xref: /openbmc/linux/block/blk-settings.c (revision 93d90ad7)
1 /*
2  * Functions related to setting various queue properties from drivers
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
14 
15 #include "blk.h"
16 
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
19 
20 unsigned long blk_max_pfn;
21 
22 /**
23  * blk_queue_prep_rq - set a prepare_request function for queue
24  * @q:		queue
25  * @pfn:	prepare_request function
26  *
27  * It's possible for a queue to register a prepare_request callback which
28  * is invoked before the request is handed to the request_fn. The goal of
29  * the function is to prepare a request for I/O, it can be used to build a
30  * cdb from the request data for instance.
31  *
32  */
33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
34 {
35 	q->prep_rq_fn = pfn;
36 }
37 EXPORT_SYMBOL(blk_queue_prep_rq);
38 
39 /**
40  * blk_queue_unprep_rq - set an unprepare_request function for queue
41  * @q:		queue
42  * @ufn:	unprepare_request function
43  *
44  * It's possible for a queue to register an unprepare_request callback
45  * which is invoked before the request is finally completed. The goal
46  * of the function is to deallocate any data that was allocated in the
47  * prepare_request callback.
48  *
49  */
50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
51 {
52 	q->unprep_rq_fn = ufn;
53 }
54 EXPORT_SYMBOL(blk_queue_unprep_rq);
55 
56 /**
57  * blk_queue_merge_bvec - set a merge_bvec function for queue
58  * @q:		queue
59  * @mbfn:	merge_bvec_fn
60  *
61  * Usually queues have static limitations on the max sectors or segments that
62  * we can put in a request. Stacking drivers may have some settings that
63  * are dynamic, and thus we have to query the queue whether it is ok to
64  * add a new bio_vec to a bio at a given offset or not. If the block device
65  * has such limitations, it needs to register a merge_bvec_fn to control
66  * the size of bio's sent to it. Note that a block device *must* allow a
67  * single page to be added to an empty bio. The block device driver may want
68  * to use the bio_split() function to deal with these bio's. By default
69  * no merge_bvec_fn is defined for a queue, and only the fixed limits are
70  * honored.
71  */
72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
73 {
74 	q->merge_bvec_fn = mbfn;
75 }
76 EXPORT_SYMBOL(blk_queue_merge_bvec);
77 
78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
79 {
80 	q->softirq_done_fn = fn;
81 }
82 EXPORT_SYMBOL(blk_queue_softirq_done);
83 
84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
85 {
86 	q->rq_timeout = timeout;
87 }
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
89 
90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
91 {
92 	q->rq_timed_out_fn = fn;
93 }
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
95 
96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
97 {
98 	q->lld_busy_fn = fn;
99 }
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
101 
102 /**
103  * blk_set_default_limits - reset limits to default values
104  * @lim:  the queue_limits structure to reset
105  *
106  * Description:
107  *   Returns a queue_limit struct to its default state.
108  */
109 void blk_set_default_limits(struct queue_limits *lim)
110 {
111 	lim->max_segments = BLK_MAX_SEGMENTS;
112 	lim->max_integrity_segments = 0;
113 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
114 	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
115 	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
116 	lim->chunk_sectors = 0;
117 	lim->max_write_same_sectors = 0;
118 	lim->max_discard_sectors = 0;
119 	lim->discard_granularity = 0;
120 	lim->discard_alignment = 0;
121 	lim->discard_misaligned = 0;
122 	lim->discard_zeroes_data = 0;
123 	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
124 	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
125 	lim->alignment_offset = 0;
126 	lim->io_opt = 0;
127 	lim->misaligned = 0;
128 	lim->cluster = 1;
129 }
130 EXPORT_SYMBOL(blk_set_default_limits);
131 
132 /**
133  * blk_set_stacking_limits - set default limits for stacking devices
134  * @lim:  the queue_limits structure to reset
135  *
136  * Description:
137  *   Returns a queue_limit struct to its default state. Should be used
138  *   by stacking drivers like DM that have no internal limits.
