1 /* 2 * Functions related to setting various queue properties from drivers 3 */ 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <linux/init.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ 10 #include <linux/gcd.h> 11 #include <linux/lcm.h> 12 #include <linux/jiffies.h> 13 #include <linux/gfp.h> 14 15 #include "blk.h" 16 17 unsigned long blk_max_low_pfn; 18 EXPORT_SYMBOL(blk_max_low_pfn); 19 20 unsigned long blk_max_pfn; 21 22 /** 23 * blk_queue_prep_rq - set a prepare_request function for queue 24 * @q: queue 25 * @pfn: prepare_request function 26 * 27 * It's possible for a queue to register a prepare_request callback which 28 * is invoked before the request is handed to the request_fn. The goal of 29 * the function is to prepare a request for I/O, it can be used to build a 30 * cdb from the request data for instance. 31 * 32 */ 33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) 34 { 35 q->prep_rq_fn = pfn; 36 } 37 EXPORT_SYMBOL(blk_queue_prep_rq); 38 39 /** 40 * blk_queue_unprep_rq - set an unprepare_request function for queue 41 * @q: queue 42 * @ufn: unprepare_request function 43 * 44 * It's possible for a queue to register an unprepare_request callback 45 * which is invoked before the request is finally completed. The goal 46 * of the function is to deallocate any data that was allocated in the 47 * prepare_request callback. 48 * 49 */ 50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn) 51 { 52 q->unprep_rq_fn = ufn; 53 } 54 EXPORT_SYMBOL(blk_queue_unprep_rq); 55 56 /** 57 * blk_queue_merge_bvec - set a merge_bvec function for queue 58 * @q: queue 59 * @mbfn: merge_bvec_fn 60 * 61 * Usually queues have static limitations on the max sectors or segments that 62 * we can put in a request. Stacking drivers may have some settings that 63 * are dynamic, and thus we have to query the queue whether it is ok to 64 * add a new bio_vec to a bio at a given offset or not. If the block device 65 * has such limitations, it needs to register a merge_bvec_fn to control 66 * the size of bio's sent to it. Note that a block device *must* allow a 67 * single page to be added to an empty bio. The block device driver may want 68 * to use the bio_split() function to deal with these bio's. By default 69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are 70 * honored. 71 */ 72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn) 73 { 74 q->merge_bvec_fn = mbfn; 75 } 76 EXPORT_SYMBOL(blk_queue_merge_bvec); 77 78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) 79 { 80 q->softirq_done_fn = fn; 81 } 82 EXPORT_SYMBOL(blk_queue_softirq_done); 83 84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 85 { 86 q->rq_timeout = timeout; 87 } 88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 89 90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn) 91 { 92 q->rq_timed_out_fn = fn; 93 } 94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out); 95 96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn) 97 { 98 q->lld_busy_fn = fn; 99 } 100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy); 101 102 /** 103 * blk_set_default_limits - reset limits to default values 104 * @lim: the queue_limits structure to reset 105 * 106 * Description: 107 * Returns a queue_limit struct to its default state. 108 */ 109 void blk_set_default_limits(struct queue_limits *lim) 110 { 111 lim->max_segments = BLK_MAX_SEGMENTS; 112 lim->max_integrity_segments = 0; 113 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 114 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 115 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; 116 lim->max_write_same_sectors = 0; 117 lim->max_discard_sectors = 0; 118 lim->discard_granularity = 0; 119 lim->discard_alignment = 0; 120 lim->discard_misaligned = 0; 121 lim->discard_zeroes_data = 0; 122 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512; 123 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT); 124 lim->alignment_offset = 0; 125 lim->io_opt = 0; 126 lim->misaligned = 0; 127 lim->cluster = 1; 128 } 129 EXPORT_SYMBOL(blk_set_default_limits); 130 131 /** 132 * blk_set_stacking_limits - set default limits for stacking devices 133 * @lim: the queue_limits structure to reset 134 * 135 * Description: 136 * Returns a queue_limit struct to its default state. Should be used 137 * by stacking drivers like DM that have no internal limits. 