xref: /openbmc/linux/block/blk-settings.c (revision 9659281c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to setting various queue properties from drivers
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/pagemap.h>
11 #include <linux/gcd.h>
12 #include <linux/lcm.h>
13 #include <linux/jiffies.h>
14 #include <linux/gfp.h>
15 #include <linux/dma-mapping.h>
16 
17 #include "blk.h"
18 #include "blk-wbt.h"
19 
20 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
21 {
22 	q->rq_timeout = timeout;
23 }
24 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
25 
26 /**
27  * blk_set_default_limits - reset limits to default values
28  * @lim:  the queue_limits structure to reset
29  *
30  * Description:
31  *   Returns a queue_limit struct to its default state.
32  */
33 void blk_set_default_limits(struct queue_limits *lim)
34 {
35 	lim->max_segments = BLK_MAX_SEGMENTS;
36 	lim->max_discard_segments = 1;
37 	lim->max_integrity_segments = 0;
38 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
39 	lim->virt_boundary_mask = 0;
40 	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
41 	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
42 	lim->max_dev_sectors = 0;
43 	lim->chunk_sectors = 0;
44 	lim->max_write_same_sectors = 0;
45 	lim->max_write_zeroes_sectors = 0;
46 	lim->max_zone_append_sectors = 0;
47 	lim->max_discard_sectors = 0;
48 	lim->max_hw_discard_sectors = 0;
49 	lim->discard_granularity = 0;
50 	lim->discard_alignment = 0;
51 	lim->discard_misaligned = 0;
52 	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
53 	lim->bounce = BLK_BOUNCE_NONE;
54 	lim->alignment_offset = 0;
55 	lim->io_opt = 0;
56 	lim->misaligned = 0;
57 	lim->zoned = BLK_ZONED_NONE;
58 	lim->zone_write_granularity = 0;
59 }
60 EXPORT_SYMBOL(blk_set_default_limits);
61 
62 /**
63  * blk_set_stacking_limits - set default limits for stacking devices
64  * @lim:  the queue_limits structure to reset
65  *
66  * Description:
67  *   Returns a queue_limit struct to its default state. Should be used
68  *   by stacking drivers like DM that have no internal limits.
69  */
70 void blk_set_stacking_limits(struct queue_limits *lim)
71 {
72 	blk_set_default_limits(lim);
73 
74 	/* Inherit limits from component devices */
75 	lim->max_segments = USHRT_MAX;
76 	lim->max_discard_segments = USHRT_MAX;
77 	lim->max_hw_sectors = UINT_MAX;
78 	lim->max_segment_size = UINT_MAX;
79 	lim->max_sectors = UINT_MAX;
80 	lim->max_dev_sectors = UINT_MAX;
81 	lim->max_write_same_sectors = UINT_MAX;
82 	lim->max_write_zeroes_sectors = UINT_MAX;
83 	lim->max_zone_append_sectors = UINT_MAX;
84 }
85 EXPORT_SYMBOL(blk_set_stacking_limits);
86 
87 /**
88  * blk_queue_bounce_limit - set bounce buffer limit for queue
89  * @q: the request queue for the device
90  * @bounce: bounce limit to enforce
91  *
92  * Description:
93  *    Force bouncing for ISA DMA ranges or highmem.
94  *
95  *    DEPRECATED, don't use in new code.
96  **/
97 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
98 {
99 	q->limits.bounce = bounce;
100 }
101 EXPORT_SYMBOL(blk_queue_bounce_limit);
102 
103 /**
104  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
105  * @q:  the request queue for the device
106  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
107  *
108  * Description:
109  *    Enables a low level driver to set a hard upper limit,
110  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
111  *    the device driver based upon the capabilities of the I/O
112  *    controller.
113  *
114  *    max_dev_sectors is a hard limit imposed by the storage device for
115  *    READ/WRITE requests. It is set by the disk driver.
116  *
117  *    max_sectors is a soft limit imposed by the block layer for
118  *    filesystem type requests.  This value can be overridden on a
119  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
120  *    The soft limit can not exceed max_hw_sectors.
