xref: /openbmc/linux/block/blk-settings.c (revision c4ee0af3)
1 /*
2  * Functions related to setting various queue properties from drivers
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
14 
15 #include "blk.h"
16 
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
19 
20 unsigned long blk_max_pfn;
21 
22 /**
23  * blk_queue_prep_rq - set a prepare_request function for queue
24  * @q:		queue
25  * @pfn:	prepare_request function
26  *
27  * It's possible for a queue to register a prepare_request callback which
28  * is invoked before the request is handed to the request_fn. The goal of
29  * the function is to prepare a request for I/O, it can be used to build a
30  * cdb from the request data for instance.
31  *
32  */
33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
34 {
35 	q->prep_rq_fn = pfn;
36 }
37 EXPORT_SYMBOL(blk_queue_prep_rq);
38 
39 /**
40  * blk_queue_unprep_rq - set an unprepare_request function for queue
41  * @q:		queue
42  * @ufn:	unprepare_request function
43  *
44  * It's possible for a queue to register an unprepare_request callback
45  * which is invoked before the request is finally completed. The goal
46  * of the function is to deallocate any data that was allocated in the
47  * prepare_request callback.
48  *
49  */
50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
51 {
52 	q->unprep_rq_fn = ufn;
53 }
54 EXPORT_SYMBOL(blk_queue_unprep_rq);
55 
56 /**
57  * blk_queue_merge_bvec - set a merge_bvec function for queue
58  * @q:		queue
59  * @mbfn:	merge_bvec_fn
60  *
61  * Usually queues have static limitations on the max sectors or segments that
62  * we can put in a request. Stacking drivers may have some settings that
63  * are dynamic, and thus we have to query the queue whether it is ok to
64  * add a new bio_vec to a bio at a given offset or not. If the block device
65  * has such limitations, it needs to register a merge_bvec_fn to control
66  * the size of bio's sent to it. Note that a block device *must* allow a
67  * single page to be added to an empty bio. The block device driver may want
68  * to use the bio_split() function to deal with these bio's. By default
69  * no merge_bvec_fn is defined for a queue, and only the fixed limits are
70  * honored.
71  */
72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
73 {
74 	q->merge_bvec_fn = mbfn;
75 }
76 EXPORT_SYMBOL(blk_queue_merge_bvec);
77 
78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
79 {
80 	q->softirq_done_fn = fn;
81 }
82 EXPORT_SYMBOL(blk_queue_softirq_done);
83 
84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
85 {
86 	q->rq_timeout = timeout;
87 }
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
89 
90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
91 {
92 	q->rq_timed_out_fn = fn;
93 }
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
95 
96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
97 {
98 	q->lld_busy_fn = fn;
99 }
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
101 
102 /**
103  * blk_set_default_limits - reset limits to default values
104  * @lim:  the queue_limits structure to reset
105  *
106  * Description:
107  *   Returns a queue_limit struct to its default state.
108  */
109 void blk_set_default_limits(struct queue_limits *lim)
110 {
111 	lim->max_segments = BLK_MAX_SEGMENTS;
112 	lim->max_integrity_segments = 0;
113 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
114 	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
115 	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
116 	lim->max_write_same_sectors = 0;
117 	lim->max_discard_sectors = 0;
118 	lim->discard_granularity = 0;
119 	lim->discard_alignment = 0;
120 	lim->discard_misaligned = 0;
121 	lim->discard_zeroes_data = 0;
122 	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
123 	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
124 	lim->alignment_offset = 0;
125 	lim->io_opt = 0;
126 	lim->misaligned = 0;
127 	lim->cluster = 1;
128 }
129 EXPORT_SYMBOL(blk_set_default_limits);
130 
131 /**
132  * blk_set_stacking_limits - set default limits for stacking devices
133  * @lim:  the queue_limits structure to reset
134  *
135  * Description:
136  *   Returns a queue_limit struct to its default state. Should be used
137  *   by stacking drivers like DM that have no internal limits.