138 */ 139 void blk_set_stacking_limits(struct queue_limits *lim) 140 { 141 blk_set_default_limits(lim); 142 143 /* Inherit limits from component devices */ 144 lim->discard_zeroes_data = 1; 145 lim->max_segments = USHRT_MAX; 146 lim->max_hw_sectors = UINT_MAX; 147 lim->max_segment_size = UINT_MAX; 148 lim->max_sectors = UINT_MAX; 149 lim->max_write_same_sectors = UINT_MAX; 150 } 151 EXPORT_SYMBOL(blk_set_stacking_limits); 152 153 /** 154 * blk_queue_make_request - define an alternate make_request function for a device 155 * @q: the request queue for the device to be affected 156 * @mfn: the alternate make_request function 157 * 158 * Description: 159 * The normal way for &struct bios to be passed to a device 160 * driver is for them to be collected into requests on a request 161 * queue, and then to allow the device driver to select requests 162 * off that queue when it is ready. This works well for many block 163 * devices. However some block devices (typically virtual devices 164 * such as md or lvm) do not benefit from the processing on the 165 * request queue, and are served best by having the requests passed 166 * directly to them. This can be achieved by providing a function 167 * to blk_queue_make_request(). 168 * 169 * Caveat: 170 * The driver that does this *must* be able to deal appropriately 171 * with buffers in "highmemory". This can be accomplished by either calling 172 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling 173 * blk_queue_bounce() to create a buffer in normal memory. 174 **/ 175 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) 176 { 177 /* 178 * set defaults 179 */ 180 q->nr_requests = BLKDEV_MAX_RQ; 181 182 q->make_request_fn = mfn; 183 blk_queue_dma_alignment(q, 511); 184 blk_queue_congestion_threshold(q); 185 q->nr_batching = BLK_BATCH_REQ; 186 187 blk_set_default_limits(&q->limits); 188 189 /* 190 * by default assume old behaviour and bounce for any highmem page 191 */ 192 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); 193 } 194 EXPORT_SYMBOL(blk_queue_make_request); 195 196 /** 197 * blk_queue_bounce_limit - set bounce buffer limit for queue 198 * @q: the request queue for the device 199 * @max_addr: the maximum address the device can handle 200 * 201 * Description: 202 * Different hardware can have different requirements as to what pages 203 * it can do I/O directly to. A low level driver can call 204 * blk_queue_bounce_limit to have lower memory pages allocated as bounce 205 * buffers for doing I/O to pages residing above @max_addr. 206 **/ 207 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr) 208 { 209 unsigned long b_pfn = max_addr >> PAGE_SHIFT; 210 int dma = 0; 211 212 q->bounce_gfp = GFP_NOIO; 213 #if BITS_PER_LONG == 64 214 /* 215 * Assume anything <= 4GB can be handled by IOMMU. Actually 216 * some IOMMUs can handle everything, but I don't know of a 217 * way to test this here. 218 */ 219 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) 220 dma = 1; 221 q->limits.bounce_pfn = max(max_low_pfn, b_pfn); 222 #else 223 if (b_pfn < blk_max_low_pfn) 224 dma = 1; 225 q->limits.bounce_pfn = b_pfn; 226 #endif 227 if (dma) { 228 init_emergency_isa_pool(); 229 q->bounce_gfp = GFP_NOIO | GFP_DMA; 230 q->limits.bounce_pfn = b_pfn; 231 } 232 } 233 EXPORT_SYMBOL(blk_queue_bounce_limit); 234 235 /** 236 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request 237 * @limits: the queue limits 238 * @max_hw_sectors: max hardware sectors in the usual 512b unit 239 * 240 * Description: 241 * Enables a low level driver to set a hard upper limit, 242 * max_hw_sectors, on the size of requests. max_hw_sectors is set by 243 * the device driver based upon the combined capabilities of I/O 244 * controller and storage device. 