xref: /openbmc/linux/block/blk-settings.c (revision e105007c)
1 /*
2  * Functions related to setting various queue properties from drivers
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/jiffies.h>
12 
13 #include "blk.h"
14 
15 unsigned long blk_max_low_pfn;
16 EXPORT_SYMBOL(blk_max_low_pfn);
17 
18 unsigned long blk_max_pfn;
19 
20 /**
21  * blk_queue_prep_rq - set a prepare_request function for queue
22  * @q:		queue
23  * @pfn:	prepare_request function
24  *
25  * It's possible for a queue to register a prepare_request callback which
26  * is invoked before the request is handed to the request_fn. The goal of
27  * the function is to prepare a request for I/O, it can be used to build a
28  * cdb from the request data for instance.
29  *
30  */
31 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
32 {
33 	q->prep_rq_fn = pfn;
34 }
35 EXPORT_SYMBOL(blk_queue_prep_rq);
36 
37 /**
38  * blk_queue_merge_bvec - set a merge_bvec function for queue
39  * @q:		queue
40  * @mbfn:	merge_bvec_fn
41  *
42  * Usually queues have static limitations on the max sectors or segments that
43  * we can put in a request. Stacking drivers may have some settings that
44  * are dynamic, and thus we have to query the queue whether it is ok to
45  * add a new bio_vec to a bio at a given offset or not. If the block device
46  * has such limitations, it needs to register a merge_bvec_fn to control
47  * the size of bio's sent to it. Note that a block device *must* allow a
48  * single page to be added to an empty bio. The block device driver may want
49  * to use the bio_split() function to deal with these bio's. By default
50  * no merge_bvec_fn is defined for a queue, and only the fixed limits are
51  * honored.
52  */
53 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
54 {
55 	q->merge_bvec_fn = mbfn;
56 }
57 EXPORT_SYMBOL(blk_queue_merge_bvec);
58 
59 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
60 {
61 	q->softirq_done_fn = fn;
62 }
63 EXPORT_SYMBOL(blk_queue_softirq_done);
64 
65 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
66 {
67 	q->rq_timeout = timeout;
68 }
69 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
70 
71 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
72 {
73 	q->rq_timed_out_fn = fn;
74 }
75 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
76 
77 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
78 {
79 	q->lld_busy_fn = fn;
80 }
81 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
82 
83 /**
84  * blk_set_default_limits - reset limits to default values
85  * @lim:  the queue_limits structure to reset
86  *
87  * Description:
88  *   Returns a queue_limit struct to its default state.  Can be used by
89  *   stacking drivers like DM that stage table swaps and reuse an
90  *   existing device queue.
91  */
92 void blk_set_default_limits(struct queue_limits *lim)
93 {
94 	lim->max_phys_segments = MAX_PHYS_SEGMENTS;
95 	lim->max_hw_segments = MAX_HW_SEGMENTS;
96 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
97 	lim->max_segment_size = MAX_SEGMENT_SIZE;
98 	lim->max_sectors = BLK_DEF_MAX_SECTORS;
99 	lim->max_hw_sectors = INT_MAX;
100 	lim->max_discard_sectors = 0;
101 	lim->discard_granularity = 0;
102 	lim->discard_alignment = 0;
103 	lim->discard_misaligned = 0;
104 	lim->discard_zeroes_data = -1;
105 	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
106 	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
107 	lim->alignment_offset = 0;
108 	lim->io_opt = 0;
109 	lim->misaligned = 0;
110 	lim->no_cluster = 0;
111 }
112 EXPORT_SYMBOL(blk_set_default_limits);
113 
114 /**
115  * blk_queue_make_request - define an alternate make_request function for a device
116  * @q:  the request queue for the device to be affected
117  * @mfn: the alternate make_request function
118  *
119  * Description:
120  *    The normal way for &struct bios to be passed to a device
121  *    driver is for them to be collected into requests on a request
122  *    queue, and then to allow the device driver to select requests
123  *    off that queue when it is ready.  This works well for many block
124  *    devices. However some block devices (typically virtual devices
125  *    such as md or lvm) do not benefit from the processing on the
126  *    request queue, and are served best by having the requests passed
127  *    directly to them.  This can be achieved by providing a function
128  *    to blk_queue_make_request().