139  */
140 void blk_set_stacking_limits(struct queue_limits *lim)
141 {
142 	blk_set_default_limits(lim);
143 
144 	/* Inherit limits from component devices */
145 	lim->discard_zeroes_data = 1;
146 	lim->max_segments = USHRT_MAX;
147 	lim->max_hw_sectors = UINT_MAX;
148 	lim->max_segment_size = UINT_MAX;
149 	lim->max_sectors = UINT_MAX;
150 	lim->max_write_same_sectors = UINT_MAX;
151 }
152 EXPORT_SYMBOL(blk_set_stacking_limits);
153 
154 /**
155  * blk_queue_make_request - define an alternate make_request function for a device
156  * @q:  the request queue for the device to be affected
157  * @mfn: the alternate make_request function
158  *
159  * Description:
160  *    The normal way for &struct bios to be passed to a device
161  *    driver is for them to be collected into requests on a request
162  *    queue, and then to allow the device driver to select requests
163  *    off that queue when it is ready.  This works well for many block
164  *    devices. However some block devices (typically virtual devices
165  *    such as md or lvm) do not benefit from the processing on the
166  *    request queue, and are served best by having the requests passed
167  *    directly to them.  This can be achieved by providing a function
168  *    to blk_queue_make_request().
169  *
170  * Caveat:
171  *    The driver that does this *must* be able to deal appropriately
172  *    with buffers in "highmemory". This can be accomplished by either calling
173  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
174  *    blk_queue_bounce() to create a buffer in normal memory.
175  **/
176 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
177 {
178 	/*
179 	 * set defaults
180 	 */
181 	q->nr_requests = BLKDEV_MAX_RQ;
182 
183 	q->make_request_fn = mfn;
184 	blk_queue_dma_alignment(q, 511);
185 	blk_queue_congestion_threshold(q);
186 	q->nr_batching = BLK_BATCH_REQ;
187 
188 	blk_set_default_limits(&q->limits);
189 
190 	/*
191 	 * by default assume old behaviour and bounce for any highmem page
192 	 */
193 	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
194 }
195 EXPORT_SYMBOL(blk_queue_make_request);
196 
197 /**
198  * blk_queue_bounce_limit - set bounce buffer limit for queue
199  * @q: the request queue for the device
200  * @max_addr: the maximum address the device can handle
201  *
202  * Description:
203  *    Different hardware can have different requirements as to what pages
204  *    it can do I/O directly to. A low level driver can call
205  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
206  *    buffers for doing I/O to pages residing above @max_addr.
207  **/
208 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
209 {
210 	unsigned long b_pfn = max_addr >> PAGE_SHIFT;
211 	int dma = 0;
212 
213 	q->bounce_gfp = GFP_NOIO;
214 #if BITS_PER_LONG == 64
215 	/*
216 	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
217 	 * some IOMMUs can handle everything, but I don't know of a
218 	 * way to test this here.
219 	 */
220 	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
221 		dma = 1;
222 	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
223 #else
224 	if (b_pfn < blk_max_low_pfn)
225 		dma = 1;
226 	q->limits.bounce_pfn = b_pfn;
227 #endif
228 	if (dma) {
229 		init_emergency_isa_pool();
230 		q->bounce_gfp = GFP_NOIO | GFP_DMA;
231 		q->limits.bounce_pfn = b_pfn;
232 	}
233 }
234 EXPORT_SYMBOL(blk_queue_bounce_limit);
235 
236 /**
237  * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
238  * @limits: the queue limits
239  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
240  *
241  * Description:
242  *    Enables a low level driver to set a hard upper limit,
243  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
244  *    the device driver based upon the combined capabilities of I/O
245  *    controller and storage device.
246  *
247  *    max_sectors is a soft limit imposed by the block layer for
248  *    filesystem type requests.  This value can be overridden on a
249  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
250  *    The soft limit can not exceed max_hw_sectors.
251  **/
252 void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
253 {
254 	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
255 		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
256 		printk(KERN_INFO "%s: set to minimum %d\n",
257 		       __func__, max_hw_sectors);
258 	}
259 
260 	limits->max_sectors = limits->max_hw_sectors = max_hw_sectors;
261 }
262 EXPORT_SYMBOL(blk_limits_max_hw_sectors);
263 
264 /**
265  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
266  * @q:  the request queue for the device
267  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
268  *
269  * Description:
270  *    See description for blk_limits_max_hw_sectors().