121  **/
122 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
123 {
124 	struct queue_limits *limits = &q->limits;
125 	unsigned int max_sectors;
126 
127 	if ((max_hw_sectors << 9) < PAGE_SIZE) {
128 		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
129 		printk(KERN_INFO "%s: set to minimum %d\n",
130 		       __func__, max_hw_sectors);
131 	}
132 
133 	max_hw_sectors = round_down(max_hw_sectors,
134 				    limits->logical_block_size >> SECTOR_SHIFT);
135 	limits->max_hw_sectors = max_hw_sectors;
136 
137 	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
138 	max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
139 	max_sectors = round_down(max_sectors,
140 				 limits->logical_block_size >> SECTOR_SHIFT);
141 	limits->max_sectors = max_sectors;
142 
143 	q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
144 }
145 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
146 
147 /**
148  * blk_queue_chunk_sectors - set size of the chunk for this queue
149  * @q:  the request queue for the device
150  * @chunk_sectors:  chunk sectors in the usual 512b unit
151  *
152  * Description:
153  *    If a driver doesn't want IOs to cross a given chunk size, it can set
154  *    this limit and prevent merging across chunks. Note that the block layer
155  *    must accept a page worth of data at any offset. So if the crossing of
156  *    chunks is a hard limitation in the driver, it must still be prepared
157  *    to split single page bios.
158  **/
159 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
160 {
161 	q->limits.chunk_sectors = chunk_sectors;
162 }
163 EXPORT_SYMBOL(blk_queue_chunk_sectors);
164 
165 /**
166  * blk_queue_max_discard_sectors - set max sectors for a single discard
167  * @q:  the request queue for the device
168  * @max_discard_sectors: maximum number of sectors to discard
169  **/
170 void blk_queue_max_discard_sectors(struct request_queue *q,
171 		unsigned int max_discard_sectors)
172 {
173 	q->limits.max_hw_discard_sectors = max_discard_sectors;
174 	q->limits.max_discard_sectors = max_discard_sectors;
175 }
176 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
177 
178 /**
179  * blk_queue_max_write_same_sectors - set max sectors for a single write same
180  * @q:  the request queue for the device
181  * @max_write_same_sectors: maximum number of sectors to write per command
182  **/
183 void blk_queue_max_write_same_sectors(struct request_queue *q,
184 				      unsigned int max_write_same_sectors)
185 {
186 	q->limits.max_write_same_sectors = max_write_same_sectors;
187 }
188 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
189 
190 /**
191  * blk_queue_max_write_zeroes_sectors - set max sectors for a single
192  *                                      write zeroes
193  * @q:  the request queue for the device
194  * @max_write_zeroes_sectors: maximum number of sectors to write per command
195  **/
196 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
197 		unsigned int max_write_zeroes_sectors)
198 {
199 	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
200 }
201 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
202 
203 /**
204  * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
205  * @q:  the request queue for the device
206  * @max_zone_append_sectors: maximum number of sectors to write per command
207  **/
208 void blk_queue_max_zone_append_sectors(struct request_queue *q,
209 		unsigned int max_zone_append_sectors)
210 {
211 	unsigned int max_sectors;
212 
213 	if (WARN_ON(!blk_queue_is_zoned(q)))
214 		return;
215 
216 	max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
217 	max_sectors = min(q->limits.chunk_sectors, max_sectors);
218 
219 	/*
220 	 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
221 	 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
222 	 * or the max_hw_sectors limit not set.
223 	 */
224 	WARN_ON(!max_sectors);
225 
226 	q->limits.max_zone_append_sectors = max_sectors;
227 }
228 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
229 
230 /**
231  * blk_queue_max_segments - set max hw segments for a request for this queue
232  * @q:  the request queue for the device
233  * @max_segments:  max number of segments
234  *
235  * Description:
236  *    Enables a low level driver to set an upper limit on the number of
237  *    hw data segments in a request.
238  **/
239 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
240 {
241 	if (!max_segments) {
242 		max_segments = 1;
243 		printk(KERN_INFO "%s: set to minimum %d\n",
244 		       __func__, max_segments);
245 	}
246 
247 	q->limits.max_segments = max_segments;
248 }
249 EXPORT_SYMBOL(blk_queue_max_segments);
250 
251 /**
252  * blk_queue_max_discard_segments - set max segments for discard requests
253  * @q:  the request queue for the device
254  * @max_segments:  max number of segments
255  *
256  * Description:
257  *    Enables a low level driver to set an upper limit on the number of
258  *    segments in a discard request.
