */ 396 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 397 { 398 limits->io_min = min; 399 400 if (limits->io_min < limits->logical_block_size) 401 limits->io_min = limits->logical_block_size; 402 403 if (limits->io_min < limits->physical_block_size) 404 limits->io_min = limits->physical_block_size; 405 } 406 EXPORT_SYMBOL(blk_limits_io_min); 407 408 /** 409 * blk_queue_io_min - set minimum request size for the queue 410 * @q: the request queue for the device 411 * @min: smallest I/O size in bytes 412 * 413 * Description: 414 * Storage devices may report a granularity or preferred minimum I/O 415 * size which is the smallest request the device can perform without 416 * incurring a performance penalty. For disk drives this is often the 417 * physical block size. For RAID arrays it is often the stripe chunk 418 * size. A properly aligned multiple of minimum_io_size is the 419 * preferred request size for workloads where a high number of I/O 420 * operations is desired. 421 */ 422 void blk_queue_io_min(struct request_queue *q, unsigned int min) 423 { 424 blk_limits_io_min(&q->limits, min); 425 } 426 EXPORT_SYMBOL(blk_queue_io_min); 427 428 /** 429 * blk_limits_io_opt - set optimal request size for a device 430 * @limits: the queue limits 431 * @opt: smallest I/O size in bytes 432 * 433 * Description: 434 * Storage devices may report an optimal I/O size, which is the 435 * device's preferred unit for sustained I/O. This is rarely reported 436 * for disk drives. For RAID arrays it is usually the stripe width or 437 * the internal track size. A properly aligned multiple of 438 * optimal_io_size is the preferred request size for workloads where 439 * sustained throughput is desired. 440 */ 441 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 442 { 443 limits->io_opt = opt; 444 } 445 EXPORT_SYMBOL(blk_limits_io_opt); 446 447 /** 448 * blk_queue_io_opt - set optimal request size for the queue 449 * @q: the request queue for the device 450 * @opt: optimal request size in bytes 451 * 452 * Description: 453 * Storage devices may report an optimal I/O size, which is the 454 * device's preferred unit for sustained I/O. This is rarely reported 455 * for disk drives. For RAID arrays it is usually the stripe width or 456 * the internal track size. A properly aligned multiple of 457 * optimal_io_size is the preferred request size for workloads where 458 * sustained throughput is desired. 459 */ 460 void blk_queue_io_opt(struct request_queue *q, unsigned int opt) 461 { 462 blk_limits_io_opt(&q->limits, opt); 463 } 464 EXPORT_SYMBOL(blk_queue_io_opt); 465 466 /* 467 * Returns the minimum that is _not_ zero, unless both are zero. 468 */ 469 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 470 471 /** 472 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers 473 * @t: the stacking driver (top) 474 * @b: the underlying device (bottom) 475 **/ 476 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) 477 { 478 blk_stack_limits(&t->limits, &b->limits, 0); 479 480 if (!t->queue_lock) 481 WARN_ON_ONCE(1); 482 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) { 483 unsigned long flags; 484 spin_lock_irqsave(t->queue_lock, flags); 485 queue_flag_clear(QUEUE_FLAG_CLUSTER, t); 486 spin_unlock_irqrestore(t->queue_lock, flags); 487 } 488 } 489 EXPORT_SYMBOL(blk_queue_stack_limits); 490 491 /** 492 * blk_stack_limits - adjust queue_limits for stacked devices 493 * @t: the stacking driver limits (top) 494 * @b: the underlying queue limits (bottom) 495 * @offset: offset to beginning of data within component device 496 * 497 * Description: 498 * Merges two queue_limit structs. Returns 0 if alignment didn't 499 * change. Returns -1 if adding the bottom device caused 500 * misalignment. 