271  **/
272 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
273 {
274 	blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
275 }
276 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
277 
278 /**
279  * blk_queue_chunk_sectors - set size of the chunk for this queue
280  * @q:  the request queue for the device
281  * @chunk_sectors:  chunk sectors in the usual 512b unit
282  *
283  * Description:
284  *    If a driver doesn't want IOs to cross a given chunk size, it can set
285  *    this limit and prevent merging across chunks. Note that the chunk size
286  *    must currently be a power-of-2 in sectors. Also note that the block
287  *    layer must accept a page worth of data at any offset. So if the
288  *    crossing of chunks is a hard limitation in the driver, it must still be
289  *    prepared to split single page bios.
290  **/
291 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
292 {
293 	BUG_ON(!is_power_of_2(chunk_sectors));
294 	q->limits.chunk_sectors = chunk_sectors;
295 }
296 EXPORT_SYMBOL(blk_queue_chunk_sectors);
297 
298 /**
299  * blk_queue_max_discard_sectors - set max sectors for a single discard
300  * @q:  the request queue for the device
301  * @max_discard_sectors: maximum number of sectors to discard
302  **/
303 void blk_queue_max_discard_sectors(struct request_queue *q,
304 		unsigned int max_discard_sectors)
305 {
306 	q->limits.max_discard_sectors = max_discard_sectors;
307 }
308 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
309 
310 /**
311  * blk_queue_max_write_same_sectors - set max sectors for a single write same
312  * @q:  the request queue for the device
313  * @max_write_same_sectors: maximum number of sectors to write per command
314  **/
315 void blk_queue_max_write_same_sectors(struct request_queue *q,
316 				      unsigned int max_write_same_sectors)
317 {
318 	q->limits.max_write_same_sectors = max_write_same_sectors;
319 }
320 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
321 
322 /**
323  * blk_queue_max_segments - set max hw segments for a request for this queue
324  * @q:  the request queue for the device
325  * @max_segments:  max number of segments
326  *
327  * Description:
328  *    Enables a low level driver to set an upper limit on the number of
329  *    hw data segments in a request.
330  **/
331 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
332 {
333 	if (!max_segments) {
334 		max_segments = 1;
335 		printk(KERN_INFO "%s: set to minimum %d\n",
336 		       __func__, max_segments);
337 	}
338 
339 	q->limits.max_segments = max_segments;
340 }
341 EXPORT_SYMBOL(blk_queue_max_segments);
342 
343 /**
344  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
345  * @q:  the request queue for the device
346  * @max_size:  max size of segment in bytes
347  *
348  * Description:
349  *    Enables a low level driver to set an upper limit on the size of a
350  *    coalesced segment
351  **/
352 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
353 {
354 	if (max_size < PAGE_CACHE_SIZE) {
355 		max_size = PAGE_CACHE_SIZE;
356 		printk(KERN_INFO "%s: set to minimum %d\n",
357 		       __func__, max_size);
358 	}
359 
360 	q->limits.max_segment_size = max_size;
361 }
362 EXPORT_SYMBOL(blk_queue_max_segment_size);
363 
364 /**
365  * blk_queue_logical_block_size - set logical block size for the queue
366  * @q:  the request queue for the device
367  * @size:  the logical block size, in bytes
368  *
369  * Description:
370  *   This should be set to the lowest possible block size that the
371  *   storage device can address.  The default of 512 covers most
372  *   hardware.
373  **/
374 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
375 {
376 	q->limits.logical_block_size = size;
377 
378 	if (q->limits.physical_block_size < size)
379 		q->limits.physical_block_size = size;
380 
381 	if (q->limits.io_min < q->limits.physical_block_size)
382 		q->limits.io_min = q->limits.physical_block_size;
383 }
384 EXPORT_SYMBOL(blk_queue_logical_block_size);
385 
386 /**
387  * blk_queue_physical_block_size - set physical block size for the queue
388  * @q:  the request queue for the device
389  * @size:  the physical block size, in bytes
390  *
391  * Description:
392  *   This should be set to the lowest possible sector size that the
393  *   hardware can operate on without reverting to read-modify-write
394  *   operations.
