1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to setting various queue properties from drivers 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/init.h> 8 #include <linux/bio.h> 9 #include <linux/blkdev.h> 10 #include <linux/pagemap.h> 11 #include <linux/backing-dev-defs.h> 12 #include <linux/gcd.h> 13 #include <linux/lcm.h> 14 #include <linux/jiffies.h> 15 #include <linux/gfp.h> 16 #include <linux/dma-mapping.h> 17 18 #include "blk.h" 19 #include "blk-rq-qos.h" 20 #include "blk-wbt.h" 21 22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 23 { 24 q->rq_timeout = timeout; 25 } 26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 27 28 /** 29 * blk_set_default_limits - reset limits to default values 30 * @lim: the queue_limits structure to reset 31 * 32 * Description: 33 * Returns a queue_limit struct to its default state. 34 */ 35 void blk_set_default_limits(struct queue_limits *lim) 36 { 37 lim->max_segments = BLK_MAX_SEGMENTS; 38 lim->max_discard_segments = 1; 39 lim->max_integrity_segments = 0; 40 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 41 lim->virt_boundary_mask = 0; 42 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 43 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; 44 lim->max_user_sectors = lim->max_dev_sectors = 0; 45 lim->chunk_sectors = 0; 46 lim->max_write_zeroes_sectors = 0; 47 lim->max_zone_append_sectors = 0; 48 lim->max_discard_sectors = 0; 49 lim->max_hw_discard_sectors = 0; 50 lim->max_secure_erase_sectors = 0; 51 lim->discard_granularity = 0; 52 lim->discard_alignment = 0; 53 lim->discard_misaligned = 0; 54 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512; 55 lim->bounce = BLK_BOUNCE_NONE; 56 lim->alignment_offset = 0; 57 lim->io_opt = 0; 58 lim->misaligned = 0; 59 lim->zoned = BLK_ZONED_NONE; 60 lim->zone_write_granularity = 0; 61 lim->dma_alignment = 511; 62 } 63 64 /** 65 * blk_set_stacking_limits - set default limits for stacking devices 66 * @lim: the queue_limits structure to reset 67 * 68 * Description: 69 * Returns a queue_limit struct to its default state. Should be used 70 * by stacking drivers like DM that have no internal limits. 71 */ 72 void blk_set_stacking_limits(struct queue_limits *lim) 73 { 74 blk_set_default_limits(lim); 75 76 /* Inherit limits from component devices */ 77 lim->max_segments = USHRT_MAX; 78 lim->max_discard_segments = USHRT_MAX; 79 lim->max_hw_sectors = UINT_MAX; 80 lim->max_segment_size = UINT_MAX; 81 lim->max_sectors = UINT_MAX; 82 lim->max_dev_sectors = UINT_MAX; 83 lim->max_write_zeroes_sectors = UINT_MAX; 84 lim->max_zone_append_sectors = UINT_MAX; 85 } 86 EXPORT_SYMBOL(blk_set_stacking_limits); 87 88 /** 89 * blk_queue_bounce_limit - set bounce buffer limit for queue 90 * @q: the request queue for the device 91 * @bounce: bounce limit to enforce 92 * 93 * Description: 94 * Force bouncing for ISA DMA ranges or highmem. 95 * 96 * DEPRECATED, don't use in new code. 97 **/ 98 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce) 99 { 100 q->limits.bounce = bounce; 101 } 102 EXPORT_SYMBOL(blk_queue_bounce_limit); 103 104 /** 105 * blk_queue_max_hw_sectors - set max sectors for a request for this queue 106 * @q: the request queue for the device 107 * @max_hw_sectors: max hardware sectors in the usual 512b unit 108 * 109 * Description: 110 * Enables a low level driver to set a hard upper limit, 111 * max_hw_sectors, on the size of requests. max_hw_sectors is set by 112 * the device driver based upon the capabilities of the I/O 113 * controller. 114 * 115 * max_dev_sectors is a hard limit imposed by the storage device for 116 * READ/WRITE requests. It is set by the disk driver. 117 * 118 * max_sectors is a soft limit imposed by the block layer for 119 * filesystem type requests. This value can be overridden on a 120 * per-device basis in /sys/block/<device>/queue/max_sectors_kb. 121 * The soft limit can not exceed max_hw_sectors. 