1 /* 2 * Functions related to setting various queue properties from drivers 3 */ 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <linux/init.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ 10 11 #include "blk.h" 12 13 unsigned long blk_max_low_pfn; 14 EXPORT_SYMBOL(blk_max_low_pfn); 15 16 unsigned long blk_max_pfn; 17 18 /** 19 * blk_queue_prep_rq - set a prepare_request function for queue 20 * @q: queue 21 * @pfn: prepare_request function 22 * 23 * It's possible for a queue to register a prepare_request callback which 24 * is invoked before the request is handed to the request_fn. The goal of 25 * the function is to prepare a request for I/O, it can be used to build a 26 * cdb from the request data for instance. 27 * 28 */ 29 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) 30 { 31 q->prep_rq_fn = pfn; 32 } 33 EXPORT_SYMBOL(blk_queue_prep_rq); 34 35 /** 36 * blk_queue_set_discard - set a discard_sectors function for queue 37 * @q: queue 38 * @dfn: prepare_discard function 39 * 40 * It's possible for a queue to register a discard callback which is used 41 * to transform a discard request into the appropriate type for the 42 * hardware. If none is registered, then discard requests are failed 43 * with %EOPNOTSUPP. 44 * 45 */ 46 void blk_queue_set_discard(struct request_queue *q, prepare_discard_fn *dfn) 47 { 48 q->prepare_discard_fn = dfn; 49 } 50 EXPORT_SYMBOL(blk_queue_set_discard); 51 52 /** 53 * blk_queue_merge_bvec - set a merge_bvec function for queue 54 * @q: queue 55 * @mbfn: merge_bvec_fn 56 * 57 * Usually queues have static limitations on the max sectors or segments that 58 * we can put in a request. Stacking drivers may have some settings that 59 * are dynamic, and thus we have to query the queue whether it is ok to 60 * add a new bio_vec to a bio at a given offset or not. If the block device 61 * has such limitations, it needs to register a merge_bvec_fn to control 62 * the size of bio's sent to it. Note that a block device *must* allow a 63 * single page to be added to an empty bio. The block device driver may want 64 * to use the bio_split() function to deal with these bio's. By default 65 * no merge_bvec_fn is defined for a queue, and only the fixed limits are 66 * honored. 67 */ 68 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn) 69 { 70 q->merge_bvec_fn = mbfn; 71 } 72 EXPORT_SYMBOL(blk_queue_merge_bvec); 73 74 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) 75 { 76 q->softirq_done_fn = fn; 77 } 78 EXPORT_SYMBOL(blk_queue_softirq_done); 79 80 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 81 { 82 q->rq_timeout = timeout; 83 } 84 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 85 86 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn) 87 { 88 q->rq_timed_out_fn = fn; 89 } 90 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out); 91 92 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn) 93 { 94 q->lld_busy_fn = fn; 95 } 96 EXPORT_SYMBOL_GPL(blk_queue_lld_busy); 97 98 /** 99 * blk_queue_make_request - define an alternate make_request function for a device 100 * @q: the request queue for the device to be affected 101 * @mfn: the alternate make_request function 102 * 103 * Description: 104 * The normal way for &struct bios to be passed to a device 105 * driver is for them to be collected into requests on a request 106 * queue, and then to allow the device driver to select requests 107 * off that queue when it is ready. This works well for many block 108 * devices. However some block devices (typically virtual devices 109 * such as md or lvm) do not benefit from the processing on the 110 * request queue, and are served best by having the requests passed 111 * directly to them. This can be achieved by providing a function 112 * to blk_queue_make_request(). 