501 */ 502 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 503 sector_t offset) 504 { 505 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 506 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 507 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn); 508 509 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 510 b->seg_boundary_mask); 511 512 t->max_phys_segments = min_not_zero(t->max_phys_segments, 513 b->max_phys_segments); 514 515 t->max_hw_segments = min_not_zero(t->max_hw_segments, 516 b->max_hw_segments); 517 518 t->max_segment_size = min_not_zero(t->max_segment_size, 519 b->max_segment_size); 520 521 t->logical_block_size = max(t->logical_block_size, 522 b->logical_block_size); 523 524 t->physical_block_size = max(t->physical_block_size, 525 b->physical_block_size); 526 527 t->io_min = max(t->io_min, b->io_min); 528 t->no_cluster |= b->no_cluster; 529 530 /* Bottom device offset aligned? */ 531 if (offset && 532 (offset & (b->physical_block_size - 1)) != b->alignment_offset) { 533 t->misaligned = 1; 534 return -1; 535 } 536 537 /* If top has no alignment offset, inherit from bottom */ 538 if (!t->alignment_offset) 539 t->alignment_offset = 540 b->alignment_offset & (b->physical_block_size - 1); 541 542 /* Top device aligned on logical block boundary? */ 543 if (t->alignment_offset & (t->logical_block_size - 1)) { 544 t->misaligned = 1; 545 return -1; 546 } 547 548 /* Find lcm() of optimal I/O size */ 549 if (t->io_opt && b->io_opt) 550 t->io_opt = (t->io_opt * b->io_opt) / gcd(t->io_opt, b->io_opt); 551 else if (b->io_opt) 552 t->io_opt = b->io_opt; 553 554 /* Verify that optimal I/O size is a multiple of io_min */ 555 if (t->io_min && t->io_opt % t->io_min) 556 return -1; 557 558 return 0; 559 } 560 EXPORT_SYMBOL(blk_stack_limits); 561 562 /** 563 * disk_stack_limits - adjust queue limits for stacked drivers 564 * @disk: MD/DM gendisk (top) 565 * @bdev: the underlying block device (bottom) 566 * @offset: offset to beginning of data within component device 567 * 568 * Description: 569 * Merges the limits for two queues. Returns 0 if alignment 570 * didn't change. Returns -1 if adding the bottom device caused 571 * misalignment. 572 */ 573 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 574 sector_t offset) 575 { 576 struct request_queue *t = disk->queue; 577 struct request_queue *b = bdev_get_queue(bdev); 578 579 offset += get_start_sect(bdev) << 9; 580 581 if (blk_stack_limits(&t->limits, &b->limits, offset) < 0) { 582 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE]; 583 584 disk_name(disk, 0, top); 585 bdevname(bdev, bottom); 586 587 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n", 588 top, bottom); 589 } 590 591 if (!t->queue_lock) 592 WARN_ON_ONCE(1); 593 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) { 594 unsigned long flags; 595 596 spin_lock_irqsave(t->queue_lock, flags); 597 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) 598 queue_flag_clear(QUEUE_FLAG_CLUSTER, t); 599 spin_unlock_irqrestore(t->queue_lock, flags); 600 } 601 } 602 EXPORT_SYMBOL(disk_stack_limits); 603 604 /** 605 * blk_queue_dma_pad - set pad mask 606 * @q: the request queue for the device 607 * @mask: pad mask 608 * 609 * Set dma pad mask. 610 * 611 * Appending pad buffer to a request modifies the last entry of a 612 * scatter list such that it includes the pad buffer. 613 **/ 614 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask) 615 { 616 q->dma_pad_mask = mask; 617 } 618 EXPORT_SYMBOL(blk_queue_dma_pad); 619 620 /** 621 * blk_queue_update_dma_pad - update pad mask 622 * @q: the request queue for the device 623 * @mask: pad mask 624 * 625 * Update dma pad mask. 626 * 627 * Appending pad buffer to a request modifies the last entry of a 628 * scatter list such that it includes the pad buffer. 