122 **/ 123 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors) 124 { 125 struct queue_limits *limits = &q->limits; 126 unsigned int max_sectors; 127 128 if ((max_hw_sectors << 9) < PAGE_SIZE) { 129 max_hw_sectors = 1 << (PAGE_SHIFT - 9); 130 printk(KERN_INFO "%s: set to minimum %d\n", 131 __func__, max_hw_sectors); 132 } 133 134 max_hw_sectors = round_down(max_hw_sectors, 135 limits->logical_block_size >> SECTOR_SHIFT); 136 limits->max_hw_sectors = max_hw_sectors; 137 138 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors); 139 140 if (limits->max_user_sectors) 141 max_sectors = min(max_sectors, limits->max_user_sectors); 142 else 143 max_sectors = min(max_sectors, BLK_DEF_MAX_SECTORS); 144 145 max_sectors = round_down(max_sectors, 146 limits->logical_block_size >> SECTOR_SHIFT); 147 limits->max_sectors = max_sectors; 148 149 if (!q->disk) 150 return; 151 q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9); 152 } 153 EXPORT_SYMBOL(blk_queue_max_hw_sectors); 154 155 /** 156 * blk_queue_chunk_sectors - set size of the chunk for this queue 157 * @q: the request queue for the device 158 * @chunk_sectors: chunk sectors in the usual 512b unit 159 * 160 * Description: 161 * If a driver doesn't want IOs to cross a given chunk size, it can set 162 * this limit and prevent merging across chunks. Note that the block layer 163 * must accept a page worth of data at any offset. So if the crossing of 164 * chunks is a hard limitation in the driver, it must still be prepared 165 * to split single page bios. 166 **/ 167 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors) 168 { 169 q->limits.chunk_sectors = chunk_sectors; 170 } 171 EXPORT_SYMBOL(blk_queue_chunk_sectors); 172 173 /** 174 * blk_queue_max_discard_sectors - set max sectors for a single discard 175 * @q: the request queue for the device 176 * @max_discard_sectors: maximum number of sectors to discard 177 **/ 178 void blk_queue_max_discard_sectors(struct request_queue *q, 179 unsigned int max_discard_sectors) 180 { 181 q->limits.max_hw_discard_sectors = max_discard_sectors; 182 q->limits.max_discard_sectors = max_discard_sectors; 183 } 184 EXPORT_SYMBOL(blk_queue_max_discard_sectors); 185 186 /** 187 * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase 188 * @q: the request queue for the device 189 * @max_sectors: maximum number of sectors to secure_erase 190 **/ 191 void blk_queue_max_secure_erase_sectors(struct request_queue *q, 192 unsigned int max_sectors) 193 { 194 q->limits.max_secure_erase_sectors = max_sectors; 195 } 196 EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors); 197 198 /** 199 * blk_queue_max_write_zeroes_sectors - set max sectors for a single 200 * write zeroes 201 * @q: the request queue for the device 202 * @max_write_zeroes_sectors: maximum number of sectors to write per command 203 **/ 204 void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 205 unsigned int max_write_zeroes_sectors) 206 { 207 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors; 208 } 209 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors); 210 211 /** 212 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append 213 * @q: the request queue for the device 214 * @max_zone_append_sectors: maximum number of sectors to write per command 215 **/ 216 void blk_queue_max_zone_append_sectors(struct request_queue *q, 217 unsigned int max_zone_append_sectors) 218 { 219 unsigned int max_sectors; 220 221 if (WARN_ON(!blk_queue_is_zoned(q))) 222 return; 223 224 max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors); 225 max_sectors = min(q->limits.chunk_sectors, max_sectors); 226 227 /* 228 * Signal eventual driver bugs resulting in the max_zone_append sectors limit 229 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set, 230 * or the max_hw_sectors limit not set. 231 */ 232 WARN_ON(!max_sectors); 233 234 q->limits.max_zone_append_sectors = max_sectors; 235 } 236 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors); 237 238 /** 239 * blk_queue_max_segments - set max hw segments for a request for this queue 240 * @q: the request queue for the device 241 * @max_segments: max number of segments 242 * 243 * Description: 244 * Enables a low level driver to set an upper limit on the number of 245 * hw data segments in a request. 