xref: /openbmc/linux/block/blk-settings.c (revision d78c317f)
1 /*
2  * Functions related to setting various queue properties from drivers
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
14 
15 #include "blk.h"
16 
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
19 
20 unsigned long blk_max_pfn;
21 
22 /**
23  * blk_queue_prep_rq - set a prepare_request function for queue
24  * @q:		queue
25  * @pfn:	prepare_request function
26  *
27  * It's possible for a queue to register a prepare_request callback which
28  * is invoked before the request is handed to the request_fn. The goal of
29  * the function is to prepare a request for I/O, it can be used to build a
30  * cdb from the request data for instance.
31  *
32  */
33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
34 {
35 	q->prep_rq_fn = pfn;
36 }
37 EXPORT_SYMBOL(blk_queue_prep_rq);
38 
39 /**
40  * blk_queue_unprep_rq - set an unprepare_request function for queue
41  * @q:		queue
42  * @ufn:	unprepare_request function
43  *
44  * It's possible for a queue to register an unprepare_request callback
45  * which is invoked before the request is finally completed. The goal
46  * of the function is to deallocate any data that was allocated in the
47  * prepare_request callback.
48  *
49  */
50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
51 {
52 	q->unprep_rq_fn = ufn;
53 }
54 EXPORT_SYMBOL(blk_queue_unprep_rq);
55 
56 /**
57  * blk_queue_merge_bvec - set a merge_bvec function for queue
58  * @q:		queue
59  * @mbfn:	merge_bvec_fn
60  *
61  * Usually queues have static limitations on the max sectors or segments that
62  * we can put in a request. Stacking drivers may have some settings that
63  * are dynamic, and thus we have to query the queue whether it is ok to
64  * add a new bio_vec to a bio at a given offset or not. If the block device
65  * has such limitations, it needs to register a merge_bvec_fn to control
66  * the size of bio's sent to it. Note that a block device *must* allow a
67  * single page to be added to an empty bio. The block device driver may want
68  * to use the bio_split() function to deal with these bio's. By default
69  * no merge_bvec_fn is defined for a queue, and only the fixed limits are
70  * honored.
71  */
72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
73 {
74 	q->merge_bvec_fn = mbfn;
75 }
76 EXPORT_SYMBOL(blk_queue_merge_bvec);
77 
78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
79 {
80 	q->softirq_done_fn = fn;
81 }
82 EXPORT_SYMBOL(blk_queue_softirq_done);
83 
84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
85 {
86 	q->rq_timeout = timeout;
87 }
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
89 
90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
91 {
92 	q->rq_timed_out_fn = fn;
93 }
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
95 
96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
97 {
98 	q->lld_busy_fn = fn;
99 }
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
101 
102 /**
103  * blk_set_default_limits - reset limits to default values
104  * @lim:  the queue_limits structure to reset
105  *
106  * Description:
107  *   Returns a queue_limit struct to its default state.
108  */
109 void blk_set_default_limits(struct queue_limits *lim)
110 {
111 	lim->max_segments = BLK_MAX_SEGMENTS;
112 	lim->max_integrity_segments = 0;
113 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
114 	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
115 	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
116 	lim->max_discard_sectors = 0;
117 	lim->discard_granularity = 0;
118 	lim->discard_alignment = 0;
119 	lim->discard_misaligned = 0;
120 	lim->discard_zeroes_data = 0;
121 	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
122 	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
123 	lim->alignment_offset = 0;
124 	lim->io_opt = 0;
125 	lim->misaligned = 0;
126 	lim->cluster = 1;
127 }
128 EXPORT_SYMBOL(blk_set_default_limits);
129 
130 /**
131  * blk_set_stacking_limits - set default limits for stacking devices
132  * @lim:  the queue_limits structure to reset
133  *
134  * Description:
135  *   Returns a queue_limit struct to its default state. Should be used
136  *   by stacking drivers like DM that have no internal limits.