629 **/ 630 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 631 { 632 if (mask > q->dma_pad_mask) 633 q->dma_pad_mask = mask; 634 } 635 EXPORT_SYMBOL(blk_queue_update_dma_pad); 636 637 /** 638 * blk_queue_dma_drain - Set up a drain buffer for excess dma. 639 * @q: the request queue for the device 640 * @dma_drain_needed: fn which returns non-zero if drain is necessary 641 * @buf: physically contiguous buffer 642 * @size: size of the buffer in bytes 643 * 644 * Some devices have excess DMA problems and can't simply discard (or 645 * zero fill) the unwanted piece of the transfer. They have to have a 646 * real area of memory to transfer it into. The use case for this is 647 * ATAPI devices in DMA mode. If the packet command causes a transfer 648 * bigger than the transfer size some HBAs will lock up if there 649 * aren't DMA elements to contain the excess transfer. What this API 650 * does is adjust the queue so that the buf is always appended 651 * silently to the scatterlist. 652 * 653 * Note: This routine adjusts max_hw_segments to make room for 654 * appending the drain buffer. If you call 655 * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after 656 * calling this routine, you must set the limit to one fewer than your 657 * device can support otherwise there won't be room for the drain 658 * buffer. 659 */ 660 int blk_queue_dma_drain(struct request_queue *q, 661 dma_drain_needed_fn *dma_drain_needed, 662 void *buf, unsigned int size) 663 { 664 if (queue_max_hw_segments(q) < 2 || queue_max_phys_segments(q) < 2) 665 return -EINVAL; 666 /* make room for appending the drain */ 667 blk_queue_max_hw_segments(q, queue_max_hw_segments(q) - 1); 668 blk_queue_max_phys_segments(q, queue_max_phys_segments(q) - 1); 669 q->dma_drain_needed = dma_drain_needed; 670 q->dma_drain_buffer = buf; 671 q->dma_drain_size = size; 672 673 return 0; 674 } 675 EXPORT_SYMBOL_GPL(blk_queue_dma_drain); 676 677 /** 678 * blk_queue_segment_boundary - set boundary rules for segment merging 679 * @q: the request queue for the device 680 * @mask: the memory boundary mask 681 **/ 682 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 683 { 684 if (mask < PAGE_CACHE_SIZE - 1) { 685 mask = PAGE_CACHE_SIZE - 1; 686 printk(KERN_INFO "%s: set to minimum %lx\n", 687 __func__, mask); 688 } 689 690 q->limits.seg_boundary_mask = mask; 691 } 692 EXPORT_SYMBOL(blk_queue_segment_boundary); 693 694 /** 695 * blk_queue_dma_alignment - set dma length and memory alignment 696 * @q: the request queue for the device 697 * @mask: alignment mask 698 * 699 * description: 700 * set required memory and length alignment for direct dma transactions. 701 * this is used when building direct io requests for the queue. 702 * 703 **/ 704 void blk_queue_dma_alignment(struct request_queue *q, int mask) 705 { 706 q->dma_alignment = mask; 707 } 708 EXPORT_SYMBOL(blk_queue_dma_alignment); 709 710 /** 711 * blk_queue_update_dma_alignment - update dma length and memory alignment 712 * @q: the request queue for the device 713 * @mask: alignment mask 714 * 715 * description: 716 * update required memory and length alignment for direct dma transactions. 717 * If the requested alignment is larger than the current alignment, then 718 * the current queue alignment is updated to the new value, otherwise it 719 * is left alone. The design of this is to allow multiple objects 720 * (driver, device, transport etc) to set their respective 721 * alignments without having them interfere. 722 * 723 **/ 724 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 725 { 726 BUG_ON(mask > PAGE_SIZE); 727 728 if (mask > q->dma_alignment) 729 q->dma_alignment = mask; 730 } 731 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 732 733 static int __init blk_settings_init(void) 734 { 735 blk_max_low_pfn = max_low_pfn - 1; 736 blk_max_pfn = max_pfn - 1; 737 return 0; 738 } 739 subsys_initcall(blk_settings_init); 740