1 /* 2 * Functions related to setting various queue properties from drivers 3 */ 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <linux/init.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ 10 11 #include "blk.h" 12 13 unsigned long blk_max_low_pfn; 14 EXPORT_SYMBOL(blk_max_low_pfn); 15 16 unsigned long blk_max_pfn; 17 18 /** 19 * blk_queue_prep_rq - set a prepare_request function for queue 20 * @q: queue 21 * @pfn: prepare_request function 22 * 23 * It's possible for a queue to register a prepare_request callback which 24 * is invoked before the request is handed to the request_fn. The goal of 25 * the function is to prepare a request for I/O, it can be used to build a 26 * cdb from the request data for instance. 27 * 28 */ 29 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) 30 { 31 q->prep_rq_fn = pfn; 32 } 33 EXPORT_SYMBOL(blk_queue_prep_rq); 34 35 /** 36 * blk_queue_set_discard - set a discard_sectors function for queue 37 * @q: queue 38 * @dfn: prepare_discard function 39 * 40 * It's possible for a queue to register a discard callback which is used 41 * to transform a discard request into the appropriate type for the 42 * hardware. If none is registered, then discard requests are failed 43 * with %EOPNOTSUPP. 44 * 45 */ 46 void blk_queue_set_discard(struct request_queue *q, prepare_discard_fn *dfn) 47 { 48 q->prepare_discard_fn = dfn; 49 } 50 EXPORT_SYMBOL(blk_queue_set_discard); 51 52 /** 53 * blk_queue_merge_bvec - set a merge_bvec function for queue 54 * @q: queue 55 * @mbfn: merge_bvec_fn 56 * 57 * Usually queues have static limitations on the max sectors or segments that 58 * we can put in a request. Stacking drivers may have some settings that 59 * are dynamic, and thus we have to query the queue whether it is ok to 60 * add a new bio_vec to a bio at a given offset or not. If the block device 61 * has such limitations, it needs to register a merge_bvec_fn to control 62 * the size of bio's sent to it. Note that a block device *must* allow a 63 * single page to be added to an empty bio. The block device driver may want 64 * to use the bio_split() function to deal with these bio's. By default 65 * no merge_bvec_fn is defined for a queue, and only the fixed limits are 66 * honored. 67 */ 68 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn) 69 { 70 q->merge_bvec_fn = mbfn; 71 } 72 EXPORT_SYMBOL(blk_queue_merge_bvec); 73 74 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) 75 { 76 q->softirq_done_fn = fn; 77 } 78 EXPORT_SYMBOL(blk_queue_softirq_done); 79 80 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 81 { 82 q->rq_timeout = timeout; 83 } 84 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 85 86 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn) 87 { 88 q->rq_timed_out_fn = fn; 89 } 90 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out); 91 92 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn) 93 { 94 q->lld_busy_fn = fn; 95 } 96 EXPORT_SYMBOL_GPL(blk_queue_lld_busy); 97 98 /** 99 * blk_queue_make_request - define an alternate make_request function for a device 100 * @q: the request queue for the device to be affected 101 * @mfn: the alternate make_request function 102 * 103 * Description: 104 * The normal way for &struct bios to be passed to a device 105 * driver is for them to be collected into requests on a request 106 * queue, and then to allow the device driver to select requests 107 * off that queue when it is ready. This works well for many block 108 * devices. However some block devices (typically virtual devices 109 * such as md or lvm) do not benefit from the processing on the 110 * request queue, and are served best by having the requests passed 111 * directly to them. This can be achieved by providing a function 112 * to blk_queue_make_request(). 113 * 114 * Caveat: 115 * The driver that does this *must* be able to deal appropriately 116 * with buffers in "highmemory". This can be accomplished by either calling 117 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling 118 * blk_queue_bounce() to create a buffer in normal memory. 