395  */
396 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
397 {
398 	q->limits.physical_block_size = size;
399 
400 	if (q->limits.physical_block_size < q->limits.logical_block_size)
401 		q->limits.physical_block_size = q->limits.logical_block_size;
402 
403 	if (q->limits.io_min < q->limits.physical_block_size)
404 		q->limits.io_min = q->limits.physical_block_size;
405 }
406 EXPORT_SYMBOL(blk_queue_physical_block_size);
407 
408 /**
409  * blk_queue_alignment_offset - set physical block alignment offset
410  * @q:	the request queue for the device
411  * @offset: alignment offset in bytes
412  *
413  * Description:
414  *   Some devices are naturally misaligned to compensate for things like
415  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
416  *   should call this function for devices whose first sector is not
417  *   naturally aligned.
418  */
419 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
420 {
421 	q->limits.alignment_offset =
422 		offset & (q->limits.physical_block_size - 1);
423 	q->limits.misaligned = 0;
424 }
425 EXPORT_SYMBOL(blk_queue_alignment_offset);
426 
427 /**
428  * blk_limits_io_min - set minimum request size for a device
429  * @limits: the queue limits
430  * @min:  smallest I/O size in bytes
431  *
432  * Description:
433  *   Some devices have an internal block size bigger than the reported
434  *   hardware sector size.  This function can be used to signal the
435  *   smallest I/O the device can perform without incurring a performance
436  *   penalty.
437  */
438 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
439 {
440 	limits->io_min = min;
441 
442 	if (limits->io_min < limits->logical_block_size)
443 		limits->io_min = limits->logical_block_size;
444 
445 	if (limits->io_min < limits->physical_block_size)
446 		limits->io_min = limits->physical_block_size;
447 }
448 EXPORT_SYMBOL(blk_limits_io_min);
449 
450 /**
451  * blk_queue_io_min - set minimum request size for the queue
452  * @q:	the request queue for the device
453  * @min:  smallest I/O size in bytes
454  *
455  * Description:
456  *   Storage devices may report a granularity or preferred minimum I/O
457  *   size which is the smallest request the device can perform without
458  *   incurring a performance penalty.  For disk drives this is often the
459  *   physical block size.  For RAID arrays it is often the stripe chunk
460  *   size.  A properly aligned multiple of minimum_io_size is the
461  *   preferred request size for workloads where a high number of I/O
462  *   operations is desired.
463  */
464 void blk_queue_io_min(struct request_queue *q, unsigned int min)
465 {
466 	blk_limits_io_min(&q->limits, min);
467 }
468 EXPORT_SYMBOL(blk_queue_io_min);
469 
470 /**
471  * blk_limits_io_opt - set optimal request size for a device
472  * @limits: the queue limits
473  * @opt:  smallest I/O size in bytes
474  *
475  * Description:
476  *   Storage devices may report an optimal I/O size, which is the
477  *   device's preferred unit for sustained I/O.  This is rarely reported
478  *   for disk drives.  For RAID arrays it is usually the stripe width or
479  *   the internal track size.  A properly aligned multiple of
480  *   optimal_io_size is the preferred request size for workloads where
481  *   sustained throughput is desired.
482  */
483 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
484 {
485 	limits->io_opt = opt;
486 }
487 EXPORT_SYMBOL(blk_limits_io_opt);
488 
489 /**
490  * blk_queue_io_opt - set optimal request size for the queue
491  * @q:	the request queue for the device
492  * @opt:  optimal request size in bytes
493  *
494  * Description:
495  *   Storage devices may report an optimal I/O size, which is the
496  *   device's preferred unit for sustained I/O.  This is rarely reported
497  *   for disk drives.  For RAID arrays it is usually the stripe width or
498  *   the internal track size.  A properly aligned multiple of
499  *   optimal_io_size is the preferred request size for workloads where
500  *   sustained throughput is desired.