259  **/
260 void blk_queue_max_discard_segments(struct request_queue *q,
261 		unsigned short max_segments)
262 {
263 	q->limits.max_discard_segments = max_segments;
264 }
265 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
266 
267 /**
268  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
269  * @q:  the request queue for the device
270  * @max_size:  max size of segment in bytes
271  *
272  * Description:
273  *    Enables a low level driver to set an upper limit on the size of a
274  *    coalesced segment
275  **/
276 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
277 {
278 	if (max_size < PAGE_SIZE) {
279 		max_size = PAGE_SIZE;
280 		printk(KERN_INFO "%s: set to minimum %d\n",
281 		       __func__, max_size);
282 	}
283 
284 	/* see blk_queue_virt_boundary() for the explanation */
285 	WARN_ON_ONCE(q->limits.virt_boundary_mask);
286 
287 	q->limits.max_segment_size = max_size;
288 }
289 EXPORT_SYMBOL(blk_queue_max_segment_size);
290 
291 /**
292  * blk_queue_logical_block_size - set logical block size for the queue
293  * @q:  the request queue for the device
294  * @size:  the logical block size, in bytes
295  *
296  * Description:
297  *   This should be set to the lowest possible block size that the
298  *   storage device can address.  The default of 512 covers most
299  *   hardware.
300  **/
301 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
302 {
303 	struct queue_limits *limits = &q->limits;
304 
305 	limits->logical_block_size = size;
306 
307 	if (limits->physical_block_size < size)
308 		limits->physical_block_size = size;
309 
310 	if (limits->io_min < limits->physical_block_size)
311 		limits->io_min = limits->physical_block_size;
312 
313 	limits->max_hw_sectors =
314 		round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
315 	limits->max_sectors =
316 		round_down(limits->max_sectors, size >> SECTOR_SHIFT);
317 }
318 EXPORT_SYMBOL(blk_queue_logical_block_size);
319 
320 /**
321  * blk_queue_physical_block_size - set physical block size for the queue
322  * @q:  the request queue for the device
323  * @size:  the physical block size, in bytes
324  *
325  * Description:
326  *   This should be set to the lowest possible sector size that the
327  *   hardware can operate on without reverting to read-modify-write
328  *   operations.
329  */
330 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
331 {
332 	q->limits.physical_block_size = size;
333 
334 	if (q->limits.physical_block_size < q->limits.logical_block_size)
335 		q->limits.physical_block_size = q->limits.logical_block_size;
336 
337 	if (q->limits.io_min < q->limits.physical_block_size)
338 		q->limits.io_min = q->limits.physical_block_size;
339 }
340 EXPORT_SYMBOL(blk_queue_physical_block_size);
341 
342 /**
343  * blk_queue_zone_write_granularity - set zone write granularity for the queue
344  * @q:  the request queue for the zoned device
345  * @size:  the zone write granularity size, in bytes
346  *
347  * Description:
348  *   This should be set to the lowest possible size allowing to write in
349  *   sequential zones of a zoned block device.
350  */
351 void blk_queue_zone_write_granularity(struct request_queue *q,
352 				      unsigned int size)
353 {
354 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
355 		return;
356 
357 	q->limits.zone_write_granularity = size;
358 
359 	if (q->limits.zone_write_granularity < q->limits.logical_block_size)
360 		q->limits.zone_write_granularity = q->limits.logical_block_size;
361 }
362 EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
363 
364 /**
365  * blk_queue_alignment_offset - set physical block alignment offset
366  * @q:	the request queue for the device
367  * @offset: alignment offset in bytes
368  *
369  * Description:
370  *   Some devices are naturally misaligned to compensate for things like
371  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
372  *   should call this function for devices whose first sector is not
373  *   naturally aligned.
374  */
375 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
376 {
377 	q->limits.alignment_offset =
378 		offset & (q->limits.physical_block_size - 1);
379 	q->limits.misaligned = 0;
380 }
381 EXPORT_SYMBOL(blk_queue_alignment_offset);
382 
383 void blk_queue_update_readahead(struct request_queue *q)
384 {
385 	/*
386 	 * For read-ahead of large files to be effective, we need to read ahead
387 	 * at least twice the optimal I/O size.