138  */
139 void blk_set_stacking_limits(struct queue_limits *lim)
140 {
141 	blk_set_default_limits(lim);
142 
143 	/* Inherit limits from component devices */
144 	lim->discard_zeroes_data = 1;
145 	lim->max_segments = USHRT_MAX;
146 	lim->max_hw_sectors = UINT_MAX;
147 	lim->max_segment_size = UINT_MAX;
148 	lim->max_sectors = UINT_MAX;
149 	lim->max_write_same_sectors = UINT_MAX;
150 }
151 EXPORT_SYMBOL(blk_set_stacking_limits);
152 
153 /**
154  * blk_queue_make_request - define an alternate make_request function for a device
155  * @q:  the request queue for the device to be affected
156  * @mfn: the alternate make_request function
157  *
158  * Description:
159  *    The normal way for &struct bios to be passed to a device
160  *    driver is for them to be collected into requests on a request
161  *    queue, and then to allow the device driver to select requests
162  *    off that queue when it is ready.  This works well for many block
163  *    devices. However some block devices (typically virtual devices
164  *    such as md or lvm) do not benefit from the processing on the
165  *    request queue, and are served best by having the requests passed
166  *    directly to them.  This can be achieved by providing a function
167  *    to blk_queue_make_request().
168  *
169  * Caveat:
170  *    The driver that does this *must* be able to deal appropriately
171  *    with buffers in "highmemory". This can be accomplished by either calling
172  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
173  *    blk_queue_bounce() to create a buffer in normal memory.
174  **/
175 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
176 {
177 	/*
178 	 * set defaults
179 	 */
180 	q->nr_requests = BLKDEV_MAX_RQ;
181 
182 	q->make_request_fn = mfn;
183 	blk_queue_dma_alignment(q, 511);
184 	blk_queue_congestion_threshold(q);
185 	q->nr_batching = BLK_BATCH_REQ;
186 
187 	blk_set_default_limits(&q->limits);
188 
189 	/*
190 	 * by default assume old behaviour and bounce for any highmem page
191 	 */
192 	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
193 }
194 EXPORT_SYMBOL(blk_queue_make_request);
195 
196 /**
197  * blk_queue_bounce_limit - set bounce buffer limit for queue
198  * @q: the request queue for the device
199  * @max_addr: the maximum address the device can handle
200  *
201  * Description:
202  *    Different hardware can have different requirements as to what pages
203  *    it can do I/O directly to. A low level driver can call
204  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
205  *    buffers for doing I/O to pages residing above @max_addr.
206  **/
207 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
208 {
209 	unsigned long b_pfn = max_addr >> PAGE_SHIFT;
210 	int dma = 0;
211 
212 	q->bounce_gfp = GFP_NOIO;
213 #if BITS_PER_LONG == 64
214 	/*
215 	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
216 	 * some IOMMUs can handle everything, but I don't know of a
217 	 * way to test this here.
218 	 */
219 	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
220 		dma = 1;
221 	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
222 #else
223 	if (b_pfn < blk_max_low_pfn)
224 		dma = 1;
225 	q->limits.bounce_pfn = b_pfn;
226 #endif
227 	if (dma) {
228 		init_emergency_isa_pool();
229 		q->bounce_gfp = GFP_NOIO | GFP_DMA;
230 		q->limits.bounce_pfn = b_pfn;
231 	}
232 }
233 EXPORT_SYMBOL(blk_queue_bounce_limit);
234 
235 /**
236  * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
237  * @limits: the queue limits
238  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
239  *
240  * Description:
241  *    Enables a low level driver to set a hard upper limit,
242  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
243  *    the device driver based upon the combined capabilities of I/O
244  *    controller and storage device.
245  *
246  *    max_sectors is a soft limit imposed by the block layer for
247  *    filesystem type requests.  This value can be overridden on a
248  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
249  *    The soft limit can not exceed max_hw_sectors.