246 **/ 247 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments) 248 { 249 if (!max_segments) { 250 max_segments = 1; 251 printk(KERN_INFO "%s: set to minimum %d\n", 252 __func__, max_segments); 253 } 254 255 q->limits.max_segments = max_segments; 256 } 257 EXPORT_SYMBOL(blk_queue_max_segments); 258 259 /** 260 * blk_queue_max_discard_segments - set max segments for discard requests 261 * @q: the request queue for the device 262 * @max_segments: max number of segments 263 * 264 * Description: 265 * Enables a low level driver to set an upper limit on the number of 266 * segments in a discard request. 267 **/ 268 void blk_queue_max_discard_segments(struct request_queue *q, 269 unsigned short max_segments) 270 { 271 q->limits.max_discard_segments = max_segments; 272 } 273 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments); 274 275 /** 276 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 277 * @q: the request queue for the device 278 * @max_size: max size of segment in bytes 279 * 280 * Description: 281 * Enables a low level driver to set an upper limit on the size of a 282 * coalesced segment 283 **/ 284 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 285 { 286 if (max_size < PAGE_SIZE) { 287 max_size = PAGE_SIZE; 288 printk(KERN_INFO "%s: set to minimum %d\n", 289 __func__, max_size); 290 } 291 292 /* see blk_queue_virt_boundary() for the explanation */ 293 WARN_ON_ONCE(q->limits.virt_boundary_mask); 294 295 q->limits.max_segment_size = max_size; 296 } 297 EXPORT_SYMBOL(blk_queue_max_segment_size); 298 299 /** 300 * blk_queue_logical_block_size - set logical block size for the queue 301 * @q: the request queue for the device 302 * @size: the logical block size, in bytes 303 * 304 * Description: 305 * This should be set to the lowest possible block size that the 306 * storage device can address. The default of 512 covers most 307 * hardware. 308 **/ 309 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size) 310 { 311 struct queue_limits *limits = &q->limits; 312 313 limits->logical_block_size = size; 314 315 if (limits->physical_block_size < size) 316 limits->physical_block_size = size; 317 318 if (limits->io_min < limits->physical_block_size) 319 limits->io_min = limits->physical_block_size; 320 321 limits->max_hw_sectors = 322 round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT); 323 limits->max_sectors = 324 round_down(limits->max_sectors, size >> SECTOR_SHIFT); 325 } 326 EXPORT_SYMBOL(blk_queue_logical_block_size); 327 328 /** 329 * blk_queue_physical_block_size - set physical block size for the queue 330 * @q: the request queue for the device 331 * @size: the physical block size, in bytes 332 * 333 * Description: 334 * This should be set to the lowest possible sector size that the 335 * hardware can operate on without reverting to read-modify-write 336 * operations. 337 */ 338 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size) 339 { 340 q->limits.physical_block_size = size; 341 342 if (q->limits.physical_block_size < q->limits.logical_block_size) 343 q->limits.physical_block_size = q->limits.logical_block_size; 344 345 if (q->limits.io_min < q->limits.physical_block_size) 346 q->limits.io_min = q->limits.physical_block_size; 347 } 348 EXPORT_SYMBOL(blk_queue_physical_block_size); 349 350 /** 351 * blk_queue_zone_write_granularity - set zone write granularity for the queue 352 * @q: the request queue for the zoned device 353 * @size: the zone write granularity size, in bytes 354 * 355 * Description: 356 * This should be set to the lowest possible size allowing to write in 357 * sequential zones of a zoned block device. 358 */ 359 void blk_queue_zone_write_granularity(struct request_queue *q, 360 unsigned int size) 361 { 362 if (WARN_ON_ONCE(!blk_queue_is_zoned(q))) 363 return; 364 365 q->limits.zone_write_granularity = size; 366 367 if (q->limits.zone_write_granularity < q->limits.logical_block_size) 368 q->limits.zone_write_granularity = q->limits.logical_block_size; 369 } 370 EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity); 371 372 /** 373 * blk_queue_alignment_offset - set physical block alignment offset 374 * @q: the request queue for the device 375 * @offset: alignment offset in bytes 376 * 377 * Description: 378 * Some devices are naturally misaligned to compensate for things like 379 * the legacy DOS partition table 63-sector offset. Low-level drivers 380 * should call this function for devices whose first sector is not 381 * naturally aligned. 