119 **/ 120 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) 121 { 122 /* 123 * set defaults 124 */ 125 q->nr_requests = BLKDEV_MAX_RQ; 126 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS); 127 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS); 128 blk_queue_segment_boundary(q, BLK_SEG_BOUNDARY_MASK); 129 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE); 130 131 q->make_request_fn = mfn; 132 q->backing_dev_info.ra_pages = 133 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 134 q->backing_dev_info.state = 0; 135 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 136 blk_queue_max_sectors(q, SAFE_MAX_SECTORS); 137 blk_queue_hardsect_size(q, 512); 138 blk_queue_dma_alignment(q, 511); 139 blk_queue_congestion_threshold(q); 140 q->nr_batching = BLK_BATCH_REQ; 141 142 q->unplug_thresh = 4; /* hmm */ 143 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */ 144 if (q->unplug_delay == 0) 145 q->unplug_delay = 1; 146 147 q->unplug_timer.function = blk_unplug_timeout; 148 q->unplug_timer.data = (unsigned long)q; 149 150 /* 151 * by default assume old behaviour and bounce for any highmem page 152 */ 153 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); 154 } 155 EXPORT_SYMBOL(blk_queue_make_request); 156 157 /** 158 * blk_queue_bounce_limit - set bounce buffer limit for queue 159 * @q: the request queue for the device 160 * @dma_addr: bus address limit 161 * 162 * Description: 163 * Different hardware can have different requirements as to what pages 164 * it can do I/O directly to. A low level driver can call 165 * blk_queue_bounce_limit to have lower memory pages allocated as bounce 166 * buffers for doing I/O to pages residing above @dma_addr. 167 **/ 168 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr) 169 { 170 unsigned long b_pfn = dma_addr >> PAGE_SHIFT; 171 int dma = 0; 172 173 q->bounce_gfp = GFP_NOIO; 174 #if BITS_PER_LONG == 64 175 /* Assume anything <= 4GB can be handled by IOMMU. 176 Actually some IOMMUs can handle everything, but I don't 177 know of a way to test this here. */ 178 if (b_pfn < (min_t(u64, 0x100000000UL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) 179 dma = 1; 180 q->bounce_pfn = max_low_pfn; 181 #else 182 if (b_pfn < blk_max_low_pfn) 183 dma = 1; 184 q->bounce_pfn = b_pfn; 185 #endif 186 if (dma) { 187 init_emergency_isa_pool(); 188 q->bounce_gfp = GFP_NOIO | GFP_DMA; 189 q->bounce_pfn = b_pfn; 190 } 191 } 192 EXPORT_SYMBOL(blk_queue_bounce_limit); 193 194 /** 195 * blk_queue_max_sectors - set max sectors for a request for this queue 196 * @q: the request queue for the device 197 * @max_sectors: max sectors in the usual 512b unit 198 * 199 * Description: 200 * Enables a low level driver to set an upper limit on the size of 201 * received requests. 202 **/ 203 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors) 204 { 205 if ((max_sectors << 9) < PAGE_CACHE_SIZE) { 206 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9); 207 printk(KERN_INFO "%s: set to minimum %d\n", 208 __func__, max_sectors); 209 } 210 211 if (BLK_DEF_MAX_SECTORS > max_sectors) 212 q->max_hw_sectors = q->max_sectors = max_sectors; 213 else { 214 q->max_sectors = BLK_DEF_MAX_SECTORS; 215 q->max_hw_sectors = max_sectors; 216 } 217 } 218 EXPORT_SYMBOL(blk_queue_max_sectors); 219 220 /** 221 * blk_queue_max_phys_segments - set max phys segments for a request for this queue 222 * @q: the request queue for the device 223 * @max_segments: max number of segments 224 * 225 * Description: 226 * Enables a low level driver to set an upper limit on the number of 227 * physical data segments in a request. This would be the largest sized 228 * scatter list the driver could handle. 