245 * 246 * max_sectors is a soft limit imposed by the block layer for 247 * filesystem type requests. This value can be overridden on a 248 * per-device basis in /sys/block/<device>/queue/max_sectors_kb. 249 * The soft limit can not exceed max_hw_sectors. 250 **/ 251 void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors) 252 { 253 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) { 254 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9); 255 printk(KERN_INFO "%s: set to minimum %d\n", 256 __func__, max_hw_sectors); 257 } 258 259 limits->max_hw_sectors = max_hw_sectors; 260 limits->max_sectors = min_t(unsigned int, max_hw_sectors, 261 BLK_DEF_MAX_SECTORS); 262 } 263 EXPORT_SYMBOL(blk_limits_max_hw_sectors); 264 265 /** 266 * blk_queue_max_hw_sectors - set max sectors for a request for this queue 267 * @q: the request queue for the device 268 * @max_hw_sectors: max hardware sectors in the usual 512b unit 269 * 270 * Description: 271 * See description for blk_limits_max_hw_sectors(). 272 **/ 273 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors) 274 { 275 blk_limits_max_hw_sectors(&q->limits, max_hw_sectors); 276 } 277 EXPORT_SYMBOL(blk_queue_max_hw_sectors); 278 279 /** 280 * blk_queue_max_discard_sectors - set max sectors for a single discard 281 * @q: the request queue for the device 282 * @max_discard_sectors: maximum number of sectors to discard 283 **/ 284 void blk_queue_max_discard_sectors(struct request_queue *q, 285 unsigned int max_discard_sectors) 286 { 287 q->limits.max_discard_sectors = max_discard_sectors; 288 } 289 EXPORT_SYMBOL(blk_queue_max_discard_sectors); 290 291 /** 292 * blk_queue_max_write_same_sectors - set max sectors for a single write same 293 * @q: the request queue for the device 294 * @max_write_same_sectors: maximum number of sectors to write per command 295 **/ 296 void blk_queue_max_write_same_sectors(struct request_queue *q, 297 unsigned int max_write_same_sectors) 298 { 299 q->limits.max_write_same_sectors = max_write_same_sectors; 300 } 301 EXPORT_SYMBOL(blk_queue_max_write_same_sectors); 302 303 /** 304 * blk_queue_max_segments - set max hw segments for a request for this queue 305 * @q: the request queue for the device 306 * @max_segments: max number of segments 307 * 308 * Description: 309 * Enables a low level driver to set an upper limit on the number of 310 * hw data segments in a request. 311 **/ 312 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments) 313 { 314 if (!max_segments) { 315 max_segments = 1; 316 printk(KERN_INFO "%s: set to minimum %d\n", 317 __func__, max_segments); 318 } 319 320 q->limits.max_segments = max_segments; 321 } 322 EXPORT_SYMBOL(blk_queue_max_segments); 323 324 /** 325 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 326 * @q: the request queue for the device 327 * @max_size: max size of segment in bytes 328 * 329 * Description: 330 * Enables a low level driver to set an upper limit on the size of a 331 * coalesced segment 332 **/ 333 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 334 { 335 if (max_size < PAGE_CACHE_SIZE) { 336 max_size = PAGE_CACHE_SIZE; 337 printk(KERN_INFO "%s: set to minimum %d\n", 338 __func__, max_size); 339 } 340 341 q->limits.max_segment_size = max_size; 342 } 343 EXPORT_SYMBOL(blk_queue_max_segment_size); 344 345 /** 346 * blk_queue_logical_block_size - set logical block size for the queue 347 * @q: the request queue for the device 348 * @size: the logical block size, in bytes 349 * 350 * Description: 351 * This should be set to the lowest possible block size that the 352 * storage device can address. The default of 512 covers most 353 * hardware. 354 **/ 355 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size) 356 { 357 q->limits.logical_block_size = size; 358 359 if (q->limits.physical_block_size < size) 360 q->limits.physical_block_size = size; 361 362 if (q->limits.io_min < q->limits.physical_block_size) 363 q->limits.io_min = q->limits.physical_block_size; 364 } 365 EXPORT_SYMBOL(blk_queue_logical_block_size); 366 367 /** 368 * blk_queue_physical_block_size - set physical block size for the queue 369 * @q: the request queue for the device 370 * @size: the physical block size, in bytes 371 * 372 * Description: 373 * This should be set to the lowest possible sector size that the 374 * hardware can operate on without reverting to read-modify-write 375 * operations. 