137  */
138 void blk_set_stacking_limits(struct queue_limits *lim)
139 {
140 	blk_set_default_limits(lim);
141 
142 	/* Inherit limits from component devices */
143 	lim->discard_zeroes_data = 1;
144 	lim->max_segments = USHRT_MAX;
145 	lim->max_hw_sectors = UINT_MAX;
146 
147 	lim->max_sectors = BLK_DEF_MAX_SECTORS;
148 }
149 EXPORT_SYMBOL(blk_set_stacking_limits);
150 
151 /**
152  * blk_queue_make_request - define an alternate make_request function for a device
153  * @q:  the request queue for the device to be affected
154  * @mfn: the alternate make_request function
155  *
156  * Description:
157  *    The normal way for &struct bios to be passed to a device
158  *    driver is for them to be collected into requests on a request
159  *    queue, and then to allow the device driver to select requests
160  *    off that queue when it is ready.  This works well for many block
161  *    devices. However some block devices (typically virtual devices
162  *    such as md or lvm) do not benefit from the processing on the
163  *    request queue, and are served best by having the requests passed
164  *    directly to them.  This can be achieved by providing a function
165  *    to blk_queue_make_request().
166  *
167  * Caveat:
168  *    The driver that does this *must* be able to deal appropriately
169  *    with buffers in "highmemory". This can be accomplished by either calling
170  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
171  *    blk_queue_bounce() to create a buffer in normal memory.
172  **/
173 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
174 {
175 	/*
176 	 * set defaults
177 	 */
178 	q->nr_requests = BLKDEV_MAX_RQ;
179 
180 	q->make_request_fn = mfn;
181 	blk_queue_dma_alignment(q, 511);
182 	blk_queue_congestion_threshold(q);
183 	q->nr_batching = BLK_BATCH_REQ;
184 
185 	blk_set_default_limits(&q->limits);
186 
187 	/*
188 	 * by default assume old behaviour and bounce for any highmem page
189 	 */
190 	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
191 }
192 EXPORT_SYMBOL(blk_queue_make_request);
193 
194 /**
195  * blk_queue_bounce_limit - set bounce buffer limit for queue
196  * @q: the request queue for the device
197  * @dma_mask: the maximum address the device can handle
198  *
199  * Description:
200  *    Different hardware can have different requirements as to what pages
201  *    it can do I/O directly to. A low level driver can call
202  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
203  *    buffers for doing I/O to pages residing above @dma_mask.
204  **/
205 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
206 {
207 	unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
208 	int dma = 0;
209 
210 	q->bounce_gfp = GFP_NOIO;
211 #if BITS_PER_LONG == 64
212 	/*
213 	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
214 	 * some IOMMUs can handle everything, but I don't know of a
215 	 * way to test this here.
216 	 */
217 	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
218 		dma = 1;
219 	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
220 #else
221 	if (b_pfn < blk_max_low_pfn)
222 		dma = 1;
223 	q->limits.bounce_pfn = b_pfn;
224 #endif
225 	if (dma) {
226 		init_emergency_isa_pool();
227 		q->bounce_gfp = GFP_NOIO | GFP_DMA;
228 		q->limits.bounce_pfn = b_pfn;
229 	}
230 }
231 EXPORT_SYMBOL(blk_queue_bounce_limit);
232 
233 /**
234  * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
235  * @limits: the queue limits
236  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
237  *
238  * Description:
239  *    Enables a low level driver to set a hard upper limit,
240  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
241  *    the device driver based upon the combined capabilities of I/O
242  *    controller and storage device.
243  *
244  *    max_sectors is a soft limit imposed by the block layer for
245  *    filesystem type requests.  This value can be overridden on a
246  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
247  *    The soft limit can not exceed max_hw_sectors.
