1 /* 2 * Functions related to setting various queue properties from drivers 3 */ 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <linux/init.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ 10 #include <linux/gcd.h> 11 #include <linux/lcm.h> 12 #include <linux/jiffies.h> 13 #include <linux/gfp.h> 14 15 #include "blk.h" 16 17 unsigned long blk_max_low_pfn; 18 EXPORT_SYMBOL(blk_max_low_pfn); 19 20 unsigned long blk_max_pfn; 21 22 /** 23 * blk_queue_prep_rq - set a prepare_request function for queue 24 * @q: queue 25 * @pfn: prepare_request function 26 * 27 * It's possible for a queue to register a prepare_request callback which 28 * is invoked before the request is handed to the request_fn. The goal of 29 * the function is to prepare a request for I/O, it can be used to build a 30 * cdb from the request data for instance. 31 * 32 */ 33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) 34 { 35 q->prep_rq_fn = pfn; 36 } 37 EXPORT_SYMBOL(blk_queue_prep_rq); 38 39 /** 40 * blk_queue_unprep_rq - set an unprepare_request function for queue 41 * @q: queue 42 * @ufn: unprepare_request function 43 * 44 * It's possible for a queue to register an unprepare_request callback 45 * which is invoked before the request is finally completed. The goal 46 * of the function is to deallocate any data that was allocated in the 47 * prepare_request callback. 48 * 49 */ 50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn) 51 { 52 q->unprep_rq_fn = ufn; 53 } 54 EXPORT_SYMBOL(blk_queue_unprep_rq); 55 56 /** 57 * blk_queue_merge_bvec - set a merge_bvec function for queue 58 * @q: queue 59 * @mbfn: merge_bvec_fn 60 * 61 * Usually queues have static limitations on the max sectors or segments that 62 * we can put in a request. Stacking drivers may have some settings that 63 * are dynamic, and thus we have to query the queue whether it is ok to 64 * add a new bio_vec to a bio at a given offset or not. If the block device 65 * has such limitations, it needs to register a merge_bvec_fn to control 66 * the size of bio's sent to it. Note that a block device *must* allow a 67 * single page to be added to an empty bio. The block device driver may want 68 * to use the bio_split() function to deal with these bio's. By default 69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are 70 * honored. 71 */ 72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn) 73 { 74 q->merge_bvec_fn = mbfn; 75 } 76 EXPORT_SYMBOL(blk_queue_merge_bvec); 77 78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) 79 { 80 q->softirq_done_fn = fn; 81 } 82 EXPORT_SYMBOL(blk_queue_softirq_done); 83 84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 85 { 86 q->rq_timeout = timeout; 87 } 88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 89 90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn) 91 { 92 q->rq_timed_out_fn = fn; 93 } 94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out); 95 96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn) 97 { 98 q->lld_busy_fn = fn; 99 } 100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy); 101 102 /** 103 * blk_set_default_limits - reset limits to default values 104 * @lim: the queue_limits structure to reset 105 * 106 * Description: 107 * Returns a queue_limit struct to its default state. Can be used by 108 * stacking drivers like DM that stage table swaps and reuse an 109 * existing device queue. 110 */ 111 void blk_set_default_limits(struct queue_limits *lim) 112 { 113 lim->max_segments = BLK_MAX_SEGMENTS; 114 lim->max_integrity_segments = 0; 115 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 116 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 117 lim->max_sectors = BLK_DEF_MAX_SECTORS; 118 lim->max_hw_sectors = INT_MAX; 119 lim->max_discard_sectors = 0; 120 lim->discard_granularity = 0; 121 lim->discard_alignment = 0; 122 lim->discard_misaligned = 0; 123 lim->discard_zeroes_data = 1; 124 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512; 125 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT); 126 lim->alignment_offset = 0; 127 lim->io_opt = 0; 128 lim->misaligned = 0; 129 lim->cluster = 1; 130 } 131 EXPORT_SYMBOL(blk_set_default_limits); 132 133 /** 134 * blk_queue_make_request - define an alternate make_request function for a device 135 * @q: the request queue for the device to be affected 136 * @mfn: the alternate make_request function 137 * 138 * Description: 139 * The normal way for &struct bios to be passed to a device 140 * driver is for them to be collected into requests on a request 141 * queue, and then to allow the device driver to select requests 142 * off that queue when it is ready. This works well for many block 143 * devices. However some block devices (typically virtual devices 144 * such as md or lvm) do not benefit from the processing on the 145 * request queue, and are served best by having the requests passed 146 * directly to them. This can be achieved by providing a function 147 * to blk_queue_make_request(). 