1 /* 2 * Functions related to setting various queue properties from drivers 3 */ 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <linux/init.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ 10 11 #include "blk.h" 12 13 unsigned long blk_max_low_pfn; 14 EXPORT_SYMBOL(blk_max_low_pfn); 15 16 unsigned long blk_max_pfn; 17 18 /** 19 * blk_queue_prep_rq - set a prepare_request function for queue 20 * @q: queue 21 * @pfn: prepare_request function 22 * 23 * It's possible for a queue to register a prepare_request callback which 24 * is invoked before the request is handed to the request_fn. The goal of 25 * the function is to prepare a request for I/O, it can be used to build a 26 * cdb from the request data for instance. 27 * 28 */ 29 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) 30 { 31 q->prep_rq_fn = pfn; 32 } 33 EXPORT_SYMBOL(blk_queue_prep_rq); 34 35 /** 36 * blk_queue_set_discard - set a discard_sectors function for queue 37 * @q: queue 38 * @dfn: prepare_discard function 39 * 40 * It's possible for a queue to register a discard callback which is used 41 * to transform a discard request into the appropriate type for the 42 * hardware. If none is registered, then discard requests are failed 43 * with %EOPNOTSUPP. 44 * 45 */ 46 void blk_queue_set_discard(struct request_queue *q, prepare_discard_fn *dfn) 47 { 48 q->prepare_discard_fn = dfn; 49 } 50 EXPORT_SYMBOL(blk_queue_set_discard); 51 52 /** 53 * blk_queue_merge_bvec - set a merge_bvec function for queue 54 * @q: queue 55 * @mbfn: merge_bvec_fn 56 * 57 * Usually queues have static limitations on the max sectors or segments that 58 * we can put in a request. Stacking drivers may have some settings that 59 * are dynamic, and thus we have to query the queue whether it is ok to 60 * add a new bio_vec to a bio at a given offset or not. If the block device 61 * has such limitations, it needs to register a merge_bvec_fn to control 62 * the size of bio's sent to it. Note that a block device *must* allow a 63 * single page to be added to an empty bio. The block device driver may want 64 * to use the bio_split() function to deal with these bio's. By default 65 * no merge_bvec_fn is defined for a queue, and only the fixed limits are 66 * honored. 67 */ 68 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn) 69 { 70 q->merge_bvec_fn = mbfn; 71 } 72 EXPORT_SYMBOL(blk_queue_merge_bvec); 73 74 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) 75 { 76 q->softirq_done_fn = fn; 77 } 78 EXPORT_SYMBOL(blk_queue_softirq_done); 79 80 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 81 { 82 q->rq_timeout = timeout; 83 } 84 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 85 86 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn) 87 { 88 q->rq_timed_out_fn = fn; 89 } 90 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out); 91 92 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn) 93 { 94 q->lld_busy_fn = fn; 95 } 96 EXPORT_SYMBOL_GPL(blk_queue_lld_busy); 97 98 /** 99 * blk_queue_make_request - define an alternate make_request function for a device 100 * @q: the request queue for the device to be affected 101 * @mfn: the alternate make_request function 102 * 103 * Description: 104 * The normal way for &struct bios to be passed to a device 105 * driver is for them to be collected into requests on a request 106 * queue, and then to allow the device driver to select requests 107 * off that queue when it is ready. This works well for many block 108 * devices. However some block devices (typically virtual devices 109 * such as md or lvm) do not benefit from the processing on the 110 * request queue, and are served best by having the requests passed 111 * directly to them. This can be achieved by providing a function 112 * to blk_queue_make_request(). 113 * 114 * Caveat: 115 * The driver that does this *must* be able to deal appropriately 116 * with buffers in "highmemory". This can be accomplished by either calling 117 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling 118 * blk_queue_bounce() to create a buffer in normal memory. 