113 * 114 * Caveat: 115 * The driver that does this *must* be able to deal appropriately 116 * with buffers in "highmemory". This can be accomplished by either calling 117 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling 118 * blk_queue_bounce() to create a buffer in normal memory. 119 **/ 120 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) 121 { 122 /* 123 * set defaults 124 */ 125 q->nr_requests = BLKDEV_MAX_RQ; 126 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS); 127 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS); 128 q->make_request_fn = mfn; 129 q->backing_dev_info.ra_pages = 130 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 131 q->backing_dev_info.state = 0; 132 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 133 blk_queue_max_sectors(q, SAFE_MAX_SECTORS); 134 blk_queue_hardsect_size(q, 512); 135 blk_queue_dma_alignment(q, 511); 136 blk_queue_congestion_threshold(q); 137 q->nr_batching = BLK_BATCH_REQ; 138 139 q->unplug_thresh = 4; /* hmm */ 140 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */ 141 if (q->unplug_delay == 0) 142 q->unplug_delay = 1; 143 144 q->unplug_timer.function = blk_unplug_timeout; 145 q->unplug_timer.data = (unsigned long)q; 146 147 /* 148 * by default assume old behaviour and bounce for any highmem page 149 */ 150 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); 151 } 152 EXPORT_SYMBOL(blk_queue_make_request); 153 154 /** 155 * blk_queue_bounce_limit - set bounce buffer limit for queue 156 * @q: the request queue for the device 157 * @dma_addr: bus address limit 158 * 159 * Description: 160 * Different hardware can have different requirements as to what pages 161 * it can do I/O directly to. A low level driver can call 162 * blk_queue_bounce_limit to have lower memory pages allocated as bounce 163 * buffers for doing I/O to pages residing above @dma_addr. 164 **/ 165 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr) 166 { 167 unsigned long b_pfn = dma_addr >> PAGE_SHIFT; 168 int dma = 0; 169 170 q->bounce_gfp = GFP_NOIO; 171 #if BITS_PER_LONG == 64 172 /* Assume anything <= 4GB can be handled by IOMMU. 173 Actually some IOMMUs can handle everything, but I don't 174 know of a way to test this here. */ 175 if (b_pfn < (min_t(u64, 0x100000000UL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) 176 dma = 1; 177 q->bounce_pfn = max_low_pfn; 178 #else 179 if (b_pfn < blk_max_low_pfn) 180 dma = 1; 181 q->bounce_pfn = b_pfn; 182 #endif 183 if (dma) { 184 init_emergency_isa_pool(); 185 q->bounce_gfp = GFP_NOIO | GFP_DMA; 186 q->bounce_pfn = b_pfn; 187 } 188 } 189 EXPORT_SYMBOL(blk_queue_bounce_limit); 190 191 /** 192 * blk_queue_max_sectors - set max sectors for a request for this queue 193 * @q: the request queue for the device 194 * @max_sectors: max sectors in the usual 512b unit 195 * 196 * Description: 197 * Enables a low level driver to set an upper limit on the size of 198 * received requests. 199 **/ 200 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors) 201 { 202 if ((max_sectors << 9) < PAGE_CACHE_SIZE) { 203 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9); 204 printk(KERN_INFO "%s: set to minimum %d\n", 205 __func__, max_sectors); 206 } 207 208 if (BLK_DEF_MAX_SECTORS > max_sectors) 209 q->max_hw_sectors = q->max_sectors = max_sectors; 210 else { 211 q->max_sectors = BLK_DEF_MAX_SECTORS; 212 q->max_hw_sectors = max_sectors; 213 } 214 } 215 EXPORT_SYMBOL(blk_queue_max_sectors); 216 217 /** 218 * blk_queue_max_phys_segments - set max phys segments for a request for this queue 219 * @q: the request queue for the device 220 * @max_segments: max number of segments 221 * 222 * Description: 223 * Enables a low level driver to set an upper limit on the number of 224 * physical data segments in a request. This would be the largest sized 225 * scatter list the driver could handle. 