250  **/
251 void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
252 {
253 	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
254 		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
255 		printk(KERN_INFO "%s: set to minimum %d\n",
256 		       __func__, max_hw_sectors);
257 	}
258 
259 	limits->max_hw_sectors = max_hw_sectors;
260 	limits->max_sectors = min_t(unsigned int, max_hw_sectors,
261 				    BLK_DEF_MAX_SECTORS);
262 }
263 EXPORT_SYMBOL(blk_limits_max_hw_sectors);
264 
265 /**
266  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
267  * @q:  the request queue for the device
268  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
269  *
270  * Description:
271  *    See description for blk_limits_max_hw_sectors().
272  **/
273 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
274 {
275 	blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
276 }
277 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
278 
279 /**
280  * blk_queue_max_discard_sectors - set max sectors for a single discard
281  * @q:  the request queue for the device
282  * @max_discard_sectors: maximum number of sectors to discard
283  **/
284 void blk_queue_max_discard_sectors(struct request_queue *q,
285 		unsigned int max_discard_sectors)
286 {
287 	q->limits.max_discard_sectors = max_discard_sectors;
288 }
289 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
290 
291 /**
292  * blk_queue_max_write_same_sectors - set max sectors for a single write same
293  * @q:  the request queue for the device
294  * @max_write_same_sectors: maximum number of sectors to write per command
295  **/
296 void blk_queue_max_write_same_sectors(struct request_queue *q,
297 				      unsigned int max_write_same_sectors)
298 {
299 	q->limits.max_write_same_sectors = max_write_same_sectors;
300 }
301 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
302 
303 /**
304  * blk_queue_max_segments - set max hw segments for a request for this queue
305  * @q:  the request queue for the device
306  * @max_segments:  max number of segments
307  *
308  * Description:
309  *    Enables a low level driver to set an upper limit on the number of
310  *    hw data segments in a request.
311  **/
312 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
313 {
314 	if (!max_segments) {
315 		max_segments = 1;
316 		printk(KERN_INFO "%s: set to minimum %d\n",
317 		       __func__, max_segments);
318 	}
319 
320 	q->limits.max_segments = max_segments;
321 }
322 EXPORT_SYMBOL(blk_queue_max_segments);
323 
324 /**
325  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
326  * @q:  the request queue for the device
327  * @max_size:  max size of segment in bytes
328  *
329  * Description:
330  *    Enables a low level driver to set an upper limit on the size of a
331  *    coalesced segment
332  **/
333 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
334 {
335 	if (max_size < PAGE_CACHE_SIZE) {
336 		max_size = PAGE_CACHE_SIZE;
337 		printk(KERN_INFO "%s: set to minimum %d\n",
338 		       __func__, max_size);
339 	}
340 
341 	q->limits.max_segment_size = max_size;
342 }
343 EXPORT_SYMBOL(blk_queue_max_segment_size);
344 
345 /**
346  * blk_queue_logical_block_size - set logical block size for the queue
347  * @q:  the request queue for the device
348  * @size:  the logical block size, in bytes
349  *
350  * Description:
351  *   This should be set to the lowest possible block size that the
352  *   storage device can address.  The default of 512 covers most
353  *   hardware.
354  **/
355 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
356 {
357 	q->limits.logical_block_size = size;
358 
359 	if (q->limits.physical_block_size < size)
360 		q->limits.physical_block_size = size;
361 
362 	if (q->limits.io_min < q->limits.physical_block_size)
363 		q->limits.io_min = q->limits.physical_block_size;
364 }
365 EXPORT_SYMBOL(blk_queue_logical_block_size);
366 
367 /**
368  * blk_queue_physical_block_size - set physical block size for the queue
369  * @q:  the request queue for the device
370  * @size:  the physical block size, in bytes
371  *
372  * Description:
373  *   This should be set to the lowest possible sector size that the
374  *   hardware can operate on without reverting to read-modify-write
375  *   operations.