248  **/
249 void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
250 {
251 	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
252 		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
253 		printk(KERN_INFO "%s: set to minimum %d\n",
254 		       __func__, max_hw_sectors);
255 	}
256 
257 	limits->max_hw_sectors = max_hw_sectors;
258 	limits->max_sectors = min_t(unsigned int, max_hw_sectors,
259 				    BLK_DEF_MAX_SECTORS);
260 }
261 EXPORT_SYMBOL(blk_limits_max_hw_sectors);
262 
263 /**
264  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
265  * @q:  the request queue for the device
266  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
267  *
268  * Description:
269  *    See description for blk_limits_max_hw_sectors().
270  **/
271 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
272 {
273 	blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
274 }
275 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
276 
277 /**
278  * blk_queue_max_discard_sectors - set max sectors for a single discard
279  * @q:  the request queue for the device
280  * @max_discard_sectors: maximum number of sectors to discard
281  **/
282 void blk_queue_max_discard_sectors(struct request_queue *q,
283 		unsigned int max_discard_sectors)
284 {
285 	q->limits.max_discard_sectors = max_discard_sectors;
286 }
287 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
288 
289 /**
290  * blk_queue_max_segments - set max hw segments for a request for this queue
291  * @q:  the request queue for the device
292  * @max_segments:  max number of segments
293  *
294  * Description:
295  *    Enables a low level driver to set an upper limit on the number of
296  *    hw data segments in a request.
297  **/
298 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
299 {
300 	if (!max_segments) {
301 		max_segments = 1;
302 		printk(KERN_INFO "%s: set to minimum %d\n",
303 		       __func__, max_segments);
304 	}
305 
306 	q->limits.max_segments = max_segments;
307 }
308 EXPORT_SYMBOL(blk_queue_max_segments);
309 
310 /**
311  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
312  * @q:  the request queue for the device
313  * @max_size:  max size of segment in bytes
314  *
315  * Description:
316  *    Enables a low level driver to set an upper limit on the size of a
317  *    coalesced segment
318  **/
319 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
320 {
321 	if (max_size < PAGE_CACHE_SIZE) {
322 		max_size = PAGE_CACHE_SIZE;
323 		printk(KERN_INFO "%s: set to minimum %d\n",
324 		       __func__, max_size);
325 	}
326 
327 	q->limits.max_segment_size = max_size;
328 }
329 EXPORT_SYMBOL(blk_queue_max_segment_size);
330 
331 /**
332  * blk_queue_logical_block_size - set logical block size for the queue
333  * @q:  the request queue for the device
334  * @size:  the logical block size, in bytes
335  *
336  * Description:
337  *   This should be set to the lowest possible block size that the
338  *   storage device can address.  The default of 512 covers most
339  *   hardware.
340  **/
341 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
342 {
343 	q->limits.logical_block_size = size;
344 
345 	if (q->limits.physical_block_size < size)
346 		q->limits.physical_block_size = size;
347 
348 	if (q->limits.io_min < q->limits.physical_block_size)
349 		q->limits.io_min = q->limits.physical_block_size;
350 }
351 EXPORT_SYMBOL(blk_queue_logical_block_size);
352 
353 /**
354  * blk_queue_physical_block_size - set physical block size for the queue
355  * @q:  the request queue for the device
356  * @size:  the physical block size, in bytes
357  *
358  * Description:
359  *   This should be set to the lowest possible sector size that the
360  *   hardware can operate on without reverting to read-modify-write
361  *   operations.
362  */
363 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
364 {
365 	q->limits.physical_block_size = size;
366 
367 	if (q->limits.physical_block_size < q->limits.logical_block_size)
368 		q->limits.physical_block_size = q->limits.logical_block_size;
369 
370 	if (q->limits.io_min < q->limits.physical_block_size)
371 		q->limits.io_min = q->limits.physical_block_size;
372 }
373 EXPORT_SYMBOL(blk_queue_physical_block_size);
374 
375 /**
376  * blk_queue_alignment_offset - set physical block alignment offset
377  * @q:	the request queue for the device
378  * @offset: alignment offset in bytes
379  *
380  * Description:
381  *   Some devices are naturally misaligned to compensate for things like
382  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
383  *   should call this function for devices whose first sector is not
384  *   naturally aligned.