388 	 */
389 	q->backing_dev_info->ra_pages =
390 		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
391 	q->backing_dev_info->io_pages =
392 		queue_max_sectors(q) >> (PAGE_SHIFT - 9);
393 }
394 EXPORT_SYMBOL_GPL(blk_queue_update_readahead);
395 
396 /**
397  * blk_limits_io_min - set minimum request size for a device
398  * @limits: the queue limits
399  * @min:  smallest I/O size in bytes
400  *
401  * Description:
402  *   Some devices have an internal block size bigger than the reported
403  *   hardware sector size.  This function can be used to signal the
404  *   smallest I/O the device can perform without incurring a performance
405  *   penalty.
406  */
407 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
408 {
409 	limits->io_min = min;
410 
411 	if (limits->io_min < limits->logical_block_size)
412 		limits->io_min = limits->logical_block_size;
413 
414 	if (limits->io_min < limits->physical_block_size)
415 		limits->io_min = limits->physical_block_size;
416 }
417 EXPORT_SYMBOL(blk_limits_io_min);
418 
419 /**
420  * blk_queue_io_min - set minimum request size for the queue
421  * @q:	the request queue for the device
422  * @min:  smallest I/O size in bytes
423  *
424  * Description:
425  *   Storage devices may report a granularity or preferred minimum I/O
426  *   size which is the smallest request the device can perform without
427  *   incurring a performance penalty.  For disk drives this is often the
428  *   physical block size.  For RAID arrays it is often the stripe chunk
429  *   size.  A properly aligned multiple of minimum_io_size is the
430  *   preferred request size for workloads where a high number of I/O
431  *   operations is desired.
432  */
433 void blk_queue_io_min(struct request_queue *q, unsigned int min)
434 {
435 	blk_limits_io_min(&q->limits, min);
436 }
437 EXPORT_SYMBOL(blk_queue_io_min);
438 
439 /**
440  * blk_limits_io_opt - set optimal request size for a device
441  * @limits: the queue limits
442  * @opt:  smallest I/O size in bytes
443  *
444  * Description:
445  *   Storage devices may report an optimal I/O size, which is the
446  *   device's preferred unit for sustained I/O.  This is rarely reported
447  *   for disk drives.  For RAID arrays it is usually the stripe width or
448  *   the internal track size.  A properly aligned multiple of
449  *   optimal_io_size is the preferred request size for workloads where
450  *   sustained throughput is desired.
451  */
452 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
453 {
454 	limits->io_opt = opt;
455 }
456 EXPORT_SYMBOL(blk_limits_io_opt);
457 
458 /**
459  * blk_queue_io_opt - set optimal request size for the queue
460  * @q:	the request queue for the device
461  * @opt:  optimal request size in bytes
462  *
463  * Description:
464  *   Storage devices may report an optimal I/O size, which is the
465  *   device's preferred unit for sustained I/O.  This is rarely reported
466  *   for disk drives.  For RAID arrays it is usually the stripe width or
467  *   the internal track size.  A properly aligned multiple of
468  *   optimal_io_size is the preferred request size for workloads where
469  *   sustained throughput is desired.
470  */
471 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
472 {
473 	blk_limits_io_opt(&q->limits, opt);
474 	q->backing_dev_info->ra_pages =
475 		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
476 }
477 EXPORT_SYMBOL(blk_queue_io_opt);
478 
479 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
480 {
481 	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
482 	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
483 		sectors = PAGE_SIZE >> SECTOR_SHIFT;
484 	return sectors;
485 }
486 
487 /**
488  * blk_stack_limits - adjust queue_limits for stacked devices
489  * @t:	the stacking driver limits (top device)
490  * @b:  the underlying queue limits (bottom, component device)
491  * @start:  first data sector within component device
492  *
493  * Description:
494  *    This function is used by stacking drivers like MD and DM to ensure
495  *    that all component devices have compatible block sizes and
496  *    alignments.  The stacking driver must provide a queue_limits
497  *    struct (top) and then iteratively call the stacking function for
498  *    all component (bottom) devices.  The stacking function will
499  *    attempt to combine the values and ensure proper alignment.