226 **/ 227 void blk_queue_max_phys_segments(struct request_queue *q, 228 unsigned short max_segments) 229 { 230 if (!max_segments) { 231 max_segments = 1; 232 printk(KERN_INFO "%s: set to minimum %d\n", 233 __func__, max_segments); 234 } 235 236 q->max_phys_segments = max_segments; 237 } 238 EXPORT_SYMBOL(blk_queue_max_phys_segments); 239 240 /** 241 * blk_queue_max_hw_segments - set max hw segments for a request for this queue 242 * @q: the request queue for the device 243 * @max_segments: max number of segments 244 * 245 * Description: 246 * Enables a low level driver to set an upper limit on the number of 247 * hw data segments in a request. This would be the largest number of 248 * address/length pairs the host adapter can actually give at once 249 * to the device. 250 **/ 251 void blk_queue_max_hw_segments(struct request_queue *q, 252 unsigned short max_segments) 253 { 254 if (!max_segments) { 255 max_segments = 1; 256 printk(KERN_INFO "%s: set to minimum %d\n", 257 __func__, max_segments); 258 } 259 260 q->max_hw_segments = max_segments; 261 } 262 EXPORT_SYMBOL(blk_queue_max_hw_segments); 263 264 /** 265 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 266 * @q: the request queue for the device 267 * @max_size: max size of segment in bytes 268 * 269 * Description: 270 * Enables a low level driver to set an upper limit on the size of a 271 * coalesced segment 272 **/ 273 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 274 { 275 if (max_size < PAGE_CACHE_SIZE) { 276 max_size = PAGE_CACHE_SIZE; 277 printk(KERN_INFO "%s: set to minimum %d\n", 278 __func__, max_size); 279 } 280 281 q->max_segment_size = max_size; 282 } 283 EXPORT_SYMBOL(blk_queue_max_segment_size); 284 285 /** 286 * blk_queue_hardsect_size - set hardware sector size for the queue 287 * @q: the request queue for the device 288 * @size: the hardware sector size, in bytes 289 * 290 * Description: 291 * This should typically be set to the lowest possible sector size 292 * that the hardware can operate on (possible without reverting to 293 * even internal read-modify-write operations). Usually the default 294 * of 512 covers most hardware. 295 **/ 296 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size) 297 { 298 q->hardsect_size = size; 299 } 300 EXPORT_SYMBOL(blk_queue_hardsect_size); 301 302 /* 303 * Returns the minimum that is _not_ zero, unless both are zero. 304 */ 305 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 306 307 /** 308 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers 309 * @t: the stacking driver (top) 310 * @b: the underlying device (bottom) 311 **/ 312 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) 313 { 314 /* zero is "infinity" */ 315 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 316 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 317 318 t->max_phys_segments = min(t->max_phys_segments, b->max_phys_segments); 319 t->max_hw_segments = min(t->max_hw_segments, b->max_hw_segments); 320 t->max_segment_size = min(t->max_segment_size, b->max_segment_size); 321 t->hardsect_size = max(t->hardsect_size, b->hardsect_size); 322 if (!t->queue_lock) 323 WARN_ON_ONCE(1); 324 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) { 325 unsigned long flags; 326 spin_lock_irqsave(t->queue_lock, flags); 327 queue_flag_clear(QUEUE_FLAG_CLUSTER, t); 328 spin_unlock_irqrestore(t->queue_lock, flags); 329 } 330 } 331 EXPORT_SYMBOL(blk_queue_stack_limits); 332 333 /** 334 * blk_queue_dma_pad - set pad mask 335 * @q: the request queue for the device 336 * @mask: pad mask 337 * 338 * Set dma pad mask. 339 * 340 * Appending pad buffer to a request modifies the last entry of a 341 * scatter list such that it includes the pad buffer. 342 **/ 343 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask) 344 { 345 q->dma_pad_mask = mask; 346 } 347 EXPORT_SYMBOL(blk_queue_dma_pad); 348 349 /** 350 * blk_queue_update_dma_pad - update pad mask 351 * @q: the request queue for the device 352 * @mask: pad mask 353 * 354 * Update dma pad mask. 355 * 356 * Appending pad buffer to a request modifies the last entry of a 357 * scatter list such that it includes the pad buffer. 