376  */
377 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
378 {
379 	q->limits.physical_block_size = size;
380 
381 	if (q->limits.physical_block_size < q->limits.logical_block_size)
382 		q->limits.physical_block_size = q->limits.logical_block_size;
383 
384 	if (q->limits.io_min < q->limits.physical_block_size)
385 		q->limits.io_min = q->limits.physical_block_size;
386 }
387 EXPORT_SYMBOL(blk_queue_physical_block_size);
388 
389 /**
390  * blk_queue_alignment_offset - set physical block alignment offset
391  * @q:	the request queue for the device
392  * @offset: alignment offset in bytes
393  *
394  * Description:
395  *   Some devices are naturally misaligned to compensate for things like
396  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
397  *   should call this function for devices whose first sector is not
398  *   naturally aligned.
399  */
400 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
401 {
402 	q->limits.alignment_offset =
403 		offset & (q->limits.physical_block_size - 1);
404 	q->limits.misaligned = 0;
405 }
406 EXPORT_SYMBOL(blk_queue_alignment_offset);
407 
408 /**
409  * blk_limits_io_min - set minimum request size for a device
410  * @limits: the queue limits
411  * @min:  smallest I/O size in bytes
412  *
413  * Description:
414  *   Some devices have an internal block size bigger than the reported
415  *   hardware sector size.  This function can be used to signal the
416  *   smallest I/O the device can perform without incurring a performance
417  *   penalty.
418  */
419 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
420 {
421 	limits->io_min = min;
422 
423 	if (limits->io_min < limits->logical_block_size)
424 		limits->io_min = limits->logical_block_size;
425 
426 	if (limits->io_min < limits->physical_block_size)
427 		limits->io_min = limits->physical_block_size;
428 }
429 EXPORT_SYMBOL(blk_limits_io_min);
430 
431 /**
432  * blk_queue_io_min - set minimum request size for the queue
433  * @q:	the request queue for the device
434  * @min:  smallest I/O size in bytes
435  *
436  * Description:
437  *   Storage devices may report a granularity or preferred minimum I/O
438  *   size which is the smallest request the device can perform without
439  *   incurring a performance penalty.  For disk drives this is often the
440  *   physical block size.  For RAID arrays it is often the stripe chunk
441  *   size.  A properly aligned multiple of minimum_io_size is the
442  *   preferred request size for workloads where a high number of I/O
443  *   operations is desired.
444  */
445 void blk_queue_io_min(struct request_queue *q, unsigned int min)
446 {
447 	blk_limits_io_min(&q->limits, min);
448 }
449 EXPORT_SYMBOL(blk_queue_io_min);
450 
451 /**
452  * blk_limits_io_opt - set optimal request size for a device
453  * @limits: the queue limits
454  * @opt:  smallest I/O size in bytes
455  *
456  * Description:
457  *   Storage devices may report an optimal I/O size, which is the
458  *   device's preferred unit for sustained I/O.  This is rarely reported
459  *   for disk drives.  For RAID arrays it is usually the stripe width or
460  *   the internal track size.  A properly aligned multiple of
461  *   optimal_io_size is the preferred request size for workloads where
462  *   sustained throughput is desired.
463  */
464 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
465 {
466 	limits->io_opt = opt;
467 }
468 EXPORT_SYMBOL(blk_limits_io_opt);
469 
470 /**
471  * blk_queue_io_opt - set optimal request size for the queue
472  * @q:	the request queue for the device
473  * @opt:  optimal request size in bytes
474  *
475  * Description:
476  *   Storage devices may report an optimal I/O size, which is the
477  *   device's preferred unit for sustained I/O.  This is rarely reported
478  *   for disk drives.  For RAID arrays it is usually the stripe width or
479  *   the internal track size.  A properly aligned multiple of
480  *   optimal_io_size is the preferred request size for workloads where
481  *   sustained throughput is desired.