501  */
502 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
503 {
504 	blk_limits_io_opt(&q->limits, opt);
505 }
506 EXPORT_SYMBOL(blk_queue_io_opt);
507 
508 /**
509  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
510  * @t:	the stacking driver (top)
511  * @b:  the underlying device (bottom)
512  **/
513 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
514 {
515 	blk_stack_limits(&t->limits, &b->limits, 0);
516 }
517 EXPORT_SYMBOL(blk_queue_stack_limits);
518 
519 /**
520  * blk_stack_limits - adjust queue_limits for stacked devices
521  * @t:	the stacking driver limits (top device)
522  * @b:  the underlying queue limits (bottom, component device)
523  * @start:  first data sector within component device
524  *
525  * Description:
526  *    This function is used by stacking drivers like MD and DM to ensure
527  *    that all component devices have compatible block sizes and
528  *    alignments.  The stacking driver must provide a queue_limits
529  *    struct (top) and then iteratively call the stacking function for
530  *    all component (bottom) devices.  The stacking function will
531  *    attempt to combine the values and ensure proper alignment.
532  *
533  *    Returns 0 if the top and bottom queue_limits are compatible.  The
534  *    top device's block sizes and alignment offsets may be adjusted to
535  *    ensure alignment with the bottom device. If no compatible sizes
536  *    and alignments exist, -1 is returned and the resulting top
537  *    queue_limits will have the misaligned flag set to indicate that
538  *    the alignment_offset is undefined.
539  */
540 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
541 		     sector_t start)
542 {
543 	unsigned int top, bottom, alignment, ret = 0;
544 
545 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
546 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
547 	t->max_write_same_sectors = min(t->max_write_same_sectors,
548 					b->max_write_same_sectors);
549 	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
550 
551 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
552 					    b->seg_boundary_mask);
553 
554 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
555 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
556 						 b->max_integrity_segments);
557 
558 	t->max_segment_size = min_not_zero(t->max_segment_size,
559 					   b->max_segment_size);
560 
561 	t->misaligned |= b->misaligned;
562 
563 	alignment = queue_limit_alignment_offset(b, start);
564 
565 	/* Bottom device has different alignment.  Check that it is
566 	 * compatible with the current top alignment.
567 	 */
568 	if (t->alignment_offset != alignment) {
569 
570 		top = max(t->physical_block_size, t->io_min)
571 			+ t->alignment_offset;
572 		bottom = max(b->physical_block_size, b->io_min) + alignment;
573 
574 		/* Verify that top and bottom intervals line up */
575 		if (max(top, bottom) % min(top, bottom)) {
576 			t->misaligned = 1;
577 			ret = -1;
578 		}
579 	}
580 
581 	t->logical_block_size = max(t->logical_block_size,
582 				    b->logical_block_size);
583 
584 	t->physical_block_size = max(t->physical_block_size,
585 				     b->physical_block_size);
586 
587 	t->io_min = max(t->io_min, b->io_min);
588 	t->io_opt = lcm(t->io_opt, b->io_opt);
589 
590 	t->cluster &= b->cluster;
591 	t->discard_zeroes_data &= b->discard_zeroes_data;
592 
593 	/* Physical block size a multiple of the logical block size? */
594 	if (t->physical_block_size & (t->logical_block_size - 1)) {
595 		t->physical_block_size = t->logical_block_size;
596 		t->misaligned = 1;
597 		ret = -1;
598 	}
599 
600 	/* Minimum I/O a multiple of the physical block size? */
601 	if (t->io_min & (t->physical_block_size - 1)) {
602 		t->io_min = t->physical_block_size;
603 		t->misaligned = 1;
604 		ret = -1;
605 	}
606 
607 	/* Optimal I/O a multiple of the physical block size? */
608 	if (t->io_opt & (t->physical_block_size - 1)) {
609 		t->io_opt = 0;
610 		t->misaligned = 1;