382 */ 383 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) 384 { 385 q->limits.alignment_offset = 386 offset & (q->limits.physical_block_size - 1); 387 q->limits.misaligned = 0; 388 } 389 EXPORT_SYMBOL(blk_queue_alignment_offset); 390 391 void disk_update_readahead(struct gendisk *disk) 392 { 393 struct request_queue *q = disk->queue; 394 395 /* 396 * For read-ahead of large files to be effective, we need to read ahead 397 * at least twice the optimal I/O size. 398 */ 399 disk->bdi->ra_pages = 400 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES); 401 disk->bdi->io_pages = queue_max_sectors(q) >> (PAGE_SHIFT - 9); 402 } 403 EXPORT_SYMBOL_GPL(disk_update_readahead); 404 405 /** 406 * blk_limits_io_min - set minimum request size for a device 407 * @limits: the queue limits 408 * @min: smallest I/O size in bytes 409 * 410 * Description: 411 * Some devices have an internal block size bigger than the reported 412 * hardware sector size. This function can be used to signal the 413 * smallest I/O the device can perform without incurring a performance 414 * penalty. 415 */ 416 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 417 { 418 limits->io_min = min; 419 420 if (limits->io_min < limits->logical_block_size) 421 limits->io_min = limits->logical_block_size; 422 423 if (limits->io_min < limits->physical_block_size) 424 limits->io_min = limits->physical_block_size; 425 } 426 EXPORT_SYMBOL(blk_limits_io_min); 427 428 /** 429 * blk_queue_io_min - set minimum request size for the queue 430 * @q: the request queue for the device 431 * @min: smallest I/O size in bytes 432 * 433 * Description: 434 * Storage devices may report a granularity or preferred minimum I/O 435 * size which is the smallest request the device can perform without 436 * incurring a performance penalty. For disk drives this is often the 437 * physical block size. For RAID arrays it is often the stripe chunk 438 * size. A properly aligned multiple of minimum_io_size is the 439 * preferred request size for workloads where a high number of I/O 440 * operations is desired. 441 */ 442 void blk_queue_io_min(struct request_queue *q, unsigned int min) 443 { 444 blk_limits_io_min(&q->limits, min); 445 } 446 EXPORT_SYMBOL(blk_queue_io_min); 447 448 /** 449 * blk_limits_io_opt - set optimal request size for a device 450 * @limits: the queue limits 451 * @opt: smallest I/O size in bytes 452 * 453 * Description: 454 * Storage devices may report an optimal I/O size, which is the 455 * device's preferred unit for sustained I/O. This is rarely reported 456 * for disk drives. For RAID arrays it is usually the stripe width or 457 * the internal track size. A properly aligned multiple of 458 * optimal_io_size is the preferred request size for workloads where 459 * sustained throughput is desired. 460 */ 461 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 462 { 463 limits->io_opt = opt; 464 } 465 EXPORT_SYMBOL(blk_limits_io_opt); 466 467 /** 468 * blk_queue_io_opt - set optimal request size for the queue 469 * @q: the request queue for the device 470 * @opt: optimal request size in bytes 471 * 472 * Description: 473 * Storage devices may report an optimal I/O size, which is the 474 * device's preferred unit for sustained I/O. This is rarely reported 475 * for disk drives. For RAID arrays it is usually the stripe width or 476 * the internal track size. A properly aligned multiple of 477 * optimal_io_size is the preferred request size for workloads where 478 * sustained throughput is desired. 