385  */
386 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
387 {
388 	q->limits.alignment_offset =
389 		offset & (q->limits.physical_block_size - 1);
390 	q->limits.misaligned = 0;
391 }
392 EXPORT_SYMBOL(blk_queue_alignment_offset);
393 
394 /**
395  * blk_limits_io_min - set minimum request size for a device
396  * @limits: the queue limits
397  * @min:  smallest I/O size in bytes
398  *
399  * Description:
400  *   Some devices have an internal block size bigger than the reported
401  *   hardware sector size.  This function can be used to signal the
402  *   smallest I/O the device can perform without incurring a performance
403  *   penalty.
404  */
405 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
406 {
407 	limits->io_min = min;
408 
409 	if (limits->io_min < limits->logical_block_size)
410 		limits->io_min = limits->logical_block_size;
411 
412 	if (limits->io_min < limits->physical_block_size)
413 		limits->io_min = limits->physical_block_size;
414 }
415 EXPORT_SYMBOL(blk_limits_io_min);
416 
417 /**
418  * blk_queue_io_min - set minimum request size for the queue
419  * @q:	the request queue for the device
420  * @min:  smallest I/O size in bytes
421  *
422  * Description:
423  *   Storage devices may report a granularity or preferred minimum I/O
424  *   size which is the smallest request the device can perform without
425  *   incurring a performance penalty.  For disk drives this is often the
426  *   physical block size.  For RAID arrays it is often the stripe chunk
427  *   size.  A properly aligned multiple of minimum_io_size is the
428  *   preferred request size for workloads where a high number of I/O
429  *   operations is desired.
430  */
431 void blk_queue_io_min(struct request_queue *q, unsigned int min)
432 {
433 	blk_limits_io_min(&q->limits, min);
434 }
435 EXPORT_SYMBOL(blk_queue_io_min);
436 
437 /**
438  * blk_limits_io_opt - set optimal request size for a device
439  * @limits: the queue limits
440  * @opt:  smallest I/O size in bytes
441  *
442  * Description:
443  *   Storage devices may report an optimal I/O size, which is the
444  *   device's preferred unit for sustained I/O.  This is rarely reported
445  *   for disk drives.  For RAID arrays it is usually the stripe width or
446  *   the internal track size.  A properly aligned multiple of
447  *   optimal_io_size is the preferred request size for workloads where
448  *   sustained throughput is desired.
449  */
450 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
451 {
452 	limits->io_opt = opt;
453 }
454 EXPORT_SYMBOL(blk_limits_io_opt);
455 
456 /**
457  * blk_queue_io_opt - set optimal request size for the queue
458  * @q:	the request queue for the device
459  * @opt:  optimal request size in bytes
460  *
461  * Description:
462  *   Storage devices may report an optimal I/O size, which is the
463  *   device's preferred unit for sustained I/O.  This is rarely reported
464  *   for disk drives.  For RAID arrays it is usually the stripe width or
465  *   the internal track size.  A properly aligned multiple of
466  *   optimal_io_size is the preferred request size for workloads where
467  *   sustained throughput is desired.