229 **/ 230 void blk_queue_max_phys_segments(struct request_queue *q, 231 unsigned short max_segments) 232 { 233 if (!max_segments) { 234 max_segments = 1; 235 printk(KERN_INFO "%s: set to minimum %d\n", 236 __func__, max_segments); 237 } 238 239 q->max_phys_segments = max_segments; 240 } 241 EXPORT_SYMBOL(blk_queue_max_phys_segments); 242 243 /** 244 * blk_queue_max_hw_segments - set max hw segments for a request for this queue 245 * @q: the request queue for the device 246 * @max_segments: max number of segments 247 * 248 * Description: 249 * Enables a low level driver to set an upper limit on the number of 250 * hw data segments in a request. This would be the largest number of 251 * address/length pairs the host adapter can actually give at once 252 * to the device. 253 **/ 254 void blk_queue_max_hw_segments(struct request_queue *q, 255 unsigned short max_segments) 256 { 257 if (!max_segments) { 258 max_segments = 1; 259 printk(KERN_INFO "%s: set to minimum %d\n", 260 __func__, max_segments); 261 } 262 263 q->max_hw_segments = max_segments; 264 } 265 EXPORT_SYMBOL(blk_queue_max_hw_segments); 266 267 /** 268 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 269 * @q: the request queue for the device 270 * @max_size: max size of segment in bytes 271 * 272 * Description: 273 * Enables a low level driver to set an upper limit on the size of a 274 * coalesced segment 275 **/ 276 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 277 { 278 if (max_size < PAGE_CACHE_SIZE) { 279 max_size = PAGE_CACHE_SIZE; 280 printk(KERN_INFO "%s: set to minimum %d\n", 281 __func__, max_size); 282 } 283 284 q->max_segment_size = max_size; 285 } 286 EXPORT_SYMBOL(blk_queue_max_segment_size); 287 288 /** 289 * blk_queue_hardsect_size - set hardware sector size for the queue 290 * @q: the request queue for the device 291 * @size: the hardware sector size, in bytes 292 * 293 * Description: 294 * This should typically be set to the lowest possible sector size 295 * that the hardware can operate on (possible without reverting to 296 * even internal read-modify-write operations). Usually the default 297 * of 512 covers most hardware. 298 **/ 299 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size) 300 { 301 q->hardsect_size = size; 302 } 303 EXPORT_SYMBOL(blk_queue_hardsect_size); 304 305 /* 306 * Returns the minimum that is _not_ zero, unless both are zero. 307 */ 308 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 309 310 /** 311 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers 312 * @t: the stacking driver (top) 313 * @b: the underlying device (bottom) 314 **/ 315 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) 316 { 317 /* zero is "infinity" */ 318 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 319 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 320 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, b->seg_boundary_mask); 321 322 t->max_phys_segments = min_not_zero(t->max_phys_segments, b->max_phys_segments); 323 t->max_hw_segments = min_not_zero(t->max_hw_segments, b->max_hw_segments); 324 t->max_segment_size = min_not_zero(t->max_segment_size, b->max_segment_size); 325 t->hardsect_size = max(t->hardsect_size, b->hardsect_size); 326 if (!t->queue_lock) 327 WARN_ON_ONCE(1); 328 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) { 329 unsigned long flags; 330 spin_lock_irqsave(t->queue_lock, flags); 331 queue_flag_clear(QUEUE_FLAG_CLUSTER, t); 332 spin_unlock_irqrestore(t->queue_lock, flags); 333 } 334 } 335 EXPORT_SYMBOL(blk_queue_stack_limits); 336 337 /** 338 * blk_queue_dma_pad - set pad mask 339 * @q: the request queue for the device 340 * @mask: pad mask 341 * 342 * Set dma pad mask. 343 * 344 * Appending pad buffer to a request modifies the last entry of a 345 * scatter list such that it includes the pad buffer. 346 **/ 347 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask) 348 { 349 q->dma_pad_mask = mask; 350 } 351 EXPORT_SYMBOL(blk_queue_dma_pad); 352 353 /** 354 * blk_queue_update_dma_pad - update pad mask 355 * @q: the request queue for the device 356 * @mask: pad mask 357 * 358 * Update dma pad mask. 359 * 360 * Appending pad buffer to a request modifies the last entry of a 361 * scatter list such that it includes the pad buffer. 