479 */ 480 void blk_queue_io_opt(struct request_queue *q, unsigned int opt) 481 { 482 blk_limits_io_opt(&q->limits, opt); 483 if (!q->disk) 484 return; 485 q->disk->bdi->ra_pages = 486 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES); 487 } 488 EXPORT_SYMBOL(blk_queue_io_opt); 489 490 static int queue_limit_alignment_offset(const struct queue_limits *lim, 491 sector_t sector) 492 { 493 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 494 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 495 << SECTOR_SHIFT; 496 497 return (granularity + lim->alignment_offset - alignment) % granularity; 498 } 499 500 static unsigned int queue_limit_discard_alignment( 501 const struct queue_limits *lim, sector_t sector) 502 { 503 unsigned int alignment, granularity, offset; 504 505 if (!lim->max_discard_sectors) 506 return 0; 507 508 /* Why are these in bytes, not sectors? */ 509 alignment = lim->discard_alignment >> SECTOR_SHIFT; 510 granularity = lim->discard_granularity >> SECTOR_SHIFT; 511 if (!granularity) 512 return 0; 513 514 /* Offset of the partition start in 'granularity' sectors */ 515 offset = sector_div(sector, granularity); 516 517 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 518 offset = (granularity + alignment - offset) % granularity; 519 520 /* Turn it back into bytes, gaah */ 521 return offset << SECTOR_SHIFT; 522 } 523 524 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs) 525 { 526 sectors = round_down(sectors, lbs >> SECTOR_SHIFT); 527 if (sectors < PAGE_SIZE >> SECTOR_SHIFT) 528 sectors = PAGE_SIZE >> SECTOR_SHIFT; 529 return sectors; 530 } 531 532 /** 533 * blk_stack_limits - adjust queue_limits for stacked devices 534 * @t: the stacking driver limits (top device) 535 * @b: the underlying queue limits (bottom, component device) 536 * @start: first data sector within component device 537 * 538 * Description: 539 * This function is used by stacking drivers like MD and DM to ensure 540 * that all component devices have compatible block sizes and 541 * alignments. The stacking driver must provide a queue_limits 542 * struct (top) and then iteratively call the stacking function for 543 * all component (bottom) devices. The stacking function will 544 * attempt to combine the values and ensure proper alignment. 545 * 546 * Returns 0 if the top and bottom queue_limits are compatible. The 547 * top device's block sizes and alignment offsets may be adjusted to 548 * ensure alignment with the bottom device. If no compatible sizes 549 * and alignments exist, -1 is returned and the resulting top 550 * queue_limits will have the misaligned flag set to indicate that 551 * the alignment_offset is undefined. 552 */ 553 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 554 sector_t start) 555 { 556 unsigned int top, bottom, alignment, ret = 0; 557 558 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 559 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 560 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors); 561 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors, 562 b->max_write_zeroes_sectors); 563 t->max_zone_append_sectors = min(t->max_zone_append_sectors, 564 b->max_zone_append_sectors); 565 t->bounce = max(t->bounce, b->bounce); 566 567 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 568 b->seg_boundary_mask); 569 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask, 570 b->virt_boundary_mask); 571 572 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 573 t->max_discard_segments = min_not_zero(t->max_discard_segments, 574 b->max_discard_segments); 575 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 576 b->max_integrity_segments); 577 578 t->max_segment_size = min_not_zero(t->max_segment_size, 579 b->max_segment_size); 580 581 t->misaligned |= b->misaligned; 582 583 alignment = queue_limit_alignment_offset(b, start); 584 585 /* Bottom device has different alignment. Check that it is 586 * compatible with the current top alignment. 