468  */
469 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
470 {
471 	blk_limits_io_opt(&q->limits, opt);
472 }
473 EXPORT_SYMBOL(blk_queue_io_opt);
474 
475 /**
476  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
477  * @t:	the stacking driver (top)
478  * @b:  the underlying device (bottom)
479  **/
480 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
481 {
482 	blk_stack_limits(&t->limits, &b->limits, 0);
483 }
484 EXPORT_SYMBOL(blk_queue_stack_limits);
485 
486 /**
487  * blk_stack_limits - adjust queue_limits for stacked devices
488  * @t:	the stacking driver limits (top device)
489  * @b:  the underlying queue limits (bottom, component device)
490  * @start:  first data sector within component device
491  *
492  * Description:
493  *    This function is used by stacking drivers like MD and DM to ensure
494  *    that all component devices have compatible block sizes and
495  *    alignments.  The stacking driver must provide a queue_limits
496  *    struct (top) and then iteratively call the stacking function for
497  *    all component (bottom) devices.  The stacking function will
498  *    attempt to combine the values and ensure proper alignment.
499  *
500  *    Returns 0 if the top and bottom queue_limits are compatible.  The
501  *    top device's block sizes and alignment offsets may be adjusted to
502  *    ensure alignment with the bottom device. If no compatible sizes
503  *    and alignments exist, -1 is returned and the resulting top
504  *    queue_limits will have the misaligned flag set to indicate that
505  *    the alignment_offset is undefined.
506  */
507 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
508 		     sector_t start)
509 {
510 	unsigned int top, bottom, alignment, ret = 0;
511 
512 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
513 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
514 	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
515 
516 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
517 					    b->seg_boundary_mask);
518 
519 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
520 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
521 						 b->max_integrity_segments);
522 
523 	t->max_segment_size = min_not_zero(t->max_segment_size,
524 					   b->max_segment_size);
525 
526 	t->misaligned |= b->misaligned;
527 
528 	alignment = queue_limit_alignment_offset(b, start);
529 
530 	/* Bottom device has different alignment.  Check that it is
531 	 * compatible with the current top alignment.
532 	 */
533 	if (t->alignment_offset != alignment) {
534 
535 		top = max(t->physical_block_size, t->io_min)
536 			+ t->alignment_offset;
537 		bottom = max(b->physical_block_size, b->io_min) + alignment;
538 
539 		/* Verify that top and bottom intervals line up */
540 		if (max(top, bottom) & (min(top, bottom) - 1)) {
541 			t->misaligned = 1;
542 			ret = -1;
543 		}
544 	}
545 
546 	t->logical_block_size = max(t->logical_block_size,
547 				    b->logical_block_size);
548 
549 	t->physical_block_size = max(t->physical_block_size,
550 				     b->physical_block_size);
551 
552 	t->io_min = max(t->io_min, b->io_min);
553 	t->io_opt = lcm(t->io_opt, b->io_opt);
554 
555 	t->cluster &= b->cluster;
556 	t->discard_zeroes_data &= b->discard_zeroes_data;
557 
558 	/* Physical block size a multiple of the logical block size? */
559 	if (t->physical_block_size & (t->logical_block_size - 1)) {
560 		t->physical_block_size = t->logical_block_size;
561 		t->misaligned = 1;
562 		ret = -1;
563 	}
564 
565 	/* Minimum I/O a multiple of the physical block size? */
566 	if (t->io_min & (t->physical_block_size - 1)) {
567 		t->io_min = t->physical_block_size;
568 		t->misaligned = 1;
569 		ret = -1;
570 	}
571 
572 	/* Optimal I/O a multiple of the physical block size? */
573 	if (t->io_opt & (t->physical_block_size - 1)) {
574 		t->io_opt = 0;
575 		t->misaligned = 1;
576 		ret = -1;
577 	}
578 
579 	/* Find lowest common alignment_offset */
580 	t->alignment_offset = lcm(t->alignment_offset, alignment)
581 		& (max(t->physical_block_size, t->io_min) - 1);
582 
583 	/* Verify that new alignment_offset is on a logical block boundary */
584 	if (t->alignment_offset & (t->logical_block_size - 1)) {
585 		t->misaligned = 1;