376 */ 377 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size) 378 { 379 q->limits.physical_block_size = size; 380 381 if (q->limits.physical_block_size < q->limits.logical_block_size) 382 q->limits.physical_block_size = q->limits.logical_block_size; 383 384 if (q->limits.io_min < q->limits.physical_block_size) 385 q->limits.io_min = q->limits.physical_block_size; 386 } 387 EXPORT_SYMBOL(blk_queue_physical_block_size); 388 389 /** 390 * blk_queue_alignment_offset - set physical block alignment offset 391 * @q: the request queue for the device 392 * @offset: alignment offset in bytes 393 * 394 * Description: 395 * Some devices are naturally misaligned to compensate for things like 396 * the legacy DOS partition table 63-sector offset. Low-level drivers 397 * should call this function for devices whose first sector is not 398 * naturally aligned. 399 */ 400 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) 401 { 402 q->limits.alignment_offset = 403 offset & (q->limits.physical_block_size - 1); 404 q->limits.misaligned = 0; 405 } 406 EXPORT_SYMBOL(blk_queue_alignment_offset); 407 408 /** 409 * blk_limits_io_min - set minimum request size for a device 410 * @limits: the queue limits 411 * @min: smallest I/O size in bytes 412 * 413 * Description: 414 * Some devices have an internal block size bigger than the reported 415 * hardware sector size. This function can be used to signal the 416 * smallest I/O the device can perform without incurring a performance 417 * penalty. 418 */ 419 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 420 { 421 limits->io_min = min; 422 423 if (limits->io_min < limits->logical_block_size) 424 limits->io_min = limits->logical_block_size; 425 426 if (limits->io_min < limits->physical_block_size) 427 limits->io_min = limits->physical_block_size; 428 } 429 EXPORT_SYMBOL(blk_limits_io_min); 430 431 /** 432 * blk_queue_io_min - set minimum request size for the queue 433 * @q: the request queue for the device 434 * @min: smallest I/O size in bytes 435 * 436 * Description: 437 * Storage devices may report a granularity or preferred minimum I/O 438 * size which is the smallest request the device can perform without 439 * incurring a performance penalty. For disk drives this is often the 440 * physical block size. For RAID arrays it is often the stripe chunk 441 * size. A properly aligned multiple of minimum_io_size is the 442 * preferred request size for workloads where a high number of I/O 443 * operations is desired. 444 */ 445 void blk_queue_io_min(struct request_queue *q, unsigned int min) 446 { 447 blk_limits_io_min(&q->limits, min); 448 } 449 EXPORT_SYMBOL(blk_queue_io_min); 450 451 /** 452 * blk_limits_io_opt - set optimal request size for a device 453 * @limits: the queue limits 454 * @opt: smallest I/O size in bytes 455 * 456 * Description: 457 * Storage devices may report an optimal I/O size, which is the 458 * device's preferred unit for sustained I/O. This is rarely reported 459 * for disk drives. For RAID arrays it is usually the stripe width or 460 * the internal track size. A properly aligned multiple of 461 * optimal_io_size is the preferred request size for workloads where 462 * sustained throughput is desired. 463 */ 464 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 465 { 466 limits->io_opt = opt; 467 } 468 EXPORT_SYMBOL(blk_limits_io_opt); 469 470 /** 471 * blk_queue_io_opt - set optimal request size for the queue 472 * @q: the request queue for the device 473 * @opt: optimal request size in bytes 474 * 475 * Description: 476 * Storage devices may report an optimal I/O size, which is the 477 * device's preferred unit for sustained I/O. This is rarely reported 478 * for disk drives. For RAID arrays it is usually the stripe width or 479 * the internal track size. A properly aligned multiple of 480 * optimal_io_size is the preferred request size for workloads where 481 * sustained throughput is desired. 