587 */ 588 if (t->alignment_offset != alignment) { 589 590 top = max(t->physical_block_size, t->io_min) 591 + t->alignment_offset; 592 bottom = max(b->physical_block_size, b->io_min) + alignment; 593 594 /* Verify that top and bottom intervals line up */ 595 if (max(top, bottom) % min(top, bottom)) { 596 t->misaligned = 1; 597 ret = -1; 598 } 599 } 600 601 t->logical_block_size = max(t->logical_block_size, 602 b->logical_block_size); 603 604 t->physical_block_size = max(t->physical_block_size, 605 b->physical_block_size); 606 607 t->io_min = max(t->io_min, b->io_min); 608 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt); 609 t->dma_alignment = max(t->dma_alignment, b->dma_alignment); 610 611 /* Set non-power-of-2 compatible chunk_sectors boundary */ 612 if (b->chunk_sectors) 613 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors); 614 615 /* Physical block size a multiple of the logical block size? */ 616 if (t->physical_block_size & (t->logical_block_size - 1)) { 617 t->physical_block_size = t->logical_block_size; 618 t->misaligned = 1; 619 ret = -1; 620 } 621 622 /* Minimum I/O a multiple of the physical block size? */ 623 if (t->io_min & (t->physical_block_size - 1)) { 624 t->io_min = t->physical_block_size; 625 t->misaligned = 1; 626 ret = -1; 627 } 628 629 /* Optimal I/O a multiple of the physical block size? */ 630 if (t->io_opt & (t->physical_block_size - 1)) { 631 t->io_opt = 0; 632 t->misaligned = 1; 633 ret = -1; 634 } 635 636 /* chunk_sectors a multiple of the physical block size? */ 637 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) { 638 t->chunk_sectors = 0; 639 t->misaligned = 1; 640 ret = -1; 641 } 642 643 t->raid_partial_stripes_expensive = 644 max(t->raid_partial_stripes_expensive, 645 b->raid_partial_stripes_expensive); 646 647 /* Find lowest common alignment_offset */ 648 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment) 649 % max(t->physical_block_size, t->io_min); 650 651 /* Verify that new alignment_offset is on a logical block boundary */ 652 if (t->alignment_offset & (t->logical_block_size - 1)) { 653 t->misaligned = 1; 654 ret = -1; 655 } 656 657 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size); 658 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size); 659 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size); 660 661 /* Discard alignment and granularity */ 662 if (b->discard_granularity) { 663 alignment = queue_limit_discard_alignment(b, start); 664 665 if (t->discard_granularity != 0 && 666 t->discard_alignment != alignment) { 667 top = t->discard_granularity + t->discard_alignment; 668 bottom = b->discard_granularity + alignment; 669 670 /* Verify that top and bottom intervals line up */ 671 if ((max(top, bottom) % min(top, bottom)) != 0) 672 t->discard_misaligned = 1; 673 } 674 675 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 676 b->max_discard_sectors); 677 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors, 678 b->max_hw_discard_sectors); 679 t->discard_granularity = max(t->discard_granularity, 680 b->discard_granularity); 681 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) % 682 t->discard_granularity; 683 } 684 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors, 685 b->max_secure_erase_sectors); 686 t->zone_write_granularity = max(t->zone_write_granularity, 687 b->zone_write_granularity); 688 t->zoned = max(t->zoned, b->zoned); 689 return ret; 690 } 691 EXPORT_SYMBOL(blk_stack_limits); 692 693 /** 694 * disk_stack_limits - adjust queue limits for stacked drivers 695 * @disk: MD/DM gendisk (top) 696 * @bdev: the underlying block device (bottom) 697 * @offset: offset to beginning of data within component device 698 * 699 * Description: 700 * Merges the limits for a top level gendisk and a bottom level 701 * block_device. 702 */ 703 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 704 sector_t offset) 705 { 706 struct request_queue *t = disk->queue; 707 708 if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits, 709 get_start_sect(bdev) + (offset >> 9)) < 0) 710 pr_notice("%s: Warning: Device %pg is misaligned\n", 711 disk->disk_name, bdev); 712 713 disk_update_readahead(disk); 714 } 715 EXPORT_SYMBOL(disk_stack_limits); 716 717 /** 718 * blk_queue_update_dma_pad - update pad mask 719 * @q: the request queue for the device 720 * @mask: pad mask 721 * 722 * Update dma pad mask. 723 * 724 * Appending pad buffer to a request modifies the last entry of a 725 * scatter list such that it includes the pad buffer. 