482  */
483 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
484 {
485 	blk_limits_io_opt(&q->limits, opt);
486 }
487 EXPORT_SYMBOL(blk_queue_io_opt);
488 
489 /**
490  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
491  * @t:	the stacking driver (top)
492  * @b:  the underlying device (bottom)
493  **/
494 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
495 {
496 	blk_stack_limits(&t->limits, &b->limits, 0);
497 }
498 EXPORT_SYMBOL(blk_queue_stack_limits);
499 
500 /**
501  * blk_stack_limits - adjust queue_limits for stacked devices
502  * @t:	the stacking driver limits (top device)
503  * @b:  the underlying queue limits (bottom, component device)
504  * @start:  first data sector within component device
505  *
506  * Description:
507  *    This function is used by stacking drivers like MD and DM to ensure
508  *    that all component devices have compatible block sizes and
509  *    alignments.  The stacking driver must provide a queue_limits
510  *    struct (top) and then iteratively call the stacking function for
511  *    all component (bottom) devices.  The stacking function will
512  *    attempt to combine the values and ensure proper alignment.
513  *
514  *    Returns 0 if the top and bottom queue_limits are compatible.  The
515  *    top device's block sizes and alignment offsets may be adjusted to
516  *    ensure alignment with the bottom device. If no compatible sizes
517  *    and alignments exist, -1 is returned and the resulting top
518  *    queue_limits will have the misaligned flag set to indicate that
519  *    the alignment_offset is undefined.
520  */
521 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
522 		     sector_t start)
523 {
524 	unsigned int top, bottom, alignment, ret = 0;
525 
526 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
527 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
528 	t->max_write_same_sectors = min(t->max_write_same_sectors,
529 					b->max_write_same_sectors);
530 	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
531 
532 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
533 					    b->seg_boundary_mask);
534 
535 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
536 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
537 						 b->max_integrity_segments);
538 
539 	t->max_segment_size = min_not_zero(t->max_segment_size,
540 					   b->max_segment_size);
541 
542 	t->misaligned |= b->misaligned;
543 
544 	alignment = queue_limit_alignment_offset(b, start);
545 
546 	/* Bottom device has different alignment.  Check that it is
547 	 * compatible with the current top alignment.
548 	 */
549 	if (t->alignment_offset != alignment) {
550 
551 		top = max(t->physical_block_size, t->io_min)
552 			+ t->alignment_offset;
553 		bottom = max(b->physical_block_size, b->io_min) + alignment;
554 
555 		/* Verify that top and bottom intervals line up */
556 		if (max(top, bottom) & (min(top, bottom) - 1)) {
557 			t->misaligned = 1;
558 			ret = -1;
559 		}
560 	}
561 
562 	t->logical_block_size = max(t->logical_block_size,
563 				    b->logical_block_size);
564 
565 	t->physical_block_size = max(t->physical_block_size,
566 				     b->physical_block_size);
567 
568 	t->io_min = max(t->io_min, b->io_min);
569 	t->io_opt = lcm(t->io_opt, b->io_opt);
570 
571 	t->cluster &= b->cluster;
572 	t->discard_zeroes_data &= b->discard_zeroes_data;
573 
574 	/* Physical block size a multiple of the logical block size? */
575 	if (t->physical_block_size & (t->logical_block_size - 1)) {
576 		t->physical_block_size = t->logical_block_size;
577 		t->misaligned = 1;
578 		ret = -1;
579 	}
580 
581 	/* Minimum I/O a multiple of the physical block size? */
582 	if (t->io_min & (t->physical_block_size - 1)) {
583 		t->io_min = t->physical_block_size;
584 		t->misaligned = 1;
585 		ret = -1;
586 	}
587 
588 	/* Optimal I/O a multiple of the physical block size? */
589 	if (t->io_opt & (t->physical_block_size - 1)) {
590 		t->io_opt = 0;
591 		t->misaligned = 1;
592 		ret = -1;
593 	}
594 
595 	/* Find lowest common alignment_offset */
596 	t->alignment_offset = lcm(t->alignment_offset, alignment)
597 		& (max(t->physical_block_size, t->io_min) - 1);
598 
599 	/* Verify that new alignment_offset is on a logical block boundary */
600 	if (t->alignment_offset & (t->logical_block_size - 1)) {