586 		ret = -1;
587 	}
588 
589 	/* Discard alignment and granularity */
590 	if (b->discard_granularity) {
591 		alignment = queue_limit_discard_alignment(b, start);
592 
593 		if (t->discard_granularity != 0 &&
594 		    t->discard_alignment != alignment) {
595 			top = t->discard_granularity + t->discard_alignment;
596 			bottom = b->discard_granularity + alignment;
597 
598 			/* Verify that top and bottom intervals line up */
599 			if (max(top, bottom) & (min(top, bottom) - 1))
600 				t->discard_misaligned = 1;
601 		}
602 
603 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
604 						      b->max_discard_sectors);
605 		t->discard_granularity = max(t->discard_granularity,
606 					     b->discard_granularity);
607 		t->discard_alignment = lcm(t->discard_alignment, alignment) &
608 			(t->discard_granularity - 1);
609 	}
610 
611 	return ret;
612 }
613 EXPORT_SYMBOL(blk_stack_limits);
614 
615 /**
616  * bdev_stack_limits - adjust queue limits for stacked drivers
617  * @t:	the stacking driver limits (top device)
618  * @bdev:  the component block_device (bottom)
619  * @start:  first data sector within component device
620  *
621  * Description:
622  *    Merges queue limits for a top device and a block_device.  Returns
623  *    0 if alignment didn't change.  Returns -1 if adding the bottom
624  *    device caused misalignment.
625  */
626 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
627 		      sector_t start)
628 {
629 	struct request_queue *bq = bdev_get_queue(bdev);
630 
631 	start += get_start_sect(bdev);
632 
633 	return blk_stack_limits(t, &bq->limits, start);
634 }
635 EXPORT_SYMBOL(bdev_stack_limits);
636 
637 /**
638  * disk_stack_limits - adjust queue limits for stacked drivers
639  * @disk:  MD/DM gendisk (top)
640  * @bdev:  the underlying block device (bottom)
641  * @offset:  offset to beginning of data within component device
642  *
643  * Description:
644  *    Merges the limits for a top level gendisk and a bottom level
645  *    block_device.
646  */
647 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
648 		       sector_t offset)
649 {
650 	struct request_queue *t = disk->queue;
651 
652 	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
653 		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
654 
655 		disk_name(disk, 0, top);
656 		bdevname(bdev, bottom);
657 
658 		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
659 		       top, bottom);
660 	}
661 }
662 EXPORT_SYMBOL(disk_stack_limits);
663 
664 /**
665  * blk_queue_dma_pad - set pad mask
666  * @q:     the request queue for the device
667  * @mask:  pad mask
668  *
669  * Set dma pad mask.
670  *
671  * Appending pad buffer to a request modifies the last entry of a
672  * scatter list such that it includes the pad buffer.
673  **/
674 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
675 {
676 	q->dma_pad_mask = mask;
677 }
678 EXPORT_SYMBOL(blk_queue_dma_pad);
679 
680 /**
681  * blk_queue_update_dma_pad - update pad mask
682  * @q:     the request queue for the device
683  * @mask:  pad mask
684  *
685  * Update dma pad mask.
686  *
687  * Appending pad buffer to a request modifies the last entry of a
688  * scatter list such that it includes the pad buffer.
689  **/
690 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
691 {
692 	if (mask > q->dma_pad_mask)
693 		q->dma_pad_mask = mask;
694 }
695 EXPORT_SYMBOL(blk_queue_update_dma_pad);
696 
697 /**
698  * blk_queue_dma_drain - Set up a drain buffer for excess dma.
699  * @q:  the request queue for the device
700  * @dma_drain_needed: fn which returns non-zero if drain is necessary
701  * @buf:	physically contiguous buffer
702  * @size:	size of the buffer in bytes
703  *
704  * Some devices have excess DMA problems and can't simply discard (or
705  * zero fill) the unwanted piece of the transfer.  They have to have a
706  * real area of memory to transfer it into.  The use case for this is
707  * ATAPI devices in DMA mode.  If the packet command causes a transfer
708  * bigger than the transfer size some HBAs will lock up if there
709  * aren't DMA elements to contain the excess transfer.  What this API
710  * does is adjust the queue so that the buf is always appended
711  * silently to the scatterlist.