148 * 149 * Caveat: 150 * The driver that does this *must* be able to deal appropriately 151 * with buffers in "highmemory". This can be accomplished by either calling 152 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling 153 * blk_queue_bounce() to create a buffer in normal memory. 154 **/ 155 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) 156 { 157 /* 158 * set defaults 159 */ 160 q->nr_requests = BLKDEV_MAX_RQ; 161 162 q->make_request_fn = mfn; 163 blk_queue_dma_alignment(q, 511); 164 blk_queue_congestion_threshold(q); 165 q->nr_batching = BLK_BATCH_REQ; 166 167 blk_set_default_limits(&q->limits); 168 blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS); 169 q->limits.discard_zeroes_data = 0; 170 171 /* 172 * by default assume old behaviour and bounce for any highmem page 173 */ 174 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); 175 } 176 EXPORT_SYMBOL(blk_queue_make_request); 177 178 /** 179 * blk_queue_bounce_limit - set bounce buffer limit for queue 180 * @q: the request queue for the device 181 * @dma_mask: the maximum address the device can handle 182 * 183 * Description: 184 * Different hardware can have different requirements as to what pages 185 * it can do I/O directly to. A low level driver can call 186 * blk_queue_bounce_limit to have lower memory pages allocated as bounce 187 * buffers for doing I/O to pages residing above @dma_mask. 188 **/ 189 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask) 190 { 191 unsigned long b_pfn = dma_mask >> PAGE_SHIFT; 192 int dma = 0; 193 194 q->bounce_gfp = GFP_NOIO; 195 #if BITS_PER_LONG == 64 196 /* 197 * Assume anything <= 4GB can be handled by IOMMU. Actually 198 * some IOMMUs can handle everything, but I don't know of a 199 * way to test this here. 200 */ 201 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) 202 dma = 1; 203 q->limits.bounce_pfn = max(max_low_pfn, b_pfn); 204 #else 205 if (b_pfn < blk_max_low_pfn) 206 dma = 1; 207 q->limits.bounce_pfn = b_pfn; 208 #endif 209 if (dma) { 210 init_emergency_isa_pool(); 211 q->bounce_gfp = GFP_NOIO | GFP_DMA; 212 q->limits.bounce_pfn = b_pfn; 213 } 214 } 215 EXPORT_SYMBOL(blk_queue_bounce_limit); 216 217 /** 218 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request 219 * @limits: the queue limits 220 * @max_hw_sectors: max hardware sectors in the usual 512b unit 221 * 222 * Description: 223 * Enables a low level driver to set a hard upper limit, 224 * max_hw_sectors, on the size of requests. max_hw_sectors is set by 225 * the device driver based upon the combined capabilities of I/O 226 * controller and storage device. 227 * 228 * max_sectors is a soft limit imposed by the block layer for 229 * filesystem type requests. This value can be overridden on a 230 * per-device basis in /sys/block/<device>/queue/max_sectors_kb. 231 * The soft limit can not exceed max_hw_sectors. 232 **/ 233 void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors) 234 { 235 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) { 236 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9); 237 printk(KERN_INFO "%s: set to minimum %d\n", 238 __func__, max_hw_sectors); 239 } 240 241 limits->max_hw_sectors = max_hw_sectors; 242 limits->max_sectors = min_t(unsigned int, max_hw_sectors, 243 BLK_DEF_MAX_SECTORS); 244 } 245 EXPORT_SYMBOL(blk_limits_max_hw_sectors); 246 247 /** 248 * blk_queue_max_hw_sectors - set max sectors for a request for this queue 249 * @q: the request queue for the device 250 * @max_hw_sectors: max hardware sectors in the usual 512b unit 251 * 252 * Description: 253 * See description for blk_limits_max_hw_sectors(). 254 **/ 255 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors) 256 { 257 blk_limits_max_hw_sectors(&q->limits, max_hw_sectors); 258 } 259 EXPORT_SYMBOL(blk_queue_max_hw_sectors); 260 261 /** 262 * blk_queue_max_discard_sectors - set max sectors for a single discard 263 * @q: the request queue for the device 264 * @max_discard_sectors: maximum number of sectors to discard 265 **/ 266 void blk_queue_max_discard_sectors(struct request_queue *q, 267 unsigned int max_discard_sectors) 268 { 269 q->limits.max_discard_sectors = max_discard_sectors; 270 } 271 EXPORT_SYMBOL(blk_queue_max_discard_sectors); 272 273 /** 274 * blk_queue_max_segments - set max hw segments for a request for this queue 275 * @q: the request queue for the device 276 * @max_segments: max number of segments 277 * 278 * Description: 279 * Enables a low level driver to set an upper limit on the number of 280 * hw data segments in a request. 