601 		t->misaligned = 1;
602 		ret = -1;
603 	}
604 
605 	/* Discard alignment and granularity */
606 	if (b->discard_granularity) {
607 		alignment = queue_limit_discard_alignment(b, start);
608 
609 		if (t->discard_granularity != 0 &&
610 		    t->discard_alignment != alignment) {
611 			top = t->discard_granularity + t->discard_alignment;
612 			bottom = b->discard_granularity + alignment;
613 
614 			/* Verify that top and bottom intervals line up */
615 			if ((max(top, bottom) % min(top, bottom)) != 0)
616 				t->discard_misaligned = 1;
617 		}
618 
619 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
620 						      b->max_discard_sectors);
621 		t->discard_granularity = max(t->discard_granularity,
622 					     b->discard_granularity);
623 		t->discard_alignment = lcm(t->discard_alignment, alignment) %
624 			t->discard_granularity;
625 	}
626 
627 	return ret;
628 }
629 EXPORT_SYMBOL(blk_stack_limits);
630 
631 /**
632  * bdev_stack_limits - adjust queue limits for stacked drivers
633  * @t:	the stacking driver limits (top device)
634  * @bdev:  the component block_device (bottom)
635  * @start:  first data sector within component device
636  *
637  * Description:
638  *    Merges queue limits for a top device and a block_device.  Returns
639  *    0 if alignment didn't change.  Returns -1 if adding the bottom
640  *    device caused misalignment.
641  */
642 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
643 		      sector_t start)
644 {
645 	struct request_queue *bq = bdev_get_queue(bdev);
646 
647 	start += get_start_sect(bdev);
648 
649 	return blk_stack_limits(t, &bq->limits, start);
650 }
651 EXPORT_SYMBOL(bdev_stack_limits);
652 
653 /**
654  * disk_stack_limits - adjust queue limits for stacked drivers
655  * @disk:  MD/DM gendisk (top)
656  * @bdev:  the underlying block device (bottom)
657  * @offset:  offset to beginning of data within component device
658  *
659  * Description:
660  *    Merges the limits for a top level gendisk and a bottom level
661  *    block_device.
662  */
663 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
664 		       sector_t offset)
665 {
666 	struct request_queue *t = disk->queue;
667 
668 	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
669 		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
670 
671 		disk_name(disk, 0, top);
672 		bdevname(bdev, bottom);
673 
674 		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
675 		       top, bottom);
676 	}
677 }
678 EXPORT_SYMBOL(disk_stack_limits);
679 
680 /**
681  * blk_queue_dma_pad - set pad mask
682  * @q:     the request queue for the device
683  * @mask:  pad mask
684  *
685  * Set dma pad mask.
686  *
687  * Appending pad buffer to a request modifies the last entry of a
688  * scatter list such that it includes the pad buffer.
689  **/
690 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
691 {
692 	q->dma_pad_mask = mask;
693 }
694 EXPORT_SYMBOL(blk_queue_dma_pad);
695 
696 /**
697  * blk_queue_update_dma_pad - update pad mask
698  * @q:     the request queue for the device
699  * @mask:  pad mask
700  *
701  * Update dma pad mask.
702  *
703  * Appending pad buffer to a request modifies the last entry of a
704  * scatter list such that it includes the pad buffer.
705  **/
706 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
707 {
708 	if (mask > q->dma_pad_mask)
709 		q->dma_pad_mask = mask;
710 }
711 EXPORT_SYMBOL(blk_queue_update_dma_pad);
712 
713 /**
714  * blk_queue_dma_drain - Set up a drain buffer for excess dma.
715  * @q:  the request queue for the device
716  * @dma_drain_needed: fn which returns non-zero if drain is necessary
717  * @buf:	physically contiguous buffer
718  * @size:	size of the buffer in bytes
719  *
720  * Some devices have excess DMA problems and can't simply discard (or
721  * zero fill) the unwanted piece of the transfer.  They have to have a
722  * real area of memory to transfer it into.  The use case for this is
723  * ATAPI devices in DMA mode.  If the packet command causes a transfer
724  * bigger than the transfer size some HBAs will lock up if there
725  * aren't DMA elements to contain the excess transfer.  What this API
726  * does is adjust the queue so that the buf is always appended
727  * silently to the scatterlist.