129  *
130  * Caveat:
131  *    The driver that does this *must* be able to deal appropriately
132  *    with buffers in "highmemory". This can be accomplished by either calling
133  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
134  *    blk_queue_bounce() to create a buffer in normal memory.
135  **/
136 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
137 {
138 	/*
139 	 * set defaults
140 	 */
141 	q->nr_requests = BLKDEV_MAX_RQ;
142 
143 	q->make_request_fn = mfn;
144 	blk_queue_dma_alignment(q, 511);
145 	blk_queue_congestion_threshold(q);
146 	q->nr_batching = BLK_BATCH_REQ;
147 
148 	q->unplug_thresh = 4;		/* hmm */
149 	q->unplug_delay = msecs_to_jiffies(3);	/* 3 milliseconds */
150 	if (q->unplug_delay == 0)
151 		q->unplug_delay = 1;
152 
153 	q->unplug_timer.function = blk_unplug_timeout;
154 	q->unplug_timer.data = (unsigned long)q;
155 
156 	blk_set_default_limits(&q->limits);
157 	blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
158 
159 	/*
160 	 * If the caller didn't supply a lock, fall back to our embedded
161 	 * per-queue locks
162 	 */
163 	if (!q->queue_lock)
164 		q->queue_lock = &q->__queue_lock;
165 
166 	/*
167 	 * by default assume old behaviour and bounce for any highmem page
168 	 */
169 	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
170 }
171 EXPORT_SYMBOL(blk_queue_make_request);
172 
173 /**
174  * blk_queue_bounce_limit - set bounce buffer limit for queue
175  * @q: the request queue for the device
176  * @dma_mask: the maximum address the device can handle
177  *
178  * Description:
179  *    Different hardware can have different requirements as to what pages
180  *    it can do I/O directly to. A low level driver can call
181  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
182  *    buffers for doing I/O to pages residing above @dma_mask.
183  **/
184 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
185 {
186 	unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
187 	int dma = 0;
188 
189 	q->bounce_gfp = GFP_NOIO;
190 #if BITS_PER_LONG == 64
191 	/*
192 	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
193 	 * some IOMMUs can handle everything, but I don't know of a
194 	 * way to test this here.
195 	 */
196 	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
197 		dma = 1;
198 	q->limits.bounce_pfn = max_low_pfn;
199 #else
200 	if (b_pfn < blk_max_low_pfn)
201 		dma = 1;
202 	q->limits.bounce_pfn = b_pfn;
203 #endif
204 	if (dma) {
205 		init_emergency_isa_pool();
206 		q->bounce_gfp = GFP_NOIO | GFP_DMA;
207 		q->limits.bounce_pfn = b_pfn;
208 	}
209 }
210 EXPORT_SYMBOL(blk_queue_bounce_limit);
211 
212 /**
213  * blk_queue_max_sectors - set max sectors for a request for this queue
214  * @q:  the request queue for the device
215  * @max_sectors:  max sectors in the usual 512b unit
216  *
217  * Description:
218  *    Enables a low level driver to set an upper limit on the size of
219  *    received requests.
220  **/
221 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
222 {
223 	if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
224 		max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
225 		printk(KERN_INFO "%s: set to minimum %d\n",
226 		       __func__, max_sectors);
227 	}
228 
229 	if (BLK_DEF_MAX_SECTORS > max_sectors)
230 		q->limits.max_hw_sectors = q->limits.max_sectors = max_sectors;
231 	else {
232 		q->limits.max_sectors = BLK_DEF_MAX_SECTORS;
233 		q->limits.max_hw_sectors = max_sectors;
234 	}
235 }
236 EXPORT_SYMBOL(blk_queue_max_sectors);
237 
238 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_sectors)
239 {
240 	if (BLK_DEF_MAX_SECTORS > max_sectors)
241 		q->limits.max_hw_sectors = BLK_DEF_MAX_SECTORS;
242 	else
243 		q->limits.max_hw_sectors = max_sectors;
244 }
245 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
246 
247 /**
248  * blk_queue_max_discard_sectors - set max sectors for a single discard
249  * @q:  the request queue for the device
250  * @max_discard_sectors: maximum number of sectors to discard
251  **/
252 void blk_queue_max_discard_sectors(struct request_queue *q,
253 		unsigned int max_discard_sectors)
254 {
255 	q->limits.max_discard_sectors = max_discard_sectors;
256 }
257 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
258 
259 /**
260  * blk_queue_max_phys_segments - set max phys segments for a request for this queue
261  * @q:  the request queue for the device
262  * @max_segments:  max number of segments
263  *
264  * Description:
265  *    Enables a low level driver to set an upper limit on the number of
266  *    physical data segments in a request.  This would be the largest sized
267  *    scatter list the driver could handle.