726 **/ 727 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 728 { 729 if (mask > q->dma_pad_mask) 730 q->dma_pad_mask = mask; 731 } 732 EXPORT_SYMBOL(blk_queue_update_dma_pad); 733 734 /** 735 * blk_queue_segment_boundary - set boundary rules for segment merging 736 * @q: the request queue for the device 737 * @mask: the memory boundary mask 738 **/ 739 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 740 { 741 if (mask < PAGE_SIZE - 1) { 742 mask = PAGE_SIZE - 1; 743 printk(KERN_INFO "%s: set to minimum %lx\n", 744 __func__, mask); 745 } 746 747 q->limits.seg_boundary_mask = mask; 748 } 749 EXPORT_SYMBOL(blk_queue_segment_boundary); 750 751 /** 752 * blk_queue_virt_boundary - set boundary rules for bio merging 753 * @q: the request queue for the device 754 * @mask: the memory boundary mask 755 **/ 756 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask) 757 { 758 q->limits.virt_boundary_mask = mask; 759 760 /* 761 * Devices that require a virtual boundary do not support scatter/gather 762 * I/O natively, but instead require a descriptor list entry for each 763 * page (which might not be idential to the Linux PAGE_SIZE). Because 764 * of that they are not limited by our notion of "segment size". 765 */ 766 if (mask) 767 q->limits.max_segment_size = UINT_MAX; 768 } 769 EXPORT_SYMBOL(blk_queue_virt_boundary); 770 771 /** 772 * blk_queue_dma_alignment - set dma length and memory alignment 773 * @q: the request queue for the device 774 * @mask: alignment mask 775 * 776 * description: 777 * set required memory and length alignment for direct dma transactions. 778 * this is used when building direct io requests for the queue. 779 * 780 **/ 781 void blk_queue_dma_alignment(struct request_queue *q, int mask) 782 { 783 q->limits.dma_alignment = mask; 784 } 785 EXPORT_SYMBOL(blk_queue_dma_alignment); 786 787 /** 788 * blk_queue_update_dma_alignment - update dma length and memory alignment 789 * @q: the request queue for the device 790 * @mask: alignment mask 791 * 792 * description: 793 * update required memory and length alignment for direct dma transactions. 794 * If the requested alignment is larger than the current alignment, then 795 * the current queue alignment is updated to the new value, otherwise it 796 * is left alone. The design of this is to allow multiple objects 797 * (driver, device, transport etc) to set their respective 798 * alignments without having them interfere. 799 * 800 **/ 801 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 802 { 803 BUG_ON(mask > PAGE_SIZE); 804 805 if (mask > q->limits.dma_alignment) 806 q->limits.dma_alignment = mask; 807 } 808 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 809 810 /** 811 * blk_set_queue_depth - tell the block layer about the device queue depth 812 * @q: the request queue for the device 813 * @depth: queue depth 814 * 815 */ 816 void blk_set_queue_depth(struct request_queue *q, unsigned int depth) 817 { 818 q->queue_depth = depth; 819 rq_qos_queue_depth_changed(q); 820 } 821 EXPORT_SYMBOL(blk_set_queue_depth); 822 823 /** 824 * blk_queue_write_cache - configure queue's write cache 825 * @q: the request queue for the device 826 * @wc: write back cache on or off 827 * @fua: device supports FUA writes, if true 828 * 829 * Tell the block layer about the write cache of @q. 830 */ 831 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua) 832 { 833 if (wc) { 834 blk_queue_flag_set(QUEUE_FLAG_HW_WC, q); 835 blk_queue_flag_set(QUEUE_FLAG_WC, q); 836 } else { 837 blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q); 838 blk_queue_flag_clear(QUEUE_FLAG_WC, q); 839 } 840 if (fua) 841 blk_queue_flag_set(QUEUE_FLAG_FUA, q); 842 else 843 blk_queue_flag_clear(QUEUE_FLAG_FUA, q); 844 845 wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags)); 846 } 847 EXPORT_SYMBOL_GPL(blk_queue_write_cache); 848 849 /** 850 * blk_queue_required_elevator_features - Set a queue required elevator features 851 * @q: the request queue for the target device 852 * @features: Required elevator features OR'ed together 853 * 854 * Tell the block layer that for the device controlled through @q, only the 855 * only elevators that can be used are those that implement at least the set of 856 * features specified by @features. 