362 **/ 363 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 364 { 365 if (mask > q->dma_pad_mask) 366 q->dma_pad_mask = mask; 367 } 368 EXPORT_SYMBOL(blk_queue_update_dma_pad); 369 370 /** 371 * blk_queue_dma_drain - Set up a drain buffer for excess dma. 372 * @q: the request queue for the device 373 * @dma_drain_needed: fn which returns non-zero if drain is necessary 374 * @buf: physically contiguous buffer 375 * @size: size of the buffer in bytes 376 * 377 * Some devices have excess DMA problems and can't simply discard (or 378 * zero fill) the unwanted piece of the transfer. They have to have a 379 * real area of memory to transfer it into. The use case for this is 380 * ATAPI devices in DMA mode. If the packet command causes a transfer 381 * bigger than the transfer size some HBAs will lock up if there 382 * aren't DMA elements to contain the excess transfer. What this API 383 * does is adjust the queue so that the buf is always appended 384 * silently to the scatterlist. 385 * 386 * Note: This routine adjusts max_hw_segments to make room for 387 * appending the drain buffer. If you call 388 * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after 389 * calling this routine, you must set the limit to one fewer than your 390 * device can support otherwise there won't be room for the drain 391 * buffer. 392 */ 393 int blk_queue_dma_drain(struct request_queue *q, 394 dma_drain_needed_fn *dma_drain_needed, 395 void *buf, unsigned int size) 396 { 397 if (q->max_hw_segments < 2 || q->max_phys_segments < 2) 398 return -EINVAL; 399 /* make room for appending the drain */ 400 --q->max_hw_segments; 401 --q->max_phys_segments; 402 q->dma_drain_needed = dma_drain_needed; 403 q->dma_drain_buffer = buf; 404 q->dma_drain_size = size; 405 406 return 0; 407 } 408 EXPORT_SYMBOL_GPL(blk_queue_dma_drain); 409 410 /** 411 * blk_queue_segment_boundary - set boundary rules for segment merging 412 * @q: the request queue for the device 413 * @mask: the memory boundary mask 414 **/ 415 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 416 { 417 if (mask < PAGE_CACHE_SIZE - 1) { 418 mask = PAGE_CACHE_SIZE - 1; 419 printk(KERN_INFO "%s: set to minimum %lx\n", 420 __func__, mask); 421 } 422 423 q->seg_boundary_mask = mask; 424 } 425 EXPORT_SYMBOL(blk_queue_segment_boundary); 426 427 /** 428 * blk_queue_dma_alignment - set dma length and memory alignment 429 * @q: the request queue for the device 430 * @mask: alignment mask 431 * 432 * description: 433 * set required memory and length alignment for direct dma transactions. 434 * this is used when building direct io requests for the queue. 435 * 436 **/ 437 void blk_queue_dma_alignment(struct request_queue *q, int mask) 438 { 439 q->dma_alignment = mask; 440 } 441 EXPORT_SYMBOL(blk_queue_dma_alignment); 442 443 /** 444 * blk_queue_update_dma_alignment - update dma length and memory alignment 445 * @q: the request queue for the device 446 * @mask: alignment mask 447 * 448 * description: 449 * update required memory and length alignment for direct dma transactions. 450 * If the requested alignment is larger than the current alignment, then 451 * the current queue alignment is updated to the new value, otherwise it 452 * is left alone. The design of this is to allow multiple objects 453 * (driver, device, transport etc) to set their respective 454 * alignments without having them interfere. 455 * 456 **/ 457 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 458 { 459 BUG_ON(mask > PAGE_SIZE); 460 461 if (mask > q->dma_alignment) 462 q->dma_alignment = mask; 463 } 464 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 465 466 static int __init blk_settings_init(void) 467 { 468 blk_max_low_pfn = max_low_pfn - 1; 469 blk_max_pfn = max_pfn - 1; 470 return 0; 471 } 472 subsys_initcall(blk_settings_init); 473