500  *
501  *    Returns 0 if the top and bottom queue_limits are compatible.  The
502  *    top device's block sizes and alignment offsets may be adjusted to
503  *    ensure alignment with the bottom device. If no compatible sizes
504  *    and alignments exist, -1 is returned and the resulting top
505  *    queue_limits will have the misaligned flag set to indicate that
506  *    the alignment_offset is undefined.
507  */
508 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
509 		     sector_t start)
510 {
511 	unsigned int top, bottom, alignment, ret = 0;
512 
513 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
514 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
515 	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
516 	t->max_write_same_sectors = min(t->max_write_same_sectors,
517 					b->max_write_same_sectors);
518 	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
519 					b->max_write_zeroes_sectors);
520 	t->max_zone_append_sectors = min(t->max_zone_append_sectors,
521 					b->max_zone_append_sectors);
522 	t->bounce = max(t->bounce, b->bounce);
523 
524 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
525 					    b->seg_boundary_mask);
526 	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
527 					    b->virt_boundary_mask);
528 
529 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
530 	t->max_discard_segments = min_not_zero(t->max_discard_segments,
531 					       b->max_discard_segments);
532 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
533 						 b->max_integrity_segments);
534 
535 	t->max_segment_size = min_not_zero(t->max_segment_size,
536 					   b->max_segment_size);
537 
538 	t->misaligned |= b->misaligned;
539 
540 	alignment = queue_limit_alignment_offset(b, start);
541 
542 	/* Bottom device has different alignment.  Check that it is
543 	 * compatible with the current top alignment.
544 	 */
545 	if (t->alignment_offset != alignment) {
546 
547 		top = max(t->physical_block_size, t->io_min)
548 			+ t->alignment_offset;
549 		bottom = max(b->physical_block_size, b->io_min) + alignment;
550 
551 		/* Verify that top and bottom intervals line up */
552 		if (max(top, bottom) % min(top, bottom)) {
553 			t->misaligned = 1;
554 			ret = -1;
555 		}
556 	}
557 
558 	t->logical_block_size = max(t->logical_block_size,
559 				    b->logical_block_size);
560 
561 	t->physical_block_size = max(t->physical_block_size,
562 				     b->physical_block_size);
563 
564 	t->io_min = max(t->io_min, b->io_min);
565 	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
566 
567 	/* Set non-power-of-2 compatible chunk_sectors boundary */
568 	if (b->chunk_sectors)
569 		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
570 
571 	/* Physical block size a multiple of the logical block size? */
572 	if (t->physical_block_size & (t->logical_block_size - 1)) {
573 		t->physical_block_size = t->logical_block_size;
574 		t->misaligned = 1;
575 		ret = -1;
576 	}
577 
578 	/* Minimum I/O a multiple of the physical block size? */
579 	if (t->io_min & (t->physical_block_size - 1)) {
580 		t->io_min = t->physical_block_size;
581 		t->misaligned = 1;
582 		ret = -1;
583 	}
584 
585 	/* Optimal I/O a multiple of the physical block size? */
586 	if (t->io_opt & (t->physical_block_size - 1)) {
587 		t->io_opt = 0;
588 		t->misaligned = 1;
589 		ret = -1;
590 	}
591 
592 	/* chunk_sectors a multiple of the physical block size? */
593 	if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
594 		t->chunk_sectors = 0;
595 		t->misaligned = 1;
596 		ret = -1;
597 	}
598 
599 	t->raid_partial_stripes_expensive =
600 		max(t->raid_partial_stripes_expensive,
601 		    b->raid_partial_stripes_expensive);
602 
603 	/* Find lowest common alignment_offset */
604 	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
605 		% max(t->physical_block_size, t->io_min);
606 
607 	/* Verify that new alignment_offset is on a logical block boundary */
608 	if (t->alignment_offset & (t->logical_block_size - 1)) {
609 		t->misaligned = 1;
610 		ret = -1;
611 	}
612 
613 	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
614 	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
615 	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
616 
617 	/* Discard alignment and granularity */
618 	if (b->discard_granularity) {
619 		alignment = queue_limit_discard_alignment(b, start);
620 
621 		if (t->discard_granularity != 0 &&
622 		    t->discard_alignment != alignment) {
623 			top = t->discard_granularity + t->discard_alignment;
624 			bottom = b->discard_granularity + alignment;
625 
626 			/* Verify that top and bottom intervals line up */
627 			if ((max(top, bottom) % min(top, bottom)) != 0)
628 				t->discard_misaligned = 1;
629 		}
630 
631 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
632 						      b->max_discard_sectors);
633 		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
634 							 b->max_hw_discard_sectors);
635 		t->discard_granularity = max(t->discard_granularity,
636 					     b->discard_granularity);
637 		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
638 			t->discard_granularity;
639 	}
640 
641 	t->zone_write_granularity = max(t->zone_write_granularity,
642 					b->zone_write_granularity);
643 	t->zoned = max(t->zoned, b->zoned);
644 	return ret;
645 }
646 EXPORT_SYMBOL(blk_stack_limits);
647 
648 /**
649  * disk_stack_limits - adjust queue limits for stacked drivers
650  * @disk:  MD/DM gendisk (top)
651  * @bdev:  the underlying block device (bottom)
652  * @offset:  offset to beginning of data within component device
653  *
654  * Description:
655  *    Merges the limits for a top level gendisk and a bottom level
656  *    block_device.