281 **/ 282 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments) 283 { 284 if (!max_segments) { 285 max_segments = 1; 286 printk(KERN_INFO "%s: set to minimum %d\n", 287 __func__, max_segments); 288 } 289 290 q->limits.max_segments = max_segments; 291 } 292 EXPORT_SYMBOL(blk_queue_max_segments); 293 294 /** 295 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 296 * @q: the request queue for the device 297 * @max_size: max size of segment in bytes 298 * 299 * Description: 300 * Enables a low level driver to set an upper limit on the size of a 301 * coalesced segment 302 **/ 303 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 304 { 305 if (max_size < PAGE_CACHE_SIZE) { 306 max_size = PAGE_CACHE_SIZE; 307 printk(KERN_INFO "%s: set to minimum %d\n", 308 __func__, max_size); 309 } 310 311 q->limits.max_segment_size = max_size; 312 } 313 EXPORT_SYMBOL(blk_queue_max_segment_size); 314 315 /** 316 * blk_queue_logical_block_size - set logical block size for the queue 317 * @q: the request queue for the device 318 * @size: the logical block size, in bytes 319 * 320 * Description: 321 * This should be set to the lowest possible block size that the 322 * storage device can address. The default of 512 covers most 323 * hardware. 324 **/ 325 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size) 326 { 327 q->limits.logical_block_size = size; 328 329 if (q->limits.physical_block_size < size) 330 q->limits.physical_block_size = size; 331 332 if (q->limits.io_min < q->limits.physical_block_size) 333 q->limits.io_min = q->limits.physical_block_size; 334 } 335 EXPORT_SYMBOL(blk_queue_logical_block_size); 336 337 /** 338 * blk_queue_physical_block_size - set physical block size for the queue 339 * @q: the request queue for the device 340 * @size: the physical block size, in bytes 341 * 342 * Description: 343 * This should be set to the lowest possible sector size that the 344 * hardware can operate on without reverting to read-modify-write 345 * operations. 346 */ 347 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size) 348 { 349 q->limits.physical_block_size = size; 350 351 if (q->limits.physical_block_size < q->limits.logical_block_size) 352 q->limits.physical_block_size = q->limits.logical_block_size; 353 354 if (q->limits.io_min < q->limits.physical_block_size) 355 q->limits.io_min = q->limits.physical_block_size; 356 } 357 EXPORT_SYMBOL(blk_queue_physical_block_size); 358 359 /** 360 * blk_queue_alignment_offset - set physical block alignment offset 361 * @q: the request queue for the device 362 * @offset: alignment offset in bytes 363 * 364 * Description: 365 * Some devices are naturally misaligned to compensate for things like 366 * the legacy DOS partition table 63-sector offset. Low-level drivers 367 * should call this function for devices whose first sector is not 368 * naturally aligned. 369 */ 370 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) 371 { 372 q->limits.alignment_offset = 373 offset & (q->limits.physical_block_size - 1); 374 q->limits.misaligned = 0; 375 } 376 EXPORT_SYMBOL(blk_queue_alignment_offset); 377 378 /** 379 * blk_limits_io_min - set minimum request size for a device 380 * @limits: the queue limits 381 * @min: smallest I/O size in bytes 382 * 383 * Description: 384 * Some devices have an internal block size bigger than the reported 385 * hardware sector size. This function can be used to signal the 386 * smallest I/O the device can perform without incurring a performance 387 * penalty. 388 */ 389 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 390 { 391 limits->io_min = min; 392 393 if (limits->io_min < limits->logical_block_size) 394 limits->io_min = limits->logical_block_size; 395 396 if (limits->io_min < limits->physical_block_size) 397 limits->io_min = limits->physical_block_size; 398 } 399 EXPORT_SYMBOL(blk_limits_io_min); 400 401 /** 402 * blk_queue_io_min - set minimum request size for the queue 403 * @q: the request queue for the device 404 * @min: smallest I/O size in bytes 405 * 406 * Description: 407 * Storage devices may report a granularity or preferred minimum I/O 408 * size which is the smallest request the device can perform without 409 * incurring a performance penalty. For disk drives this is often the 410 * physical block size. For RAID arrays it is often the stripe chunk 411 * size. A properly aligned multiple of minimum_io_size is the 412 * preferred request size for workloads where a high number of I/O 413 * operations is desired. 