611 		ret = -1;
612 	}
613 
614 	t->raid_partial_stripes_expensive =
615 		max(t->raid_partial_stripes_expensive,
616 		    b->raid_partial_stripes_expensive);
617 
618 	/* Find lowest common alignment_offset */
619 	t->alignment_offset = lcm(t->alignment_offset, alignment)
620 		% max(t->physical_block_size, t->io_min);
621 
622 	/* Verify that new alignment_offset is on a logical block boundary */
623 	if (t->alignment_offset & (t->logical_block_size - 1)) {
624 		t->misaligned = 1;
625 		ret = -1;
626 	}
627 
628 	/* Discard alignment and granularity */
629 	if (b->discard_granularity) {
630 		alignment = queue_limit_discard_alignment(b, start);
631 
632 		if (t->discard_granularity != 0 &&
633 		    t->discard_alignment != alignment) {
634 			top = t->discard_granularity + t->discard_alignment;
635 			bottom = b->discard_granularity + alignment;
636 
637 			/* Verify that top and bottom intervals line up */
638 			if ((max(top, bottom) % min(top, bottom)) != 0)
639 				t->discard_misaligned = 1;
640 		}
641 
642 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
643 						      b->max_discard_sectors);
644 		t->discard_granularity = max(t->discard_granularity,
645 					     b->discard_granularity);
646 		t->discard_alignment = lcm(t->discard_alignment, alignment) %
647 			t->discard_granularity;
648 	}
649 
650 	return ret;
651 }
652 EXPORT_SYMBOL(blk_stack_limits);
653 
654 /**
655  * bdev_stack_limits - adjust queue limits for stacked drivers
656  * @t:	the stacking driver limits (top device)
657  * @bdev:  the component block_device (bottom)
658  * @start:  first data sector within component device
659  *
660  * Description:
661  *    Merges queue limits for a top device and a block_device.  Returns
662  *    0 if alignment didn't change.  Returns -1 if adding the bottom
663  *    device caused misalignment.
664  */
665 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
666 		      sector_t start)
667 {
668 	struct request_queue *bq = bdev_get_queue(bdev);
669 
670 	start += get_start_sect(bdev);
671 
672 	return blk_stack_limits(t, &bq->limits, start);
673 }
674 EXPORT_SYMBOL(bdev_stack_limits);
675 
676 /**
677  * disk_stack_limits - adjust queue limits for stacked drivers
678  * @disk:  MD/DM gendisk (top)
679  * @bdev:  the underlying block device (bottom)
680  * @offset:  offset to beginning of data within component device
681  *
682  * Description:
683  *    Merges the limits for a top level gendisk and a bottom level
684  *    block_device.
685  */
686 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
687 		       sector_t offset)
688 {
689 	struct request_queue *t = disk->queue;
690 
691 	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
692 		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
693 
694 		disk_name(disk, 0, top);
695 		bdevname(bdev, bottom);
696 
697 		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
698 		       top, bottom);
699 	}
700 }
701 EXPORT_SYMBOL(disk_stack_limits);
702 
703 /**
704  * blk_queue_dma_pad - set pad mask
705  * @q:     the request queue for the device
706  * @mask:  pad mask
707  *
708  * Set dma pad mask.
709  *
710  * Appending pad buffer to a request modifies the last entry of a
711  * scatter list such that it includes the pad buffer.
712  **/
713 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
714 {
715 	q->dma_pad_mask = mask;
716 }
717 EXPORT_SYMBOL(blk_queue_dma_pad);
718 
719 /**
720  * blk_queue_update_dma_pad - update pad mask
721  * @q:     the request queue for the device
722  * @mask:  pad mask
723  *
724  * Update dma pad mask.
725  *
726  * Appending pad buffer to a request modifies the last entry of a
727  * scatter list such that it includes the pad buffer.
728  **/
729 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
730 {
731 	if (mask > q->dma_pad_mask)
732 		q->dma_pad_mask = mask;
733 }
734 EXPORT_SYMBOL(blk_queue_update_dma_pad);
735 
736 /**
737  * blk_queue_dma_drain - Set up a drain buffer for excess dma.