657  */
658 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
659 		       sector_t offset)
660 {
661 	struct request_queue *t = disk->queue;
662 
663 	if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
664 			get_start_sect(bdev) + (offset >> 9)) < 0) {
665 		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
666 
667 		disk_name(disk, 0, top);
668 		bdevname(bdev, bottom);
669 
670 		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
671 		       top, bottom);
672 	}
673 
674 	blk_queue_update_readahead(disk->queue);
675 }
676 EXPORT_SYMBOL(disk_stack_limits);
677 
678 /**
679  * blk_queue_update_dma_pad - update pad mask
680  * @q:     the request queue for the device
681  * @mask:  pad mask
682  *
683  * Update dma pad mask.
684  *
685  * Appending pad buffer to a request modifies the last entry of a
686  * scatter list such that it includes the pad buffer.
687  **/
688 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
689 {
690 	if (mask > q->dma_pad_mask)
691 		q->dma_pad_mask = mask;
692 }
693 EXPORT_SYMBOL(blk_queue_update_dma_pad);
694 
695 /**
696  * blk_queue_segment_boundary - set boundary rules for segment merging
697  * @q:  the request queue for the device
698  * @mask:  the memory boundary mask
699  **/
700 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
701 {
702 	if (mask < PAGE_SIZE - 1) {
703 		mask = PAGE_SIZE - 1;
704 		printk(KERN_INFO "%s: set to minimum %lx\n",
705 		       __func__, mask);
706 	}
707 
708 	q->limits.seg_boundary_mask = mask;
709 }
710 EXPORT_SYMBOL(blk_queue_segment_boundary);
711 
712 /**
713  * blk_queue_virt_boundary - set boundary rules for bio merging
714  * @q:  the request queue for the device
715  * @mask:  the memory boundary mask
716  **/
717 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
718 {
719 	q->limits.virt_boundary_mask = mask;
720 
721 	/*
722 	 * Devices that require a virtual boundary do not support scatter/gather
723 	 * I/O natively, but instead require a descriptor list entry for each
724 	 * page (which might not be idential to the Linux PAGE_SIZE).  Because
725 	 * of that they are not limited by our notion of "segment size".
726 	 */
727 	if (mask)
728 		q->limits.max_segment_size = UINT_MAX;
729 }
730 EXPORT_SYMBOL(blk_queue_virt_boundary);
731 
732 /**
733  * blk_queue_dma_alignment - set dma length and memory alignment
734  * @q:     the request queue for the device
735  * @mask:  alignment mask
736  *
737  * description:
738  *    set required memory and length alignment for direct dma transactions.
739  *    this is used when building direct io requests for the queue.
740  *
741  **/
742 void blk_queue_dma_alignment(struct request_queue *q, int mask)
743 {
744 	q->dma_alignment = mask;
745 }
746 EXPORT_SYMBOL(blk_queue_dma_alignment);
747 
748 /**
749  * blk_queue_update_dma_alignment - update dma length and memory alignment
750  * @q:     the request queue for the device
751  * @mask:  alignment mask
752  *
753  * description:
754  *    update required memory and length alignment for direct dma transactions.
755  *    If the requested alignment is larger than the current alignment, then
756  *    the current queue alignment is updated to the new value, otherwise it
757  *    is left alone.  The design of this is to allow multiple objects
758  *    (driver, device, transport etc) to set their respective
759  *    alignments without having them interfere.