728  *
729  * Note: This routine adjusts max_hw_segments to make room for appending
730  * the drain buffer.  If you call blk_queue_max_segments() after calling
731  * this routine, you must set the limit to one fewer than your device
732  * can support otherwise there won't be room for the drain buffer.
733  */
734 int blk_queue_dma_drain(struct request_queue *q,
735 			       dma_drain_needed_fn *dma_drain_needed,
736 			       void *buf, unsigned int size)
737 {
738 	if (queue_max_segments(q) < 2)
739 		return -EINVAL;
740 	/* make room for appending the drain */
741 	blk_queue_max_segments(q, queue_max_segments(q) - 1);
742 	q->dma_drain_needed = dma_drain_needed;
743 	q->dma_drain_buffer = buf;
744 	q->dma_drain_size = size;
745 
746 	return 0;
747 }
748 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
749 
750 /**
751  * blk_queue_segment_boundary - set boundary rules for segment merging
752  * @q:  the request queue for the device
753  * @mask:  the memory boundary mask
754  **/
755 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
756 {
757 	if (mask < PAGE_CACHE_SIZE - 1) {
758 		mask = PAGE_CACHE_SIZE - 1;
759 		printk(KERN_INFO "%s: set to minimum %lx\n",
760 		       __func__, mask);
761 	}
762 
763 	q->limits.seg_boundary_mask = mask;
764 }
765 EXPORT_SYMBOL(blk_queue_segment_boundary);
766 
767 /**
768  * blk_queue_dma_alignment - set dma length and memory alignment
769  * @q:     the request queue for the device
770  * @mask:  alignment mask
771  *
772  * description:
773  *    set required memory and length alignment for direct dma transactions.
774  *    this is used when building direct io requests for the queue.
775  *
776  **/
777 void blk_queue_dma_alignment(struct request_queue *q, int mask)
778 {
779 	q->dma_alignment = mask;
780 }
781 EXPORT_SYMBOL(blk_queue_dma_alignment);
782 
783 /**
784  * blk_queue_update_dma_alignment - update dma length and memory alignment
785  * @q:     the request queue for the device
786  * @mask:  alignment mask
787  *
788  * description:
789  *    update required memory and length alignment for direct dma transactions.
790  *    If the requested alignment is larger than the current alignment, then
791  *    the current queue alignment is updated to the new value, otherwise it
792  *    is left alone.  The design of this is to allow multiple objects
793  *    (driver, device, transport etc) to set their respective
794  *    alignments without having them interfere.
795  *
796  **/
797 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
798 {
799 	BUG_ON(mask > PAGE_SIZE);
800 
801 	if (mask > q->dma_alignment)
802 		q->dma_alignment = mask;
803 }
804 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
805 
806 /**
807  * blk_queue_flush - configure queue's cache flush capability
808  * @q:		the request queue for the device
809  * @flush:	0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
810  *
811  * Tell block layer cache flush capability of @q.  If it supports
812  * flushing, REQ_FLUSH should be set.  If it supports bypassing
813  * write cache for individual writes, REQ_FUA should be set.
814  */
815 void blk_queue_flush(struct request_queue *q, unsigned int flush)
816 {
817 	WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
818 
819 	if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
820 		flush &= ~REQ_FUA;
821 
822 	q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
823 }
824 EXPORT_SYMBOL_GPL(blk_queue_flush);
825 
826 void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
827 {
828 	q->flush_not_queueable = !queueable;
829 }
830 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
831 
832 static int __init blk_settings_init(void)
833 {
834 	blk_max_low_pfn = max_low_pfn - 1;
835 	blk_max_pfn = max_pfn - 1;
836 	return 0;
837 }
838 subsys_initcall(blk_settings_init);
839