414 */ 415 void blk_queue_io_min(struct request_queue *q, unsigned int min) 416 { 417 blk_limits_io_min(&q->limits, min); 418 } 419 EXPORT_SYMBOL(blk_queue_io_min); 420 421 /** 422 * blk_limits_io_opt - set optimal request size for a device 423 * @limits: the queue limits 424 * @opt: smallest I/O size in bytes 425 * 426 * Description: 427 * Storage devices may report an optimal I/O size, which is the 428 * device's preferred unit for sustained I/O. This is rarely reported 429 * for disk drives. For RAID arrays it is usually the stripe width or 430 * the internal track size. A properly aligned multiple of 431 * optimal_io_size is the preferred request size for workloads where 432 * sustained throughput is desired. 433 */ 434 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 435 { 436 limits->io_opt = opt; 437 } 438 EXPORT_SYMBOL(blk_limits_io_opt); 439 440 /** 441 * blk_queue_io_opt - set optimal request size for the queue 442 * @q: the request queue for the device 443 * @opt: optimal request size in bytes 444 * 445 * Description: 446 * Storage devices may report an optimal I/O size, which is the 447 * device's preferred unit for sustained I/O. This is rarely reported 448 * for disk drives. For RAID arrays it is usually the stripe width or 449 * the internal track size. A properly aligned multiple of 450 * optimal_io_size is the preferred request size for workloads where 451 * sustained throughput is desired. 452 */ 453 void blk_queue_io_opt(struct request_queue *q, unsigned int opt) 454 { 455 blk_limits_io_opt(&q->limits, opt); 456 } 457 EXPORT_SYMBOL(blk_queue_io_opt); 458 459 /** 460 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers 461 * @t: the stacking driver (top) 462 * @b: the underlying device (bottom) 463 **/ 464 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) 465 { 466 blk_stack_limits(&t->limits, &b->limits, 0); 467 } 468 EXPORT_SYMBOL(blk_queue_stack_limits); 469 470 /** 471 * blk_stack_limits - adjust queue_limits for stacked devices 472 * @t: the stacking driver limits (top device) 473 * @b: the underlying queue limits (bottom, component device) 474 * @start: first data sector within component device 475 * 476 * Description: 477 * This function is used by stacking drivers like MD and DM to ensure 478 * that all component devices have compatible block sizes and 479 * alignments. The stacking driver must provide a queue_limits 480 * struct (top) and then iteratively call the stacking function for 481 * all component (bottom) devices. The stacking function will 482 * attempt to combine the values and ensure proper alignment. 483 * 484 * Returns 0 if the top and bottom queue_limits are compatible. The 485 * top device's block sizes and alignment offsets may be adjusted to 486 * ensure alignment with the bottom device. If no compatible sizes 487 * and alignments exist, -1 is returned and the resulting top 488 * queue_limits will have the misaligned flag set to indicate that 489 * the alignment_offset is undefined. 490 */ 491 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 492 sector_t start) 493 { 494 unsigned int top, bottom, alignment, ret = 0; 495 496 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 497 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 498 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn); 499 500 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 501 b->seg_boundary_mask); 502 503 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 504 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 505 b->max_integrity_segments); 506 507 t->max_segment_size = min_not_zero(t->max_segment_size, 508 b->max_segment_size); 509 510 t->misaligned |= b->misaligned; 511 512 alignment = queue_limit_alignment_offset(b, start); 513 514 /* Bottom device has different alignment. Check that it is 515 * compatible with the current top alignment. 