119 **/ 120 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) 121 { 122 /* 123 * set defaults 124 */ 125 q->nr_requests = BLKDEV_MAX_RQ; 126 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS); 127 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS); 128 blk_queue_segment_boundary(q, BLK_SEG_BOUNDARY_MASK); 129 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE); 130 131 q->make_request_fn = mfn; 132 q->backing_dev_info.ra_pages = 133 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 134 q->backing_dev_info.state = 0; 135 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 136 blk_queue_max_sectors(q, SAFE_MAX_SECTORS); 137 blk_queue_hardsect_size(q, 512); 138 blk_queue_dma_alignment(q, 511); 139 blk_queue_congestion_threshold(q); 140 q->nr_batching = BLK_BATCH_REQ; 141 142 q->unplug_thresh = 4; /* hmm */ 143 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */ 144 if (q->unplug_delay == 0) 145 q->unplug_delay = 1; 146 147 q->unplug_timer.function = blk_unplug_timeout; 148 q->unplug_timer.data = (unsigned long)q; 149 150 /* 151 * by default assume old behaviour and bounce for any highmem page 152 */ 153 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); 154 } 155 EXPORT_SYMBOL(blk_queue_make_request); 156 157 /** 158 * blk_queue_bounce_limit - set bounce buffer limit for queue 159 * @q: the request queue for the device 160 * @dma_mask: the maximum address the device can handle 161 * 162 * Description: 163 * Different hardware can have different requirements as to what pages 164 * it can do I/O directly to. A low level driver can call 165 * blk_queue_bounce_limit to have lower memory pages allocated as bounce 166 * buffers for doing I/O to pages residing above @dma_mask. 167 **/ 168 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask) 169 { 170 unsigned long b_pfn = dma_mask >> PAGE_SHIFT; 171 int dma = 0; 172 173 q->bounce_gfp = GFP_NOIO; 174 #if BITS_PER_LONG == 64 175 /* 176 * Assume anything <= 4GB can be handled by IOMMU. Actually 177 * some IOMMUs can handle everything, but I don't know of a 178 * way to test this here. 179 */ 180 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) 181 dma = 1; 182 q->bounce_pfn = max_low_pfn; 183 #else 184 if (b_pfn < blk_max_low_pfn) 185 dma = 1; 186 q->bounce_pfn = b_pfn; 187 #endif 188 if (dma) { 189 init_emergency_isa_pool(); 190 q->bounce_gfp = GFP_NOIO | GFP_DMA; 191 q->bounce_pfn = b_pfn; 192 } 193 } 194 EXPORT_SYMBOL(blk_queue_bounce_limit); 195 196 /** 197 * blk_queue_max_sectors - set max sectors for a request for this queue 198 * @q: the request queue for the device 199 * @max_sectors: max sectors in the usual 512b unit 200 * 201 * Description: 202 * Enables a low level driver to set an upper limit on the size of 203 * received requests. 204 **/ 205 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors) 206 { 207 if ((max_sectors << 9) < PAGE_CACHE_SIZE) { 208 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9); 209 printk(KERN_INFO "%s: set to minimum %d\n", 210 __func__, max_sectors); 211 } 212 213 if (BLK_DEF_MAX_SECTORS > max_sectors) 214 q->max_hw_sectors = q->max_sectors = max_sectors; 215 else { 216 q->max_sectors = BLK_DEF_MAX_SECTORS; 217 q->max_hw_sectors = max_sectors; 218 } 219 } 220 EXPORT_SYMBOL(blk_queue_max_sectors); 221 222 /** 223 * blk_queue_max_phys_segments - set max phys segments for a request for this queue 224 * @q: the request queue for the device 225 * @max_segments: max number of segments 226 * 227 * Description: 228 * Enables a low level driver to set an upper limit on the number of 229 * physical data segments in a request. This would be the largest sized 230 * scatter list the driver could handle. 