482 */ 483 void blk_queue_io_opt(struct request_queue *q, unsigned int opt) 484 { 485 blk_limits_io_opt(&q->limits, opt); 486 } 487 EXPORT_SYMBOL(blk_queue_io_opt); 488 489 /** 490 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers 491 * @t: the stacking driver (top) 492 * @b: the underlying device (bottom) 493 **/ 494 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) 495 { 496 blk_stack_limits(&t->limits, &b->limits, 0); 497 } 498 EXPORT_SYMBOL(blk_queue_stack_limits); 499 500 /** 501 * blk_stack_limits - adjust queue_limits for stacked devices 502 * @t: the stacking driver limits (top device) 503 * @b: the underlying queue limits (bottom, component device) 504 * @start: first data sector within component device 505 * 506 * Description: 507 * This function is used by stacking drivers like MD and DM to ensure 508 * that all component devices have compatible block sizes and 509 * alignments. The stacking driver must provide a queue_limits 510 * struct (top) and then iteratively call the stacking function for 511 * all component (bottom) devices. The stacking function will 512 * attempt to combine the values and ensure proper alignment. 513 * 514 * Returns 0 if the top and bottom queue_limits are compatible. The 515 * top device's block sizes and alignment offsets may be adjusted to 516 * ensure alignment with the bottom device. If no compatible sizes 517 * and alignments exist, -1 is returned and the resulting top 518 * queue_limits will have the misaligned flag set to indicate that 519 * the alignment_offset is undefined. 520 */ 521 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 522 sector_t start) 523 { 524 unsigned int top, bottom, alignment, ret = 0; 525 526 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 527 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 528 t->max_write_same_sectors = min(t->max_write_same_sectors, 529 b->max_write_same_sectors); 530 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn); 531 532 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 533 b->seg_boundary_mask); 534 535 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 536 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 537 b->max_integrity_segments); 538 539 t->max_segment_size = min_not_zero(t->max_segment_size, 540 b->max_segment_size); 541 542 t->misaligned |= b->misaligned; 543 544 alignment = queue_limit_alignment_offset(b, start); 545 546 /* Bottom device has different alignment. Check that it is 547 * compatible with the current top alignment. 548 */ 549 if (t->alignment_offset != alignment) { 550 551 top = max(t->physical_block_size, t->io_min) 552 + t->alignment_offset; 553 bottom = max(b->physical_block_size, b->io_min) + alignment; 554 555 /* Verify that top and bottom intervals line up */ 556 if (max(top, bottom) & (min(top, bottom) - 1)) { 557 t->misaligned = 1; 558 ret = -1; 559 } 560 } 561 562 t->logical_block_size = max(t->logical_block_size, 563 b->logical_block_size); 564 565 t->physical_block_size = max(t->physical_block_size, 566 b->physical_block_size); 567 568 t->io_min = max(t->io_min, b->io_min); 569 t->io_opt = lcm(t->io_opt, b->io_opt); 570 571 t->cluster &= b->cluster; 572 t->discard_zeroes_data &= b->discard_zeroes_data; 573 574 /* Physical block size a multiple of the logical block size? */ 575 if (t->physical_block_size & (t->logical_block_size - 1)) { 576 t->physical_block_size = t->logical_block_size; 577 t->misaligned = 1; 578 ret = -1; 579 } 580 581 /* Minimum I/O a multiple of the physical block size? */ 582 if (t->io_min & (t->physical_block_size - 1)) { 583 t->io_min = t->physical_block_size; 584 t->misaligned = 1; 585 ret = -1; 586 } 587 588 /* Optimal I/O a multiple of the physical block size? */ 589 if (t->io_opt & (t->physical_block_size - 1)) { 590 t->io_opt = 0; 591 t->misaligned = 1; 592 ret = -1; 593 } 594 595 t->raid_partial_stripes_expensive = 596 