516 */ 517 if (t->alignment_offset != alignment) { 518 519 top = max(t->physical_block_size, t->io_min) 520 + t->alignment_offset; 521 bottom = max(b->physical_block_size, b->io_min) + alignment; 522 523 /* Verify that top and bottom intervals line up */ 524 if (max(top, bottom) & (min(top, bottom) - 1)) { 525 t->misaligned = 1; 526 ret = -1; 527 } 528 } 529 530 t->logical_block_size = max(t->logical_block_size, 531 b->logical_block_size); 532 533 t->physical_block_size = max(t->physical_block_size, 534 b->physical_block_size); 535 536 t->io_min = max(t->io_min, b->io_min); 537 t->io_opt = lcm(t->io_opt, b->io_opt); 538 539 t->cluster &= b->cluster; 540 t->discard_zeroes_data &= b->discard_zeroes_data; 541 542 /* Physical block size a multiple of the logical block size? */ 543 if (t->physical_block_size & (t->logical_block_size - 1)) { 544 t->physical_block_size = t->logical_block_size; 545 t->misaligned = 1; 546 ret = -1; 547 } 548 549 /* Minimum I/O a multiple of the physical block size? */ 550 if (t->io_min & (t->physical_block_size - 1)) { 551 t->io_min = t->physical_block_size; 552 t->misaligned = 1; 553 ret = -1; 554 } 555 556 /* Optimal I/O a multiple of the physical block size? */ 557 if (t->io_opt & (t->physical_block_size - 1)) { 558 t->io_opt = 0; 559 t->misaligned = 1; 560 ret = -1; 561 } 562 563 /* Find lowest common alignment_offset */ 564 t->alignment_offset = lcm(t->alignment_offset, alignment) 565 & (max(t->physical_block_size, t->io_min) - 1); 566 567 /* Verify that new alignment_offset is on a logical block boundary */ 568 if (t->alignment_offset & (t->logical_block_size - 1)) { 569 t->misaligned = 1; 570 ret = -1; 571 } 572 573 /* Discard alignment and granularity */ 574 if (b->discard_granularity) { 575 alignment = queue_limit_discard_alignment(b, start); 576 577 if (t->discard_granularity != 0 && 578 t->discard_alignment != alignment) { 579 top = t->discard_granularity + t->discard_alignment; 580 bottom = b->discard_granularity + alignment; 581 582 /* Verify that top and bottom intervals line up */ 583 if (max(top, bottom) & (min(top, bottom) - 1)) 584 t->discard_misaligned = 1; 585 } 586 587 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 588 b->max_discard_sectors); 589 t->discard_granularity = max(t->discard_granularity, 590 b->discard_granularity); 591 t->discard_alignment = lcm(t->discard_alignment, alignment) & 592 (t->discard_granularity - 1); 593 } 594 595 return ret; 596 } 597 EXPORT_SYMBOL(blk_stack_limits); 598 599 /** 600 * bdev_stack_limits - adjust queue limits for stacked drivers 601 * @t: the stacking driver limits (top device) 602 * @bdev: the component block_device (bottom) 603 * @start: first data sector within component device 604 * 605 * Description: 606 * Merges queue limits for a top device and a block_device. Returns 607 * 0 if alignment didn't change. Returns -1 if adding the bottom 608 * device caused misalignment. 609 */ 610 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 611 sector_t start) 612 { 613 struct request_queue *bq = bdev_get_queue(bdev); 614 615 start += get_start_sect(bdev); 616 617 return blk_stack_limits(t, &bq->limits, start); 618 } 619 EXPORT_SYMBOL(bdev_stack_limits); 620 621 /** 622 * disk_stack_limits - adjust queue limits for stacked drivers 623 * @disk: MD/DM gendisk (top) 624 * @bdev: the underlying block device (bottom) 625 * @offset: offset to beginning of data within component device 626 * 627 * Description: 628 * Merges the limits for a top level gendisk and a bottom level 629 * block_device. 630 */ 631 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 632 sector_t offset) 633 { 634 struct request_queue *t = disk->queue; 635 636 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) { 637 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE]; 638 639 disk_name(disk, 0, top); 640 bdevname(bdev, bottom); 641 642 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n", 643 top, bottom); 644 } 645 } 646 EXPORT_SYMBOL(disk_stack_limits); 647 648 /** 649 * blk_queue_dma_pad - set pad mask 650 * @q: the request queue for the device 651 * @mask: pad mask 652 * 653 * Set dma pad mask. 654 * 655 * Appending pad buffer to a request modifies the last entry of a 656 * scatter list such that it includes the pad buffer. 657 **/ 658 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask) 659 { 660 q->dma_pad_mask = mask; 661 } 662 EXPORT_SYMBOL(blk_queue_dma_pad); 663 664 /** 665 * blk_queue_update_dma_pad - update pad mask 666 * @q: the request queue for the device 667 * @mask: pad mask 668 * 669 * Update dma pad mask. 670 * 671 * Appending pad buffer to a request modifies the last entry of a 672 * scatter list such that it includes the pad buffer. 