358 **/ 359 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 360 { 361 if (mask > q->dma_pad_mask) 362 q->dma_pad_mask = mask; 363 } 364 EXPORT_SYMBOL(blk_queue_update_dma_pad); 365 366 /** 367 * blk_queue_dma_drain - Set up a drain buffer for excess dma. 368 * @q: the request queue for the device 369 * @dma_drain_needed: fn which returns non-zero if drain is necessary 370 * @buf: physically contiguous buffer 371 * @size: size of the buffer in bytes 372 * 373 * Some devices have excess DMA problems and can't simply discard (or 374 * zero fill) the unwanted piece of the transfer. They have to have a 375 * real area of memory to transfer it into. The use case for this is 376 * ATAPI devices in DMA mode. If the packet command causes a transfer 377 * bigger than the transfer size some HBAs will lock up if there 378 * aren't DMA elements to contain the excess transfer. What this API 379 * does is adjust the queue so that the buf is always appended 380 * silently to the scatterlist. 381 * 382 * Note: This routine adjusts max_hw_segments to make room for 383 * appending the drain buffer. If you call 384 * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after 385 * calling this routine, you must set the limit to one fewer than your 386 * device can support otherwise there won't be room for the drain 387 * buffer. 388 */ 389 int blk_queue_dma_drain(struct request_queue *q, 390 dma_drain_needed_fn *dma_drain_needed, 391 void *buf, unsigned int size) 392 { 393 if (q->max_hw_segments < 2 || q->max_phys_segments < 2) 394 return -EINVAL; 395 /* make room for appending the drain */ 396 --q->max_hw_segments; 397 --q->max_phys_segments; 398 q->dma_drain_needed = dma_drain_needed; 399 q->dma_drain_buffer = buf; 400 q->dma_drain_size = size; 401 402 return 0; 403 } 404 EXPORT_SYMBOL_GPL(blk_queue_dma_drain); 405 406 /** 407 * blk_queue_segment_boundary - set boundary rules for segment merging 408 * @q: the request queue for the device 409 * @mask: the memory boundary mask 410 **/ 411 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 412 { 413 if (mask < PAGE_CACHE_SIZE - 1) { 414 mask = PAGE_CACHE_SIZE - 1; 415 printk(KERN_INFO "%s: set to minimum %lx\n", 416 __func__, mask); 417 } 418 419 q->seg_boundary_mask = mask; 420 } 421 EXPORT_SYMBOL(blk_queue_segment_boundary); 422 423 /** 424 * blk_queue_dma_alignment - set dma length and memory alignment 425 * @q: the request queue for the device 426 * @mask: alignment mask 427 * 428 * description: 429 * set required memory and length alignment for direct dma transactions. 430 * this is used when buiding direct io requests for the queue. 431 * 432 **/ 433 void blk_queue_dma_alignment(struct request_queue *q, int mask) 434 { 435 q->dma_alignment = mask; 436 } 437 EXPORT_SYMBOL(blk_queue_dma_alignment); 438 439 /** 440 * blk_queue_update_dma_alignment - update dma length and memory alignment 441 * @q: the request queue for the device 442 * @mask: alignment mask 443 * 444 * description: 445 * update required memory and length alignment for direct dma transactions. 446 * If the requested alignment is larger than the current alignment, then 447 * the current queue alignment is updated to the new value, otherwise it 448 * is left alone. The design of this is to allow multiple objects 449 * (driver, device, transport etc) to set their respective 450 * alignments without having them interfere. 451 * 452 **/ 453 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 454 { 455 BUG_ON(mask > PAGE_SIZE); 456 457 if (mask > q->dma_alignment) 458 q->dma_alignment = mask; 459 } 460 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 461 462 static int __init blk_settings_init(void) 463 { 464 blk_max_low_pfn = max_low_pfn - 1; 465 blk_max_pfn = max_pfn - 1; 466 return 0; 467 } 468 subsys_initcall(blk_settings_init); 469