max(t->raid_partial_stripes_expensive, 597 b->raid_partial_stripes_expensive); 598 599 /* Find lowest common alignment_offset */ 600 t->alignment_offset = lcm(t->alignment_offset, alignment) 601 & (max(t->physical_block_size, t->io_min) - 1); 602 603 /* Verify that new alignment_offset is on a logical block boundary */ 604 if (t->alignment_offset & (t->logical_block_size - 1)) { 605 t->misaligned = 1; 606 ret = -1; 607 } 608 609 /* Discard alignment and granularity */ 610 if (b->discard_granularity) { 611 alignment = queue_limit_discard_alignment(b, start); 612 613 if (t->discard_granularity != 0 && 614 t->discard_alignment != alignment) { 615 top = t->discard_granularity + t->discard_alignment; 616 bottom = b->discard_granularity + alignment; 617 618 /* Verify that top and bottom intervals line up */ 619 if ((max(top, bottom) % min(top, bottom)) != 0) 620 t->discard_misaligned = 1; 621 } 622 623 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 624 b->max_discard_sectors); 625 t->discard_granularity = max(t->discard_granularity, 626 b->discard_granularity); 627 t->discard_alignment = lcm(t->discard_alignment, alignment) % 628 t->discard_granularity; 629 } 630 631 return ret; 632 } 633 EXPORT_SYMBOL(blk_stack_limits); 634 635 /** 636 * bdev_stack_limits - adjust queue limits for stacked drivers 637 * @t: the stacking driver limits (top device) 638 * @bdev: the component block_device (bottom) 639 * @start: first data sector within component device 640 * 641 * Description: 642 * Merges queue limits for a top device and a block_device. Returns 643 * 0 if alignment didn't change. Returns -1 if adding the bottom 644 * device caused misalignment. 645 */ 646 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 647 sector_t start) 648 { 649 struct request_queue *bq = bdev_get_queue(bdev); 650 651 start += get_start_sect(bdev); 652 653 return blk_stack_limits(t, &bq->limits, start); 654 } 655 EXPORT_SYMBOL(bdev_stack_limits); 656 657 /** 658 * disk_stack_limits - adjust queue limits for stacked drivers 659 * @disk: MD/DM gendisk (top) 660 * @bdev: the underlying block device (bottom) 661 * @offset: offset to beginning of data within component device 662 * 663 * Description: 664 * Merges the limits for a top level gendisk and a bottom level 665 * block_device. 666 */ 667 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 668 sector_t offset) 669 { 670 struct request_queue *t = disk->queue; 671 672 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) { 673 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE]; 674 675 disk_name(disk, 0, top); 676 bdevname(bdev, bottom); 677 678 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n", 679 top, bottom); 680 } 681 } 682 EXPORT_SYMBOL(disk_stack_limits); 683 684 /** 685 * blk_queue_dma_pad - set pad mask 686 * @q: the request queue for the device 687 * @mask: pad mask 688 * 689 * Set dma pad mask. 690 * 691 * Appending pad buffer to a request modifies the last entry of a 692 * scatter list such that it includes the pad buffer. 693 **/ 694 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask) 695 { 696 q->dma_pad_mask = mask; 697 } 698 EXPORT_SYMBOL(blk_queue_dma_pad); 699 700 /** 701 * blk_queue_update_dma_pad - update pad mask 702 * @q: the request queue for the device 703 * @mask: pad mask 704 * 705 * Update dma pad mask. 706 * 707 * Appending pad buffer to a request modifies the last entry of a 708 * scatter list such that it includes the pad buffer. 709 **/ 710 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 711 { 712 if (mask > q->dma_pad_mask) 713 q->dma_pad_mask = mask; 714 } 715 EXPORT_SYMBOL(blk_queue_update_dma_pad); 716 717 /** 718 * blk_queue_dma_drain - Set up a drain buffer for excess dma. 719 * @q: the request queue for the device 720 * @dma_drain_needed: fn which returns non-zero if drain is necessary 721 * @buf: physically contiguous buffer 722 * @size: size of the buffer in bytes 723 * 724 * Some devices have excess DMA problems and can't simply discard (or 725 * zero fill) the unwanted piece of the transfer. They have to have a 726 * real area of memory to transfer it into. The use case for this is 727 * ATAPI devices in DMA mode. If the packet command causes a transfer 728 * bigger than the transfer size some HBAs will lock up if there 729 * aren't DMA elements to contain the excess transfer. What this API 730 * does is adjust the queue so that the buf is always appended 731 * silently to the scatterlist. 