673 **/ 674 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 675 { 676 if (mask > q->dma_pad_mask) 677 q->dma_pad_mask = mask; 678 } 679 EXPORT_SYMBOL(blk_queue_update_dma_pad); 680 681 /** 682 * blk_queue_dma_drain - Set up a drain buffer for excess dma. 683 * @q: the request queue for the device 684 * @dma_drain_needed: fn which returns non-zero if drain is necessary 685 * @buf: physically contiguous buffer 686 * @size: size of the buffer in bytes 687 * 688 * Some devices have excess DMA problems and can't simply discard (or 689 * zero fill) the unwanted piece of the transfer. They have to have a 690 * real area of memory to transfer it into. The use case for this is 691 * ATAPI devices in DMA mode. If the packet command causes a transfer 692 * bigger than the transfer size some HBAs will lock up if there 693 * aren't DMA elements to contain the excess transfer. What this API 694 * does is adjust the queue so that the buf is always appended 695 * silently to the scatterlist. 696 * 697 * Note: This routine adjusts max_hw_segments to make room for appending 698 * the drain buffer. If you call blk_queue_max_segments() after calling 699 * this routine, you must set the limit to one fewer than your device 700 * can support otherwise there won't be room for the drain buffer. 701 */ 702 int blk_queue_dma_drain(struct request_queue *q, 703 dma_drain_needed_fn *dma_drain_needed, 704 void *buf, unsigned int size) 705 { 706 if (queue_max_segments(q) < 2) 707 return -EINVAL; 708 /* make room for appending the drain */ 709 blk_queue_max_segments(q, queue_max_segments(q) - 1); 710 q->dma_drain_needed = dma_drain_needed; 711 q->dma_drain_buffer = buf; 712 q->dma_drain_size = size; 713 714 return 0; 715 } 716 EXPORT_SYMBOL_GPL(blk_queue_dma_drain); 717 718 /** 719 * blk_queue_segment_boundary - set boundary rules for segment merging 720 * @q: the request queue for the device 721 * @mask: the memory boundary mask 722 **/ 723 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 724 { 725 if (mask < PAGE_CACHE_SIZE - 1) { 726 mask = PAGE_CACHE_SIZE - 1; 727 printk(KERN_INFO "%s: set to minimum %lx\n", 728 __func__, mask); 729 } 730 731 q->limits.seg_boundary_mask = mask; 732 } 733 EXPORT_SYMBOL(blk_queue_segment_boundary); 734 735 /** 736 * blk_queue_dma_alignment - set dma length and memory alignment 737 * @q: the request queue for the device 738 * @mask: alignment mask 739 * 740 * description: 741 * set required memory and length alignment for direct dma transactions. 742 * this is used when building direct io requests for the queue. 743 * 744 **/ 745 void blk_queue_dma_alignment(struct request_queue *q, int mask) 746 { 747 q->dma_alignment = mask; 748 } 749 EXPORT_SYMBOL(blk_queue_dma_alignment); 750 751 /** 752 * blk_queue_update_dma_alignment - update dma length and memory alignment 753 * @q: the request queue for the device 754 * @mask: alignment mask 755 * 756 * description: 757 * update required memory and length alignment for direct dma transactions. 758 * If the requested alignment is larger than the current alignment, then 759 * the current queue alignment is updated to the new value, otherwise it 760 * is left alone. The design of this is to allow multiple objects 761 * (driver, device, transport etc) to set their respective 762 * alignments without having them interfere. 763 * 764 **/ 765 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 766 { 767 BUG_ON(mask > PAGE_SIZE); 768 769 if (mask > q->dma_alignment) 770 q->dma_alignment = mask; 771 } 772 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 773 774 /** 775 * blk_queue_flush - configure queue's cache flush capability 776 * @q: the request queue for the device 777 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA 778 * 779 * Tell block layer cache flush capability of @q. If it supports 780 * flushing, REQ_FLUSH should be set. If it supports bypassing 781 * write cache for individual writes, REQ_FUA should be set. 782 */ 783 void blk_queue_flush(struct request_queue *q, unsigned int flush) 784 { 785 WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA)); 786 787 if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA))) 788 flush &= ~REQ_FUA; 789 790 q->flush_flags = flush & (REQ_FLUSH | REQ_FUA); 791 } 792 EXPORT_SYMBOL_GPL(blk_queue_flush); 793 794 void blk_queue_flush_queueable(struct request_queue *q, bool queueable) 795 { 796 q->flush_not_queueable = !queueable; 797 } 798 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable); 799 800 static int __init blk_settings_init(void) 801 { 802 blk_max_low_pfn = max_low_pfn - 1; 803 blk_max_pfn = max_pfn - 1; 804 return 0; 805 } 806 subsys_initcall(blk_settings_init); 807