857 */ 858 void blk_queue_required_elevator_features(struct request_queue *q, 859 unsigned int features) 860 { 861 q->required_elevator_features = features; 862 } 863 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features); 864 865 /** 866 * blk_queue_can_use_dma_map_merging - configure queue for merging segments. 867 * @q: the request queue for the device 868 * @dev: the device pointer for dma 869 * 870 * Tell the block layer about merging the segments by dma map of @q. 871 */ 872 bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 873 struct device *dev) 874 { 875 unsigned long boundary = dma_get_merge_boundary(dev); 876 877 if (!boundary) 878 return false; 879 880 /* No need to update max_segment_size. see blk_queue_virt_boundary() */ 881 blk_queue_virt_boundary(q, boundary); 882 883 return true; 884 } 885 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging); 886 887 static bool disk_has_partitions(struct gendisk *disk) 888 { 889 unsigned long idx; 890 struct block_device *part; 891 bool ret = false; 892 893 rcu_read_lock(); 894 xa_for_each(&disk->part_tbl, idx, part) { 895 if (bdev_is_partition(part)) { 896 ret = true; 897 break; 898 } 899 } 900 rcu_read_unlock(); 901 902 return ret; 903 } 904 905 /** 906 * disk_set_zoned - configure the zoned model for a disk 907 * @disk: the gendisk of the queue to configure 908 * @model: the zoned model to set 909 * 910 * Set the zoned model of @disk to @model. 911 * 912 * When @model is BLK_ZONED_HM (host managed), this should be called only 913 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option). 914 * If @model specifies BLK_ZONED_HA (host aware), the effective model used 915 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions 916 * on the disk. 917 */ 918 void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model) 919 { 920 struct request_queue *q = disk->queue; 921 unsigned int old_model = q->limits.zoned; 922 923 switch (model) { 924 case BLK_ZONED_HM: 925 /* 926 * Host managed devices are supported only if 927 * CONFIG_BLK_DEV_ZONED is enabled. 928 */ 929 WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)); 930 break; 931 case BLK_ZONED_HA: 932 /* 933 * Host aware devices can be treated either as regular block 934 * devices (similar to drive managed devices) or as zoned block 935 * devices to take advantage of the zone command set, similarly 936 * to host managed devices. We try the latter if there are no 937 * partitions and zoned block device support is enabled, else 938 * we do nothing special as far as the block layer is concerned. 939 */ 940 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) || 941 disk_has_partitions(disk)) 942 model = BLK_ZONED_NONE; 943 break; 944 case BLK_ZONED_NONE: 945 default: 946 if (WARN_ON_ONCE(model != BLK_ZONED_NONE)) 947 model = BLK_ZONED_NONE; 948 break; 949 } 950 951 q->limits.zoned = model; 952 if (model != BLK_ZONED_NONE) { 953 /* 954 * Set the zone write granularity to the device logical block 955 * size by default. The driver can change this value if needed. 956 */ 957 blk_queue_zone_write_granularity(q, 958 queue_logical_block_size(q)); 959 } else if (old_model != BLK_ZONED_NONE) { 960 disk_clear_zone_settings(disk); 961 } 962 } 963 EXPORT_SYMBOL_GPL(disk_set_zoned); 964 965 int bdev_alignment_offset(struct block_device *bdev) 966 { 967 struct request_queue *q = bdev_get_queue(bdev); 968 969 if (q->limits.misaligned) 970 return -1; 971 if (bdev_is_partition(bdev)) 972 return queue_limit_alignment_offset(&q->limits, 973 bdev->bd_start_sect); 974 return q->limits.alignment_offset; 975 } 976 EXPORT_SYMBOL_GPL(bdev_alignment_offset); 977 978 unsigned int bdev_discard_alignment(struct block_device *bdev) 979 { 980 struct request_queue *q = bdev_get_queue(bdev); 981 982 if (bdev_is_partition(bdev)) 983 return queue_limit_discard_alignment(&q->limits, 984 bdev->bd_start_sect); 985 return q->limits.discard_alignment; 986 } 987 EXPORT_SYMBOL_GPL(bdev_discard_alignment); 988