231 **/ 232 void blk_queue_max_phys_segments(struct request_queue *q, 233 unsigned short max_segments) 234 { 235 if (!max_segments) { 236 max_segments = 1; 237 printk(KERN_INFO "%s: set to minimum %d\n", 238 __func__, max_segments); 239 } 240 241 q->max_phys_segments = max_segments; 242 } 243 EXPORT_SYMBOL(blk_queue_max_phys_segments); 244 245 /** 246 * blk_queue_max_hw_segments - set max hw segments for a request for this queue 247 * @q: the request queue for the device 248 * @max_segments: max number of segments 249 * 250 * Description: 251 * Enables a low level driver to set an upper limit on the number of 252 * hw data segments in a request. This would be the largest number of 253 * address/length pairs the host adapter can actually give at once 254 * to the device. 255 **/ 256 void blk_queue_max_hw_segments(struct request_queue *q, 257 unsigned short max_segments) 258 { 259 if (!max_segments) { 260 max_segments = 1; 261 printk(KERN_INFO "%s: set to minimum %d\n", 262 __func__, max_segments); 263 } 264 265 q->max_hw_segments = max_segments; 266 } 267 EXPORT_SYMBOL(blk_queue_max_hw_segments); 268 269 /** 270 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 271 * @q: the request queue for the device 272 * @max_size: max size of segment in bytes 273 * 274 * Description: 275 * Enables a low level driver to set an upper limit on the size of a 276 * coalesced segment 277 **/ 278 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 279 { 280 if (max_size < PAGE_CACHE_SIZE) { 281 max_size = PAGE_CACHE_SIZE; 282 printk(KERN_INFO "%s: set to minimum %d\n", 283 __func__, max_size); 284 } 285 286 q->max_segment_size = max_size; 287 } 288 EXPORT_SYMBOL(blk_queue_max_segment_size); 289 290 /** 291 * blk_queue_hardsect_size - set hardware sector size for the queue 292 * @q: the request queue for the device 293 * @size: the hardware sector size, in bytes 294 * 295 * Description: 296 * This should typically be set to the lowest possible sector size 297 * that the hardware can operate on (possible without reverting to 298 * even internal read-modify-write operations). Usually the default 299 * of 512 covers most hardware. 300 **/ 301 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size) 302 { 303 q->hardsect_size = size; 304 } 305 EXPORT_SYMBOL(blk_queue_hardsect_size); 306 307 /* 308 * Returns the minimum that is _not_ zero, unless both are zero. 309 */ 310 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 311 312 /** 313 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers 314 * @t: the stacking driver (top) 315 * @b: the underlying device (bottom) 316 **/ 317 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) 318 { 319 /* zero is "infinity" */ 320 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 321 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 322 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, b->seg_boundary_mask); 323 324 t->max_phys_segments = min_not_zero(t->max_phys_segments, b->max_phys_segments); 325 t->max_hw_segments = min_not_zero(t->max_hw_segments, b->max_hw_segments); 326 t->max_segment_size = min_not_zero(t->max_segment_size, b->max_segment_size); 327 t->hardsect_size = max(t->hardsect_size, b->hardsect_size); 328 if (!t->queue_lock) 329 WARN_ON_ONCE(1); 330 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) { 331 unsigned long flags; 332 spin_lock_irqsave(t->queue_lock, flags); 333 queue_flag_clear(QUEUE_FLAG_CLUSTER, t); 334 spin_unlock_irqrestore(t->queue_lock, flags); 335 } 336 } 337 EXPORT_SYMBOL(blk_queue_stack_limits); 338 339 /** 340 * blk_queue_dma_pad - set pad mask 341 * @q: the request queue for the device 342 * @mask: pad mask 343 * 344 * Set dma pad mask. 345 * 346 * Appending pad buffer to a request modifies the last entry of a 347 * scatter list such that it includes the pad buffer. 348 **/ 349 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask) 350 { 351 q->dma_pad_mask = mask; 352 } 353 EXPORT_SYMBOL(blk_queue_dma_pad); 354 355 /** 356 * blk_queue_update_dma_pad - update pad mask 357 * @q: the request queue for the device 358 * @mask: pad mask 359 * 360 * Update dma pad mask. 361 * 362 * Appending pad buffer to a request modifies the last entry of a 363 * scatter list such that it includes the pad buffer. 