732 * 733 * Note: This routine adjusts max_hw_segments to make room for appending 734 * the drain buffer. If you call blk_queue_max_segments() after calling 735 * this routine, you must set the limit to one fewer than your device 736 * can support otherwise there won't be room for the drain buffer. 737 */ 738 int blk_queue_dma_drain(struct request_queue *q, 739 dma_drain_needed_fn *dma_drain_needed, 740 void *buf, unsigned int size) 741 { 742 if (queue_max_segments(q) < 2) 743 return -EINVAL; 744 /* make room for appending the drain */ 745 blk_queue_max_segments(q, queue_max_segments(q) - 1); 746 q->dma_drain_needed = dma_drain_needed; 747 q->dma_drain_buffer = buf; 748 q->dma_drain_size = size; 749 750 return 0; 751 } 752 EXPORT_SYMBOL_GPL(blk_queue_dma_drain); 753 754 /** 755 * blk_queue_segment_boundary - set boundary rules for segment merging 756 * @q: the request queue for the device 757 * @mask: the memory boundary mask 758 **/ 759 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 760 { 761 if (mask < PAGE_CACHE_SIZE - 1) { 762 mask = PAGE_CACHE_SIZE - 1; 763 printk(KERN_INFO "%s: set to minimum %lx\n", 764 __func__, mask); 765 } 766 767 q->limits.seg_boundary_mask = mask; 768 } 769 EXPORT_SYMBOL(blk_queue_segment_boundary); 770 771 /** 772 * blk_queue_dma_alignment - set dma length and memory alignment 773 * @q: the request queue for the device 774 * @mask: alignment mask 775 * 776 * description: 777 * set required memory and length alignment for direct dma transactions. 778 * this is used when building direct io requests for the queue. 779 * 780 **/ 781 void blk_queue_dma_alignment(struct request_queue *q, int mask) 782 { 783 q->dma_alignment = mask; 784 } 785 EXPORT_SYMBOL(blk_queue_dma_alignment); 786 787 /** 788 * blk_queue_update_dma_alignment - update dma length and memory alignment 789 * @q: the request queue for the device 790 * @mask: alignment mask 791 * 792 * description: 793 * update required memory and length alignment for direct dma transactions. 794 * If the requested alignment is larger than the current alignment, then 795 * the current queue alignment is updated to the new value, otherwise it 796 * is left alone. The design of this is to allow multiple objects 797 * (driver, device, transport etc) to set their respective 798 * alignments without having them interfere. 799 * 800 **/ 801 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 802 { 803 BUG_ON(mask > PAGE_SIZE); 804 805 if (mask > q->dma_alignment) 806 q->dma_alignment = mask; 807 } 808 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 809 810 /** 811 * blk_queue_flush - configure queue's cache flush capability 812 * @q: the request queue for the device 813 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA 814 * 815 * Tell block layer cache flush capability of @q. If it supports 816 * flushing, REQ_FLUSH should be set. If it supports bypassing 817 * write cache for individual writes, REQ_FUA should be set. 818 */ 819 void blk_queue_flush(struct request_queue *q, unsigned int flush) 820 { 821 WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA)); 822 823 if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA))) 824 flush &= ~REQ_FUA; 825 826 q->flush_flags = flush & (REQ_FLUSH | REQ_FUA); 827 } 828 EXPORT_SYMBOL_GPL(blk_queue_flush); 829 830 void blk_queue_flush_queueable(struct request_queue *q, bool queueable) 831 { 832 q->flush_not_queueable = !queueable; 833 } 834 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable); 835 836 static int __init blk_settings_init(void) 837 { 838 blk_max_low_pfn = max_low_pfn - 1; 839 blk_max_pfn = max_pfn - 1; 840 return 0; 841 } 842 subsys_initcall(blk_settings_init); 843