268  **/
269 void blk_queue_max_phys_segments(struct request_queue *q,
270 				 unsigned short max_segments)
271 {
272 	if (!max_segments) {
273 		max_segments = 1;
274 		printk(KERN_INFO "%s: set to minimum %d\n",
275 		       __func__, max_segments);
276 	}
277 
278 	q->limits.max_phys_segments = max_segments;
279 }
280 EXPORT_SYMBOL(blk_queue_max_phys_segments);
281 
282 /**
283  * blk_queue_max_hw_segments - set max hw segments for a request for this queue
284  * @q:  the request queue for the device
285  * @max_segments:  max number of segments
286  *
287  * Description:
288  *    Enables a low level driver to set an upper limit on the number of
289  *    hw data segments in a request.  This would be the largest number of
290  *    address/length pairs the host adapter can actually give at once
291  *    to the device.
292  **/
293 void blk_queue_max_hw_segments(struct request_queue *q,
294 			       unsigned short max_segments)
295 {
296 	if (!max_segments) {
297 		max_segments = 1;
298 		printk(KERN_INFO "%s: set to minimum %d\n",
299 		       __func__, max_segments);
300 	}
301 
302 	q->limits.max_hw_segments = max_segments;
303 }
304 EXPORT_SYMBOL(blk_queue_max_hw_segments);
305 
306 /**
307  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
308  * @q:  the request queue for the device
309  * @max_size:  max size of segment in bytes
310  *
311  * Description:
312  *    Enables a low level driver to set an upper limit on the size of a
313  *    coalesced segment
314  **/
315 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
316 {
317 	if (max_size < PAGE_CACHE_SIZE) {
318 		max_size = PAGE_CACHE_SIZE;
319 		printk(KERN_INFO "%s: set to minimum %d\n",
320 		       __func__, max_size);
321 	}
322 
323 	q->limits.max_segment_size = max_size;
324 }
325 EXPORT_SYMBOL(blk_queue_max_segment_size);
326 
327 /**
328  * blk_queue_logical_block_size - set logical block size for the queue
329  * @q:  the request queue for the device
330  * @size:  the logical block size, in bytes
331  *
332  * Description:
333  *   This should be set to the lowest possible block size that the
334  *   storage device can address.  The default of 512 covers most
335  *   hardware.
336  **/
337 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
338 {
339 	q->limits.logical_block_size = size;
340 
341 	if (q->limits.physical_block_size < size)
342 		q->limits.physical_block_size = size;
343 
344 	if (q->limits.io_min < q->limits.physical_block_size)
345 		q->limits.io_min = q->limits.physical_block_size;
346 }
347 EXPORT_SYMBOL(blk_queue_logical_block_size);
348 
349 /**
350  * blk_queue_physical_block_size - set physical block size for the queue
351  * @q:  the request queue for the device
352  * @size:  the physical block size, in bytes
353  *
354  * Description:
355  *   This should be set to the lowest possible sector size that the
356  *   hardware can operate on without reverting to read-modify-write
357  *   operations.
358  */
359 void blk_queue_physical_block_size(struct request_queue *q, unsigned short size)
360 {
361 	q->limits.physical_block_size = size;
362 
363 	if (q->limits.physical_block_size < q->limits.logical_block_size)
364 		q->limits.physical_block_size = q->limits.logical_block_size;
365 
366 	if (q->limits.io_min < q->limits.physical_block_size)
367 		q->limits.io_min = q->limits.physical_block_size;
368 }
369 EXPORT_SYMBOL(blk_queue_physical_block_size);
370 
371 /**
372  * blk_queue_alignment_offset - set physical block alignment offset
373  * @q:	the request queue for the device
374  * @offset: alignment offset in bytes
375  *
376  * Description:
377  *   Some devices are naturally misaligned to compensate for things like
378  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
379  *   should call this function for devices whose first sector is not
380  *   naturally aligned.