760  *
761  **/
762 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
763 {
764 	BUG_ON(mask > PAGE_SIZE);
765 
766 	if (mask > q->dma_alignment)
767 		q->dma_alignment = mask;
768 }
769 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
770 
771 /**
772  * blk_set_queue_depth - tell the block layer about the device queue depth
773  * @q:		the request queue for the device
774  * @depth:		queue depth
775  *
776  */
777 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
778 {
779 	q->queue_depth = depth;
780 	rq_qos_queue_depth_changed(q);
781 }
782 EXPORT_SYMBOL(blk_set_queue_depth);
783 
784 /**
785  * blk_queue_write_cache - configure queue's write cache
786  * @q:		the request queue for the device
787  * @wc:		write back cache on or off
788  * @fua:	device supports FUA writes, if true
789  *
790  * Tell the block layer about the write cache of @q.
791  */
792 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
793 {
794 	if (wc)
795 		blk_queue_flag_set(QUEUE_FLAG_WC, q);
796 	else
797 		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
798 	if (fua)
799 		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
800 	else
801 		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
802 
803 	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
804 }
805 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
806 
807 /**
808  * blk_queue_required_elevator_features - Set a queue required elevator features
809  * @q:		the request queue for the target device
810  * @features:	Required elevator features OR'ed together
811  *
812  * Tell the block layer that for the device controlled through @q, only the
813  * only elevators that can be used are those that implement at least the set of
814  * features specified by @features.
815  */
816 void blk_queue_required_elevator_features(struct request_queue *q,
817 					  unsigned int features)
818 {
819 	q->required_elevator_features = features;
820 }
821 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
822 
823 /**
824  * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
825  * @q:		the request queue for the device
826  * @dev:	the device pointer for dma
827  *
828  * Tell the block layer about merging the segments by dma map of @q.
829  */
830 bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
831 				       struct device *dev)
832 {
833 	unsigned long boundary = dma_get_merge_boundary(dev);
834 
835 	if (!boundary)
836 		return false;
837 
838 	/* No need to update max_segment_size. see blk_queue_virt_boundary() */
839 	blk_queue_virt_boundary(q, boundary);
840 
841 	return true;
842 }
843 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
844 
845 /**
846  * blk_queue_set_zoned - configure a disk queue zoned model.
847  * @disk:	the gendisk of the queue to configure
848  * @model:	the zoned model to set
849  *
850  * Set the zoned model of the request queue of @disk according to @model.
851  * When @model is BLK_ZONED_HM (host managed), this should be called only
852  * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
853  * If @model specifies BLK_ZONED_HA (host aware), the effective model used
854  * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
855  * on the disk.
856  */
857 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
858 {
859 	struct request_queue *q = disk->queue;
860 
861 	switch (model) {
862 	case BLK_ZONED_HM:
863 		/*
864 		 * Host managed devices are supported only if
865 		 * CONFIG_BLK_DEV_ZONED is enabled.
866 		 */
867 		WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
868 		break;
869 	case BLK_ZONED_HA:
870 		/*
871 		 * Host aware devices can be treated either as regular block
872 		 * devices (similar to drive managed devices) or as zoned block
873 		 * devices to take advantage of the zone command set, similarly
874 		 * to host managed devices. We try the latter if there are no
875 		 * partitions and zoned block device support is enabled, else
876 		 * we do nothing special as far as the block layer is concerned.
877 		 */
878 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
879 		    !xa_empty(&disk->part_tbl))
880 			model = BLK_ZONED_NONE;
881 		break;
882 	case BLK_ZONED_NONE:
883 	default:
884 		if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
885 			model = BLK_ZONED_NONE;
886 		break;
887 	}
888 
889 	q->limits.zoned = model;
890 	if (model != BLK_ZONED_NONE) {
891 		/*
892 		 * Set the zone write granularity to the device logical block
893 		 * size by default. The driver can change this value if needed.
894 		 */
895 		blk_queue_zone_write_granularity(q,
896 						queue_logical_block_size(q));
897 	} else {
898 		blk_queue_clear_zone_settings(q);
899 	}
900 }
901 EXPORT_SYMBOL_GPL(blk_queue_set_zoned);
902