364 **/ 365 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 366 { 367 if (mask > q->dma_pad_mask) 368 q->dma_pad_mask = mask; 369 } 370 EXPORT_SYMBOL(blk_queue_update_dma_pad); 371 372 /** 373 * blk_queue_dma_drain - Set up a drain buffer for excess dma. 374 * @q: the request queue for the device 375 * @dma_drain_needed: fn which returns non-zero if drain is necessary 376 * @buf: physically contiguous buffer 377 * @size: size of the buffer in bytes 378 * 379 * Some devices have excess DMA problems and can't simply discard (or 380 * zero fill) the unwanted piece of the transfer. They have to have a 381 * real area of memory to transfer it into. The use case for this is 382 * ATAPI devices in DMA mode. If the packet command causes a transfer 383 * bigger than the transfer size some HBAs will lock up if there 384 * aren't DMA elements to contain the excess transfer. What this API 385 * does is adjust the queue so that the buf is always appended 386 * silently to the scatterlist. 387 * 388 * Note: This routine adjusts max_hw_segments to make room for 389 * appending the drain buffer. If you call 390 * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after 391 * calling this routine, you must set the limit to one fewer than your 392 * device can support otherwise there won't be room for the drain 393 * buffer. 394 */ 395 int blk_queue_dma_drain(struct request_queue *q, 396 dma_drain_needed_fn *dma_drain_needed, 397 void *buf, unsigned int size) 398 { 399 if (q->max_hw_segments < 2 || q->max_phys_segments < 2) 400 return -EINVAL; 401 /* make room for appending the drain */ 402 --q->max_hw_segments; 403 --q->max_phys_segments; 404 q->dma_drain_needed = dma_drain_needed; 405 q->dma_drain_buffer = buf; 406 q->dma_drain_size = size; 407 408 return 0; 409 } 410 EXPORT_SYMBOL_GPL(blk_queue_dma_drain); 411 412 /** 413 * blk_queue_segment_boundary - set boundary rules for segment merging 414 * @q: the request queue for the device 415 * @mask: the memory boundary mask 416 **/ 417 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 418 { 419 if (mask < PAGE_CACHE_SIZE - 1) { 420 mask = PAGE_CACHE_SIZE - 1; 421 printk(KERN_INFO "%s: set to minimum %lx\n", 422 __func__, mask); 423 } 424 425 q->seg_boundary_mask = mask; 426 } 427 EXPORT_SYMBOL(blk_queue_segment_boundary); 428 429 /** 430 * blk_queue_dma_alignment - set dma length and memory alignment 431 * @q: the request queue for the device 432 * @mask: alignment mask 433 * 434 * description: 435 * set required memory and length alignment for direct dma transactions. 436 * this is used when building direct io requests for the queue. 437 * 438 **/ 439 void blk_queue_dma_alignment(struct request_queue *q, int mask) 440 { 441 q->dma_alignment = mask; 442 } 443 EXPORT_SYMBOL(blk_queue_dma_alignment); 444 445 /** 446 * blk_queue_update_dma_alignment - update dma length and memory alignment 447 * @q: the request queue for the device 448 * @mask: alignment mask 449 * 450 * description: 451 * update required memory and length alignment for direct dma transactions. 452 * If the requested alignment is larger than the current alignment, then 453 * the current queue alignment is updated to the new value, otherwise it 454 * is left alone. The design of this is to allow multiple objects 455 * (driver, device, transport etc) to set their respective 456 * alignments without having them interfere. 457 * 458 **/ 459 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 460 { 461 BUG_ON(mask > PAGE_SIZE); 462 463 if (mask > q->dma_alignment) 464 q->dma_alignment = mask; 465 } 466 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 467 468 static int __init blk_settings_init(void) 469 { 470 blk_max_low_pfn = max_low_pfn - 1; 471 blk_max_pfn = max_pfn - 1; 472 return 0; 473 } 474 subsys_initcall(blk_settings_init); 475