381  */
382 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
383 {
384 	q->limits.alignment_offset =
385 		offset & (q->limits.physical_block_size - 1);
386 	q->limits.misaligned = 0;
387 }
388 EXPORT_SYMBOL(blk_queue_alignment_offset);
389 
390 /**
391  * blk_limits_io_min - set minimum request size for a device
392  * @limits: the queue limits
393  * @min:  smallest I/O size in bytes
394  *
395  * Description:
396  *   Some devices have an internal block size bigger than the reported
397  *   hardware sector size.  This function can be used to signal the
398  *   smallest I/O the device can perform without incurring a performance
399  *   penalty.
400  */
401 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
402 {
403 	limits->io_min = min;
404 
405 	if (limits->io_min < limits->logical_block_size)
406 		limits->io_min = limits->logical_block_size;
407 
408 	if (limits->io_min < limits->physical_block_size)
409 		limits->io_min = limits->physical_block_size;
410 }
411 EXPORT_SYMBOL(blk_limits_io_min);
412 
413 /**
414  * blk_queue_io_min - set minimum request size for the queue
415  * @q:	the request queue for the device
416  * @min:  smallest I/O size in bytes
417  *
418  * Description:
419  *   Storage devices may report a granularity or preferred minimum I/O
420  *   size which is the smallest request the device can perform without
421  *   incurring a performance penalty.  For disk drives this is often the
422  *   physical block size.  For RAID arrays it is often the stripe chunk
423  *   size.  A properly aligned multiple of minimum_io_size is the
424  *   preferred request size for workloads where a high number of I/O
425  *   operations is desired.
426  */
427 void blk_queue_io_min(struct request_queue *q, unsigned int min)
428 {
429 	blk_limits_io_min(&q->limits, min);
430 }
431 EXPORT_SYMBOL(blk_queue_io_min);
432 
433 /**
434  * blk_limits_io_opt - set optimal request size for a device
435  * @limits: the queue limits
436  * @opt:  smallest I/O size in bytes
437  *
438  * Description:
439  *   Storage devices may report an optimal I/O size, which is the
440  *   device's preferred unit for sustained I/O.  This is rarely reported
441  *   for disk drives.  For RAID arrays it is usually the stripe width or
442  *   the internal track size.  A properly aligned multiple of
443  *   optimal_io_size is the preferred request size for workloads where
444  *   sustained throughput is desired.
445  */
446 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
447 {
448 	limits->io_opt = opt;
449 }
450 EXPORT_SYMBOL(blk_limits_io_opt);
451 
452 /**
453  * blk_queue_io_opt - set optimal request size for the queue
454  * @q:	the request queue for the device
455  * @opt:  optimal request size in bytes
456  *
457  * Description:
458  *   Storage devices may report an optimal I/O size, which is the
459  *   device's preferred unit for sustained I/O.  This is rarely reported
460  *   for disk drives.  For RAID arrays it is usually the stripe width or
461  *   the internal track size.  A properly aligned multiple of
462  *   optimal_io_size is the preferred request size for workloads where
463  *   sustained throughput is desired.
464  */
465 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
466 {
467 	blk_limits_io_opt(&q->limits, opt);
468 }
469 EXPORT_SYMBOL(blk_queue_io_opt);
470 
471 /*
472  * Returns the minimum that is _not_ zero, unless both are zero.