712  *
713  * Note: This routine adjusts max_hw_segments to make room for appending
714  * the drain buffer.  If you call blk_queue_max_segments() after calling
715  * this routine, you must set the limit to one fewer than your device
716  * can support otherwise there won't be room for the drain buffer.
717  */
718 int blk_queue_dma_drain(struct request_queue *q,
719 			       dma_drain_needed_fn *dma_drain_needed,
720 			       void *buf, unsigned int size)
721 {
722 	if (queue_max_segments(q) < 2)
723 		return -EINVAL;
724 	/* make room for appending the drain */
725 	blk_queue_max_segments(q, queue_max_segments(q) - 1);
726 	q->dma_drain_needed = dma_drain_needed;
727 	q->dma_drain_buffer = buf;
728 	q->dma_drain_size = size;
729 
730 	return 0;
731 }
732 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
733 
734 /**
735  * blk_queue_segment_boundary - set boundary rules for segment merging
736  * @q:  the request queue for the device
737  * @mask:  the memory boundary mask
738  **/
739 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
740 {
741 	if (mask < PAGE_CACHE_SIZE - 1) {
742 		mask = PAGE_CACHE_SIZE - 1;
743 		printk(KERN_INFO "%s: set to minimum %lx\n",
744 		       __func__, mask);
745 	}
746 
747 	q->limits.seg_boundary_mask = mask;
748 }
749 EXPORT_SYMBOL(blk_queue_segment_boundary);
750 
751 /**
752  * blk_queue_dma_alignment - set dma length and memory alignment
753  * @q:     the request queue for the device
754  * @mask:  alignment mask
755  *
756  * description:
757  *    set required memory and length alignment for direct dma transactions.
758  *    this is used when building direct io requests for the queue.
759  *
760  **/
761 void blk_queue_dma_alignment(struct request_queue *q, int mask)
762 {
763 	q->dma_alignment = mask;
764 }
765 EXPORT_SYMBOL(blk_queue_dma_alignment);
766 
767 /**
768  * blk_queue_update_dma_alignment - update dma length and memory alignment
769  * @q:     the request queue for the device
770  * @mask:  alignment mask
771  *
772  * description:
773  *    update required memory and length alignment for direct dma transactions.
774  *    If the requested alignment is larger than the current alignment, then
775  *    the current queue alignment is updated to the new value, otherwise it
776  *    is left alone.  The design of this is to allow multiple objects
777  *    (driver, device, transport etc) to set their respective
778  *    alignments without having them interfere.
779  *
780  **/
781 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
782 {
783 	BUG_ON(mask > PAGE_SIZE);
784 
785 	if (mask > q->dma_alignment)
786 		q->dma_alignment = mask;
787 }
788 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
789 
790 /**
791  * blk_queue_flush - configure queue's cache flush capability
792  * @q:		the request queue for the device
793  * @flush:	0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
794  *
795  * Tell block layer cache flush capability of @q.  If it supports
796  * flushing, REQ_FLUSH should be set.  If it supports bypassing
797  * write cache for individual writes, REQ_FUA should be set.
798  */
799 void blk_queue_flush(struct request_queue *q, unsigned int flush)
800 {
801 	WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
802 
803 	if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
804 		flush &= ~REQ_FUA;
805 
806 	q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
807 }
808 EXPORT_SYMBOL_GPL(blk_queue_flush);
809 
810 void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
811 {
812 	q->flush_not_queueable = !queueable;
813 }
814 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
815 
816 static int __init blk_settings_init(void)
817 {
818 	blk_max_low_pfn = max_low_pfn - 1;
819 	blk_max_pfn = max_pfn - 1;
820 	return 0;
821 }
822 subsys_initcall(blk_settings_init);
823