738  * @q:  the request queue for the device
739  * @dma_drain_needed: fn which returns non-zero if drain is necessary
740  * @buf:	physically contiguous buffer
741  * @size:	size of the buffer in bytes
742  *
743  * Some devices have excess DMA problems and can't simply discard (or
744  * zero fill) the unwanted piece of the transfer.  They have to have a
745  * real area of memory to transfer it into.  The use case for this is
746  * ATAPI devices in DMA mode.  If the packet command causes a transfer
747  * bigger than the transfer size some HBAs will lock up if there
748  * aren't DMA elements to contain the excess transfer.  What this API
749  * does is adjust the queue so that the buf is always appended
750  * silently to the scatterlist.
751  *
752  * Note: This routine adjusts max_hw_segments to make room for appending
753  * the drain buffer.  If you call blk_queue_max_segments() after calling
754  * this routine, you must set the limit to one fewer than your device
755  * can support otherwise there won't be room for the drain buffer.
756  */
757 int blk_queue_dma_drain(struct request_queue *q,
758 			       dma_drain_needed_fn *dma_drain_needed,
759 			       void *buf, unsigned int size)
760 {
761 	if (queue_max_segments(q) < 2)
762 		return -EINVAL;
763 	/* make room for appending the drain */
764 	blk_queue_max_segments(q, queue_max_segments(q) - 1);
765 	q->dma_drain_needed = dma_drain_needed;
766 	q->dma_drain_buffer = buf;
767 	q->dma_drain_size = size;
768 
769 	return 0;
770 }
771 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
772 
773 /**
774  * blk_queue_segment_boundary - set boundary rules for segment merging
775  * @q:  the request queue for the device
776  * @mask:  the memory boundary mask
777  **/
778 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
779 {
780 	if (mask < PAGE_CACHE_SIZE - 1) {
781 		mask = PAGE_CACHE_SIZE - 1;
782 		printk(KERN_INFO "%s: set to minimum %lx\n",
783 		       __func__, mask);
784 	}
785 
786 	q->limits.seg_boundary_mask = mask;
787 }
788 EXPORT_SYMBOL(blk_queue_segment_boundary);
789 
790 /**
791  * blk_queue_dma_alignment - set dma length and memory alignment
792  * @q:     the request queue for the device
793  * @mask:  alignment mask
794  *
795  * description:
796  *    set required memory and length alignment for direct dma transactions.
797  *    this is used when building direct io requests for the queue.
798  *
799  **/
800 void blk_queue_dma_alignment(struct request_queue *q, int mask)
801 {
802 	q->dma_alignment = mask;
803 }
804 EXPORT_SYMBOL(blk_queue_dma_alignment);
805 
806 /**
807  * blk_queue_update_dma_alignment - update dma length and memory alignment
808  * @q:     the request queue for the device
809  * @mask:  alignment mask
810  *
811  * description:
812  *    update required memory and length alignment for direct dma transactions.
813  *    If the requested alignment is larger than the current alignment, then
814  *    the current queue alignment is updated to the new value, otherwise it
815  *    is left alone.  The design of this is to allow multiple objects
816  *    (driver, device, transport etc) to set their respective
817  *    alignments without having them interfere.
818  *
819  **/
820 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
821 {
822 	BUG_ON(mask > PAGE_SIZE);
823 
824 	if (mask > q->dma_alignment)
825 		q->dma_alignment = mask;
826 }
827 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
828 
829 /**
830  * blk_queue_flush - configure queue's cache flush capability
831  * @q:		the request queue for the device
832  * @flush:	0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
833  *
834  * Tell block layer cache flush capability of @q.  If it supports
835  * flushing, REQ_FLUSH should be set.  If it supports bypassing
836  * write cache for individual writes, REQ_FUA should be set.
837  */
838 void blk_queue_flush(struct request_queue *q, unsigned int flush)
839 {
840 	WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
841 
842 	if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
843 		flush &= ~REQ_FUA;
844 
845 	q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
846 }
847 EXPORT_SYMBOL_GPL(blk_queue_flush);
848 
849 void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
850 {
851 	q->flush_not_queueable = !queueable;
852 }
853 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
854 
855 static int __init blk_settings_init(void)
856 {
857 	blk_max_low_pfn = max_low_pfn - 1;
858 	blk_max_pfn = max_pfn - 1;
859 	return 0;
860 }
861 subsys_initcall(blk_settings_init);
862