473  */
474 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
475 
476 /**
477  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
478  * @t:	the stacking driver (top)
479  * @b:  the underlying device (bottom)
480  **/
481 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
482 {
483 	blk_stack_limits(&t->limits, &b->limits, 0);
484 
485 	if (!t->queue_lock)
486 		WARN_ON_ONCE(1);
487 	else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
488 		unsigned long flags;
489 		spin_lock_irqsave(t->queue_lock, flags);
490 		queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
491 		spin_unlock_irqrestore(t->queue_lock, flags);
492 	}
493 }
494 EXPORT_SYMBOL(blk_queue_stack_limits);
495 
496 static unsigned int lcm(unsigned int a, unsigned int b)
497 {
498 	if (a && b)
499 		return (a * b) / gcd(a, b);
500 	else if (b)
501 		return b;
502 
503 	return a;
504 }
505 
506 /**
507  * blk_stack_limits - adjust queue_limits for stacked devices
508  * @t:	the stacking driver limits (top device)
509  * @b:  the underlying queue limits (bottom, component device)
510  * @offset:  offset to beginning of data within component device
511  *
512  * Description:
513  *    This function is used by stacking drivers like MD and DM to ensure
514  *    that all component devices have compatible block sizes and
515  *    alignments.  The stacking driver must provide a queue_limits
516  *    struct (top) and then iteratively call the stacking function for
517  *    all component (bottom) devices.  The stacking function will
518  *    attempt to combine the values and ensure proper alignment.
519  *
520  *    Returns 0 if the top and bottom queue_limits are compatible.  The
521  *    top device's block sizes and alignment offsets may be adjusted to
522  *    ensure alignment with the bottom device. If no compatible sizes
523  *    and alignments exist, -1 is returned and the resulting top
524  *    queue_limits will have the misaligned flag set to indicate that
525  *    the alignment_offset is undefined.
526  */
527 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
528 		     sector_t offset)
529 {
530 	sector_t alignment;
531 	unsigned int top, bottom, ret = 0;
532 
533 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
534 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
535 	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
536 
537 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
538 					    b->seg_boundary_mask);
539 
540 	t->max_phys_segments = min_not_zero(t->max_phys_segments,
541 					    b->max_phys_segments);
542 
543 	t->max_hw_segments = min_not_zero(t->max_hw_segments,
544 					  b->max_hw_segments);
545 
546 	t->max_segment_size = min_not_zero(t->max_segment_size,
547 					   b->max_segment_size);
548 
549 	t->misaligned |= b->misaligned;
550 
551 	alignment = queue_limit_alignment_offset(b, offset);
552 
553 	/* Bottom device has different alignment.  Check that it is
554 	 * compatible with the current top alignment.
555 	 */
556 	if (t->alignment_offset != alignment) {
557 
558 		top = max(t->physical_block_size, t->io_min)
559 			+ t->alignment_offset;
560 		bottom = max(b->physical_block_size, b->io_min) + alignment;
561 
562 		/* Verify that top and bottom intervals line up */
563 		if (max(top, bottom) & (min(top, bottom) - 1)) {
564 			t->misaligned = 1;
565 			ret = -1;
566 		}
567 	}
568 
569 	t->logical_block_size = max(t->logical_block_size,
570 				    b->logical_block_size);
571 
572 	t->physical_block_size = max(t->physical_block_size,
573 				     b->physical_block_size);
574 
575 	t->io_min = max(t->io_min, b->io_min);
576 	t->io_opt = lcm(t->io_opt, b->io_opt);
577 
578 	t->no_cluster |= b->no_cluster;
579 	t->discard_zeroes_data &= b->discard_zeroes_data;
580 
581 	/* Physical block size a multiple of the logical block size? */
582 	if (t->physical_block_size & (t->logical_block_size - 1)) {
583 		t->physical_block_size = t->logical_block_size;
584 		t->misaligned = 1;
585 		ret = -1;
586 	}
587 
588 	/* Minimum I/O a multiple of the physical block size? */
589 	if (t->io_min & (t->physical_block_size - 1)) {
590 		t->io_min = t->physical_block_size;
591 		t->misaligned = 1;
592 		ret = -1;
593 	}
594 
595 	/* Optimal I/O a multiple of the physical block size? */
596 	if (t->io_opt & (t->physical_block_size - 1)) {
597 		t->io_opt = 0;
598 		t->misaligned = 1;
599 		ret = -1;
600 	}
601 
602 	/* Find lowest common alignment_offset */
603 	t->alignment_offset = lcm(t->alignment_offset, alignment)
604 		& (max(t->physical_block_size, t->io_min) - 1);
605 
606 	/* Verify that new alignment_offset is on a logical block boundary */
607 	if (t->alignment_offset & (t->logical_block_size - 1)) {
608 		t->misaligned = 1;
609 		ret = -1;
610 	}
611 
612 	/* Discard alignment and granularity */
613 	if (b->discard_granularity) {
614 		unsigned int granularity = b->discard_granularity;
615 		offset &= granularity - 1;
616 
617 		alignment = (granularity + b->discard_alignment - offset)
618 			& (granularity - 1);
619 
620 		if (t->discard_granularity != 0 &&
621 		    t->discard_alignment != alignment) {
622 			top = t->discard_granularity + t->discard_alignment;
623 			bottom = b->discard_granularity + alignment;
624 
625 			/* Verify that top and bottom intervals line up */
626 			if (max(top, bottom) & (min(top, bottom) - 1))
627 				t->discard_misaligned = 1;
628 		}
629 
630 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
631 						      b->max_discard_sectors);
632 		t->discard_granularity = max(t->discard_granularity,
633 					     b->discard_granularity);
634 		t->discard_alignment = lcm(t->discard_alignment, alignment) &
635 			(t->discard_granularity - 1);
636 	}
637 
638 	return ret;
639 }
640 EXPORT_SYMBOL(blk_stack_limits);
641 
642 /**
643  * bdev_stack_limits - adjust queue limits for stacked drivers
644  * @t:	the stacking driver limits (top device)
645  * @bdev:  the component block_device (bottom)
646  * @start:  first data sector within component device
647  *
648  * Description:
649  *    Merges queue limits for a top device and a block_device.  Returns
650  *    0 if alignment didn't change.  Returns -1 if adding the bottom
651  *    device caused misalignment.
652  */
653 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
654 		      sector_t start)
655 {
656 	struct request_queue *bq = bdev_get_queue(bdev);
657 
658 	start += get_start_sect(bdev);
659 
660 	return blk_stack_limits(t, &bq->limits, start << 9);
661 }
662 EXPORT_SYMBOL(bdev_stack_limits);
663 
664 /**
665  * disk_stack_limits - adjust queue limits for stacked drivers
666  * @disk:  MD/DM gendisk (top)
667  * @bdev:  the underlying block device (bottom)
668  * @offset:  offset to beginning of data within component device
669  *
670  * Description:
671  *    Merges the limits for two queues.  Returns 0 if alignment
672  *    didn't change.  Returns -1 if adding the bottom device caused
673  *    misalignment.
674  */
675 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
676 		       sector_t offset)
677 {
678 	struct request_queue *t = disk->queue;
679 	struct request_queue *b = bdev_get_queue(bdev);
680 
681 	offset += get_start_sect(bdev) << 9;
682 
683 	if (blk_stack_limits(&t->limits, &b->limits, offset) < 0) {
684 		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
685 
686 		disk_name(disk, 0, top);
687 		bdevname(bdev, bottom);
688 
689 		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
690 		       top, bottom);
691 	}
692 
693 	if (!t->queue_lock)
694 		WARN_ON_ONCE(1);
695 	else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
696 		unsigned long flags;
697 
698 		spin_lock_irqsave(t->queue_lock, flags);
699 		if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
700 			queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
701 		spin_unlock_irqrestore(t->queue_lock, flags);
702 	}
703 }
704 EXPORT_SYMBOL(disk_stack_limits);
705 
706 /**
707  * blk_queue_dma_pad - set pad mask
708  * @q:     the request queue for the device
709  * @mask:  pad mask
710  *
711  * Set dma pad mask.
712  *
713  * Appending pad buffer to a request modifies the last entry of a
714  * scatter list such that it includes the pad buffer.
715  **/
716 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
717 {
718 	q->dma_pad_mask = mask;
719 }
720 EXPORT_SYMBOL(blk_queue_dma_pad);
721 
722 /**
723  * blk_queue_update_dma_pad - update pad mask
724  * @q:     the request queue for the device
725  * @mask:  pad mask
726  *
727  * Update dma pad mask.
728  *
729  * Appending pad buffer to a request modifies the last entry of a
730  * scatter list such that it includes the pad buffer.
731  **/
732 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
733 {
734 	if (mask > q->dma_pad_mask)
735 		q->dma_pad_mask = mask;
736 }
737 EXPORT_SYMBOL(blk_queue_update_dma_pad);
738 
739 /**
740  * blk_queue_dma_drain - Set up a drain buffer for excess dma.
741  * @q:  the request queue for the device
742  * @dma_drain_needed: fn which returns non-zero if drain is necessary
743  * @buf:	physically contiguous buffer
744  * @size:	size of the buffer in bytes
745  *
746  * Some devices have excess DMA problems and can't simply discard (or
747  * zero fill) the unwanted piece of the transfer.  They have to have a
748  * real area of memory to transfer it into.  The use case for this is
749  * ATAPI devices in DMA mode.  If the packet command causes a transfer
750  * bigger than the transfer size some HBAs will lock up if there
751  * aren't DMA elements to contain the excess transfer.  What this API
752  * does is adjust the queue so that the buf is always appended
753  * silently to the scatterlist.
754  *
755  * Note: This routine adjusts max_hw_segments to make room for
756  * appending the drain buffer.  If you call
757  * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after
758  * calling this routine, you must set the limit to one fewer than your
759  * device can support otherwise there won't be room for the drain
760  * buffer.
761  */
762 int blk_queue_dma_drain(struct request_queue *q,
763 			       dma_drain_needed_fn *dma_drain_needed,
764 			       void *buf, unsigned int size)
765 {
766 	if (queue_max_hw_segments(q) < 2 || queue_max_phys_segments(q) < 2)
767 		return -EINVAL;
768 	/* make room for appending the drain */
769 	blk_queue_max_hw_segments(q, queue_max_hw_segments(q) - 1);
770 	blk_queue_max_phys_segments(q, queue_max_phys_segments(q) - 1);
771 	q->dma_drain_needed = dma_drain_needed;
772 	q->dma_drain_buffer = buf;
773 	q->dma_drain_size = size;
774 
775 	return 0;
776 }
777 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
778 
779 /**
780  * blk_queue_segment_boundary - set boundary rules for segment merging
781  * @q:  the request queue for the device
782  * @mask:  the memory boundary mask
783  **/
784 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
785 {
786 	if (mask < PAGE_CACHE_SIZE - 1) {
787 		mask = PAGE_CACHE_SIZE - 1;
788 		printk(KERN_INFO "%s: set to minimum %lx\n",
789 		       __func__, mask);
790 	}
791 
792 	q->limits.seg_boundary_mask = mask;
793 }
794 EXPORT_SYMBOL(blk_queue_segment_boundary);
795 
796 /**
797  * blk_queue_dma_alignment - set dma length and memory alignment
798  * @q:     the request queue for the device
799  * @mask:  alignment mask
800  *
801  * description:
802  *    set required memory and length alignment for direct dma transactions.
803  *    this is used when building direct io requests for the queue.
804  *
805  **/
806 void blk_queue_dma_alignment(struct request_queue *q, int mask)
807 {
808 	q->dma_alignment = mask;
809 }
810 EXPORT_SYMBOL(blk_queue_dma_alignment);
811 
812 /**
813  * blk_queue_update_dma_alignment - update dma length and memory alignment
814  * @q:     the request queue for the device
815  * @mask:  alignment mask
816  *
817  * description:
818  *    update required memory and length alignment for direct dma transactions.
819  *    If the requested alignment is larger than the current alignment, then
820  *    the current queue alignment is updated to the new value, otherwise it
821  *    is left alone.  The design of this is to allow multiple objects
822  *    (driver, device, transport etc) to set their respective
823  *    alignments without having them interfere.
824  *
825  **/
826 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
827 {
828 	BUG_ON(mask > PAGE_SIZE);
829 
830 	if (mask > q->dma_alignment)
831 		q->dma_alignment = mask;
832 }
833 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
834 
835 static int __init blk_settings_init(void)
836 {
837 	blk_max_low_pfn = max_low_pfn - 1;
838 	blk_max_pfn = max_pfn - 1;
839 	return 0;
840 }
841 subsys_initcall(blk_settings_init);
842